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When animals explore spatial environments, their representations often
fragment into multiple maps. What determines these map fragmentations,
and can we predict where they will occur with simple principles? We pose
the problem of fragmentation of an environment as one of (online) spatial
clustering. Taking inspiration from the notion of a contiguous region in
robotics, we develop a theory in which fragmentation decisions are driven
by surprisal. When this criterion is implemented with boundary, grid, and
place cells in various environments, it produces map fragmentations from
the first exploration of each space. Augmented with a long-term spatial
memory and a rule similar to the distance-dependent Chinese Restaurant
Process for selecting among relevant memories, the theory predicts the reuse
of map fragments in environments with repeating substructures. Our model
provides a simple rule for generating spatial state abstractions and predicts
map fragmentations observed in electrophysiological recordings. It further
predicts that there should be “fragmentation decision” or “fracture” cells,
which in multicompartment environments could be called “doorway” cells.
Finally, we show that the resulting abstractions can lead to large (orders
of magnitude) improvements in the ability to plan and navigate through
complex environments.

Introduction

Contextual reorientation [1] and reanchoring, in which behavior, state estimates, or
meaning are suddenly reevaluated based on new contextual information from the world,
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are universal phenomena in psychology. One famous set of examples is the parsing of
garden-path sentences such as “Time flies like an arrow, fruit flies like a banana” or “The
woman brought the sandwich from the kitchen tripped” [2]. In the latter there is a sudden
reorientation upon hearing the word tripped, so that the woman becomes the person
who was brought the sandwich rather than the person bringing the sandwich. Similarly,
spatial reorientation and reanchoring can occur when entering a building lobby from
the outside or entering a di↵erent looking room from another one. Such reanchoring or
reorientation events may constitute the basis on which the brain segments the continuous
stream of experience into episodes or chunks that it uses to structure experience and
memory [3–5].
In the brain, grid cells construct continuous 2-dimensional Euclidean maps of small en-

vironments [6] by the integration of self-movement cues as the animal explores the space,
Fig. 1a. The advantage of such velocity integration-based Euclidean representations is
that they provide a consistent encoding of seen and unseen locations and independent
of paths taken to get there, making it possible to compute novel shortcut paths between
locations [7–11].
However, between di↵erent environments, place and grid cells “remap”: Represen-

tations of these environments involve di↵erent (if overlapping) sets of place cells and
the spatial relationships between place cells in one environment are not preserved in the
other [12]. Grid remapping is more subtle: grid cells exhibit coherent module-wide shifts
that are di↵erential across modules in their firing phases [13]. Remapping can be driven
by non-spatial changes in context (e.g. changes in olfactory or visual cues within the
same space) or by large spatial changes where the subject cannot easily determine its
spatial displacement (e.g. after a journey in a closed vehicle).
These jumps in spatial representation, typically studied by discontinuously transplant-

ing subjects from one environment to another or by switching non-spatial cues, can also
occur when subjects smoothly navigate themselves within a single unchanging environ-
ment, particularly if it has many compartments or subregions [14, 15], Fig. 1b-c. This
phenomenon – referred to as map fragmentation – is also a form of remapping. However,
it is a distinct version of remapping di↵erent from the traditional use of the word and con-
cept [12] because the environment remains stationary as the animal moves continuously
through it, while in typical remapping experiments the environment changes [16]. We
hypothesize that map fragmentation is a solution to multiple problems: First, it solves
the problem of the accumulation of path integration errors that prevent the formation of
consistent maps over larger spaces, resulting in the formation of smaller but consistent
Euclidean maps. Thus, map fragmentation enables spatial inference and shortcut behav-
iors within each submap. Second, each submap represents a state abstraction in which
contiguous locations are clustered together, and combining these abstractions with links
between them can permit e�cient and hierarchical representation and planning. Third,
submaps can combine more globally to form a “topometric” map, a representation with
enough expressiveness for topologically non-trivial cognitive spaces beyond real space,
that preserves the advantages of both local metric structure and global hierarchy and
abstraction.
Here, we propose a simple online rule for map fragmentation that avoids the large
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Figure 1: Map fragmentation in MEC. A-C: Left,Middle. Firing fields of grid cells in various
environments, with environments illustrated schematically in the middle column (firing fields in
A,B from [14] and in C from [15]). Right. Schematic map fragmentations of the environments.
Blue regions are submaps, or regions with a continuous representation in the state space of the
multi-module grid cell population. Solid arrows indicate discontinuous jumps in grid phase,
which we interpret as transitions between submaps.

memory, time complexity and data-ine�ciency of o✏ine algorithms, and show that the
resulting rule is a good potential model of map segmentations observed in grid and place
cells. Finally, we demonstrate by implementing e�cient random tree search algorithms
that map fragmentation can facilitate e�cient planning relative to using global maps,
leading to a massive speed-up in complex and large environments without repeated
substructures.

Results

Map fragmentation as clustering: an o✏ine baseline

We propose that remapping across environments and fragmentation within environments
can be considered to be a clustering problem: At each sampled location, the question is
whether it should be categorized as a part of the most recently used map, or be assigned
to a di↵erent one. A sensible answer would be that su�ciently “similar” locations should
be assigned to the same map (cluster), while su�ciently di↵erent ones should be assigned
to di↵erent maps (clusters).
We view a map as a (local) world model that enables the prediction of sensory inputs

at any location within the map. Thus, we consider that a key metric for map frag-
mentation may be predictability or surprisal, Fig. 2. A similar metric has been used
in robotics methods for simultaneous localization and mapping (SLAM) [17]. Specif-
ically, sets of poses (locations and orientations) where the predictability of external
observations remains high while moving between them (“contiguous regions”) should be
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clustered together into one map, Fig. 2. This view complements the use of other metrics
that have been implemented in o✏ine settings to construct spatial maps, including the
graph Laplacian [18] and successor representation [19] methods, both of which use tem-
poral proximity as their metric (indeed, under a random exploration policy, the successor
representation is closely related to the graph Laplacian). Our primary focus here is on
how biological and artificial agents might generate sensible maps in an online fashion.
Secondarily, we use the metric of prediction or surprisal to generate these online frag-
mentations. In Discussion, we will consider how additional metrics can be used within
the same online framework.
Define a model P(z0 | x0, x, z) that predicts the sensory input z0 at pose x0, based

on the sensory input z at pose x (Fig. 2a,b; see Methods for details). The sensory
observations and their predictions are given in terms of a range sensor centered on the
agent, in the actual environment (Fig. 2a, right) or in a reconstructed map based on
the observations z (Fig. 2a, middle), respectively. For each pose x, we delineate the
surrounding region where predictability remains above threshold; this, by definition, is a
contiguous region. We call the boundary of the region the prediction horizon for x. The
radius of the prediction horizon varies depending on location within the environment,
Fig. 2c. We can use the mutual surprise between poses, which we define as �1

2(logP(z
0 |

x0, x, z) + logP(z | x, x0, z0)) (see Methods for details), as a measure of proximity that
we illustrate with an Isomap embedding [20] of the environment (Fig. 2d). In this
visualization, contiguous (high predictability) regions are compressed, while transition
or bottleneck regions (low predictability) are stretched.

Finally, we define the average surprisal (see Methods) of a pose x by averaging over the
mutual surprise of all nearby poses at a fixed Euclidean distance, and apply a clustering
procedure similar to DBSCAN [21]1. The procedure computes the connected components
of all locations whose average surprise lies below a fixed threshold and decomposes the
map into core fragments and transition regions, Fig. 2e. Additionally, in order to make an
informed choice about the fragmentation threshold, we compute a contour tree (cf. [22])
of the surprisal values, which provides a visualization of how the connectivity ot space
evolves with increasing thresholds, Fig. 2f. As we see, there are regions of the contour tree
that are relative robust to the detailed threshold choice, providing similar connectivities
over a range of threshold values.
The surprisal-based segmentations align well with both intuitive fragmentations and

with neural data (cf. Fig. 1), suggesting that predictability may be a key and principled
objective for map segmentation decisions.
However, the algorithm is o✏ine, requiring full exploration of the space before it can

generate the fragmented map. This is unlike in experiments, where animals generate
map fragmentations in real-time as they explore an environment [15]; in non-spatial
contexts too, there is evidence that event boundaries are defined in real-time [5, 23].
The algorithm also has high complexity, requiring fine spatial discretization and a large
memory and computational bu↵er for the storage of and computation on the full predic-

1The density notion in DBSCAN is based on a count of neighbors. We use the average mutual surprise
instead.
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tivity matrix over all pairs of positions in the space. The same is true for Laplacian and
successor matrix-based methods. Further, there is an additional gap between observed
map fragmentations in biology and the latter two algorithms because while they provide
multi-scale representations of the space (in the form of eigenvectors of some similarity
matrix), they are not actually fragmentations of the environment, Fig. S3,S4.

Online fragmentation based on predictability: Our model

We next build a simple and biologically plausible online map fragmentation model based
on surprisal, with the goal of generating fragmentations that are consistent with the
principled o✏ine clustering-based algorithm above. Our model is an agent that integrates
its velocity as it explores an environment to update its pose estimate, and uses a short-
term memory (STM) and a long-term memory (LTM) to make predictions about what
it expects to see next.
The sensory observations for the online model consist of the activities of a population

of cells that encode the presence of environmental boundaries at some distance, similar
to boundary vector cells (BVCs) [24, 25] in entorhinal cortex or boundary-coding cells in
the occipital place area [26]. These encode a binary, idiothetically-centered local view of
the space2 (with observation field-of-view angle �), Fig. 3a,c. The velocity-based position
estimates are represented by a population of idealized grid cells from multiple modules.
For simplicity and to match the experimental setups in [14, 15] we assume that the pose
angle is specified by a global orienting cue – e↵ectively, the agent has access to its true
head direction. The STM consists of an exponentially decaying moving average of recent
observations, each shifted according to the internal velocity estimate of the agent, Fig. 3d.
The STM is used to generate the prediction for the next observation (motivated by [17]),
and a normalized dot product between the prediction and the current observation (BVC
activity) yields our predictability signal (Fig. 3b,e). Due to its implementation as a
moving average, STM activity slightly lags BVC activity. While high predictability is
maintained along a trajectory, no fragmentation occurs. Once the predictability signal
dips below a threshold, then at the first subsequent stabilization of spatial information,
signaled by predictability returning to threshold, a fragmentation event is triggered
(Fig. 3b). At this point, the agent must make a decision about which map to use, for
which it uses its LTM.
The LTM consists of associations between the grid cell-encoded position representa-

tions and the sensory observations (filtered through the STM) encountered by the agent
in the past (Fig. 3f). At a fragmentation event, the agent stochastically retrieves a
previously visited state and corresponding location estimate in proportion to its match
with the current obseration, or with some small constant probability (Fig. 3g), the agent
selects (initializes) a new map, which corresponds to selecting a randomized new internal
position representation by randomizing the set of phases across the grid modules.
The stochastic selection of an item from LTM based on overlap with the current

observation serves two purposes simultaneously: first, an observation is likely to drive

2This is also known as a grid occupancy map in robotics [27].
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Figure 2: Fragmentations from predictability-based clustering. A: Left. Two agents
(circle and square) in an organically shaped environment, with gray indicating the square agent’s
field of view. Middle. A set of range sensor observations (blue, z00) by the circular agent, shown
on the map built from the square-agent’s observations. Right. A set of range sensor observations
(red, z0) by the circular agent, shown on the actual environment. B: The blue observations in A
constitute the square agent’s prediction of the circular agent’s measurements, with a prediction
model given by a multivariate diagonal Gaussian with means given by the blue measurements,
and which is evaluated at the vector of actual measurements in red. Greater vertical deviations
between red and blue dots correspond to larger prediction errors. C: Each black dot represents a
fixed reference location. All locations (pixels) in the map are colored by their predictability from
the reference location. Solid black circle: the prediction horizon at that reference location: The
horizon is large in open (contiguous) spaces, and small at bottleneck (transition) regions. D:
An Isomap embedding of the environment based on mutual predictability gives rise to a warped
embedding: distances are large when predictability is low. E: Locations in three environments,
colored by their average surprisal. Numbered subregions correspond to connected components
with average surprisal below a threshold level. F: A hierarchical clustering tree for the evolution
of connected subregions for the first environment from E: Although the delineation of subregions
depends on the choice of threshold, some subregions are relatively persistent and thus robust,
maintaining their identity over a range of thresholds.

selection of a closely matching prior observation, and second, the retrieval of a previous
observation is also proportional to the number of times that observation has been made
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Figure 3: Online fragmentation model. A: Sample trajectory (blue) through a “2-room”
environment highlighting three distinct events (red circles) that map to the events in B. Gray
area: the agent’s field of view at the agent’s current location (blue circle). B: Prediction signal
for the trajectory in A. Red dots indicate when the prediction crosses a threshold (dashed line),
with the filled dot indicating a map fragmentation event (which occur at upward threshold
crossings). C A snapshot of the current observation (zt), which here consists of idiothetically
centered BVC inputs to the agent (located at blue dot). Each pixel represents a BVC tuned
to a location in space specified by the vector displacement between the agent and the pixel.
Pixel intensity indicates the level of BVC activation. The image is cropped to exclude inactive
BVCs. D Activity of the cell population encoding the STM (mt) of recent observations for
the trajectory from A. The STM slightly lags the current observation. Our prediction signal is
derived from a normalized dot-product between the current observation and the STM. E: At
each time t, the model stores associations between the STM mt, the internal positional code
xt, and its predecessor xt�1 in a long-term memory (LTM). The slots st in the memory are
chosen randomly. F: At a fragmentation event, the current observation zt is compared to the
LTM of observations Mz (blue columns), while the current position xt is compared with the
corresponding LTM of predecessor positions M�. These comparisons result in weights wz and
wx, respectively, and a memory is probabilistically selected for reuse from the LTM in proportion
to its weight. Additionally, with a fixed probability, a random new map is initiated.

before, because stochastic selection from the set of past observations is a form of monte
carlo volume estimation. In short, the selection of a submap after a fragmentation
decision enables the reuse of existing submaps to represent new spaces when relevant
based on similarity and frequency of past observations, while simultaneously permitting
the creation of new maps. The frequency-dependence of this process together with
the possibility to create new maps is similar to the Bayesian nonparametric Chinese

7

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 1, 2021. ; https://doi.org/10.1101/2021.10.29.466499doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.29.466499
http://creativecommons.org/licenses/by-nc-nd/4.0/


Restaurant Process (CRP) [16, 28, 29]; the observational similarity component makes it
more akin to the distance dependent CRP (dd-CRP) [30, 31]. However, a key di↵erence
is that our observations are only implicitly clustered into submaps: each observation
and location pair is stored independently of the rest in the LTM without a submap
assignment, with submap boundaries only defined by the existence of a fragmentation
decision and a jump in the grid-encoded spatial locations for the post-fragmentation
observation relative to the immediate pre-fragmentation observation 3.

Further maintaining a “temporal” LTM which memorizes spatial transition probabil-
ities, and using this information to bias the selection of a map at fragmentation events
stabilizes how an environment is fragmented, though it is not critical (see SI, Fig. S6).
Spatial transitions contain valuable information about the relationships between indi-
vidual map fragments and are important for exploiting their hierarchical structure in
route planning, as we illustrate later.

Fragmented maps in multiple environments

We explore the map fragmentations generated by our online model across organically
shaped and previously experimentally tested structured multi-compartment environ-
ments, Fig. 4. The online model generates fragmentations at locations that correspond
to observation bottlenecks, including at doorways or narrow openings and around the
corner of sharp turns, Fig. 4a-c (top). Starting from the first trajectory through the
space and across multiple trajectories, the remapping or fragmentation points and the
selected maps are consistent, evidence of the robustness and reliability of online frag-
mentation (Fig. 4a-c, bottom). In the two-room and hallway environment, the model
generates a fragmentation in which the two rooms are each represented by the same
local map (rather than a single global map), and these maps are distinct from the map
for the hallway. Moreover, the fragmentations generated by the online model are consis-
tent with the fragments from the principled baseline method, Fig. 4d. This model can
be used to generate fragmentations and predicted grid cell tuning curves for arbitrary
enviromental geometries; we do so for model cells from di↵erent grid modules in two
environments, Fig. 4e,h (fragmentations of more environments, including a square sprial
maze and a simple linear track, shown in SI, Fig. S1a-c). If the angular field is of view �
is restricted rather than omnidirectional, the maps also acquire direction tuning, Fig. 4h
and Fig. S1c.

3A temperature hyperparameter controls the degree of noise in the selection of a submap from LTM.
This stochastic process allows us to not only use the degree of similarity but also the frequency
of similar observations in selecting a submap: it performs a stochastic measurement of the volume
of similar observations (submap occupancy), and then stochastically selects a map on that basis,
without keeping an explicit count of how often each submap has been visited in the past. Thus, we
may call this process a doubly-stochastic dd-CRP.
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Figure 4: Online fragmentation results. A–CTop: Example trajectory snippets through
three di↵erent environments (blue line), with current agent position indicated as an open blue
circle. Fragmentation events indicated by red dots. The numbers indicate subregions identified
in Figure 2E. A additionally shows the corresponding predictibility signal (blue) and threshold
(dashed line). Bottom: The same trajectory snippets traversing the internal coding state space.
The gray circular areas highlights the most-visited parts of state space for each environment, and
the numbers correspond to the mapped area in the environment. Discontinuous jumps in state
space, corresponding to transitions between submaps which occur at fragmentation events, are
plotted in red. D: Heat maps indicating the density of online fragmentation events closely match
the o✏ine predictibility-based clustering fragmentations from Fig. Figure 2E. These maps can be
interpreted as tuning curves of “fragmentation decision cells” or “doorway cells”. E: Firing fields
of three simulated grid cells in two distinct environments. C1 and C2 are from a common module;
C3 is from a distinct module of larger scale. F: Left. Spatial cell-cell correlation of a single cell
indicating that the tuning curves of cell 1 in both rooms (L and R) coincide and a common
map is used for both rooms. Right. Spatial cell-cell correlations of cells from distinct modules.
The cross correlation changes across di↵erent compartments showing that a relative phase shift
must have occured (modules remap simultaneously and independently). G: Cross correlation
for two cells from a common module in each of the compartments is presented, showing that
the cross correlations are preserved across map fragments. H,I: Directionally tuned firing fields
in the ”Hairpin” maze (shown in C) of an idealized grid cell. The di↵erence in firing fields for
consequtive arms shows that the arms are mapped to di↵erent parts in mapping space depending
on the direction they are traversed. The matrices show the correlation coe�cients comparing
signals of di↵erent arms.

Coherence of fragmentation across scales and maintenance of cell-cell
relationships

Two key structural predictions of our model are, first, that the map fragmentations are
consistent and coherent across scales (across grid modules), with all cells and modules
remapping at the same spatial location in an environment. This is in contrast with
eigenvector-based models [18, 19, 32], in which there is no specific or coherent remapping
decision that is made across eigenvectors, Fig. S3,S4, Fig. 6.
Second, in our model all grid cells within each module maintain fixed cell-cell rela-

tionships across map fragments and environments. This too is in direct contrast with
eigenvector-based models, Fig. 4g,S5, Fig. 6. Consistent with our model, grid cell data
and analyses reveal that the pairwise relationships between co-modular grid cells remain
stable across environments [33] and states [34, 35] even when place cells remap and their
relationships change. These neural data are inconsistent more generally with models
in which grid cell responses are derived from place cell responses [32, 36] because they
would predict altered cell-cell relationships when place cells remap [34].

E�cient planning with fragmentations

Next, we quantify the functional utility of map fragmentation in a navigational planning
problem. The fragmented maps, which represent a form of state abstraction, decompose
the planning problem hierarchically, into a family of smaller and simpler sub-problems.
Thus, they are expected to make planning more e�cient. We perform computational

10

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 1, 2021. ; https://doi.org/10.1101/2021.10.29.466499doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.29.466499
http://creativecommons.org/licenses/by-nc-nd/4.0/


experiments to illustrate this point, comparing a bi-level navigation algorithm in the
fragmented map with a simple baseline.
Consider a goal-directed problem in which agents, who have previously mapped the

space, are tasked with finding a path to a cued goal location from a start location.
For planning, we will assume that the LTM containing stored observation-location as-
sociations also includes an explicit submap identification (that is, all observations until
a fragmentation event are assigned the same submap ID; at a fragmentation event, if
the retrieved map has not yet been assigned a submap ID, a new submap ID is initi-
ated and added to the LTM and associated with all subsequent observations until the
next fragmentation event, and so on; all the observations between fragmentations are
fused using local displacement information to form a submap for the whole fragment)
and storing submap transitions. The environments are complex, but without repeating
submap structure (Fig. 5a-b, d-e), because the fragmented representations generated by
our simple agent do not distinguish between di↵erence spaces with the same appearance
(no global odometry assumed across submaps).
The baseline (global) agent is furnished with a global map, which includes ground-

truth position informaton for all observations (Fig. 5a,d) and uses the Rapidly-exploring
Random Tree (RRT) algorithm [37] to find a path through the space (Methods). The
agent using a fragmented approach constructs a graph in which the nodes correspond to
the submaps, and the edges correspond to observed transitions between submaps during
exploration. It performs a depth-first search through the transition tree to find the
sequence of submaps that lead to the node containing the target location (determined
by querying the LTM with the target inputs). Within each submap, the agent uses the
RRT algorithm to plan a path between the locations corresponding to the entry and exit
edges. This agent possesses no global positional information.
In the environment of Fig. 5a-b, routes are found vastly more rapidly with fragmented

maps than without: we see a ⇠ 5-fold speedup. The relative advantage of planning with
fragmented maps grows superlinearly with the complexity and size of the environment
and separation between start and end locations within these spaces, Fig. 5c (right; steps
are a proxy for the problem complexity).
Next, we simulate agents moving through 3D photorealistic virtual apartments in

which observations are rich pixel images with range data, Fig. 5d, g. We apply con-
volutional visual recognition networks to the dense inputs to extract sparse landmarks
and use these to generate online map segmentations (Methods). As before, the agent
performs bi-level planning on the tree of transitions with submaps as nodes and RRT
planning within submaps. Here we find a several orders of magnitude speedup in plan-
ning with map fragmentation, Fig. 5f.

Discussion

Relationship to existing work

Existing models of neural map fragmentation fall into two categories, Fig. 6: The first
assumes that fragmentation is driven by large path integration errors that cause a mis-
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Figure 5: E�cient Hierarchical Planning with Map Fragmentations. A-C: Results of
the planning algorithm applied to the global map of the environment (A) and to the hierarchical
maps from our online fragmentation model (B). In C we plot the distributions of planning steps
conditioned on the distance between start and target locations. D-G: Similar to A-C but using
an alternative fragmentation algorithm based on semantic information extracted from visual
inputs as shown in G.

match between estimated position and familiar observations [38]; in environments with
little ambiguity in the external sensory cues, there would be no fragmentation. The
second considers eigenvectors of di↵erent types of transition matrices, e.g. eigenvectors
of the graph Laplacian of the adjacency matrix or of the successor representation [18,
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19]. These models require a global buildup of the transition matrix between all pairs of
locations in the environment, requiring in some sense a complete map of the environment
before any fragmentations could happen. They also do not provide an explicit fragmenta-
tion of the environment, but rather a global map whose eigenvectors may be interpreted
as the tuning curves of grid cells, and a subset of which appear visually fragmented
(with di↵erent fragmentations by di↵erent grid cells and modules). By contrast, our
model is fully online and provides explicit, robust fragmentations starting from the first
trajectory through an environment, even in the absence of positional ambiguity; it also
requires a smaller memory demand than transition matrix models. Finally, the model
involves only simple, biologically plausible computational elements, with grid cells and
BVCs and a short-term and a long-term memory, to explain a number of experimental
results.
Our work, initially motivated by the empirical observations of fragmented maps in

neuroscience, is closely related to work on segmented maps in the field of simultaneous
localization and mapping (SLAM) in robotics [17, 39–41]. The main di↵erence is that
predictions in our model are based on a temporally limited window into the past, pro-
vided through the STM, whereas in [17] all observations are accumulated into a map
that the prediction is based on. Further, our predictions are based on idiothetically-
centered local views of the environment (BVC) – which are not assembled into a global
allocentric map – and use an adapted moving average as a STM. For (re-)localization
we use local views stored in a spatially indexed LTM.
As we have shown, spatial abstraction and spatial hierarchy in the form of map frag-

ments can be of high utility in e�cient search for solving goal-directed problems. State
abstractions and hierarchical representations are broadly recognized to be important for
more e�cient reinforcement learning as well, and implemented in di↵erent forms includ-
ing the classic options framework and more recent attempts [42, 43]. A key challenge for
such approaches is to find rules that generate appropriate state abstractions, especially
those capable of doing so in an online or streaming way. Our work is a contribution in
this direction; related work includes the generation of temporal abstractions based on
novelty rather than surprisal [44].
Our use of a surprisal signal is closely related to curiosity-based algorithms for rein-

forcement learning [45]. These algorithms use prediction error as an internal reward, to
drive agents to explore unknown parts of the space. By contrast, we use prediction error
as a way to generate state abstractions.

Model extensions: a broader set of metrics for fragmentation

The general principle of online state abstraction through online map fragmentation can
use metrics in addition to surprisal for triggering a fragmentation event. Consider the
case of two hallways with similar ideothetically-centered views, e.g. hallways 2 and 3 in
Fig. 4c, that di↵er only in the permitted turn direction at the end. A natural extension of
the model would be to incorporate a cell population encoding navigational a↵ordances, to
fragment and select maps based not only sensory surprisal but also on the set of actions
that can be or are commonly taken. Other extensions include using the physical distance
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between states [18, 19], the passage of time [46–48] with a dynamic (temporally decaying)
threshold for fragmentation that makes fragmentation more likely as time elapses (also
see [17]), the appearance unique or novel visual features including landmarks [44, 49–51],
and su�cient mismatch in the estimates of state made from di↵erent cues or sensory
modalities [38, 52], in addition to the metric of perceptual predictibility that we have
used here and that the hippocampus has been shown to be sensitive to [53, 54]. The
present model, which provides an online method for generating meaningful abstractions,
may be applied with arbitrary combinations of these metrics to generate fragmentations
influenced by multiple factors.

Merging of maps

In case of prolonged experience in the two compartment environment, map fragmenta-
tions tend to merge into a single, continuous representation that covers both compart-
ments [15]. In our model some map fragments can, because of the stochastic nature
of the fragmentation process, occasionally extend beyond an expected fragmentation
boundary (see Fig. S1d). These events occur sparsely and are unlikely to be the source
of the merging of maps observed in [15]. We expect the merging of maps to result from
an improvement of the prediction signal with more experience, which can be modeled
by allowing the prediction system to use not just recent observations from short term
memory, but also past observations from long term memory. Exploring the dynamics of
this process is an interesting potential extension of the present work.

Role of map fragmentation for general cognitive representation

Our model of online fragmentation of a continuous stream of experience enables the
representation of a very general class of maps – including in spatial and non-spatial
cognitive domains – in a way that exceeds the capabilities of a “pure” grid code. Grid
cells generate Euclidean representations of Euclidean spaces [11]. Fragmented maps can
each be viewed as separate local Euclidean “charts”, mapped out by a multi-modular
grid code, that are then associated to each other through transitions learned in the hip-
pocampus according to the global layout of the charts. In other words, the combination
of fragmented maps and the transitions between them can be viewed as a topological
atlas [55] or topometric map [56], that can represent highly non-Euclidean structures
while also permitting locally metric computations.
Thus, from a general perspective, map fragmentation and remapping (reanchoring)

on cognitive representations can be viewed as faciliating the step from representing
flat Euclidean space to representing richer manifolds. In combination with grid cells’
ability to represent high-dimensional variables [11], such a coding scheme becomes highly
expressive.
In contrast to the approach taken in [57, 58] there is no need to generate entirely new

neural codes and representations to fit the local statistics of the explored space. Instead,
we propose that the neural codes seen within submaps retain their native structure across
spaces, in the form of a pre-formed and stable recurrent sca↵old for memory through
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grid cells. Even though grid cell representations in each module are 2-dimensional,
theoretically the set of modules an represent even high-dimensional continuous spaces
[11], while potential non-Euclidean aspects of cognitive varaibles can be captured by
the between-submap transitions. This structuring of memory into continuous parts
with preexisting sca↵olds [59–63] together with occasional transitions between these
continuous chunks simultaneously provides rapid learning and flexibility.

Episodic memory

Episodic memory, one example of a general cognitive representation, deserves special
discussion because of the privileged role of the hippocampal system in its creation,
storage, and use [64, 65]. Like spatial map fragmentations, episodic memory involves
partitioning or clustering the continuous stream of temporal experience into chunks that
involve similar perceptual, temporal, and contextual elements [3–5, 66]. Our proposal
for surprisal-based spatial segmentations could be applied to study memory chunking.
Interestingly, the memory for non-spatial items has also been shown to segment based
on changes in spatial context, specifically by passage through doorways [67], as would
be predicted by the present model.
The utility of applying our model first in the spatial domain is that it yields concrete

predictions that are quantifiably consistent with observed map fragmentations. Applying
it across cognitive domains will contribute to a unified computational model for how
the hippocampal formation generates structured memories of spatial and non-spatial
cognitive experience [57, 58, 65, 66, 68, 69].

Experimental Predictions

The decision to form a new map fragment in our model depends only on recent observa-
tions that are filtered through a STM, without requiring global information about the
enironment. Thus, map fragmentations are predicted to occur in real time and on the
very first pass through relevant regions of new environments, consistent with experi-
mental results in the spatial and non-spatial domains [3–5, 70]. Further, in our model,
all grid cells and grid modules undergo map fragmentation simultaneously, at the same
time and location along a given trajectory, unlike in other models (Fig. S3,S3) [18, 19].
Fragmentations tend to occur at spatial bottlenecks that limit the prediction horizon,

which correspond to “doorways” in the environment. The current evidence for cells
firing at doorways is mixed [71, 72]. However, the necessity for a neural correlate that
communicates the fragmentation decision and facilates across-module grid realignment
under a fragmentation event predicts the existence of “fragmentation decision cells” or
“doorway cells” whose tuning curves would resemble the heatmaps of Fig. 4d.
A common theme in MEC seems to be that cells with spatially structured tuning

coexist with vector versions of themselves: i.e., cells that have similar tuning curves
but are o↵set by a fixed vector (e.g. BVCs [24, 25] and landmark or object vector cells
[73, 74]). In this light we might also expect “fragmentation vector cells” or “doorway
vector cells” that fire if the rodent is at a fixed angle and distance from a fragmentation
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location. These cells, which could be interpreted as encoding future action a↵ordances
or future map transitions, would faciliate planning.
Next, the model predicts that the stochastic process of generating map fragmentations

can result in more than one map for the same region even when there is not an explicit
manipulation of context or task. There are at least two implications of this result. First,
it suggests that variations in the firing of grid and place cells on di↵erent visits to a
location might be due not only to variable paths taken within a single map [75] but to
the retrieval of entirely di↵erent maps. Second, these multiple, stochastically generated
maps might subsequently be easy to harness for contextual di↵erentiation, for instance
like “splitter” cells [58, 76–78].
Finally, the large e�ciencies in planning and goal-directed navigation a↵orded by the

use of fragmented maps suggest that neural planning should exhibit hallmarks of the
fragmentation process: If theta phase precession or waking neural replay events [79–85]
correspond to planning [86–88], we should expect them to exhibit punctate trajecto-
ries with hierarchical dynamics between versus within fragments in multicompartment
environments.

Methods

The source code will be made available online upon publication or request.

O✏ine fragmentations from predictability and surprise

We approximate the probabilistic observation model P (z0 | x0, x, z) by

P (z0 | x0, x, z) =
Z

P (z0 | x,m) P (m | x, z) dm ⇡ P (z0 | x0,m⇤
x,z).

Here m⇤
x,z is the maximum a posteriori estimation of an occupancy map given by an

inverse sensor model as described in [27], and P (z0 | x,m) is the respective range sensor
model. More precisely: Given a deterministic range sensor that takes measurements
along a fixed number (n = 1000, 1500) of simulated beams, whose angles are chosen at
equally spaced angles from the interval [�⇡,⇡], we take three depth measurements z, z0,
and z00. The first two are taken in the actual environment at their resepective poses x
and x0, whereas the third is taken on a map m⇤

x,z built from the initial measurement z
made at x. The observation model P (z0 | x,m) is then defined as a multivariate diagonal
Gaussian with constant diagonal entries � = 1.0 and mean z00, Fig. 2a,b.
The function underlying the distance matrix used for the Isomap embedding (cf.

Fig. 2d) is given by the mutual surprise s(x, x0) between two poses x, x0 which we define
as

s(x, x0) := �1
2

⇣
logP (z | x, x0, z0) + logP (z0 | x0, x, z)

⌘
.

We refer to the negative mutual suprise as mutual predictability. With this in hand
we define the average surprise s(x) = s(x; r, ") of a pose by averaging over the mutual
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surprise about all poses at a fixed distance. To be more precise we define

s(x) := 1
|�(x)|

X

�(x)

s(x, x0),

where�x = �x(r, ") is the set of all poses whose distance to x lies in the range [r�", r+"],
for some previously fixed r, " > 0; in our experiments we use r ⇡ 0.4 and " ⇡ 0.05
depending of the minimal distances between poses. We sometimes refer to the negative
avergage mutual suprise as contiguity. Informally, a high contiguity implies fewer suprises
in direct proximity of the current pose and thus a low urge to remap.
To extract map fragmentations we uniformly sample poses from the environment and

compute their avergage surprise, Fig. 2e. We then consider only those poses whose
surprise lies below a previously fixed threshold (chosen acordingly for each environment).
To make an informed choice about the threshold we compute a discrete contour tree
[22] of the poses with respect to the average surprise visualizing the evolution of the
connectivity with respect to increasing thresholds, Fig. 2f. The connected components
of the subthreshold region yields a fragmentation into sub-maps, one for each connected
region, and a suprathreshold transition region. We consider two poses to be connected
if their Euclidean distance is below another previously fixed threshold that depends on
the coverage of the environment by all the pose samples.

Figure 6: Comparison to other models. Our model improves on the potential shortcomings
of other mapping approaches.

Online fragmentations from predictability

Observations and internal mapping locations

As before, our observation model is given by a range sensor that takes measurements
along a fixed number of simulated beams. The beams’ angles are chosen at equally
spaced angles from the interval [✓t��/2, ✓t+�/2]. Here ✓t denotes the head direction at
time t and � = 360�, 270� defines the field of view of the agent; cf. Fig. 3a. We convert
these range measurements into the activity zt of a simulated population of boundary
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vector cells by a binning process; cf. Fig. 3a,c. In our model we assume there is a n⇥ n
array of BVCs covering an area of w ⇥ w, with n = 91, 111 and w ⇡ 4m.
We assume that internally locations are represented by a population of idealized grid

cells of mulitple scales. For ease of computation, we interpret this multi-module grid code
as a high capcity code for an unfolded 2-dimensional space [11]; cf. Fig. 4a-c (bottom).
The Poisson rate maps fc for an idealized grid cell c are then generated from superposing
three cosinusoidal waves, each o↵set by an angle of 60�, over the unfolded 2-dimensional
grid space, i.e.

fc(x) :=
4⇡p
3�c

2X

k=0

h
1 + cos

�⌦
Rc(x� xc), e

�ik
⇡
3
↵�i

.

Here �c and xc encode the lattice scale and its o↵set, and Rc is a rotation matrix defining
the orientation of the lattice.

Short term memory:

The short term memory (STM) is defined as an adapted exponential moving average of
BVC activity:

mt := ↵ · ẑt
kẑtk

+ (1� ↵) · zt
kztk

,

where the prediction
ẑt := shift(mt�1,��vt�1)

is a shifted version of the 2d-array mt�1 with respect to the scaled velocity of the agent.
We found that a smoothing parameter ↵ ⇡ 0.9 works well. The scaling parameter � = n

w
maps from the environment into pixel space. The shift of the BVC array results in a
di↵used version of the array caused by shifts with non-integer values. The extent of
di↵usion depends on the resolution (or number) of the BVCs.

Prediction model and fragmentation events

The prediction model is a normalized dot product of the current BVC observation zt
with the prediction ẑt computed from the STM as described above:

P(zt | mt�1, vt�1) / vec(zt)

kvec(zt)k
· vec(ẑt)

kvec(ẑt)k

>

where vec(z) is the unfolded version of a 2d-array z; cf. Fig. 3b-d. A fragmentation event
is triggered after the prediction signal P(zt | mt�1) recovers from falling below a fixed
threshold ✓ (⇡ 0.9, 0.925) and rises above again; cf. Fig. 3b. The normalization and the
fact that both zt and ẑt are non-negative ensures that the prediction score lies within
the intervall [0, 1].
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Long term memory and relocalization

The LTM is implemented as a matrix M 2 Rn⇥S whose s’th column is given by the
concatenation of the internal position estimate xts , its predecessor xts�1 and the state
mts of the STM at the time ts the entry was written to memory, i.e. we have (cf. Fig. 3e)

M⇤,s :=
�
vec(xts) vec(xts�1) vec(mts)

�>
.

We fill the memory as follows: At each time step t we choose a slot (column) st in the
memory and replace the corresponding entry with the new one. Until we reach capacity,
that is as long as t  S, we set st = t, after that the slots st are chosen uniformly at
random – similar to the associative memory in [89]. Thus, the LTM consists of two
associative memories: one storing assiciations between locations and observations, and
the other storing state transitions. Alternatively, one could store associations with the
actual observations zts and not the filtered observations from the STM mts , but we found
that the associations with the STM work better and result in more stable fragmentations.
The same is true when we restrict the capacity of the memory; cf. Fig. S6. Note that the
LTM also maintains a temporal memory storing transitions (xts�1, xts) for each entry in
the memory. We use a memory size S between 2000 and 6000.

To determine the new location during a fragmentation event we query the LTM and
compute two distinct weight vectors w1 and w2. The first encodes how well a given
observation z fits any of its entries and is given by

w1(s, z;M) = ✓M
�
vec(mts) ·

vec(z)

kvec(z)k

>�
.

With slight abuse of notation we denote by ✓M the function that sets all values below
a certain threshold ✓M to �1. For ease of notation we set e�1 := 0 – this becomes
relevant in the probability computation below. We usually set this threshold to be equal
to the fragmentation threshold ✓ ⇡ 0.93. In order to allow for more flexibility during
the above lookup we query the LTM not only with the actual observation z, but also
with observations shifted by small pixel o↵sets �, i.e. with z� = shift(z, �) instead of
just z, where � 2 Z2 is chosen from a small region � around the origin. If a shifted
observation fits a particular entry in the memory better, we replace the corresponding
entry in the computed weight vector w1. Then, if one of these adjusted entries, s say, is
chosen during a remapping event we do not remap exactly to the associated position xts
but adjust it proportional to the respective o↵set � and remap to xts +

1
�� (recall that

� translates from environment to pixel coordinates).
The second vector serves as a bias towards map transitions that have already been

traversed and is given by

w2(s, x;M) = exp
�
� kx� xts�1k2

0.25

�
.

Note that we use the Euclidean norm between two 2d vectors out of computational con-
venience, but we could have used the dot product of their corresponding multi modular
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grid codes as well. Finally, when a fragmentation event is triggered we sample a new
location from

P (x | z;M) / e⌧ ·w0 · P0(x) +
X

s

e⌧ ·(w1(s,z)+w2(s,x)) · �(xts),

where P0(x) is a distribution over the space of possible locations, w0 = 1 the concentra-
tion parameter, and ⌧ = 1, 10, 20 is the inverse temperature of the model; cf. Fig. 3g.

Trajectories

The trajectories are generated by choosing waypoints in the environment uniformly at
random and navigating toward the next waypoint along a perturbed shortest path at a
mean speed of 20 cm/sec. Time is discretized into steps of size �t = 0.1 sec.

Hierarchical Planning

We apply Rapidly-exploring Random Trees (RRT) [37] to find a path between randomly
chosen pairs of start and target positions, Fig. 5a. Next, we run our online segementation
algorithm to get an environment-fragmentation into submaps and form a topological
graph whose vertices and edges correspond to submaps and transitions respectively.
For each map-fragment we superpose all its associated memories (STM-filtered BVC
activity) and threshold this newly formed representation to form an occupancy grid
map (in the sense of [27]) which we can apply the path planning algorithm to. We
exploit the hierarchical structure by first finding a path of transitions in the topological
graph, using a breadth-first search, and reduce the overall planning task into a family
of sub-problems as follows: Each transition into- and out of a node defines a pair of
local entry and exit postions on the submap associated with the traversed node defining
a smaller planning problem that can be solved more e↵ectively, Fig. 5b. In Fig. 5c we
plot the distances between start and goal locations against the number of planning steps
needed. The algorithm underlying the results in Fig. 2d–g is given as follows. Because the
3D environments involve dense observations of pixel-rich data, we add image processing
and observation sparsification steps in the form of landmark identification. The agent
receives RGB-D images as input, removes the floor plane, and segments the resulting
point cloud. It retains as landmarks the large segments that are not vertical walls, which
are generally large furniture items that are both relatively static and easy to recognize
robustly from new viewpoints. As it moves through the environment, fragments are
defined as follows: Starting at the initial location, the current fragment is defined a set of
two visible landmarks, and the region of space from which both those landmarks remain
in view constitutes the set of spatial locations assigned to that fragment. Whenever
the agent moves into a part of the space where one or both of those landmarks are not
visible, and if the current location does not correspond to any existing fragment, it starts
a new fragment. Each fragment is connected topologically to the fragment it entered
from.
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Arm-arm correlation

The correlation matrices in Fig. 4i are computed as follows. For each arm in Fig. 4h
we produce a 1-dimensional signal by averaging over the x-axis of the respective tuning
curves in each arm. Each entry cij in the matrix is then given by the Pearson correlation
coe�cient of the 1-dimensional signals in arm i and j.
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