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Abstract 20 

In the context of visual attention, it has been classically assumed that missing the response to a 21 

target or erroneously selecting a distractor occurs as a consequence of the (miss)allocation of 22 

attention in space. In the present paper, we challenge this view and provide evidence that, in 23 

addition to encoding spatial attention, prefrontal neurons also encode a distractibility-to-impulsivity 24 

state. Using supervised dimensionality reduction techniques, we identify two partially overlapped 25 

neuronal subpopulations associated either with attention or overt behaviour. The degree of overlap 26 

accounts for the behavioural gain associated with the good allocation of attention. We further 27 

describe the neural variability accounting for distractibility-to-impulsivity behaviour by a two 28 

dimensional state associated with optimality in task and responsiveness. Overall, we thus show 29 

that behavioural performance arises from the integration of task-specific neuronal processes and 30 

pre-existing neuronal states describing task-independent behavioural states, shedding new light on 31 

attention disorders such as ADHD.   32 

  33 
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Introduction 34 

During our daily life, we are exposed to a myriad of situations during which we need to select and 35 

process different kinds of sensory events and to act accordingly. For example, we have to pay 36 

attention to the traffic light in order to start or stop our car or focus on a unique conversation while 37 

avoiding to listen to simultaneous irrelevant conversations. Attention plays a critical role in all of 38 

these situations, implementing the selection of the sensory cues that are relevant to our ongoing 39 

purposes (Ibos et al., 2013; Moore and Armstrong, 2003; Wardak, 2006; Wardak et al., 2004, 40 

2002) while suppressing the irrelevant information the response to which has to be suppressed (Di 41 

Bello et al., 2021). However, other factors independent from the goals of the task are also 42 

expected to interfere, either enhancing or degrading behavioral performance, such as fatigue 43 

(Marcora et al., 2009; Rosa et al., 2020), motivation (Brown and Bray, 2019; Di Bello et al., 2021), 44 

the degree of liberal or conservative biases in response performance (Cowley et al., 2020) or 45 

intrinsic fluctuations of information coding of cognitive processes (Gaillard et al., 2021). All of these 46 

factors arguably define “internal states” that highly influence the perceptual outcomes under similar 47 

sensory conditions. 48 

Prior electrophysiological studies in primates have focused on how these internal states organize 49 

and influence sensory processing and decision-making (Cowley et al., 2020; Gold and Shadlen, 50 

2007; Harris and Thiele, 2011). However, little is known on how such internal states are organized 51 

at the neuronal population level, how they functionally interact with attentional processes and how 52 

they account for different patterns of behavioral performance characterized by either distractibility 53 

(i.e., the subject’s inattention to task-relevant items) or impulsivity (i.e., the subjects’ propensity of 54 

to respond to incoming stimuli irrespective of their relevance). This has a high relevance to the 55 

understanding of the neural bases of attention disorders such as attention deficit and hyperactivity 56 

disorder (ADHD), as recent studies describe a dissociation between spatial attention deficits and 57 

impulsivity in ADHD patients (Roberts et al., 2018).  58 

The question we address in the present work is whether behavioral performance during an 59 

attentional task is (non-exclusively), as described by prior studies, (i) a direct consequence of a 60 

good or a miss allocation of spatial attention relative to task events (such that attention on the task-61 

relevant items would predict correct responses, whereas attention on task-irrelevant item would 62 

predict false alarms, and attention away from task events would predict absence of response) 63 

(Astrand et al., 2020; Buschman and Miller, 2007; Di Bello et al., 2021; Ibos et al., 2013; Moore 64 

and Armstrong, 2003; Thompson and Schall, 2000, 1999), or (ii) whether behavioral performance 65 

is determined by underlying internal states that can be precisely assigned to specific functional 66 

neuronal states of the prefrontal cortex neural population responses (Cowley et al., 2020). We will 67 

focus on the macaque frontal eye fields (FEF), a brain region in the prefrontal cortex crucial to the 68 

voluntary control of attention (Gottlieb et al., 1998; Moore and Armstrong, 2003). Recent studies 69 
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have shown that macaque monkeys showed a higher hit and false alarm rate on an attentional 70 

cued-target detection task when the decoded position of the attentional spotlight was closer to the 71 

expected target or distractor location, respectively (Astrand et al., 2020, 2016; De Sousa et al., 72 

2021; Gaillard et al., 2020). In addition, the level of statistical shared variability between neurons 73 

recorded in the FEF (noise correlation, see Ben Hadj Hassen and Ben Hamed, 2020 for review) 74 

measured within a time interval prior to attentional orienting by the cue (therefore, prior to any 75 

specific knowledge of the position of the stimulus to-be-attended) also predicted overt behavior of 76 

the monkey, showing lowest noise correlations in hit trials as compared to miss or false alarm trials 77 

(Astrand et al., 2016). In this respect, Nogueira and colleagues (2020), show that two statistical 78 

features of the neural populations accounted for the amount of encoded information and behavioral 79 

outcomes, namely the degree of attentional coding and the population covariability along this 80 

attentional coding axis. All this taken together thus strongly suggests that inappropriate behavior is 81 

only partially driven by the quality of the orientation of spatial attention. We thus hypothesize that 82 

the influence of other activity (or neural states, Averbeck et al., 2006; Wolff et al., 2017) 83 

independent from spatial attention orientation plays a critical role in behavioral performance.  84 

To address this question, we trained two macaque monkeys to perform a 100% validity cued visual 85 

attention task in the presence of distractors. We recorded multi-unit neuronal activity (MUA) from 86 

multiple recording sites in the FEF. Using machine learning techniques, we decoded the (x,y) 87 

position of the locus of attention at a high spatial and temporal resolution before target onset, 88 

which allowed us to classify trials based on how well attention was oriented according to task 89 

instructions. In agreement with previous studies (Astrand et al., 2020, 2016), this metric of the 90 

accuracy of spatial attention orientation highly predicts overt behavioral performance in the task. 91 

However, as we hypothesize, it does not fully account for behavioral performance. Indeed, a 92 

substantial proportion of trials in which decoding indicated an attentional spotlight located close to 93 

expected target position were not successful and the target was missed. Likewise, trials with poor 94 

decoded attention orienting could still end up as correct trials. We thus predicted that internal 95 

states associated with specific neuronal population states can be precisely identified and can either 96 

enhance or interfere with spatial attention processes. To prove our prediction, we used demixed 97 

principal component analysis (dPCA, Kobak et al., 2016; Machens, 2010), a dimensionality 98 

reduction technique that allows associating the variability explained by each component with 99 

specific task- or behavior-related parameters. As predicted, we identify components in the neural 100 

population that specifically encode attention and upcoming behavior (hit/miss) respectively and we 101 

show that the information for each parameter was encoded in overlapping neuronal populations. 102 

Importantly, we find that the smaller the overlap between these neural subpopulations, the higher 103 

the behavioral gain associated with an effective attention orientation, i.e., the smaller the 104 

interference between the internal states associated with behavioral outcome and visual attentional 105 

processes. In addition, when focusing on the neuronal variability accounting for behavioral 106 
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outcome, we identify specific neuronal subpopulations characterizing a two dimensional internal 107 

state associated with different levels of distractibility and impulsivity. One of the state’s dimension 108 

defines a continuum of coding between distractibility, optimal response and impulsivity, possibly 109 

suggesting an association with proactive inhibition and response threshold adjustment (Cowley et 110 

al., 2020). A second dimension singles out optimal response from hits and false alarms, 111 

reminiscent of optimal neuronal processes described in the Locus Coeruleus (Aston-Jones and 112 

Cohen, 2005). Overall, this work provides direct evidence for a functional dissociation between 113 

spatial attention and the control of behavioral optimality, and provides a novel framework for the 114 

interpretation of ADHD symptoms and associated neuropharmacological therapeutic approaches.  115 

Results 116 

Attentional-orienting is only partly predictive of behavior 117 

We recorded MUA from two 24-contact recording probes that were implanted in two macaque 118 

monkeys bilaterally in the FEF, on the anterior bank of the arcuate sulcus, during the execution of 119 

a visually cued target detection task (Figure 1A and B). Similar to what is described in previous 120 

studies (Astrand et al., 2016, 2015; Di Bello et al., 2021; Gaillard et al., 2020; Ibos et al., 2013; 121 

Moore and Armstrong, 2003), these recorded neurons show enhanced responses when attention 122 

is oriented towards their preferred receptive field (RF) location relative to when it is oriented 123 

towards the least preferred spatial location (Figure 1C). The majority of neurons are significantly 124 

modulated depending on whether attention is oriented towards their preferred or non-preferred 125 

receptive field (Figure 1D).  126 

 127 

Figure 1. Methods. (A) 100 % validity cued target-detection task with distractors. To initiate the trial, monkeys had to hold a bar with the 

hand and fixate their gaze on a central cross on the screen. Monkeys received liquid reward for releasing the bar 150-750 ms after 

target presentation onset. Target location was indicated by a cue (green square, second screen). Monkeys had to ignore any un-cued 

event (distractors). (B) On each session, one 24-contact recording probe was placed in each FEF. (C) Single MUA mean (± s.e.) 
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associated to when cue is orienting towards the preferred (black) or the anti-preferred (gray) spatial location, during the cue-to-target 

interval. (D) Distribution of attention modulation index (Preferred - Anti-preferred)/(Preferred + Anti-Preferred), computed over 200 ms 

before target onset across all MUAs of all sessions. Black histogram corresponds to channels in which the neuronal activity during this 

time interval was significantly different between the preferred and the anti-preferred spatial attention responses (Wilcoxon test, p<0.05: 

black, significant difference). 

Recent studies demonstrate that, on classical spatial attention tasks as used here, while attention 128 

is on average oriented to the cued location, it is actually intrinsically dynamic, exploring space 129 

rhythmically both across and within trials (Di Bello et al., 2021; Fiebelkorn et al., 2018; Gaillard et 130 

al., 2020). Here, we use machine learning applied to independent session recordings in order to 131 

assess the spatial locus of the attentional spotlight from FEF neuronal ensembles in time, on 132 

independent trials (see material and methods, Figure 2A and Astrand et al., 2016; De Sousa et al., 133 

2021; Di Bello et al., 2021; Gaillard et al., 2020). This decoded attentional spotlight is thus used as 134 

a proxy of the focus of attention. This allows us to measure, at the single-trial level, the distance of 135 

the decoded spotlight to the expected target position (Target-Attention distance; TA). Corroborating 136 

our previous observations (Astrand et al., 2016; De Sousa et al., 2021; Di Bello et al., 2021; 137 

Gaillard et al., 2020), we find that the distribution of TA distance varied as a function of perceptual 138 

behavioral outcome. Specifically, after equalizing the number of hit and miss trials per each 139 

recording session, the distribution of TA in misses is significantly shifted towards larger TA values 140 

with respect to hits (median hits: 10.12º, IQR: 5.5; median misses: 11.02º, IQR: 5.7, Kolmogorov-141 

Smirnov test, p<0.0001, Figure 2B). Overall, the smaller the TA, the higher the hit rate (Friedmann 142 

test, p<0.001, Figure 2C). Trials with short TA (TA < 6°) are associated with significantly higher hit 143 

rates than when attention is located at intermediate locations (6° < TA < 12° - Kruskal–Wallis test, 144 

p < 0.05) or far away from the expected target location (12° < TA < 18° - Kruskal–Wallis test, p < 145 

0.01). The hit rates for these last two TA trial categories are also different from each other 146 

(Kruskal–Wallis, p < 0.01). Importantly, although TA has a strong effect on hit rates, this parameter 147 

does not fully account for behavioral outcome. Indeed, over 20% of trials with short TA were 148 

misses, and up to 65% of trials with long TA were hits (Figure 2B, see Astrand et al., 2020) This 149 

indicates that behavioral accuracy is not uniquely explained by the position of attention prior to 150 

target onset, and raises the possibility that other ongoing cognitive processes are engaged in 151 

parallel and impacting performance concurrently with the reallocation of attention. 152 
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 153 

Figure 2. Impact of attentional locus on behavior. (A) Attentional orientation: The presentation of the spatial cue instructs the 

monkeys to orient their attention towards the expected target location (white square). High-resolution spatial decoding of the position of 

the attentional locus allows to track the position of the attentional spotlight (yellow dot) on the screen prior the target onset (gray 

trajectory). (B). Histogram of the distribution of the number of hit and miss trials as a function of TA bins (after equalizing the number of 

hit and miss trials pear each TA bin). (C) Overall monkeys’ accuracy in target detection (hit/(hit+miss)) as a function of the target to 

attention distance (TA-step = 6 degrees) (Kruskal–Wallis test, * p<0.05, ** p<0.01). 

Prefrontal neurons are modulated both by spatial attention and upcoming behavioral 154 

accuracy 155 

During spatial attention tasks, neuronal FEF responses are classically shown to differ between 156 

correct (hit) and error (miss) trials (Di Bello et al., 2021; Ibos et al., 2013; Schall et al., 2003; 157 

Thompson and Schall, 2000, 1999; van Vugt et al., 2018). This is often interpreted as an indication 158 

that on error trials, attention is not properly oriented to the instructed location. Here, for all recorded 159 

neuronal responses, we pooled trials based on both the TA category (close TA vs medium TA vs 160 

long TA, see previous subsection) as well as based on behavioral accuracy (hit vs. miss). This TA 161 

measure is a different metric from attention oriented towards the preferred versus anti-preferred 162 

location on the screen, as it reflects how close the attentional spotlight is to the expected target 163 

location, irrespective of actual target position. Figure 3A shows the signal of a neuron that is tuned 164 

to behavioral accuracy, with an overall higher spiking rate for hits than for misses (Figure 3A, blue 165 

vs green shades). In each of hit and miss trials, the neuron’s activity is also tuned to the distance 166 

between the decoded attentional spotlight and expected target position, its activity being higher 167 

when attention is closer to the target (Figure 3A, dark to light shades). As a result, the firing rate of 168 

this neuron cannot by itself predict where attention is oriented in space and whether the monkey is 169 

going to produce a hit or a miss. For example, the neuron signals with the same level of firing rate 170 

an intermediate orientation of attention on upcoming correct trials and a good attention orientation 171 

on upcoming miss trials. Figure 3B represents a second neuron showing the same properties, 172 

except for the fact that its activity is lower when attention is closer to as compared to when it is far 173 

away from the target (Figure 3B, dark to light shades), both in hits (blue shades) and in misses 174 

(green shades). 175 
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At the population level, the closer the attentional spotlight was to the expected target location (i.e. 176 

prior to target presentation), the higher the spiking rate (Figure 3C). Spiking rates were also 177 

significantly higher on hit trials than on miss trials (Figure 3D). Thirty-five percent (35.8%) of 178 

recorded neuronal signals were significantly modulated by TA (181/505), and the majority of these 179 

signals (66.8%, 121/181) showed higher activity in trials where attention was closest to the target (-180 

400 to -100 ms before the target onset, Figure 3E). Independently, the response of 18.85% of the 181 

MUAs (95/505) is significantly different between hits and misses, 75.8% (72/95) of the MUAs 182 

having higher spiking rates on hits (-400 to -100 ms before target onset, Figure 3F). As a result, the 183 

distribution of the attention spotlight modulation index based on the TA estimated prior to target 184 

presentation is biased towards positive values (Median = 0.046, IQR: 0.12, Figure 3E), as well as 185 

the distribution of the behavioral outcome modulation index in the same time interval (Median = 186 

0.026, IQR: 0.031, Figure 3F).  187 

 188 

Figure 3 MUA activity is modulated by distance of spatial attention to expected target and behavioral outcome. (A&B) Single 

unit MUA activity pooled by TA (darker tones corresponding to smaller TA values) and upcoming target behavior (hit trials blue, miss 

trials green) locked to the target onset (dashed vertical line). (C and D) Averaged MUA activity pooled by TA (darker tones 

corresponding to smaller TA values) and upcoming target behavior (hit trials blue, miss trials green) averaged across all task-selective 

MUAs of all sessions. Activity is locked to target onset. (E and F) Distribution of the modulation index based on TA (E) and behavioral 

outcome (F) across all task-selective MUAs of all sessions. Black histogram corresponds to channels in which the neural activity was 

significantly different between the two classes (TA: Close vs Far; Upcoming target behavior: hit vs miss, Wilcoxon non-parametric test, 

p<0.05). Gray color indicates channels showing no significant difference.   

Overall, this indicates that FEF cells encode, just prior to target onset, both how close attention is 189 

oriented to the expected target and whether the monkey is going to succeed on the trial or not. In 190 

order to better characterize how this is organized at the single-cell level, we compare the absolute 191 
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value of the behavioral outcome and attentional modulation indices of each individual cell. Figure 192 

4A shows that neurons fall along a continuum of combinations of attentional and behavioral 193 

outcome coding strength, with neurons showing strong attentional coding but weak behavioral 194 

outcome coding (and vice versa), as well as neurons encoding strongly both parameters 195 

simultaneously. Based on the statistical significance of each of their individual attentional and 196 

behavioral outcome modulation indices, 19.1% of the neurons showing significant coding strength 197 

are found to uniquely encode behavioral outcome, 52.2% uniquely encode attention orientation, 198 

and 27.5% show mixed selectivity to both parameters (Figure 4A). Globally, we find a significant 199 

correlation between behavioral outcome and attentional modulation indices across all recorded 200 

neurons (Figure 4B, Spearman correlation, ρ = 0.35, p <0.0001). This correlation still held true 201 

when considering only attention modulated cells (Spearman correlation, ρ = 0.36, p <0.0001), or 202 

cells modulated by only behavioral outcome (Spearman correlation, ρ = 0.41, p <0.001). This thus 203 

indicates that there is a positive relationship in how both information (attention and behavioral 204 

outcome) are encoded at the single-neuron level. Interestingly, this correlation is stronger when 205 

only mixed selectivity neurons are considered (Spearman correlation, ρ = 0.63, p <0.001), 206 

indicating a stronger functional relationship between these neurons and overt behavior. In the 207 

prefrontal cortex, mixed selectivity neurons coding for both spatial attention and perception are 208 

shown to have higher attentional modulation indices than cells coding only for spatial attention, 209 

while perception-related modulation indices did not vary between mixed selectivity and pure 210 

perception neurons (Mendoza-Halliday and Martinez-Trujillo, 2017). Similarly, we found that 211 

attentional modulation indices were significantly higher in mixed selectivity cells than in pure 212 

attentional cells (Figure 4C, p=0.02, Wilcoxon rank sum test). In contrast, behavioral modulation 213 

indices did not vary between mixed selectivity neurons and pure behavioral outcome neurons (p = 214 

0.3, Wilcoxon rank sum test). In summary, the FEF thus encodes spatial attention and behavioral 215 

outcome through mixed selectivity neurons. These mixed selectivity neurons (Fusi et al., 2016; 216 

Mante et al., 2013; Rigotti et al., 2013)  have the higher attentional modulation indices and better 217 

account for attention than the unmixed selectivity FEF neurons.  218 

 219 

Figure 4. Attentional and behavioral outcome mixed selectivity in the FEF cells. (A) Scatter plot showing attentional (x-axis) and 

behavioral outcome (y-axis) modulation indices (absolute value) for all recorded neurons during the time interval -400 to -100 ms before 

target onset. Neurons are classified based on the significant attentional (red), behavioral outcome (blue) or mixed (green) tuning. Pie 

chart shows the proportion of neurons for each type of selectivity. (B) Spearman correlation coefficient between attention and behavioral 

outcome modulation indices (absolute value)  for all neurons (gray), pure attention (red) and behavioral outcome (blue) selective 
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neurons, and mixed selective (green) neurons. Asterisk indicates the significance of the correlation (*** p<0.001). (C) Box-plot of the 

distribution of modulation indices of attention (red shades) and behavioral outcome (blue shades) for mixed (light shades) and unmixed 

(dark shades) selectivity cell (** p < 0.01). 

Both distance of attention to expected target and overt behavioral outcome account for 220 

prefrontal neuronal variability  221 

At the neural level, a subpopulation of neurons is thus modulated differently by the allocation of 222 

attention and the upcoming behavior. This finding suggests the coexistence of at least two different 223 

processes in the neural activity of the FEF just prior to target presentation. In the previous section 224 

we showed that behavioral and attentional coding was partially mixed in a subpopulation of 225 

recorded FEF cells (Fusi et al., 2016; Mante et al., 2013; Rigotti et al., 2013). In order to study the 226 

interplay between neuronal subpopulations encoding attention and predicting behavioral outcome, 227 

we applied a dimensionality reduction to our data. Dimensionality reduction methods are very 228 

useful to project the neuronal population data from the high dimensional space onto a new low 229 

dimensional manifold such that some of its dimensions (or principal components) maximally 230 

account for a given source of neuronal variability. We applied a principal component analysis 231 

(PCA) to FEF neuronal responses pooled along TA categories and correct and incorrect trials. 232 

When independently projected onto the principal components, the neural responses for hits and 233 

misses, as well as for close, medium and far TA distances, we identify a first component that 234 

mostly accounts for upcoming behavioral outcome (PC1) and a second and a third component that 235 

substantially account for attention to target distance (PC2 and PC3, Supplementary Figure 1). 236 

Information related to the upcoming behavioral outcome and TA is however mixed across principal 237 

components, as expected by the reported results in the previous subsection. This is due to the fact 238 

that while PCA analyses successfully capture the different sources of neuronal variability, this 239 

extraction is blind to the source of the variability. That is to say, this analysis does not allow to 240 

formally relate the extracted components to specific task- or behavior-related parameters, and 241 

therefore these components are affected by mixed selectivity, in the sense that neuronal variability 242 

assigned to a specific neuronal process could be projected onto multiple PCA axes.  243 

This issue is theoretically resolved by demixed principal component analysis (dPCA-Kobak et al., 244 

2016), which retains the main objective of dimensionality reduction methods (capturing almost as 245 

much variance as possible in only few latent variables or components, similarly to what PCA does) 246 

but without imposing orthogonality between components as PCA does by definition. Indeed, this 247 

property of the dPCA permits demixing the neural activity as a function of a priori-defined task 248 

parameters. As a result, this allows to interpret the internal dynamical properties of neuronal 249 

population responses in terms of specific brain functions inferred from task design and behavior. In 250 

the following, we perform a dPCA analysis on the FEF MUA activity with the aim to extract 251 

unmixed components accounting for variability associated with the TA distance and the overt 252 

behavioral outcome, respectively. To do so, we pool the trials based on two different conditions: 253 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2021. ; https://doi.org/10.1101/2021.11.29.470379doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.470379
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

11 
 

Upcoming target detection (hit vs miss) and attention (TA close vs. TA intermediate vs. TA far) 254 

giving rise to six different categories of trials. This analysis is performed on the epoch immediately 255 

preceding target presentation ([-300 0] ms with respect to target onset), thus focusing on the 256 

neuronal variability that best accounts for cue instruction processing and behavioral outcome. 257 

Demixed PCA succeeded in reducing the dimensionality of the MUA data in components that held 258 

information associated with either attention (51% of explained variance), upcoming target detection 259 

(24%) and the interaction between them (20%). Little variance was associated with sources 260 

independent from these parameters or their interaction (5%) (Figure 5A). The overall variance 261 

explained by the dPCA components is similar to the variance explained by the PCA components 262 

(Figure 5B, left). Therefore, population activity is accurately represented by the dPCA components. 263 

Cumulative marginalized variance showed that the majority of the variance explained by each of 264 

the parameters and its interaction was accumulated in the first components (Figure 5B, right). The 265 

projection of the MUA corresponding to each of the conditions onto each of the first dPCA 266 

components associated with attention and target detection captures similar findings as we 267 

observed in the MUA results (Figure 5C and 5D): Just before target onset, projected firing rates 268 

onto the first demixed attention-related component dissociates each of the attentional states based 269 

on the TA, whereas the projection onto the component associated with target detection (i.e., 270 

behavioral outcome) shows two different states depending on whether the target was detected or 271 

not. In addition, we found an interaction component mostly associated with a neural population 272 

reflecting mixed selectivity between attention and target detection (Figure 5E). These observations 273 

are globally reproduced on individual sessions (Supplementary Figure S2). 274 
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 275 

Figure 5. Demixed PCA unmixes attention and behavioral outcome related variance. (A) Pie chart shows how the total signal 

variance is split among parameters: Attention (red), behavioral outcome (blue), Interaction between attention and behavior (dark gray) 

and the condition independent variance (light gray). (B, Left) Cumulative variance explained by PCA (gray) and dPCA (black). Demixed 

PCA explains almost the same amount of variance as PCA. (B, Right) Cumulative demixed variance specific for each marginalization. 

(C-D-E) Demixed principal component. In each plot, the full firing rates from -300ms to 0ms from target onset are projected onto the 

respective dPCA decoder axis (attention, behavioral outcome and interaction), as a function of trial type categories (based on TA 

distance and behavioral outcome) so that there are six lines corresponding with six conditions (see legend). Thick black lines show time 

intervals during which the respective task parameters can be reliably extracted from single-trial activity (as assessed against a 95% 

C.I.). (F) For each neuron, we use the first attention- and behavioral outcome-related demixed PCs to plot its location on the plane 

defined by these two components. These components present a weight distribution that tends to be centered and equally distributed 

around zero (cf. respective histograms). The scatterplot shows the relationship between the neurons’ weights in the attention and 

behavioral outcome demixed component. This correlation is significant (p <0.001). The dot product between these components 

indicates that these components were non-orthogonal (63 degrees).   

To assess whether the tuning of each individual demixed component was statistically significant, 276 

we used these components as linear decoders to measure their ability to encode information 277 

associated to attention and behavioral outcome. We used cross-validation to measure time-278 

dependent classification accuracy and a shuffling procedure to assess whether the accuracy was 279 

significantly above chance (see Materials and Methods).  We found that the attention-related 280 

component achieved single-trial classification accuracy of TA (TA close vs TA medium vs TA far, 281 
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chance level: 33%) of 81%, whereas the behavioral outcome-related component achieved a 282 

classification accuracy of 67% averaged across time (chance level: 50%). All classification 283 

performances were assessed against the 95% confidence interval using random permutation test. 284 

Interestingly, the interaction component achieved a classification accuracy of 30% (chance level: 285 

16.6%).  286 

Figure 5F shows that many neurons expressing one of these components tended also to express 287 

the other one, which is a marker of non-orthogonality of the demixed principal components. To 288 

confirm this, and since the demixed components are not assumed to be orthogonal, we calculated 289 

the angle between the first encoding components associated with attention and behavioral 290 

outcome, respectively. The absolute value of the dot product between the attentional component 291 

and the target detection component is 0.517, which is higher than the significant non-orthogonality 292 

threshold of 0.123 (see Kobak et al., 2016 for details). This confirms statistically the non-293 

orthogonality of these two components. In addition, we observed that both components were 294 

equally distributed across the whole neuronal population, and the weights of each component 295 

showed a clear unimodal distribution centered close to zero (Attention component, median = 0.03, 296 

IQR: 0.04; behavioral outcome component, median = 0.07, IQR: 0.047). This latter observation 297 

rules out the possibility that components might be exhibited only by a subset of cells.  298 

All these results taken together point to the coexistence of two neural mechanisms that can be 299 

assigned to the reallocation of attention and to the upcoming behavioral outcome, respectively, and 300 

that can be reliably accessed at the signal-trial level. As expected by the dPCA theoretical 301 

framework, this method demixes the part of explained variance attributed to overt behavior and TA, 302 

respectively.  303 

Attentional performance depends on how attentional and behavioral outcome information 304 

are mixed in the prefrontal cortex  305 

At the behavioral level, we observed an inter-session variability in how the TA modulated the hit 306 

rate of the monkeys (Supplementary Figure S3). Indeed, in some sessions attention close to target 307 

position just before target onset induced a large increase in hit rates relative to when attention was 308 

far, while other sessions showed no clear benefit of attention orientation on behavioral outcome. 309 

Therefore, we asked whether these differences in how TA affected behavior correlated with how 310 

attention and behavioral performance information interacted in the FEF. To address this question, 311 

we conducted dPCA in each session with the aim to find, at the session level, specific attention 312 

and behavior outcome components in the neural population (Supplementary Figure S2). Similar to 313 

the previous section, we used the first dPC in behavioral outcome (hit or miss) and attention to 314 

target distance (close, intermediate and far) obtained in each session as a decoding axis to build a 315 

linear classifier to decode these two variables. We found that the first dPCs associated with each 316 
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of these parameters reliably encoded the expected information (Figure 6A and B, behavioral 317 

outcome, median = 58.8%, min = 54.17%, max = 77.5%; attention to target distance, median = 318 

54.2%, min = 45.5%, max = 73%). All classification performances were assessed against the 95% 319 

confidence interval using random permutation test (Figure 6A and B, light dark box plot). By 320 

construction, in this dPCA, components the variance of which is highly related to one of the two321 

parameters of interest contain minimal variance about the other one. Such a dPCA would not 322 

capture the neuronal variance that would be explained jointly by both parameters. To address this 323 

concern,  we test whether 1) the information contained in the behavioral outcome component 324 

obtained using this dPCA (overt behavioral outcome and attention to target distance) is statistically 325 

undistinguishable from that estimated from a dPCA uniquely performed on behavioral outcome and 326 

2) the information contained in the TA-related component using this dPCA is statistically 327 

undistinguishable from that estimated from a dPCA uniquely performed on TA. 328 

 329 

Figure 6. Unmixed components account for both overt behaviour- and attention-related information. Box plot corresponding to 

the distribution of the cross-validated classification accuracies of linear classifiers given by the first three demixed principal components 

associated with upcoming behavioral outcome (A),  and with attention to target distance (B). For each parameter, the horizontal dotted 

line corresponds to the theoretical chance level (50% for upcoming target behavior, and 33.3% for attention to target distance). Gray 

boxplot shows the distribution of classification accuracies expected by chance as estimated by 100 iterations of shuffling procedure 

(maximal accuracy value obtained across all iterations is considered). For both parameters, only the first dPC showed accuracy values 

above chance level (* p<0.05 Wilcoxon test). (C) Box plot corresponding to the distribution of the cross-validated classification 

accuracies of linear classifiers given by the first demixed principal component associated with upcoming behavioral outcome and 

attention to target distance using two dPCA approaches: either demixing each parameter (upcoming behavioral outcome or attention to 

target distance) independently, or demixing each parameter from the other (Wilcoxon paired test, **p <0.01; *** p<0.001) (D) Spearman 

correlation between the normalized dot product between the first demixed components associated with attention and upcoming 

behavioral outcome and the behavioral gain associated with an optimal attention orientation towards upcoming target location. 
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The total cumulated variance explained by the six first dPC of the dPCA applied to the upcoming 330 

behavioral outcome parameter only was 97.7% (IQR: 1.9%). When dPCA was applied to TA 331 

parameter only, explained variance by the six first dPC was 96.1% (IQR: 4.3%). When decoding 332 

each of these parameters using the first dPC of each of these two dPCA (Figure 6A and 6B), 333 

overall decoding accuracy across sessions was significantly higher than when using the first 334 

components of the two-dimensional dPCA that forced unmixed sources of variance (Figure 6C, 335 

Wilcoxon test, p<0.01). This thus indicates that while part of the variance accounting for overt 336 

behavioral outcome and attention to target distance are independent, the remaining part is 337 

common to both parameters, thus resulting in a loss of decoding accuracy when the two sources of 338 

information are demixed. This observation indicates a functional overlap between the subspaces 339 

generated by the two components of interest. In order to quantify this functional overlap, for each 340 

session, we measured from the two-parameter initial dPCA, the normalized dot product between 341 

the first dPCs maximally related to overt behavioral outcome and to attention to target distance (as 342 

only these dPCs showed significant encoding information capacities for each category of interest, 343 

Figure 6A and B). The median normalized dot product between the axis corresponding to the first 344 

dPC of each condition was 0.57 (IQR: 0.64), which is very close to the dot product value obtained 345 

when collapsing all sessions in a unique dPCA analysis (0.517). Most interestingly, the dot product 346 

between these two components negatively correlated with how much attention-to-target distance 347 

accounted for behavioral performance (Figure 6D, Spearman correlation, ρ = -0.68, p <0.01). In 348 

other words, the greater the functional overlap between the neuronal populations coding for 349 

attention to target distance and overt behavioral outcome, the lower the behavioral gain when 350 

attention is closer to the target position as compared to far. This can be seen as an interference of 351 

overt behavioral outcome-related neurons with the actual coding of attention and suggests that 352 

optimal attentional performance would be observed for minimal functional overlap between the two 353 

neuronal populations.  354 

Prefrontal cortex codes for behavioral distractibility and impulsivity 355 

Although there is a very large literature on the contribution of the prefrontal cortex to spatial 356 

attention processes, there is, to our knowledge, no evidence of a specific neuronal process 357 

accounting for behavioral outcome independently from, but possibly interacting with, attention 358 

orientation processes. In the following, we seek to identify such a neuronal process. To this aim, 359 

we categorize neuronal responses as a function of all different possible behavioral trial outcomes: 360 

hit trials (in response to target), miss trials (in response to target) and false alarms (to unexpected 361 

distractors). From a behavioral perspective, these trials can be ordered as no response trials 362 

(misses), controlled response trials (hits) and uncontrolled response trials (false alarms). These 363 

trials will be considered in this same order for the analysis of their distinctive neuronal correlates. 364 

The average firing rate of FEF neurons was differentially modulated as a function of trial type 365 
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(Figure 7A, see also Di Bello et al., 2021). In addition, and in agreement with previous studies 366 

(Astrand et al., 2016; see also Ben Hadj Hassen and Ben Hamed, 2020 for review), noise 367 

correlation prior to stimulus onset (target onset for hits and misses, and distractor onset for false 368 

alarms), computed over z-scored neuronal responses, varied as a function of behavioral outcome 369 

(Figure 7Bsolid boxes, Friedman test, p < 0.001). More specifically, hits accounted for the lowest 370 

noise correlation values (Wilcoxon test, p < 0.001). Noise correlation were higher in false alarms 371 

relative to hits and maximal in misses (Wilcoxon test, p < 0.001). Importantly, similar results were 372 

observed when noise correlation is calculated within the period prior to the presentation of the cue, 373 

prior to attentional deployment (Figure 7B, dashed boxes, Friedman test, p < 0.001). This result 374 

suggests the existence of different neural states that would predict behavioral outcome before 375 

stimulus onset and independent of ongoing attentional processing.  376 

 377 

Figure 7. FEF activity and noise correlation vary as a function of the type of produced behavioral responses. (A) Average time 

evolution MUA (± s.e.m) across sessions recorded during hit (blue), miss (green) and false alarm (red) trials. Activity was locked to 

target (for hit and miss responses) or distractor onset (for false alarm responses) (0 ms, interval of analysis: -400 ms to 400 ms). (B) 

Boxplot representing the median and the interquartile range across sessions of noise correlation values for each type of trial computed 

on pre-target (solid lines) or pre-cue (dashed lines) neuronal activities. (*** p < 0.001 Wilcoxon paired test).  

Our prediction is that these different trial types will differentially impact neuronal variability along a 378 

reduced number of behavioral outcome dimensions. To test this, we apply a dPC analysis to this 379 

neuronal data with the aim to find specific components in the neuronal population accounting for 380 

specific aspects of the variance associated with these different trial types. We focus on the epoch 381 

immediately preceding the target or distractor presentation ([-300 0] ms with respect to target or 382 

distractor onset), i.e., on the neuronal variability that best accounts for upcoming target/distractor 383 

processing. This dPCA thus respectively ranks the demixed principal components based on their 384 

explained variance either attributed to overt behavior (trial type) or independent from behavior. 385 

Figure 8 (A and B) shows the projection of the high-dimensional MUA activity averaged over the 386 

three trial types (responses in hit, miss, and false alarm trials) onto each of the two first dPCs for 387 

one representative session. Across sessions, we found that these two dPCs associated with trial 388 

type accounted for two independent processes, and for 90.03% (IQR = 5.99) of the explained 389 

variance. The angle between these two components was 85.7 (IQR = 6.33), and did not pass the 390 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2021. ; https://doi.org/10.1101/2021.11.29.470379doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.470379
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

17 
 

test of non-orthogonality (see Kobak et al., 2016a). Projection of MUA activity onto the first 391 

component (Figure 8C) showed that hit trials were in a different state as compared to both misses 392 

and false alarms (Wilcoxon test, p < 0.001 for both comparisons). Note that this projection mimics 393 

the results that we have obtained from the noise correlation analysis in these types of trials (Figure 394 

7B). The projection of MUA activity onto the second component (Figure 8D) contrasts with the U-395 

shaped curve identified in the first dPC, as the three trial MUA activity in each trial type organize 396 

along a linear relationship (Wilcoxon test, p < 0.01 for all comparisons). When using each of these 397 

two components as axes for decoding trial types, we find that performance in decoding trial types 398 

is above the 95% C.I. (Figure 8E). Decoding performance is however significantly higher for the 399 

first component compared with the that for the second component (Wilcoxon test, p < 0.001).  400 

 401 

Figure 8. Demixed PCA unmixes variance associated with trial types (hit, miss and FA) in two independent components. (A and 

B) MUA activity from the three different trial types (hit trials in blue, miss trials in green and false alarm trials in red), computed on pre-

target (solid lines) or pre-cue (dashed lines) neuronal activities, projected onto the first (A) and second (B) components that maximally 

explain trial type in one representative session, during the time period of -300 ms to 0 ms locked to the stimulus onset. (C and D) 

Boxplot representing the median and the interquartile range of the projected MUA activity onto the first (C) and the second (D) demixed 

components across sessions (** p < 0.01; *** p < 0.001). (E) Box plot corresponding to the distribution of the cross-validated 

classification accuracies of linear classifiers given by the two demixed principal components associated with trial types shown in (A) and 

(B). The horizontal dotted line corresponds to the theoretical chance level (33.3%). Gray boxplot shows the distribution of classification 

accuracies expected by chance as estimated by 100 iterations of shuffling procedure (maximal accuracy value obtained across all 

iterations is considered). 

Crucially, all reported observations remained unchanged when the dPCA was applied on pre-cue 402 

activities, prior to task-related attention orientation (Figure 8, dashed symbols, Supplementary 403 

Figure 4). The only observed difference is a less marked linear trend in dPC2 between miss, hit 404 

and FA trials in pre-cue as compared to pre-target analysis, although this difference disappears 405 

when the dPCA is performed on cumulated session data (Supplementary Figure 4) rather than on 406 

single-session data (Figure 8). This thus indicates that the demixed components identified based 407 

on behavioral outcome can be identified irrespective of task-related processes. Likewise, none of 408 
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the results reported in this section changed when performed on hit, miss and false alarm trials that 409 

were equalized for TA metrics on the session level. Overall, this thus indicates that, independently 410 

from cued position or attention orientation in the trial (TA), the different trial types are associated 411 

with a distinct structure in neuronal variability that can be tracked before target onset, but also prior 412 

to cue presentation. This strongly suggests that these specific neuronal states can be associated 413 

with distinct behavioral states that are predictive of behavioral outcome.  414 

Discussion 415 

In the present work, we show that the accurate performance in a visual attentional task does not 416 

exclusively depend on attentional orientation signals, but also on the integration of these signals 417 

with pre-existing activity associated with neural states that modulate different levels of distractibility 418 

and impulsivity that directly affect how attentional processes are implemented. We show that these 419 

two distinct behavioural markers, i.e., distractibility and impulsivity, are implemented in two different 420 

neuronal population functional components, the variance of which are respectively associated with 421 

either the decoded attentional spotlight relative to the target, or to the behavioural (perceptual) 422 

outcome produced by the subject. These components are not orthogonal, indicating an overlap in 423 

how neuronal populations implement the information from each of these two components. 424 

Importantly, smaller overlap was associated with enhanced behavioural gain of efficient attention 425 

orientation (Figure 9A). Furthermore, we find that this behaviour-related neural state is two-426 

dimensional, indicating that activity in the FEF associated to this neural state possibly reflect the 427 

effect of the activation of two independent input sources (Figure 9B). Overall, these results indicate 428 

that the behavioural outcome during a covert attentional task can be attributed to multiple neuronal 429 

processes in addition to spatial orientation processes and is a consequence of the interaction 430 

between task-specific computations with global neural states associated with different levels of 431 

impulsivity and distractibility that in turn influence the access to attention information. 432 

 433 

Figure 9: Schema of the neurophysiological underpinnings explaining the relationship between covert attention and overt 

behavior. (A) Behavioral gain produced by the good allocation of attention with respect to expected target position varies as a function 

of the level of overlap between the functional population associated to covert attention (blank ellipses) and overt behavior (textured 

ellipses). (B) This latter component is associated with two pre-existing neuronal states describing task-independent behavioural states, 
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reflecting the degree of distractibility-to-impulsivity or responsiveness of the subject (linear) as well as degree of optimality in the task 

(U-shaped). 

FEF contains mixed-selectivity cells that simultaneously encode overt and covert behavior  434 

At the neuron level, we show that both individual neurons and population activity have higher 435 

spiking rates prior to target onset in upcoming hit trials than observed during the same period in 436 

upcoming misses. These results are in line with prior studies showing slight differences between 437 

the firing rates of the FEF cells based on whether the target was reported or not (Astrand et al., 438 

2020; Thompson and Schall, 2000, 1999). While these differences are often taken as a signature 439 

of spatial attention orientation, we further report that pooling trials based on attention to target 440 

distance, spiking rate of selective cells increased as closer was the attentional spotlight to the 441 

expected position of the target, in agreement with previous studies indicating that FEF plays a key 442 

role in attentional control (Ibos et al., 2013). These results indicate that FEF neural population 443 

encodes both upcoming target behavior and attention to target distance. FEF cells show different 444 

coding strength for each parameter, some preferentially encoding one of these two parameters 445 

(25.2% attention cells vs 9.2% upcoming perception cells) and some encoding both parameters 446 

simultaneously (~14%; mixed selectivity cells). These mixed selectivity cells have been reported in 447 

different brain areas such as the prefrontal cortex (Mante et al., 2013; Rigotti et al., 2013), parietal 448 

cortex (Diomedi et al., 2020) and visual cortex (Kondo et al., 2016), and they represent a signature 449 

of high-dimensional neuronal representation of relevant information (Rigotti et al., 2013). An 450 

important question in this context is whether the neuronal dimension encoding upcoming behavior 451 

interferes with attentional coding or whether it organizes independently (orthogonally). This is 452 

discussed next.  453 

Functional subpopulations associated with attention and upcoming behavior overlap 454 

In the last decade, dimensionality reduction techniques have been applied on high-dimensional 455 

neural recordings involving a big number of recorded neurons, in order to provide a low-456 

dimensional data-representation containing the functional structure of the data (Cunningham and 457 

Yu, 2014). In particular, this approach allows to describe how independent cognitive functions are 458 

implemented in any given neuronal population, whether they are expected to interact or not and, if 459 

applicable, whether this interaction interferes with behavior or not. Due to the mixed-selectivity 460 

observed at the neuronal level, dimensionality reduction of our data using PCA, resulted in partially 461 

mixed selectivity of the three principal components with respect to our parameters of interest. In 462 

order to find a low-dimensional decomposition of the population data, that is interpretable in terms 463 

of our variables of interest, we applied demixed-principal component analysis to our data (Kobak et 464 

al., 2016; Machens, 2010). With this method, we found two specific components that were 465 

associated with either upcoming behavior or attention to target distance. Importantly, we found that 466 

these two components could be used as a decoding axis for target perception and attention, 467 
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respectively, indicating that the reported source of the variance was functionally meaningful. Two 468 

important findings were achieved by the application of this method. First, we found a component 469 

specifically associated with the interaction between covert attention and overt behavioral response. 470 

This component successfully decoded both parameters simultaneously, which is a signature of 471 

non-linear mixed selectivity (Rigotti et al., 2013). Non-linear mixed selectivity is advantageous as it 472 

allows the information to be explicitly distributed across multiple neurons. In the present context, 473 

this means that information related to how close the attentional spotlight is to the target is encoded 474 

differently as a function of the upcoming target behavior prior to the target onset. This thus 475 

indicates the existence of a neuronal state that impacts in the way the FEF encodes attention 476 

information. A second finding relies on the non-orthogonality of the linear readouts of behavioral 477 

outcome and covert attention related components. In order to associate each component to a 478 

specific known source of variance, demixed-PCA relaxes the assumption of orthogonality between 479 

components (Machens, 2010). Therefore, components that contain variance attributed to different 480 

parameters might be non-orthogonal. This is exactly what we found in our data. Our analysis 481 

revealed that components encoding attention and upcoming behavior were statistically non-482 

orthogonal, which predicts that encoded information for each parameters is, at least partially, 483 

overlapped. In agreement with our prediction, we found that subtracting the variance attributed to 484 

one parameter impacted the decoding performance of the other parameter negatively. We 485 

predicted that such overlap would impact how the two parameters functionally interact. 486 

Accordingly, we found a correlation between the degree of functional overlap between these two 487 

parameters and the behavioral gain (reported by the hit rate variation) resulting from attention 488 

being closer to compared to distant from the target. In other words, the higher was the overlap at 489 

the neuronal level, the higher was the interference at behavioral level between the orientation of 490 

the spatial attention and the behavior-related state encoded by the prefrontal neuronal population 491 

(Figure 9A). This result indicates that responding to or missing the target might be not only a 492 

consequence of the localization of the attentional spotlight with respect to the stimulus, but also a 493 

consequence of how such behaviorally-related neural state affects the implementation of 494 

attentional control. In this context, a precise behavioral definition of this behavioral outcome state-495 

related component becomes paramount.  496 

FEF encodes two independent neuronal states associated with behavioral outcome in the 497 

trial 498 

Prior studies have shown that task-independent neural states might influence different aspects on 499 

how information is encoded in a neural population and, hence, its impact in behavior (Astrand et 500 

al., 2016; Cowley et al., 2020; Gaillard et al., 2021). For example, the level of shared noise 501 

correlation between neurons predicts subjects’ behavior (Astrand et al., 2016; Ben Hadj Hassen et 502 

al., 2019; Nogueira et al., 2020). In particular, Astrand and colleagues (2016) show that high levels 503 
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of noise correlation predict misses and false alarm responses, while hit responses are produced 504 

when noise correlation level is low. Importantly, these levels of noise correlation predict behavioral 505 

outcome irrespective of spatial orientation processes. This suggests that these levels of correlation 506 

possibly describe a functional state of the prefrontal neuronal population. The present work 507 

reproduces these observations on an independent dataset and extended these results. Using 508 

demixed principal component analysis on data locked to the stimulus onset (locked to the target for 509 

hit and miss responses, and locked to the distractor onset for false alarm responses) we found a 510 

two-dimensional representation of the population in the FEF that encoded upcoming behavioral 511 

responses to task-relevant (target) and task-irrelevant (distractor) stimuli. Specifically, we found 512 

two demixed components that contained significant information about upcoming behavior at trial 513 

bases. Importantly, these two components were close-to-orthogonal (~86 degrees), indicating that 514 

these components shared no significant variance. The projection of the firing rates related to each 515 

behavioral condition onto each of these two different demixed behavior-related components 516 

showed different activations across the different types of trials. When projected onto the first 517 

component, normalized firing rates of each condition showed a U-shape, in which lower activity 518 

state corresponded to hit trials, whereas the activity in miss and false alarm trials showed higher 519 

activity states. In contrast, projection of the activity from each of the three behavioral conditions 520 

onto the second demixed component revealed a linear decrease of the activity state, being higher 521 

in miss trials, intermediate in hit trials and minimal in false alarm trials. Overall, this points to two 522 

independent neuronal processes contributing to behavioral outcome in addition to the classically-523 

described attentional orientation (Figure 9B). Importantly, these two processes did not depend on 524 

the implementation of spatial attention following cue presentation, but rather expressed themselves 525 

at a longer time scale. Indeed, they could be reliably identified both before cue onset and during 526 

the cue to target interval. We propose that these two neuronal functional states map onto two 527 

distinct behavioral states that impact overall performance in the task. This is discussed next.  528 

U-shaped state of inattention, in-task behavior and distractibility 529 

The U-shape observed in the projection onto the first behavioral outcome component of FEF 530 

neuronal population firing rates mimics the U-shape observed for noise-correlation levels 531 

associated to the same behavioral conditions (Figure 9B). This possibly indicates that the dPCA 532 

captures specific variance explained by the different levels of shared variability between neurons 533 

within the same population. How is this U-shape functional component generated? We would like 534 

to put forth the possibility that this component reflects a level of arousal associated with different 535 

patterns of activity of the noradrenergic neurons in the locus coeruleus (LC-NE), a subcortical 536 

structure which is described to play a critical role in adaptive behavioral decision-making (Arnsten, 537 

2009). Indeed, prior studies have shown that these LC neurons are projected onto the medial and 538 

posterior prefrontal cortex via well-identified anatomical pathways and are thus expected to 539 
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modulate neuronal activity in these regions (Uematsu et al., 2015). In this context, Astone-Jones 540 

and Cohen (2005) propose that two different modes of LC activity might correspond to different 541 

patterns of performance in attention tasks. A first phasic mode is described, in which LC-NE cells 542 

show a phasic activity in response to task-relevant stimuli. Within this mode, LC-NE cells show a 543 

moderate level of tonic discharge associated with high levels of task performance. A second tonic 544 

mode is described, that has been associated with poor performance whether characterized by high 545 

levels of distractibility or by high levels of inattention. In addition, prior studies in mice have found 546 

that molecular down-regulation of phosphoinositide 3-kinases enzymes in LC-NE cells results in 547 

both increased levels of tonic activity and increased levels of inattention (D’Andrea et al., 2015), 548 

compatible with symptoms associated with attention deficit hyperactivity disorder (ADHD). Thus, 549 

LC-NE activity organizes along U-shaped curve similarly to what we described in the FEF first 550 

behavioral outcome component, such that its tonic baseline activity is high during inattention 551 

(misses), low during optimal behavioral (hits, in-task) and high again during distraction (false 552 

alarms). This causal relationship between the FEF U-shaped functional component and LC-NE 553 

tonic discharge rate that we suggest here is very indirect at this stage and will have to be tested 554 

experimentally. We propose that this component is associated with the level of optimal (in-task) 555 

behavioural regime as described in the Locus Coeruleus noradrenergic neurons (Astone-Jones 556 

and Cohen, 2005). 557 

Linear state of executive control 558 

The second demixed component of the dPCA performed on behavioral outcome showed a 559 

negative linear trend between the level of activation state and behavioral responsiveness, defined 560 

as the probability of the subject issuing a behavioral response to a stimulus. Accordingly, miss 561 

trials correspond to low responsiveness trials, hit trials to optimal responsiveness trials and false 562 

alarm trials to high responsiveness trials. Along this component, higher levels of activity were 563 

observed in miss trials, followed by intermediate levels of activity in hits and low activation in false-564 

alarms. The neural state defined by this second dPCA component is thus inversely associated with 565 

the level of impulsivity in the response. Our current data cannot allow us to provide clear cut 566 

responses on the origin of this state. It could arise locally in the FEF. Alternatively, it could originate 567 

from outside the FEF. Overall, we propose that this component is associated with the level of 568 

executive control (or responsiveness) exerted by the subject in the task (Figure 9B). Recent 569 

studies suggest that the level of impulsivity in motor responses during attentional tasks are 570 

associated with the activity of the claustrum, a brain region located deep to the insular cortex and 571 

extreme capsule with anatomical projections toward multiple cortical brain areas including motor, 572 

visual, auditory and prefrontal cortices (Goll et al., 2015; Sloniewski et al., 1986). In particular, the 573 

activity of this area has been shown to play a critical role in attention. Goll and colleagues (2015) 574 

posit that claustrum might act to control the output from the cortical representation of the sensory 575 
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modalities. It has been shown that electrical activation of the claustrum causes irresponsiveness 576 

(Salerno et al., 1984), while its deactivation prevents tuning down the output from cortical 577 

modalities irrelevant to the ongoing task (Goll et al., 2015). Other studies have shown that the 578 

claustrum-prefrontal cortex pathway regulate methamphetamine-induced impulsivity, suggesting a 579 

critical role of this pathway in regulated impulsivity-related disorders (Liu et al., 2019). Our results 580 

are compatible with the hypothesis that the level of responsiveness state observed in our data 581 

reflects the level of motor impulsivity in attentional tasks and is driven by the claustrum. This will 582 

need to be addressed in future studies.  583 

Implications in attention deficit and hyperactivity disorder (ADHD) 584 

The present work provides consistent evidence on how different neural states associated with 585 

levels of distractibility and impulsivity interact with dynamic, ongoing computations in the attentional 586 

system to produce behavior. We believe that these observations have a profound implication in the 587 

way we understand how the attentional system works and, more particularly, how it can 588 

dysfunction. One clinical condition affecting the attentional system is the attention deficit and 589 

hyperactivity disorder (ADHD), with a prevalence of 7.5% of worldwide population (Polanczyk et 590 

al., 2007). This disorder is specifically characterized by a dysfunction of attention as well as by 591 

inappropriate levels of hyperactivity, distractibility and impulsivity (Kooij et al., 2010). Many studies 592 

point that ADHD patients show abnormal results in neuropsychological tasks targeted to measure 593 

sustained and focused attention (Hervey et al., 2006; Tomporowski et al., 1994), however other 594 

studies do not find significant differences in tasks requiring orienting of attention compared with 595 

healthy population (Roberts et al., 2018). This would indicate that selective visual attention remains 596 

functionally intact in these patients and, in line with our results, their behavioral symptoms might 597 

arise from the dysfunction of a non-attentional neural populations, interfering with the subject’s 598 

access to attentional information. In addition, prior studies have found that ADHD patients show a 599 

hyperactivation of the LC-NE system (Shirama et al., 2020), as well as higher activation in 600 

claustrum (Fassbender et al., 2011), which correspond to a compromised state of alertness and 601 

increased processing of task-irrelevant information, respectively. This thus hints towards an 602 

abnormal interaction between attention orientation processes and other independent processes 603 

associated with aberrant distractibility and impulsivity behaviors observed in these patients. 604 

However, more studies are needed to confirm the implications of our findings in such a clinical 605 

domain.  606 

Conclusion 607 

In conclusion, we report converging evidence indicating that the access to attention-related 608 

processes in the FEF is driven by the activity of a two-dimensional neural state that might be 609 

explained by the independent activation of afferent brain regions modulating the levels of 610 
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distractibility and impulsivity as well as the levels of behavioral responsiveness. This finding sheds 611 

light onto the understanding of the computational mechanisms of the attentional system, and it is 612 

expected to have profound implications in the development of rehabilitation strategies to ameliorate 613 

inattention and impulsivity symptoms in ADHD patients.  614 

Materials and Methods  615 

Subjects and surgical procedures 616 

Two adult male rhesus monkeys (Macaca mulatta), weighing 8kg (monkey D) and 7kg (monkey 617 

HN), contributed to this experiment. Both monkeys underwent a unique surgery during which two 618 

MRI-compatible recording chambers were implanted over the left and the right FEF hemispheres, 619 

respectively, as well as a head fixation post. A 0.6mm isomorphic anatomical MRI scan was 620 

acquired post-surgically on a 1.5T Siemens Sonata MRI scanner, while a high-contrast oil-filled 621 

1mmx1mm grid was placed in each recording chamber, in the same orientation as the final 622 

recording grid. This allowed a precise localization of the arcuate sulcus and surrounding gray 623 

matter underneath the recording chambers. The FEF was defined as the anterior bank of the 624 

arcuate sulcus and we specifically targeted those sites in which a significant visual and/or 625 

oculomotor activity was observed during a memory-guided saccade task at 10° to 15° of 626 

eccentricity from the fixation point. All surgical and experimental procedures were approved by the 627 

local animal care committee (C2EA42-13-02-0401-01) in compliance with the European 628 

Community Council, Directive 2010/63/UE on Animal Care. 629 

Endogenous cued detection task and Experimental setup 630 

The task is a 100% validity endogenous cued luminance change detection task (Figure 1A). The 631 

animals were placed in front of a PC monitor (1920×1200 pixels, refresh rate of 60Hz) with their 632 

heads fixed. Stimulus presentation and behavioral responses were controlled using Presentation® 633 

(Neurobehavioral Systems, Inc.). To start a trial, the monkeys had to hold a bar placed in front of 634 

their chair, thus interrupting an infrared beam. The appearance of a central fixation cross (size 635 

0.7°×0.7°) at the center of the screen, instructed the monkeys to maintain their eye position (Eye 636 

tracker - ISCAN, Inc.) inside a 2°×2° window, throughout the duration of the trial, so as to avoid 637 

aborts. Four gray landmarks (LMs size 0.5°×0.5°) were displayed, simultaneously with the fixation 638 

cross, at the four corners of a hypothetical square having a diagonal length of ~28° and a center 639 

coinciding with the fixation cross. The four LMs (up-right, up-left, down-left, down-right) were thus 640 

placed at the same distance from the center of the screen having an eccentricity of ~14°. After a 641 

variable delay from fixation onset, ranging between 700 to 1200 ms, a 350 ms spatial cue (small 642 

green square - size 0.2°×0.2°) was presented next to the fixation cross (at 0.3°), indicating the LM 643 

in which the rewarding target change in luminosity would take place. Thus, the cue presentation 644 

instructed the monkeys to orient their attention towards the target in order to monitor it for a change 645 
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in luminosity. The change in target luminosity occurred unpredictably between 750 to 3300 ms 646 

from cue onset. In order to receive their reward (a drop of juice), the monkeys were required to 647 

release the bar between 150 and 750 ms after target onset (hit). To test the monkeys’ ability at 648 

distractor filtering, on half of the trials, one of the two distractor typologies was randomly presented 649 

during the cue-to-target delay. In ~17% of the trials (D trials), a change in luminosity, identical to 650 

the awaited target luminosity change, took place at one of the three uncued LMs. In these trials, 651 

the distractor D was thus identical in all respects to the expected target, except for being displayed 652 

in an uncued position. In ~33% trials (d trials), a local change in luminosity (square) was displayed 653 

at a random position in the workspace. The size of the local change in luminosity was adjusted so 654 

as to account for the cortical magnification factor, growing from the center to the periphery 655 

(Schwartz 1994). In other words, d distractors had the same size as D distractors when presented 656 

at the same eccentricity as D. The absolute luminosity change with respect to the background was 657 

the same for both d and D. The monkeys had to ignore both distractor typologies (correct 658 

rejections – RJ). Responding to such distractors within 150 to 750ms (false alarm - FA) or at any 659 

other irrelevant time in the task interrupted the trial. Failing to respond to the target (miss) similarly 660 

aborted the ongoing trial.  661 

Electrophysiological recordings and spike detection 662 

Bilateral simultaneous recordings in the FEF in both hemispheres were carried out using two 24-663 

contact Plexon U-probes (Figure 1B). The contacts had an interspacing distance of 250 μm. Neural 664 

data was acquired using a Plexon Omniplex® neuronal data acquisition system. The data was 665 

amplified 500 times and digitized at 40,000Hz. Neuronal activity was high-pass filtered at 300Hz 666 

and a threshold defining the multiunit activity (MUA) was applied independently for each recording 667 

contact and before the actual task-related recordings started. 668 

Decoding procedure 669 

Training procedure. In prior studies, we showed that the endogenous orienting of attention 670 

(Figure 1C) can be reliably decoded from the FEFs activity using a regularized optimal linear 671 

estimator (RegOLE) with the same accuracy as exogenous visual information (Astrand et al., 672 

2014b, 2015, 2016; Farbod Kia et al., 2011; Gaillard et al., 2020). Here, we used the same 673 

approach to train a RegOLE to associate the neural responses prior to target onset ([-220 + 30] 674 

from target onset), based on a leave-one-out training/testing procedure, with the attended location, 675 

i.e., with the expected target presentation LM, based on cue information. Neural responses 676 

consisted in a vector containing the MUA signals collected at each of the 48 recording contacts 677 

during this pre-defined pre-target onset epoch. Our general objective here was to have as precise 678 

as possible an estimate of the attention position before a specific visual event, averaging activities 679 

over large enough windows to have a reliable single-trial estimate of the neuronal response on this 680 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2021. ; https://doi.org/10.1101/2021.11.29.470379doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.470379
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

26 
 

window, while at the same time a not-too-large time window to have a reliable estimate of where 681 

attention was placed by the subject at a specific time in the task (De Sousa et al., 2021; Farbod Kia 682 

et al., 2011; Gaillard et al., 2020). 683 

The RegOLE defines the weight matrix W that minimizes the mean squared error of C = W * (R + 684 

b), where C is the class (here, four possible spatial locations), b is the bias and R is the neural 685 

response. To avoid over-fitting, we used a Tikhonov regularization (Astrand et al., 2014a) which 686 

gives us the following minimization equation: norm(W*(R + b) – C) + λ*norm(W). The scaling factor 687 

λ was chosen to allow for a good compromise between learning and generalization. Specifically, 688 

the decoder was constructed using two independent regularized linear regressions, one classifying 689 

the x-axis (two possible classes: -1 or 1) and one classifying the y-axis (two possible classes: -1 or 690 

1).  691 

Testing procedure. In order to identify the locus of attention at the moment of target or distractor 692 

presentation in the 20 next new trials following the initial training set, the weight matrix defined 693 

during training was applied to the average neuronal activity recorded in the 150 ms prior to target. 694 

The described training (over 200 previous trials) / testing (over 20 novel trials) procedure was 695 

repeated after every 20 correct responses, by re-training the decoder with the new database 696 

composed by the last 200 correct trials. This continuous updating of the weight matrix W is 697 

implemented in order to minimize the impact of possible uncontrolled for changes in the recorded 698 

signal during a given recording session onto the decoding procedure.   699 

Estimating the (x,y) spatial locus of the attentional spotlight (AS)  700 

As in Astrand et al. (2016), the readout of the RegOLE was not assigned to one of the four 701 

possible quadrants by applying a hardlim rule, as usually done for classification purposes. Rather, 702 

it was taken as reflecting the error of the decoder estimate to the target location, i.e., in behavioral 703 

terms, as the actual (x,y) spatial estimate of the locus of the attentional focus to the expected 704 

target location. We show here and elsewhere (Astrand et al., 2016; Gaillard et al., 2020) that this 705 

(x,y) estimate of the attentional spotlight (AS) accounts for variations in behavioral responses. In 706 

order to analyze how the distance of the decoded attentional spotlight to the target affected both 707 

behavior and neuronal MUA responses, we computed, for each target presentation, the distance 708 

between the decoded AS and the target (TA) as follows: TA = √((xAS - xT)² + (yAS - yT)²), where x 709 

and y correspond to the Cartesian coordinates of the attentional spotlight (AS), and the target (T).  710 

Characterizing MUA selectivity 711 

In order to quantify the magnitude of the modulation of FEF individual neurons to different task 712 

variables, we computed three different indexes per neuron, as follows: 1) RF-based attention 713 

index, pooling trials based on whether the cue oriented attention in the preferred spatial location 714 
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within the neuron’s receptive field (RF), or non-preferred spatial location outside the RF, 715 

considering only correct trials, 2) Hit/miss modulation index: pooling trials based on whether the 716 

monkey produced hits or misses, irrespective of the TA distance or cue position, 3) Attentional 717 

spotlight modulation index, pooling trials based on whether the target to focus of the attention 718 

distance was smaller than 6° or larger than 12°, considering only correct trials. For this latter 719 

measurement, we binned the trials in three different categories: TA close ( 0°<TA≤6°), TA medium 720 

(6°<TA≤12°) and TA far (12°<TA<18°). For each of these trial categories, the modulation index 721 

was defined as MI=(FRclass1 - FRclass2 ) / (FRclass1 + FRclass2), where FRClass1 and 722 

FRClass2 correspond to the median firing rate of each for each of the two classes defining the 723 

index. Firing rates were computed on the [-250 – -50] ms pre-target epoch, z-scored with respect 724 

to a [-100 – 0] ms pre-cue epoch. For each category, significant difference between the neuronal 725 

firing rate in each class was assessed using a Wilcoxon non-parametric test. In addition, for each 726 

of these trial categories, data were averaged from -400 ms to 400 ms locked to the target onset 727 

and median MUA activity as well as standard error (s.e.) was computed across all MUA channels 728 

and all sessions.  729 

Noise correlation measurements 730 

In order to quantify the spiking statistics of the FEF activity associated with different overt 731 

behavioral outcomes (hit, miss, false alarm, correct rejection to distractors in hit and correct 732 

rejections to distractors in miss trials), we measured the noise correlation between the MUA 733 

activities on the different simultaneously-recorded signals. For each session and for each channel, 734 

we defined intervals of interest of 200 ms previous to the stimulus onset (target or distractor). For 735 

each channel i, and each trial k, the average neuronal response ri(k) for this time interval was 736 

calculated and z-scored within this time interval. Noise correlations between pairs of MUA signals 737 

during the interval of interest were defined as the Pearson correlation coefficient between the z-738 

scored individual trial neuronal responses of each MUA signal over all trials. Only positive 739 

significant noise correlations are considered.   740 

Demixed PCA 741 

Recent research points that neural function is built on population activity patterns rather than on 742 

independent modulation of individual neurons (Cunningham and Yu, 2014). These patterns reflect 743 

the coordination of responses across neurons that corresponds to a specific neural mechanism 744 

underlying behavior (Fusi et al., 2016). The population activity structure can be estimated by 745 

applying a dimensionality reduction technique to the recorded activity such as principal component 746 

analysis (PCA). Using this method, we can extract a number of latent variables (principal 747 

components) that capture independent sources of data variance providing a description of the 748 

statistical features of interest (Cunningham and Yu, 2014). However, this method is blind to the 749 
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source of variability of the data, and hence does not take task- or behavior-related parameters into 750 

account, mixing these sources of information within each of the extracted latent variables (Kobak et 751 

al., 2016). 752 

Our goal here is to describe how much variance in the neural population can be explained by 753 

spatial attention and the overt behavioral outcome, and their interaction. To do so, we performed a 754 

demixed principal component analysis (Kobak et al., 2016) which captures the maximum amount 755 

of variance specifically explained by defined sources of variability in each extracted latent variable 756 

(or component) and reconstructs the time course of the category-specific response modulation. In 757 

a first dPCA analysis, trials were thus segregated as a function of classes of TA distance (TA 758 

close, TA medium, TA far) and, within these classes, trials were pooled into two possible trial 759 

outcome classes (hit or miss). This thus resulted into a six different conditions. In a different 760 

analysis, we extracted attention and overt behavior-related components by unmixing each of the 761 

two categories from category-independent variability in two distinct dPCA analyses (one targeting 762 

attention, and the other on overt behavior). In a last dPCA analysis, trials were segregated in three 763 

possible classes of trial (hit, miss, Ffalse alarms). 764 

Procedures for dPCA analysis were performed using the MATLAB© (The Mathworks Inc., Natick, 765 

Massachusetts) written scripts available from (Kobak et al., 2016). Spike trains were filtered with a 766 

Gaussian kernel (δ = 30 ms) and averaged over all trials to obtain smoothed average pre-stimulus 767 

(target or distractor, 400 ms before target onset to 0 ms) MUA firing rate for each channel in each 768 

condition and each session. In this case, dPCA decomposes data into latent variables that 769 

estimate independently over time both the variance attributable to the specific categories of interest 770 

(attention or overt behavior) as well as the variance independent of any of the considered category. 771 

We consider the 20 demixed components that accounted for > 90% of the total variance in all 772 

sessions. Last, we used the decoding axis of each dPC assigned to each category (attention or 773 

overt behavior) as a linear classifier to decode the different types of trial (details of this procedure 774 

are fully described in (Kobak et al., 2016b). This method allows the understanding of the capacity 775 

of each demixed component to classify a trial between the classes of a given category. To extract 776 

the statistical significance of this accuracy, we shuffled 100 times all available trials between 777 

classes and we thereby computed the distribution of classification accuracies expected by chance. 778 

For each session, the chance-level was considered as the maximal accuracy value obtained 779 

across all randomizations. 780 

The different components extracted by the dPCA are not assumed to be orthogonal, therefore, we 781 

calculated the dot product between each encoding axis related to attention or overt behavior that 782 

showed significant levels of decoding accuracy for the corresponding category. Because the 783 

coordinates of the components reflects the level of contribution to the activity of each neuron, the 784 

size of the dot product values between two components indicate that neurons that contribute to 785 
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one component tend also to contribute in the other component. Therefore, the dot product between 786 

two components can be interpreted as a marker of functional overlapping between the two different 787 

components. For each session, we calculated the dot product between the pairs of encoding 788 

(showing above chance-level accuracy) demixed principal components relative to attention and 789 

overt behavior. We considered the absolute value of the dot product. 790 
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Supplementary material: 972 

Supplementary figure 1 973 

 974 

 975 

Supplementary Figure 1. PCA analysis as a function of the position of attention and the upcoming behavioral outcome. Projection onto 

the three first principal components of the MUA activity pooled by upcoming behavioral outcome (hit trials blue shades, miss trials green 

shades) and TA (darker tones corresponding to smaller TA values) during the 300 to 0 ms preceding target presentation, locked to 

target onset. MUA neuronal activity cumulated over all sessions. 
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Supplementary figure 2 and note 978 

 979 

Supplementary Figure 2. At single session level, dPCA unmixes variance between attention to target distance and behavior outcome. 

(A) Distribution of the variance explained between the two parameters (attention to target distance and upcoming target behavior) for a 

specific session. (B) Boxplot showing the distribution of the percentage of variance attributed to attention-related components, 

behavioral outcome-related components and interaction components for all sessions in both monkeys (*** p<0.001 Wilcoxon paired 

test). (C and D) MUA activity from the six different conditions (hit or miss trials for each of the three TA bins) projected on the 

component that maximally explains attention to target distance (C) and upcoming target behavior (D).  

On average, the total cumulated variance explained by the six first dPC was 90.5% (IQR=10.02%). 980 

At session level, dPCA ranked the demixed principal components based on their explained 981 

variance attributed to overt behavior and TA respectively (supplementary figure S2A). Across 982 

sessions, variance explained by the three first dPC attributed to TA was higher than the variance 983 

explained by the first three dPC attributed to overt behavior (Wilcoxon test, p<0.001, 984 

supplementary Figure 2 C and D shows the projections of the firing rates for each of the six 985 

categories of trials onto the first demixed component associated with each condition (attention and 986 

behavioral outcome) for a specific session, segregated both as a function of whether the upcoming 987 

target is detected or not (hit or miss) and as a function of whether attentional spotlight is close, 988 

intermediate or far from the cued target location. Thus, the dPCA captures variance specifically 989 

associated to attention and behavioral outcome similarly to the whole data approach described in 990 

Figure 5.  991 
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Supplementary figure 3 994 

 995 

Supplementary Figure 3. Behavioral gain (hit rate) produced by an allocation of attention close 996 

(trials with TA close) to relative to far (trials with TA far) from upcoming target location, for each 997 

monkey and each session. 998 
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Supplementary figure 4 1000 

 1001 

 1002 

Supplementary Figure 4. dPCA unmixes variance associated to trial type (Hit, Miss and FA) in 

two independent components. All as in figure 8, except for MUA activities being cumulated over all 

sessions.  
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