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Abstract1

Two facts about cortex are widely accepted: neuronal responses show large spiking variability2

with near Poisson statistics and cortical circuits feature abundant recurrent connections between3

neurons. How these spiking and circuit properties combine to support sensory representation and4

information processing is not well understood. We build a theoretical framework showing that5

these two ubiquitous features of cortex combine to produce optimal sampling-based Bayesian6

inference. Recurrent connections store an internal model of the external world, and Poissonian7

variability of spike responses drives flexible sampling from the posterior stimulus distributions8

obtained by combining feedforward and recurrent neuronal inputs. We illustrate how this frame-9

work for sampling-based inference can be used by cortex to represent latent multivariate stimuli10

organized either hierarchically or in parallel. A neural signature of such network sampling are11

internally generated differential correlations whose amplitude is determined by the prior stored12

in the circuit, which provides an experimentally testable prediction for our framework.13

Keywords: Sampling-based Bayesian inference, Poisson spiking neurons, Recurrent network14

dynamics, Differential correlations.15
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Introduction16

In an uncertain and changing world, it is imperative for the brain to reliably represent and interpret17

external stimuli. The cortex is essential for the representation of the sensory world, and it is believed18

that populations of neurons collectively code for richly structured sensory scenes [1]. However,19

two central characteristics of cortical circuits remain to be properly integrated into population20

coding frameworks. First, neuronal activity in sensory cortices is often noisy, showing significant21

variability of spiking responses evoked by the same stimulus [2, 3]. In many traditional coding22

frameworks such spiking variability degrades the representation of stimuli by cortical activity [4].23

Why cortical responses display large spiking variability while isolated cortical neurons can respond24

reliably remains a mystery. Second, the primary source of synaptic inputs to cortical neurons25

does not come from upstream centers which convey sensory signals, but rather from recurrent26

pathways between cortical neurons [5–7]. While such recurrent connections are often organized27

about a stimulus feature axis [8, 9], it is not obvious whether or how their presence improves28

overall representation. We propose a biologically motivated inference coding scheme where these29

two ubiquitous cortical circuit features, variability in spike generation and recurrent connections,30

together support a probabilistic representation of stimuli in rich sensory scenes.31

Numerous studies have framed sensory processing in the cortex in terms of Bayesian inference32

(e.g., [10–16]). Specifically, the ‘Bayesian brain’ hypothesis posits that sensory cortex infers and33

synthesizes a posterior distribution of the latent stimuli which describes the probability of possible34

stimuli that could have given rise to the sensory inputs. Performing Bayesian inference requires cor-35

tex to store an internal model that represents how sensory inputs and external stimuli are generated.36

Once a sensory input is received, cortical dynamics inverts this internal model in a process termed37

‘analysis-by-synthesis’ [12], and represents the posterior distributively across neurons and/or across38

time [15, 16]. In this study, we propose that recurrent connections in cortical circuits store the prior39

of latent stimuli to produce the posterior distribution when combined with evidence from sensory40

inputs. Moreover, we posit that Poisson spiking variability provides a source of fluctuations needed41

for generating random samples from the inferred posterior.42

To test these hypotheses we consider a recurrent circuit model where neurons receive stochastic43

feedforward inputs which carry information about the external world, and respond with Poisson-44

distributed spiking activity. We find that such Poissonian spiking provides the variability that allows45

the network to generate samples from posterior stimulus distributions with differing uncertainties.46

We use this sampling framework to illustrate circuit-based Bayesian inference given two distinct47

generative models of stimuli in the external world: one organized hierarchically with a stimulus48

variable that depends on a latent context variable, and a second where a pair of latent stimuli are49

organized in parallel. In both cases a recurrent circuit is able to generate samples from the joint50

posterior, and infer the values of the latent variables. We show through both analytic derivation51
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and simulations that recurrent connections represent the correlation structure of these models, and52

the weight of these connections can be tuned to optimally capture the prior distribution of stimuli53

in the external world. The stronger the correlation between the latent variables, the stronger the54

recurrent connections need to be for the network to generate samples from the correct posterior55

distribution.56

Finally, a neural signature of this circuit-based sampling mechanism is internally generated57

population noise correlations aligned with the stimulus response direction, often referred to as “dif-58

ferential correlations” [4, 17]. In our framework, the amplitude of internally generated differential59

correlations is determined by the recurrent connection strength, which also determines the prior60

stored by the circuit. Since optimal inference requires a specific magnitude of recurrent connectiv-61

ity, differential correlations resulting from such recurrent connectivity are a potential signature of62

optimal coding. This is in contrast to the deleterious impact of externally generated differential63

correlations. We thus predict that the correlation structure of the external world shapes recurrent64

wiring in neural circuits, and is reflected in the pattern of differential noise correlations. We use65

this logic to provide testable predictions from our framework for sampling-based Bayesian inference66

by recurrent, stochastic cortical circuits.67

Results68

Recurrent circuitry and spiking variability do not improve conventional neural codes69

We start with the classic example of a sensory stimulus, s, encoded in neuronal population activity,70

r, from which a stimulus estimate ŝ can be decoded (Fig. 1A, top) [18]. It is reasonable to expect71

that neuronal circuitry is adapted to accurately represent ethologically relevant stimuli. However,72

as we will show next, in simple coding schemes two ubiquitous features of cortical circuits – internal73

spiking variability and recurrent connectivity – are at best irrelevant for, and in many cases degrade,74

the accuracy of these representations.75

In population coding frameworks stimuli are encoded by a neuronal population with individual76

neurons tuned to a preferred stimulus value. The preferred values of all neurons cover the whole77

range of stimuli [18–20] (Fig. 1B, bottom); if s ranges over a periodic domain (such as the orientation78

of a bar in a visual scene, or the direction of an arm reach) then it is commonly assumed that the79

neurons’ preferred stimuli are distributed on a ring (Fig. 1B, top). To generate neuronal responses80

from such a population we simulate a network of neurons whose spiking activity, rt, at time t is81

Poissonian with instantaneous firing rate λt (Eq. 11). For simplicity we assume linear (or linearized)82

neuronal transfer and synaptic interactions (Eqs. 10-11), so that the firing rate is a linear function83

of the feedforward and recurrent inputs. We couple excitatory (E) neurons with similar stimulus84

preferences more strongly [8, 9] to one another, compared to neuron pairs with dissimilar tuning. In85

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.26.477877doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.26.477877
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

Firing

rate

r
t

¸
t

uf ŝ
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Figure 1: A network with structured recurrent connections limits the linear Fisher Information (LFI) about
external stimuli. (A) A schematic diagram showing how a stimulus, s, is encoded in neuronal response, rt.
A stimulus estimate, ŝt, can be obtained from rt. (B) A recurrent ring model (top) where the connections
between excitatory neurons are dependent on their distance along the ring. Blue arrows: excitatory synapses
with line width denoting connection strength; red arrows: inhibitory synapses. (C) The population activity
of excitatory neurons in the ring model, rt, dependent on a stimulus, s. The blue curve shows the population
activity in response to s = 0, and gray curves the activities in response to stimuli with values at the peak
locations of the curves. (D) For finite size networks (colored lines; ratio of excitatory to inhibitory neurons
kept constant) LFI decreases as wE increases. In the limit of infinite network size LFI does not depend on
wE (dashed line). Since neural responses are variable, LFI in the neuronal response converges to only half
of the LFI in the feedforward input.

this way the recurrent E connectivity has the same circular symmetry as the stimulus (Fig. 1B). In86

contrast, connections between inhibitory (I) neurons are unstructured, and inhibitory activity acts87

to stabilize network activity [21]. A stimulus, e.g. s = 0, results in elevated activity of E neurons88

with the corresponding preference (Fig. S1A). As expected, an increase in the strength of recurrent89

excitatory connections increases both the firing rates and the trial-to-trial pairwise covariability90

(i.e. noise correlations) in the responses [2] (Fig. S2A). This canonical network model has been91

widely used to explain cortical network dynamics and neural coding [21–23].92

We use linear Fisher Information (LFI) to quantify the impact of recurrent connectivity and93

internal spiking variability on the accuracy of the stimulus estimate, ŝt, from the activity vector rt94

(see details in Eq. S39 in Supplemental Information). The inverse of LFI provides a lower bound95

on the expected square of the difference between the true value, s, and the estimate, ŝt, made by a96

linear decoder [1, 4, 17–19, 24]. In the limit of an infinite number of neurons available to the decoder97

LFI is unaffected by recurrent connectivity strength, wE (Fig. 1D, dashed line). This is because98

the mean response of the network is linear in its inputs, and an (invertible) linear transformation99

can neither increase nor decrease LFI (see Eq. S38 in Supplemental Information). For networks100

with a finite number of neurons, the variability from spike generation is shared between neurons101

via recurrent interactions. Consequently an increase in coupling strength, wE , reduces LFI in finite102

networks (Fig. 1D, colored lines).103

In sum, recurrent connectivity and spiking variability do not improve, and often degrade, stim-104
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ulus representation in the network (as measured by LFI). Since synaptic coupling is biologically105

expensive, a network that most accurately and cheaply represents a stimulus is then one with no106

recurrent connections (i.e., wE = 0) and minimal spiking variability. Nevertheless, connectivity107

in mammalian cortex is highly recurrent [5–7, 9], and neural responses are highly variable [2, 3].108

What is then the purpose of these extensive recurrent connections between cortical neurons, and109

why are their responses so noisy?110

While classical population code theory often explains how to generate point estimates of a stim-111

ulus (Fig. 1A), numerous studies suggest that the brain performs Bayesian inference to synthesize112

and estimate the probability distribution of latent stimuli from sensory inputs (e.g., [10–15, 25, 26]).113

To compute this posterior a neural circuit needs to combine a stored representation of the prior114

distribution of the stimulus with the likelihood conveyed by feedforward inputs. We propose that re-115

current connectivity can be used to represent the prior and spiking variability can generate samples116

from this posterior distribution. Before we present our full model we first show how sampling-based117

inference can be implemented in a population of spiking neurons.118

Internally generated Poisson spiking variability drives sampling-based Bayesian infer-119

ence120

Many studies suggest that neuronal response variability is a signature of sampling in neural circuits121

(e.g., [16, 27–32]). In these studies the instantaneous population responses, rt, represent a sample122

of a latent stimulus, and the empirical distribution of stimulus samples collected over time is an123

approximation of the posterior distribution. Furthermore, response variability is typically modeled124

using a continuous (e.g., Gaussian) distribution [27, 29–33]. However, spike trains from cortical125

neurons are often Poissonian, and spike counts are discrete [3, 34]. It is unclear if discrete Poisso-126

nian variability can generate samples from stimuli with continuous probability distributions (e.g.,127

orientation, moving direction) with the flexibility needed to represent different stimulus uncertain-128

ties.129

We address this question using a theory based on a simple model network composed of excitatory130

(E) Poissonian neurons (Eqs. 10-11), and subsequently support our findings by simulating a network131

containing both E and inhibitory (I) neurons (e.g. Fig. 1B). We start by showing that Poissonian132

spiking in a population of tuned neurons can drive sampling from a well–defined distribution.133

We assume that the instantaneous firing rates of a population of E neurons, λt, have a bell-shaped134

(Gaussian) profile (Fig. 2B), so that for the jth neuron λtj = R exp[hj(s̄t)] = R exp[−(s̄t−θj)2/2a2]135

(See Eq. 12 in Methods). Here θj is the preferred stimulus of neuron j, a is the width of the tuning136

curve, and s̄t is the location of the peak of the firing rate profile, λt, in stimulus space (x-axis in137

Fig. 2B). Note that the value of s̄t is arbitrary here, but we will later relate it to the input to the138

population. The (smooth) Gaussian tuning curves simplify the analysis, but are not essential for139
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Figure 2: Spike generation with Poissonian variability can support sampling-based Bayesian inference. (A)
We use a feedforward network model (no recurrent connections) to demonstrate how spiking variability drives
sampling. Neurons receive feedforward inputs, uf , modeled as independent Poisson spike trains, resulting
in a Poissonian population response, rt, with means determined by the instantaneous firing rate vector, λt.
(B-E) Demonstration of sampling via stochastic spike generation. A population of neurons with Gaussian
tuning and firing rates λt (B) generates a realization a population response, rt (C). A sample from the
posterior distribution of the stimulus (D, orange box) can be linearly read out from the population response
(C, orange box). (E) The sampling distribution is obtained by collecting stimulus samples over time. (F-
G) The profile of population firing rates (F) determines the sampling distribution (G). The position of the
population firing rate, s̄t, determines the mean of the sampling distribution, and the variance of the sampling
distribution is inversely proportional to the peak firing rate, R. We show two population activity profiles,
one in blue and the other in orange, to illustrate these points. (H) In an E-I network, the precision of the
sampling distribution (the inverse of sampling variability) read out from E neurons increases with the height
of firing rate, and is consistent with the likelihood directly read out from the feedforward input.

the argument. Finally, the preferred stimuli of the E neurons, {θj}NE
j=1, are uniformly distributed140

over the stimulus range (Fig 1B). In each time interval the population activity is given by a vector141

of independent Poisson random variables, rt, with means determined by the instantaneous firing142

rate vector λt (Fig. 2B-C). At each time, t, this spiking activity produces a stimulus sample, s̃t,143

from the probability distribution determined by the instantaneous firing rates, λt (Fig. 2D, see144

Methods),145

s̃t ∼ p(s̃|λt) ∝ exp[h(s̃)>λt] ∝ N (s̃|s̄t,Λ−1). (1)

With the Gaussian firing rate profile we use here, the stimulus sample, s̃t, can be read out as146

s̃t =
∑

j rtjθj/
∑

j rtj (Eq. 14 and Fig. 2D), which can be thought of as the location of the response,147

rt, in stimulus space (y-axis in Fig. 2C). The collection of stimulus samples across time ({s̃t};148

Fig. 2E), determines the sampling distribution q(s) = T−1
∑

t δ(s − s̃t) which approximates the149
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distribution p(s|λt), i.e., p(s|λt) ≈ q(s) [16, 35]. Here δ(·) is the Dirac delta function and T is the150

number of samples.151

To use this mechanism to produce samples from the posterior distribution of a stimulus, we152

must define a generative model for the feedforward inputs evoked by a stimulus. We take the153

feedforward input to the neural population, uf , to be a vector of independent Poisson spike counts154

with Gaussian tuning over the stimulus, s. Following assumptions widely used in previous studies155

of probabilistic population codes (PPC) [36, 37], we assume that the mean input spike count to156

the jth excitatory neuron in the population is 〈uf
j(s)〉 ∝ exp[hj(s)] = exp[−(s − θj)

2/2a2]. A157

single realization of the input, uf , in a time interval encodes the whole likelihood function over the158

stimulus, p(uf |s) [36]. This likelihood is proportional to a Gaussian due to the Gaussian profile of159

feedforward input (Eq. 19),160

p(uf |s) =
∏NE
j=1 Poisson

[
〈uf

j(s)〉
]
,

∝ exp
[
h(s)>uf

]
,

∝ N (s|µf ,Λ−1
f ).

(2)

Here the likelihood mean, µf , is determined by the location of uf in stimulus space, and the161

precision, Λf , is proportional to the spike count (or height) of uf (Eq. 20). Since a realization of162

the feedforward input encodes the whole likelihood function, we present a fixed uf to the network163

over time (dropping the time index t), and describe how samples from the posterior p(s|uf) are164

generated by the network.165

A simple example of inference via sampling is provided by a population of E neurons with-166

out recurrent connections and instantaneous firing rates equal to the feedforward input, λt = uf
167

(Eq. 10), and hence constant in time (Fig. 2A). In this feedforward network Poisson spike generation168

produces samples from the normalized likelihood, i.e., s̃t ∼ p(s̃|λt) ∝ p(uf |s̃), and consequently the169

network represents a uniform stimulus prior (i.e., p(s) is a constant).170

To test our theory, we simulated the response of a network of tuned excitatory (E) and untuned171

inhibitory (I) neurons (Fig. 2A,C) to a fixed but randomly generated feedforward input (Eq. 18).172

While the E neurons shared no recurrent connections, the E and I neurons were connected to main-173

tain stable network activity. To confirm that the overall firing rate dictated the sampling variability174

(Eq. 1), we increased the feedforward input rate, which reduced the width of the likelihood (Eq. 2).175

As a result, the sampling precision (inverse of the sampling variance) increased and matched the176

precision of the likelihood (Fig. 2G, H), even as the normalized response variability (measured the177

by Fano factor) of single neurons remained unchanged.178

While the above analysis introduces the key components of a sampling-based theory of inference,179

stimulus sampling using a feedforward network is unnecessary: A single observation of the response180

r in a deterministic feedforward network (r = uf after removing spike generation in Eq. 11) would181
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Figure 3: A hierarchical generative model and posterior inference via Gibbs sampling. (A) An example
of sensory feedforward input generation: The context, z, is the orientation of the tree trunk, and the
stimulus, s, is the orientation of the bark texture located in the classical receptive field of a V1 hypercolumn.
The recurrent circuit generates samples from the joint posterior over stimulus and context. Solid circles:
observations and responses in the brain; dashed circles: latent variables in the external world. (Natural
image and brain schematic adapted from [38] and [39] respectively). (B) The joint prior over the context, z,
and stimulus, s, is concentrated on the diagonal. The correlation between context and stimulus is determined
by parameter Λs. (C) The posterior over context and stimulus can be approximated via Gibbs sampling
(Eqs. 4a-4c) by iteratively generating samples of s and z from their respective conditional distributions. (D)
The resulting approximations of the joint and marginal posterior over the latent stimulus, s, and context, z.
Light blue contour: the posterior distribution (Eq. 24); Red dots: Samples obtained using Gibbs sampling.
The green and orange projections are the marginal posterior distributions of the stimulus s and context z
respectively.

also represent the whole likelihood [36], avoiding the costly process of collecting samples s̃t across182

time. We next consider more interesting cases, and show that spiking variability in recurrent183

networks can drive sampling from more complex posterior distributions.184

Recurrent cortical circuit samples a hierarchical generative model185

Recurrent networks can store a variety of generative model structures; to demonstrate the generality186

of our sampling framework we provide two example generative models which serve as building blocks187

for more complex models. We first consider a two-stage hierarchical model of feedforward inputs188

received by the cortical circuit (Fig. 3A). The first stage of our model consists of a stimulus, s,189

and a context, z, both of which are one dimensional for simplicity. The structure of the world190

is described by the joint distribution, p(s, z). Using the visual system as motivation, s, could191

be the orientation of the visual texture within a classical receptive field (local information) of a192
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hypercolumn of V1 neurons, while the orientation within a non-classical receptive field of these193

cells could describe the corresponding context, z (Fig. 3A). The likelihood of the stimulus based194

on a given context, p(s|z) = N (s|z,Λ−1
s ), is Gaussian with precision Λs. For simplicity, we assume195

that the context prior, p(z), is uniform, which implies that the marginal prior of s, is also uniform196

(Fig. 3B). This assumption is not essential for our main conclusions but does simplify the analysis.197

Importantly, the joint prior of stimulus and context, p(s, z), can have non-trivial structure with198

the density concentrated around the diagonal s = z (Fig. 3B). The precision Λs measures how199

strongly the context, z, and the stimulus, s, are related, and thus determines how strongly their200

joint distribution is concentrated around the diagonal.201

The second stage of the generative model describes how the feedforward input depends on the202

stimulus, s; this is identical to our prior treatment (See Eq. 2). Combining these two stages provides203

a complete description of the generative model for the feedforward input received by neurons in204

the population,205

p(uf |s)p(s|z)p(z) ∝
∏NE
j=1 Poisson

(
uf
j |s
)
p(s|z),

∝ N (s|µf ,Λ−1
f )N (s|z,Λ−1

s ).
(3)

Given this hierarchical model we can show that the joint posterior over stimulus and context206

features, p(s, z|uf) is a bivariate normal distribution (see Eq. 24), and we next use it to evaluate207

the accuracy of the sampling distribution.208

Gibbs sampling of the joint stimulus and context posterior209

One approach to approximate the joint distribution over stimulus and context is Gibbs sampling [31,210

35, 40, 41] which starts with an initial guess for the value of the two latent variables, and proceeds211

by alternately generating samples of one variable from the distribution conditioned on the value of212

the second variable. More precisely, to approximate the joint posterior of s and z (Eq. 3), Gibbs213

sampling proceeds by generating a sequence of samples, (s̃t, z̃t) indexed by time t, through recursive214

iteration of the following steps (Fig. 3C and Eq. 25),215

Compute : p(s̃|z̃t,uf) ∝ p(uf |s̃)p(s̃|z̃t) ≡ N (s̃|s̄t,Λ−1), (4a)

Sample : s̃t ∼ p(s̃|z̃t,uf), (4b)

Sample : z̃t+∆t ∼ p(z̃|s̃t) = N (z̃|s̃t,Λ−1
s ). (4c)

Here ∆t is the time increment between successive samples. The samples (red dots in Fig. 3D) are216

generated by alternately fixing the values of the two variables, so that sampling trajectories alternate217

between horizontal and vertical jumps (cyan lines in Fig. 3D). The empirical distribution of samples,218

i.e., q(s, z|uf) = T−1
∑

t δ
[
(s, z)> − (s̃t, z̃t)

>] with > denoting vector transpose, approximates the219
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Figure 4: A recurrent circuit generates samples from the posterior defined by a hierarchical generative
model. (A) Schematic of recurrent circuit dynamics, in which stimulus, s, and context, z, features are
encoded respectively in the population response, rt, and recurrent inputs, ur

t. (B-C) When the feedforward
inputs and recurrent inputs share the same tuning profile, summing the two inputs to define the instantaneous
firing rate (B) is equivalent to multiplying the conditional distributions encoded by the two inputs to obtain
the conditional distribution of the stimulus, p(s|z̃t,uf). (C) The conditional distributions of the stimulus can
be explicitly read out from corresponding population responses by a linear decoder (B). (D-F) Reading out
the joint sampling distribution from the recurrent circuit. The projection of the spiking activity (Eq. 14)
and recurrent inputs (Eq. 29) onto the stimulus subspace (black curves), can be read out linearly from the
population activity and interpreted as a sample of stimulus and context respectively (Eqs. 4b-4c). Top right
insets: the empirical marginal distributions of samples and marginal posteriors (smooth lines). (F) The joint
value (red dots) of instantaneous samples of stimulus (black curve on the surface in D), and context (black
curve on surface in E) represent samples from the joint posterior of the stimulus and context. The true joint
posterior is represented by the blue contour.

joint posterior p(s, z|uf) (blue contour map in Fig. 3D, Eq. 24) [35]. To approximate p(s|uf),220

the marginal posterior distribution of s, we can use only samples s̃t to obtain the approximating221

distribution q(s|uf) (compare the two green lines at the margin in Fig. 3D). The same is true for222

the marginal posterior over z.223

Implementing Gibbs sampling of stimulus and context in a recurrently coupled cortical circuit224

An implementation of Gibbs sampling in a recurrent E circuit can be intuitively understood by225

comparing the recurrent network dynamics (Fig. 4A) with the dynamics described by the Gibbs226

sampling algorithm (Fig. 3C). In the recurrent network a stimulus sample, s̃t, is represented by the227

activity of E cells, rt, while a context sample, z̃t, is represented by recurrent inputs, ur
t. To generate228
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correct samples we require that the conditional distribution that is represented by the instantaneous229

firing rate, λt (Eq. 1), matches the conditional distribution used in the Gibbs sampling algorithm230

(Eq. 4b), so that p(s̃|z̃t,uf) = p(s̃|λt) ∝ exp[h(s̃)>λt]. Equating the two distributions (see Eqs. 4a231

and 10) yields the relation,232

ln p(s̃|z̃t,uf) = ln p(uf |s̃) + ln p(s̃|z̃t),

⇔ h(s̃)>λt = h(s̃)>uf + h(s̃)>ur
t.

(5)

This equation holds when two constraints are satisfied: First, the firing rate vector, λt, needs to233

have a Gaussian profile peaked at s̄t, i.e., the mean of p(s̃|z̃t,uf) (Eq. 4a). Second, the peak firing234

rate, R, needs to be proportional to the precision of p(s̃|z̃t,uf), i.e., R ∝ Λ (see Fig. 2F-G). In a235

neural circuit one way for λt to satisfy these constraints is for feedforward inputs, uf , and recurrent236

inputs, ur
t, to both have Gaussian profiles with the same width, a, as that of λt (by sharing the same237

h(s̃), Eqs. 5 and 12). This is because the sum of two Gaussian-profile inputs with the same width,238

a, gives a firing rate, λt, with the same tuning, as long as the difference of the locations of two239

inputs is much smaller than the width, a. Our generative model (Eq. 3) produces feedforward input,240

uf , with a Gaussian profile and encodes the likelihood function p(uf |s̃). The recurrent input, ur
t,241

then need to represent the conditional distribution p(s̃|z̃t). Hence, to satisfy Eq. (5) the recurrent242

input ur
t should have the same Gaussian profile as uf (Eq. 29), with its location and magnitude243

determined by the mean and precision of p(s̃|z̃t), respectively.244

If recurrent interactions are absent (setting ur
t = 0), then network activity, rt, generates samples245

from the normalized likelihood, p(uf |s̃), as we showed previously when describing feedforward net-246

works (Fig. 2). When neurons only receive recurrent inputs (setting uf = 0), the network generates247

samples from the conditional distribution p(s̃|z̃t). Driven by a sum of recurrent and feedforward248

inputs the network generates samples from a distribution given by the product of the conditional249

distributions encoded by both inputs respectively (Fig. 4B-C).250

The recurrent weights must be adjusted so that the recurrent input has the appropriate magni-251

tude and width to encode the likelihood p(s|z). To simplify the exposition we first assume that E252

neurons are only self-connected, so that the width of recurrent input trivially matches that of the253

feedforward input (otherwise recurrence will broaden the profile of the firing rate activity λt over254

the network). To constrain the magnitude of the recurrent weights we require that the sum of the255

recurrent inputs satisfies
∑

j ur
tj ∝ Λs. Since ur

j = wErj and the width of ur
j and rj are equal, the256

magnitude of the recurrent weights that result in samples from the correct posterior must satisfy:257

w∗E =
〈ur

j〉
〈rj〉

=
〈
∑

j ur
j〉

〈
∑

j rj〉
=

Λs
Λf + Λs

, (6)

where Λs and Λf are the precision of likelihood p(s|z) and p(uf |s) respectively (Eq. 3). The optimal258
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recurrent weight, w∗E , thus encodes the correlation between the stimulus s and the context z. An259

increase in correlation between s and z, resulting in a narrower diagonal band in p(s, z) (Fig. 3B),260

requires an increase in the recurrent weight w∗E for optimal sampling. When context and stimulus261

are uncorrelated so that Λs = 0, the hierarchical generative model (Fig. 3A) is equivalent to the262

generative model without context (Fig. 2A) and recurrent interactions are not needed for sampling263

(i.e., w∗E=0). Our framework (Eq. 6) thus predicts that optimal Bayesian inference is achieved with264

recurrent synaptic weights which depend on the correlative structure of the external world. We265

numerically test this prediction in the next section.266

A stochastic E-I spiking network jointly samples stimulus and context267

To confirm the predictions of this analysis, we simulated a full recurrent network consisting of both268

E and I neurons with Poisson spike train statistics (see details in Eqs. 47-50). The E neurons were269

synaptically connected to each other (Eq. 49, see Fig. 1A), in contrast to the simple network of270

self-connected E neurons we described above. While recurrent E to E coupling broadens the tuning271

of excitatory recurrent input, lateral inhibition can sharpen Gaussian firing rate profiles so that it272

matches that of the feedforward inputs (as required by Eq. 5).273

The activity of the recurrent network in response to a fixed but randomly generated feedforward274

input (Eq. 3) can be decoded to produce samples from the bivarite posterior distribution of the275

stimulus and context. As above, samples from the conditional stimulus distribution are represented276

by the activity of E neurons (Eq. 14), while samples from the conditional context distribution are277

represented by recurrent inputs received by E neurons (Eq. 29; black curves overlaid on the top278

of population responses in Fig. 4D and E respectively). To update recurrent inputs we only used279

neuronal activity at the previous time step. Thus, the activities of E neurons and their recurrent280

inputs were updated in alternation, consistent with Gibbs sampling. The trajectory obtained by281

plotting the stimulus sample read out from the network activity on one axis, and plotting the context282

sample read out from recurrent E inputs on another axis then exhibits the characteristics of Gibbs283

sampling (Fig. 4F, cyan line). The resulting sampling distribution provides a good approximation284

to the joint posterior of stimulus and context (compare red dots and blue contour in Fig. 4F).285

Inhibitory neurons again did not respond selectively to either the stimulus or the context.286

For the network to generate samples from the joint posterior, the recurrent connectivity should287

depend on the correlation between the stimulus and the context (Eq. 6). To verify this prediction,288

we fixed the generative model (Eq. 3) and changed only the recurrent weights in the network.289

For simplicity, we only varied the peak E weight, wE (Eq. 49), and maintained network stability290

by fixing the ratio between E and I synaptic weights. While increasing wE did not change the291

sampling mean, it did increase the variance of the context sampling distribution, and increased the292

correlation between stimulus and context samples (Fig. 5A).293
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Figure 5: The joint sampling distribution of stimulus and context changes with the recurrent weight in
the network. (A) The sampling distribution for different recurrent excitatory weights, wE . The ratio of
excitatory and inhibitory weights was fixed. Ellipses capture three standard deviations from the mean of
the joint sampling distribution. Different colors correspond to the three values of wE , denoted by different
symbols in panel B. (B) The mutual information between the latent variables, s and z, and the feedforward
inputs for an ideal Bayesian observer (black horizontal line) and for the sampling distribution generated by
the network model (blue curve). The difference between the two lines is the KL divergence between the
posterior, p(s, z|uf), and the sampling distribution, q(s, z|uf). KL divergence is minimized when the weight
in the recurrent network is set to a value, w∗

E , at which the sampling distribution, q, best matches the true
posteriori, p (black circle). (C) This optimal weight, w∗

E , increases with prior precision, Λs.

We use Kullback-Leibler (KL) divergence to measure the distance between the sampling distri-294

bution, q(s, z|uf), and the true posterior, p(s, z|uf) (Eq. 24). The KL divergence quantifies the loss295

of mutual information, measured in bits, between the latent variables (s and z) and the feedforward296

inputs, uf , when the true posterior, p, is approximated by the distribution, q (Eq. 42) [35]. The297

mutual information loss in the network is minimized at a unique value of the recurrent weight,298

w∗E , at which the sampling distribution, q, best matches the posterior, p (Fig. 5B, black circle). To299

confirm that this optimal recurrent weight, w∗E , increases with the correlation in the prior (precision300

Λs, Eq. 6), we numerically obtained the recurrent weight that minimizes the mutual information301

loss for each value of Λs in the generative model. These results confirmed the predictions of our302

theory (Eq. 6, Fig. 5C): When Λs = 0, i.e. when context and stimulus are uncorrelated, a network303

with no interactions performs best (w∗E = 0), while for small Λs (relative to Λf) the optimal weight304

w∗E is positive and increases with Λs. In total, we have described a potential mechanism for a305

recurrent network of spiking neurons to perform sampling-based Bayesian inference.306

Generating samples from multi-dimensional posteriors with coupled neural circuits307

To demonstrate the generality of the proposed neural code we next consider a world described308

by a broad, rather than deep (hierarchical) generative model. Information about each of two309

latent stimuli, s = (s1, s2), is relayed by corresponding feedforward inputs received by a neural310

circuit (Fig. 6A). We assume the prior is a bivariate Gaussian distribution (Fig. 6B), i.e., p(s) ∝311

exp[−Λs(s1−s2)2/2] ≡ N (s1−s2,Λ
−1
s ), so that Λs (Λs ≥ 0) characterizes the correlation between s1312

and s2. Furthermore, each stimulus, sm, independently generates feedforward spiking inputs, uf
m,313

each of which is received by a separate network and produces responses rm for m = 1, 2 (Fig. 6A).314
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Figure 6: Distributed sampling from a multivariate posterior distributions using coupled networks. (A)
Network m (m = 1, 2) receives a feedforward input evoked by a stimulus, sm. The coupling between the
two networks represents the stimulus prior. A linear readout from each network, m, can be interpreted as
a sample from the posterior of the stimulus, sm. (B-C) Examples of a prior (B) and likelihood (C). The
prior distribution is concentrated around the diagonal line (dashed line), indicating the two stimuli are more
likely to be colinear. In panel (C), µf1 = −10 and µf2 = 10 are the means of the likelihoods of s1 and s2
respectively. (D) The joint posterior of stimuli and the corresponding approximate sampling distribution
generated by the coupled networks. A sample from the joint posterior can be read out individually from the
activity of the corresponding network (shown in A). Light blue contour: the posterior distribution (Eq. 34);
Red dots: stimulus samples generated by the network.

Thus, the full generative model of the input has the form,315

p(uf |s)p(s) =
[∏2

m=1 p(u
f
m|sm)

]
p(s1, s2),

∝
[∏2

m=1N (sm|µfm,Λ−1
fm)
]
N (s1 − s2,Λ

−1
s ).

(7)

The likelihood p(uf
m|sm) is the same as that given previously (Eq. 2), where the feedforward inputs,316

uf
m, are again described by conditionally independent Poisson spike counts with Gaussian tuning317

over stimulus sm. As a concrete example, the two stimuli, sm, could represent orientations of318

local edges falling in the central receptive fields of a V1 hypercolumn (Fig. 6A, bottom), with319

each V1 hypercolumn modeled by a network producing the response rm (Fig. 6A, top). Then Λs320

characterizes a priori tendency of the stimuli to share similar orientations, and determines how321

likely two local edges are to be part of a global line, as in the case of contour integration [42, 43].322

However, the generative model defined by Eq. (7) is quite general and has been also used to explain323

multisensory cue integration [10] and sensorimotor learning [13].324

The posterior is a bivariate Gaussian distribution (Fig. 6D, Eq. 34) whose mean is shifted from325

the likelihood mean (Fig. 6C) towards to the diagonal line, because of the correlations between326
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the stimuli in the prior (Fig. 6B). We can again use Gibbs sampling to approximate the posterior327

p(s|uf) using the following steps,328

Compute : p(s̃1|uf
1, s̃2,t−∆t) ∝ p(uf

1|s̃1)p(s̃2,t−∆t|s̃1), (8a)

Sample : s̃1t ∼ p(s̃1|uf
1, s̃2,t−∆t), (8b)

where s̃1t and s̃2t are instantaneous samples at time t of stimuli s1 and s2 respectively. We only329

give the steps needed to produce samples from the conditional distribution of s1, as samples from330

the conditional distribution of s2 can be obtained using the same steps after exchanging indices.331

These sampling steps can be implemented distributively in a coupled neural circuit using a332

mechanism similar to that we described in the case of a hierarchical generative model. The activity333

of each network, rm, individually represents samples from the (marginal) posterior of sm (Fig. 6A,334

top). The joint posterior is then approximated as the collection of samples represented by the335

activity pairs (r1, r2). Taking network m = 1 as an example, spike response r1t produces a stim-336

ulus sample s̃1t as long as the instantaneous firing rate λ1t represents the conditional distribution337

p(s̃1|uf
1, s̃2,t−∆t) (Eq. 8a). Since the feedforward input, uf

1, represents the likelihood p(uf
1|s̃1), to338

obtain the appropriate firing rates, λ1t, the recurrent input from network 2 to network 1, ur
12,t,339

must encode the correct conditional distribution, p(s̃2,t−∆t|s̃1). As in the case of the mechanism we340

proposed to implement sampling as described by Eq. (5), ur
12,t needs to have the same Gaussian341

profile as the firing rate λ1t, the position of ur
12,t on the stimulus space should match the mean of342

p(s̃2,t−∆t|s̃1), i.e., s̃2,t−∆t =
∑

j ur
12,tjθj/

∑
j ur

12,tj , and the magnitude of ur
12,t must be proportional343

to the prior correlation, Λs ∝
∑

j ur
12,tj (Eq. 39). Hence, each network can sum the feedforward344

input and the recurrent input from its counterpart to obtain an update to the instantaneous condi-345

tional distribution given by Eq. (8a), and generate independent Poisson spikes to produce a sample346

from the instantaneous conditional distribution (Eq. 8b). Notably, the sample of each stimulus347

can be locally read out from corresponding network (Eq. 41, Fig. 6A), even if the activities of two348

networks are correlated.349

Since the recurrent input strength represents the stimulus correlation in the prior determined350

by precision Λs, the coupling between the two networks needs to be tuned to generate the appro-351

priate recurrent input. Indeed, in a network with only E neurons, and connections only between352

neurons with the same preferred stimulus value but in different networks, the optimal homogeneous353

connection strength is w∗mn = 〈ur
mn,j〉/〈rn,j〉 = Λs/(Λfn + Λs) (Eq. 40). This mirrors the result354

obtained with the hierarchical model presented earlier in Eq. (6).355

Coupled E-I spiking networks sample bivariate dimensional posteriors356

To test the feasibility of the proposed mechanisms for generating samples from a bivariate posterior357

we simulated a pair of bidirectionally coupled circuits consisting of E and I neurons (Fig. 7A).358
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Figure 7: The statistics of the multivariate sampling distribution of stimuli generated by coupled E-I
circuits. (A) Each of the two circuits individually generate a sample of a corresponding stimulus which
can be read out linearly from that circuit’s activity. Combining the readouts from the two networks yields
the joint sampling distribution. The ring color indicates the stimulus sample the circuit generates: green
and orange represent the stimulus s1 and s2, respectively. Blue arrows: E synapses with width denoting
connection strength; red arrows: I synapses. (B) The sampling distribution shifts from the likelihood mean
to the diagonal line as the coupling between the networks increases. Ellipses capture one standard deviation
from the mean of the sampling distribution. Different colors correspond to the three different coupling
weights between the circuits shown in panel (C). (C) The mutual information between latent variables and
the feedforward inputs for the ideal Bayesian observer (black) and the sampling distributions generated by
the network with different coupling weights between the two circuits. (D) The optimal coupling weight
that minimizes information loss also increases with prior precision (which is inversely proportional to the
width of the band in Fig. 6B). (E) The mean and precision of the sampling distribution over the two stimuli
change with the coupling weight between the circuits when the feedforward input is fixed. (F) The mean
and precision of the sampling distribution over the two stimuli change with the firing rate of feedforward
input to network 1, with other network parameters fixed. (G-H) Comparison of the mean (G) and precision
(H) of the sampling distributions with the posteriors under different combinations of feedforward inputs
and coupling weights. Different dots are obtained from the sampling distributions obtained under different
combinations of input direction and strength, and coupling weight between networks.

This neural circuit model can be extended to generate samples from higher dimensional posterior359

distribution (see Discussion). Each circuit receives feedforward input generated by one of the two360

stimuli. On every time step the sample of each stimulus, s̃mt, can be individually and linearly read361

out from the response of corresponding network, rmt (Eq. 41). Jointly, the two stimulus samples,362

one each from both networks, s̃t = (s̃1t, s̃2t)
>, provide a sample from the joint posterior of the363

two latent stimuli (Fig. 7B). We assumed that the synaptic connections between the networks,364

wmn (m,n = 1, 2; m 6= n), are excitatory, but target both E and I neurons, while inhibitory365

connections are local to each network. We also adjusted network parameters so that the profiles366

of the inputs across networks (e.g., the inputs from network 2 to 1) have the same tuning profile367

as the feedforward inputs (see Methods). Since we assumed uniform marginal priors (see Eq. 32),368
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recurrent connections between E neurons within the a circuit were absent, while E and I neurons369

within a circuit were recurrently connected to ensure network stability. For simplicity, we chose370

parameters so that the two circuits were symmetric, but the strength of the feedforward inputs to371

each could differ.372

We asked whether the activity of the two coupled circuits can generate samples from bivariate373

posteriors, and how the sampling distribution depends on the coupling, wmn, between the two cir-374

cuits. An increase in synaptic coupling between the two networks caused the sampling distribution375

to shift from the likelihood mean towards the diagonal (Fig. 7B), resulting in stimulus samples, s̃1t376

and s̃2t that were more similar. This is consistent with an increase in stimulus correlation in the377

multivariate prior, Λs (Eq. 7). To confirm our prediction that the optimal coupling strength between378

the two networks, w∗mn, increases with the stimulus correlation in the prior, Λs, we numerically379

obtained the coupling weight that minimizes the loss of mutual information between latent stimuli380

and feedforward inputs (Fig. 7C). The optimal synaptic weight between the circuits increased with381

stimulus correlation in the prior. At the optimal weight, w∗mn, the sampling distribution was close382

to the true posterior, showing that a properly tuned circuit can generate samples from the correct383

distribution (Fig. 7D).384

We next asked how the sampling distribution in the network depends on network and feedfor-385

ward input parameters. As the coupling between the two circuits increased, the sample means of386

both stimuli converge (Fig. 7E, top) and the sampling precision of both stimuli increased as well387

(Fig. 7E, bottom), in agreement with a more correlated stimulus prior. We also tested whether388

a network with fixed parameters can generate samples from a family of posteriors with different389

uncertainties. To do so, we changed the uncertainty of the likelihood of s1 by changing the fir-390

ing rate in the feedforward input uf
1 received by network 1. We observed that with a narrower391

likelihood of s1, the sample means of both stimuli shifted towards the mean of likelihood of s1392

(−10◦), and sampling precision increased, consistent with a change in the posterior distribution393

(Fig. 7F). Lastly, to demonstrate the robustness of this network implementation of sampling-based394

inference we compare the sampling distributions to the true posteriors under different combinations395

of input and network parameters (Fig. 7G-H), in each case setting the recurrent coupling to the396

optimal value, w∗mn, obtained numerically. Across different parameter values we observe excellent397

agreement in both the mean (Fig. 7G) and precision (Fig. 7H) of the two densities. In sum, our398

recurrent network of spiking neuron models can be extended to support sampling-based Bayesian399

inference with multi-dimensional stimuli.400

A signature of stimulus sampling: internally generated differential noise correlations401

A central prediction of our circuit framework for sampling-based Bayesian inference is that an402

increase in the correlation between stimuli in the sensory world should result in stronger synapses403
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between neurons whose activities represent these stimuli (see Eq. 6). This is a difficult prediction404

to test since measuring synaptic connectivity along a functional axis is already challenging [44], let405

alone measuring a change in synaptic strength owing to a change in stimulus statistics. Here we406

outline a testable prediction of our theory by identifying a measurable, population-level signature407

of changes in functionally related recurrent synaptic strengths.408

In response to a fixed feedforward input the responses of a recurrent circuit implementing stim-409

ulus sampling will fluctuate. The alignment of the recurrent circuitry and neuronal stimulus tuning410

causes a portion of these activity fluctuations to align with the subspace in which stimuli are coded.411

As an example, consider the sampling implemented by a single recurrent network (Fig. 4A), and412

suppose the population response fluctuates around its mean position (0◦ in the example of Fig. 8A),413

ignoring fluctuations along other directions in neuronal response space. The activity of neuron pairs414

with stimulus preference both above or below the mean position are positively correlated (the black415

and blue neurons in Fig. 8A), while the activity of neuron pairs with preferences straddling the mean416

are negatively correlated (the black and red neurons in Fig. 8A). Such stimulus sampling generates417

a covariance component which is proportional to the outer product of the derivative of neuronal418

tuning (Fig. 8B), i.e., f ′sf
′>
s , where f ′s denotes the derivative of tuning f(s) = 〈λt〉 (mean firing rate)419

over stimulus s. Such noise correlations have been referred to as differential correlations [4, 17], and420

are generally viewed as deleterious to stimulus coding. Stochastic sampling in coupled networks421

(Fig. 6A) produces similar differential noise correlations (see Supplemental Information).422

In our network implementation of sampling, the amplitude of internally generated differential423

correlations is not arbitrary, but is determined by the recurrent connection strength, w∗E . Here, the424

differential covariance matrix of population responses has the form (see Eq. 44)425

ΣDC = V (s̄|uf)f ′sf
′>
s ,

where V (s̄|uf) =
Λs

Λf(Λf + Λs)
= a2n−1

f w∗E ,
(9)

where V (s̄|uf) is the variance of s̄t in equilibrium over time, and s̄t is the mean of the instan-426

taneous conditional distribution (Eq. 4a) represented by the position of instantaneous firing rate427

λt (Fig. 2B). Importantly, the amplitude of differential correlations increases with the recurrent428

weight, w∗E , which is set by the prior precision Λs (Eq. 6; Fig. 8C). Thus, in our framework inter-429

nally generated differential correlations are a by-product of inference by sampling from posterior430

distributions of stimuli in a structured world.431

Distinguishing external and internal differential correlations432

The previous analysis of internally generated differential correlations in a circuit implementing433

sampling-based inference is based on the assumption of a fixed feedforward input (Eq. 9). However,434
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Figure 8: Stimulus sampling by a network is reflected in the internally generated differential correlations,
whose impact differs from differential correlations inherited from feedforward inputs. (A) Stimulus sampling
via spike generation causes the population firing rate to fluctuate along the stimulus subspace (x-axis). (B)
The pattern of internally generated differential correlation in a network implementing sampling composed of
neurons with Gaussian tuning. (C) Internally generated differential correlations in such a network increase
with recurrent weight, wE . (D) The rate in feedforward input decreases the externally generated correlations,
and increases the mutual information between the feedforward inputs and latent stimulus. (E) Recurrent
network weights increase internally generated differential correlations. Mutual information between stimulus
and feedforward inputs changes non-monotonically with recurrent weight. The direction of arrows indicates
the predicted direction of change of the recurrent weights after an animal is retrained using a new stimulus
set with different correlations compared to the reference stimulus set.

in typical neurophysiology experiments an external stimulus, s, is fixed, while the feedforward435

input, uf , fluctuates due to variability in sensory acquisition and transmission noise (Eqs. 3 and 7).436

Hence, differential correlations of neuronal population responses are a combination of correlations437

inherited from feedforward input [45], and correlations generated by recurrent network interactions438

that align with the population stimulus tuning [24]. When the feedforward input is described by a439

hierarchical generative model (Eq. 2), the total magnitude of differential correlations in the evoked440

response is a2n−1
f wEf ′sf

′>
s + a2n−1

f f ′sf
′>
s (see Eq. 46), where the second term reflects differential441

correlations inherited from the feedforward input (compare with Eq. 9). Although the two sources442

of differential correlations are intertwined in the neuronal response, they impact the information443

content differently thus offering a potential way to distinguish between them in neural data.444

Externally generated differential correlations decrease with feedforward input rate which could445

be modulated by visual stimulus strength such as contrast (Fig. 8D, red curve). As a consequence,446

the mutual information (the information between feedforward inputs uf and the latent variables, i.e.,447

s and z, sampled by recurrent network in Fig. 4A, Eq. 42) increases with feedforward input intensity448

(Fig. 8A, blue curve). We therefore have a monotonic, decreasing relationship between externally449

generated differential correlations and mutual information. This is expected since such inherited450

correlations always impair information processing, as observed previously [4, 17]. In contrast, an451

increase in recurrent weights, wE , increases internally generated differential correlations, but results452

in a non-monotonic change in mutual information (Fig. 8B). Hence there is a non-monotonic relation453

between internally generated differential correlations and the mutual information between stimulus454

and feedforward inputs. In sum, the impact of external and internal differential correlations on455

stimulus coding can be distinguished by their respective monotonic and non-monotonic relation456

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.26.477877doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.26.477877
http://creativecommons.org/licenses/by-nc-nd/4.0/


with the mutual information between stimulus and response.457

Discussion458

We have presented a framework in which neuronal response variability and recurrent synaptic con-459

nections, two ubiquitous features of cortex, are jointly used to implement sampling-based Bayesian460

inference in neuronal circuit models. Combining mathematical analysis and network simulations we461

established that stereotypical Poisson variability of discrete spike counts can drive flexible sampling462

from a family of continuous distributions. The sampling statistics are determined by the structure463

of recurrent coupling, which stores information about the stimulus prior, and feedforward inputs464

which convey the stimulus likelihood. Sampling-based inference is implemented in two steps: the465

instantaneous firing rate, determined by the sum of feedforward and recurrent inputs, represents466

the instantaneous conditional distribution of latent stimulus, while Poissonian variability in spike467

generation is used to generate a random stimulus sample from this conditional distribution. A sim-468

ple circuit model is able to generate samples from multi-dimensional posteriors of latent variables469

organized hierarchically or in parallel, which underlies the computational basis of a wide range of470

perceptual and cognitive processes [46].471

Comparison with other neural coding frameworks472

The neural code we described shares some features with codes described in previous studies, includ-473

ing parametric representations in probabilistic population codes (PPCs) [15, 36, 37], and sampling-474

based codes (SBCs) [16, 27–32]. In our framework the conditional distributions of latent variables475

is represented by instantaneous firing rates which linearly encode the logarithms of these conditional476

distributions, and have a mathematical form that is similar to that used in past studies describing477

PPCs (e.g., Eq. 5). Further, the posterior is represented by stimulus samples generated through a478

random process, a feature of all SBCs. Despite these similarities, there are fundamental differences479

between the neural code we described and previously proposed PPCs and SBCs.480

PPCs are generally implemented in networks with no internally generated variability, with481

stochasticity inherited from the stimulus. In contrast, our proposed network is doubly stochastic:482

The Poisson variability in the feedforward input allows a single realization of the feedforward input483

to represent the whole stimulus likelihood [36], while internally generated Poisson variability drives484

stimulus sampling. Further, in PPCs the posterior is represented parametrically by a one-shot485

neuronal response, while in our proposed network the joint posterior is approximated by a sequence486

of samples, each obtained as a linear readout from the instantaneous neuronal responses. Although487

it takes time to collect sufficient samples to approximate the posterior, a computational benefit488

compared with PPCs is that inference of a multivariate posterior can be implemented by linearly489

coupled networks (Fig. 6), while in PPCs nonlinear coupling between networks is required [47].490
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Conventional SBCs are used to generate samples directly in a neural space whose dimension is491

given by the number of neurons in the population [16, 27, 28, 30–33], where a neuronal response,492

rt, is interpreted directly as a sample from the (marginal) posterior of neuronal responses, p(r).493

Hence the posterior mean is the temporally averaged population response, and the covariance of494

population responses is the posterior covariance. In contrast, our proposed network generates sam-495

ples in a low dimensional stimulus subspace embedded in high dimensional neural activity space.496

The linear projection of network activity, rt, onto the stimulus subspace represents a sample from497

the stimulus posterior, similar to a previous study [29]. A computational benefit of sampling in a498

low dimensional stimulus subspace is convergence speed, as the volume of the stimulus subspace is499

significantly smaller than that of the neural activity space. Indeed, in our examples sequences of500

samples generated by a single recurrent network (Fig. 4) and coupled networks (Fig. 6) can both501

converge to an equilibrium distribution in less than 20ms, which is fast enough to complete inference502

on a behaviorally relevant time scale (Fig. S6). Furthermore, the multiplication of probability dis-503

tributions of latent stimulus, which is central to Bayesian inference (e.g., cue combination, decision504

making, see review in [15]), can be implemented by summing the inputs to a neuronal population505

(Eq. 5). This follows from the fact that the instantaneous population input (or firing rate) linearly506

encodes the logarithm of a probability distribution (Eqs. 1 and 5). In contrast, producing samples507

in neural activity space using conventional SBCs requires nonlinear operations in neural circuits in508

order to multiply probability distributions (or histograms) of the samples [15].509

A recent study demonstrated that an E-I recurrent network of rate-based neurons can be nu-510

merically optimized for sampling-based Bayesian inference [32]. In contrast, we used a theoretical511

approach to derive a network model of simplified spiking neurons which implements sampling-based512

inference. This allowed us to explicitly describe the putative neural mechanisms needed for such513

sampling. Although the two studies use different generative models and neural representations,514

the network models in both studies share some common characteristics: ring structure, Poisson-515

like response variability, and tuning-dependent noise correlation (Fig. S1D). This implies that the516

seemingly different generative models and neural representations in the two studies reflect more517

general principles, as suggested in [48]. It will be interesting to extend our theoretical approach518

to dynamical spiking neurons to determine how the timescales of neuronal dynamics and neuronal519

oscillations impact inference in rich, dynamic sensory scenes (see below).520

Testing the prediction that recurrent synaptic strength is determined by correlations521

between latent stimuli522

Differential noise correlations generated by recurrent network interactions are a signature of network523

sampling in our framework (Fig. 5C and 8C). This is in contrast to earlier studies where differential524

correlations were inherited from feedforward inputs [17, 49]. While internally generated differential525
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correlations could also emerge from a recurrent circuit which is not implementing inference [22, 24,526

49–52] or implementing inference via other algorithms [53], in our framework the relation between527

the magnitude of internally generated differential correlations, the posterior uncertainty, and the528

strength of the recurrent synaptic weight (Eq. 9) provides a clear test which can be used to verify529

our proposed circuit mechanism of sampling-based inference. One possible experimental approach530

would modulate the functional recurrent strength by using a perceptual learning task. Specifically,531

after using a reference stimulus set with a prescribed correlation between latent stimuli to fully532

train an animal, we expect that recurrent synaptic weights will strengthen or weaken to improve533

inference (Fig. 8E, dashed line). This will result in a fixed value of differential noise correlations534

in the population response due to the recurrent circuitry. Re-training with a stimulus set that has535

more (less) correlated latent stimuli compared to the reference set will cause the recurrent weights536

to increase (decrease) (Fig. 8E, red line). When the reference stimulus set is again used to drive task537

behavior, then performance (as a proxy of mutual information) will decrease, regardless of whether538

differential correlations have increased or decreased compared to those resulting from the reference539

stimulus set (Fig. 8E, arrows). In brief, the non-monotonic relationship between differential noise540

correlations and the mutual information between stimulus and responses which support Bayesian541

inference offers a clear (and falsifiable) experimental prediction.542

Extensions of circuit-based Bayesian inference543

Implementing sampling-based inference in our proposed network requires that feedforward and re-544

current inputs have the same tuning profile over the stimulus (Eq. 5). This assumption is supported545

by experiments in layers 4 and 2/3 in mouse V1 [8]. Moreover, the recurrent connections in our546

network model are translation-invariant in the stimulus subspace, an assumption widely used in547

continuous attractor networks (CAN) [22, 51, 54, 55]. Translation-invariant connections simplify548

the mathematical analysis, but are not required for a circuit to implement sampling. Adding ran-549

domness in recurrent connectivity only increases the variance of the sampling distribution. In the550

past, CANs have been shown to achieve maximal likelihood estimation (point estimate) via template551

matching [15, 55, 56]. Here we have shown that a network with CAN-like structure and internally552

Poisson spiking variability is able to perform sampling-based Bayesian inference. In our network553

correlations in the stimulus prior are represented by the strength of recurrent synaptic activity,554

which implies that the (subjective) prior precision in the network increases with the feedforward555

input strength. To maintain a fixed prior in the network recurrent weights need to decrease with556

increased feedforward input strength which encodes the likelihood precision, Λf (Eq. 6). There-557

fore, the (subjective) prior stored in the network with fixed recurrent weights may differ from the558

objective stimulus prior in the world (Λs in Eqs. 3 and 7) with feedforward inputs of different559

strengths. This could be solved by short-term synaptic depression which decreases the synaptic560

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.26.477877doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.26.477877
http://creativecommons.org/licenses/by-nc-nd/4.0/


efficacy at increased neuronal firing rates [57]. On the other hand, since the proposed recurrent561

circuit is general, this result may explain the origin of inductive bias [58] or confirmation bias [59]562

in cortical processing. Another possibility is that the recurrent circuit represents a more complex563

generative model which better captures the statistical structure of natural stimuli [30, 32, 60]. We564

only considered sampling driven by spiking variability with a Fano factor of 1, while cortical re-565

sponses often have Fano factors that differ from 1 [61, 62]. In the latter case, our theory can still566

work by changing the feedforward connection weight to compensate for the change in Fano factor,567

as suggested in a recent study [63].568

To keep our exposition transparent we only presented models with minimal complexity. Our569

proposed network mechanism of sampling-based inference can be generalized to more complex gen-570

erative models, since the assumption of Gaussianity (Eqs. 21 and 22) and the analytical expression571

in Eq. (24) are not essential, and several relaxed frameworks may be explored. First, similar572

networks can generate samples from other multi–dimensional distributions where the conditional573

distribution of each latent variable belongs to the linear exponential family [35, 36]. This could be574

done by changing the tuning functions of neurons to another appropriate profile, as the logarithm575

of tuning determines the type of sampling distribution (Eq. 1). When sampling from non-Gaussian576

distributions, the stimulus samples can be linearly read out with the weight determined by the577

tuning profile (i.e., h(s) in Eq. 1, [36]). Second, the tuning of recurrent inputs does not need to578

be the same as that of feedforward inputs. Instead the logarithm of recurrent input tuning can579

have a form of the conjugate prior with the likelihood conveyed by feedforward inputs. Third, the580

network model could also be used to infer the latent variables with a non-uniform marginal prior,581

if, for example, the preferred stimuli of neurons in the population are not distributed uniformly582

in the stimulus subspace [64]. Lastly, we considered only non-structured inhibition for simplic-583

ity. Structured inhibitory connections could modulate the position of excitatatory responses in the584

stimulus subspace, i.e., the mean of the conditional distribution. Such interplay between E and I585

neurons with structured inhibition has the potential to implement Hamiltonian sampling, where586

the I neurons represent the sample of auxiliary variables [33, 35].587

In conclusion, we have shown that a recurrent circuit of neurons with Poisson spiking statistics588

can implement sampling from a family of multivariate posterior distributions, with internal spiking589

variability driving the generation of stimulus samples, and the recurrent connections representing590

the stimulus prior. The proposed neural code may help us understand the structure of neuronal591

activity, provide a building blocks for more complicated population computations.592
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Methods593

A linear network of excitatory neurons594

We study how a generic recurrent network model consisting solely of NE excitatory (E) neurons595

with Poisson spiking statistics (no inhibitory neurons) can implement sampling-based Bayesian596

inference to approximate the stimulus posterior. We describe neuronal activity using a time–597

discretized Hawkes process (a type of multivariate, inhomogeneous Poisson process [65]). The598

instantaneous firing rates of the neurons in the network at time t, λt, obey the following recurrent599

equations:600

λt∆t = uf + ur
t = uf + (wErt−∆t + σrξt) , (10)

rt ∼
∏NE
j=1 Poisson (λtj∆t) , (11)

where uf is the feedforward Poisson spiking input (described below; Eq. 18), ur
t is the continuous601

valued recurrent input at time t, and ξt is a NE dimensional independent Gaussian white noise.602

Hence, over each time interval [t−∆t, t] the activity of the neurons in the network is modeled by603

a vector of independently generated Poisson spike counts, rt, with means determined by the rates604

λt. The parameters wE and σr determine the excitatory recurrent weight and recurrent variability,605

respectively.606

Poisson spike generation samples stimulus607

Independent Poisson spike generation in the network whose activity is described by Eq. (11) can608

drive sampling across time or across trials from a conditional stimulus distribution determined by609

the instantaneous firing rate λt. Below we compute the distribution of stimulus samples given λt.610

We assume that the instantaneous firing rate, λt, has a smooth bell-shaped profile and can be611

parameterized as,612

λtj = R exp[−(s̄t − θj)2/2a2] = R exp[hj(s̄t)], (12)

where s̄t characterizes the position of the population firing rate on the stimulus subspace (Fig. 1B,613

x-axis), while R and a denote the height and width of the population firing rate, respectively.614

Further, θj is the preferred stimulus value of neuron j, and the preferred stimuli of all neurons,615

{θj}NE
j=1, are uniformly distributed over the range of stimulus s (Fig. 1B).616

To simplify the analysis, we first assume that the instantaneous firing rate is fixed over time.617

When generating Poisson spikes rt from λt, the probability of observing a stimulus sample s̃t618
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(embedded in rt) can be derived as (see details in Supplemental Information),619

p(rt|λt) =
∏NE
j=1 Poisson (rtj |λtj∆t) ,

∝ exp[h(s̄t)
>r] ·

[
nnr
λ exp(−nλ)

]
,

∝ N
(
s̃t|s̄t, a2n−1

r

)
Poisson(nr|nλ),

(13)

where nr =
∑

j rtj is the number of emitted spikes across the whole neural population, and nλ =620 ∑
j〈λj〉∆t is the sum of population firing rate. Here N (s|µ, σ2) denotes a Gaussian distribution621

with mean µ and variance σ2, and h(s̄t) is a vector with the jth element as hj(s̄t) shown in Eq. (12).622

The logarithm of the firing rate profile, h(s̄t), determines how the stimulus sample s̃t and its mean,623

s̄t, can be read out respectively from rt and λt,624

s̃t =
∑

j rtjθj/
∑

j rtj , s̄t =
∑

j λtjθj/
∑

j λtj , (14)

where s̃t and s̄t characterizes the position of rt and λt on the stimulus subspace.625

The sampling variability of s̃t in a single time step depends on the number of emitted spikes,626

nr. When the fixed rates, λt, repeatedly generate spikes over time, the sampling distribution of627

s̃t can be calculated by marginalizing the likelihood (Eq. 13, last line) over different values of nr628

since nr varies across time (detailed calculation by using Laplacian approximation can be seen in629

Supplemental Information),630

p(s̃t|λt) =
∑

nr
N
(
s̃t|s̄t, a2n−1

r

)
Poisson(nr|nλ),

≈ N
(
s̃t|s̄t, a2n−1

λ

)
.

(15)

Each stimulus sample, s̃t, is thus drawn from a conditional distribution determined by the instan-631

taneous firing rate, p(s̃|λt), and can be written as632

s̃t ∼ p(s̃|λt) = N
(
s̃|s̄t, a2n−1

λ

)
∝ exp[h(s̃)>λt]. (16)

The last proportionality in the above equation is satisfied by a Gaussian profile in the firing rate633

(more general derivation can be found in Supplemental Information). Introducing Λ = a−2nλ gives634

Eq. (1) shown in the main text.635

Eq. (16) suggests that the type of sampling distribution (or the conditional distribution) that636

is obtained from spike generation variability is determined by the profile of the instantaneous firing637

rate, i.e., h(s̄t) (Eq. 12). Although the sampling distribution belongs to the linear exponential638

family of distributions which is similar with the probabilistic population code (PPC) [36], there are639

different ways in representing these distributions. In PPCs the likelihood over s̄t is parametrically640

represented by a single realization of independent neuronal response r (Eq. 13), while in our work641
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the distribution is approximated by a sequence of samples, s̃t, effectively generated by conditionally642

independent Poisson spike discharges.643

The above analysis can be extended to the case where the instantaneous firing rate, λt, in a644

time step deviates from a smooth Gaussian profile (Eq. 12), which is the case in the actual network645

simulations. In general, λt can be expressed as,646

λtj = Rt exp[hj(s̄t)] + δ⊥λtj , (17)

where δ⊥λt denotes the deviation from a smooth Gaussian profile. Note that the sampling dis-647

tribution only depends on the position, s̄t, and the sum of instantaneous firing rate, nλ (Eq. 16),648

which corresponds to two perpendicular directions in the NE dimensional space of λt. For any649

instantaneous firing rate vector, λt, we can always find s̄t and Rt that make the deviation δ⊥λt650

perpendicular to the two directions, i.e.,
∑

j δ⊥λtjθj = 0, and
∑

j δ⊥λtj = 0. This observation651

imples that deviations from Gaussian firing rate profiles do not affect our theory.652

Feedforward spiking input conveys the likelihood of stimulus653

We model the feedforward inputs to the E neurons in the network, uf , as independent Poisson654

spikes, with Gaussian tuning over stimulus s,655

p(uf |s) =
∏NE
j=1 Poisson

[
uf
j

∣∣〈uf
j(s)〉

]
,

〈uf
j(s)〉 = U f exp[hj(s)] = U f exp[−(θj − s)2/2a2].

(18)

Here uf
j denotes the feedforward input received by the jth E neuron, and 〈uf

j(s)〉 is the tuning of656

the feedforward input. This mathematical description of feedforward input is the same as the one657

used in the definition of typical PPCs [15, 36, 37]. Since the preferred stimulus values, {θj}NE
j=1, of658

all feedforward inputs are uniformly distributed in stimulus space then the likelihood of s given a659

single observation of the input, uf , satisfies [36, 37],660

p(uf |s) ∝ exp
[
h(s)>uf

]
,

∝ N
(
s|µf ,Λ−1

f

)
.

(19)

The logarithm of tuning, h(s), determines the type of likelihood [15]. Specifically, the Gaussian661

tuning leads to a Gaussian likelihood (Eq. 19), whose mean, µf , and precision, Λf , are both linear662

functions of the inputs,663

µf = n−1
f

∑
j uf

jθj , Λf = a−2nf = a−2
∑

j uf
j . (20)
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The mean, µf , represents the position of uf in stimulus subspace, and the precision, Λf , is propor-664

tional to the sum of total feedforward spike counts, nf .665

A recurrent network samples hierarchical latent variables666

A hierarchical generative model667

We consider a hierarchical generative model for which inference can be implemented in a recurrent668

circuit of Poisson neurons. We extend the simple generative model of feedforward input (Eq. 19)669

by considering the stimulus s to depend on a one dimensional context variable, z. For simplicity,670

we assume that z follows a uniform distribution (Fig. 3B, marginal plots)671

p(z) = U(−180◦, 180◦), (21)

where U(a, b) denotes a uniform distribution over [a, b]. The assumption of a uniform prior, p(z),672

simplifies our model significantly, as it implies the spatial homogeneity of the network model as673

given by Eqs. (18-19). However, this assumption is not essential for our main results. Due to674

the differences between the stimulus (local) and context (global) aspects of the sensory scene, the675

stimulus, s, is not identical to the context z, but we assume that the two are correlated, so that676

p(s|z,Λs) = N
(
s|z,Λ−1

s

)
. (22)

In sum, the whole generative model is determined by,677

p(uf , s, z) = p(uf |s)p(s|z)p(z),

∝ N
(
s|µf ,Λ−1

f

)
N
(
s|z,Λ−1

s

)
,

(23)

where p(uf |s) is the same as in Eq. (19).678

Approximate Bayesian inference via Gibbs sampling679

The joint posterior of stimulus and context can be analytically derived given the generative model680

(Eq. 23),681

p(s, z|uf) = N
[
(s, z)>|µp,K−1

p

]
,

µp = (µf , µf)
>, Kp =

(
Λf + Λs −Λs

−Λs Λs

)
.

(24)

We will use this expression to verify that the samples produced by our algorithm converge to ththe682

output of the algorithm.683
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We use the stochastic response of our recurrent network (Eqs. 10-11), as a basis for Gibbs684

sampling [31, 35, 41] (a type of Monte Carlo method) to approximate the joint posterior of stimulus,685

s, and context, z. To describe the iterative Gibbs algorithm, we assume that a context sample, z̃t,686

is provided at time t, which is then combined with the feedforward input to update the conditional687

distribution of stimulus s (step 1 in Fig. 3C),688

p(s̃|z̃t,uf) ∝ p(uf |s̃)p(s̃|z̃t) ∝ N
(
s|s̄t,Λ−1

)
,

s̄t =
Λfµf + Λsz̃t

Λf + Λs
, Λ = Λf + Λs.

(25)

The next step in the algorithm is to draw a sample, s̃t, from the conditional distribution p(s̃|z̃t,uf)689

(step 2 in Fig. 3C),690

s̃t ∼ p(s̃|z̃t,uf) = N
(
s̃|s̄t,Λ−1

)
.

Next, the conditional distribution of context, z, is updated given this new sample, s̃t, and a new691

sample, z̃t+∆t, is drawn (step 3 in Fig. 3C),692

z̃t+∆t ∼ p(z̃|s̃t) = N (z̃|s̃t,Λ−1
s ). (26)

These three steps in the Gibbs sampling algorithm (Eqs. 25-26) are performed iteratively until693

sufficiently many samples, s̃t and z̃t, are generated to approximate the true posterior distribution694

with sufficient accuracy (Fig. 3D; compare the red dots with the blue contour map).695

Implementing the Gibbs sampling in a recurrent circuit model696

Gibbs sampling of the stimulus (Eq. 4b) can be implemented via independent Poisson spike gener-697

ation, as long as the conditional distribution encoded in λt (Eq. 16) is the same as the conditional698

distribution in the Gibbs sampling algorithm (Eq. 4a), i.e., ln p(s̃|λt) = h(s̃)>λt = ln p(s̃|z̃t,uf).699

This condition can be realized in the recurrent circuit by relating the expressions describing the700

neural dynamics (Eq. 10) and those describing the Gibbs sampling distribution (Eq. 4a) to yield,701

ln p(s̃|z̃t,uf) = h(s̃)>λt,

= h(s̃)>uf + h(s̃)>ur
t,

= ln p(uf |s̃) + ln p(s̃|z̃t).

(27)

The generative model for the feedforward input uf (Eq. 19) suggests that ln p(uf |s̃) = h(s̃)>uf .702

Hence to satisfy Eq. (27) we require703

ln p(s̃|z̃t) = h(s̃)>ur
t, (28)
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which implies that the recurrent input, ur
t, should approximately have a Gaussian profile,704

ur
tj(z̃t) = U r exp[−(θj − z̃t)2/2a2] + δ⊥ur

tj ,

z̃t =
∑

j ur
tjθj/

∑
j ur

tj , Λs = a−2
∑

j ur
tj ,

(29)

whose position on the stimulus subspace is z̃t, and the sum of input (height) is determined by Λs,705

the precision of conditional distribution p(s|z̃t). In a similar fashion to Eq. (17), δ⊥ur
t denotes the706

deviation from a smooth Gaussian and is perpendicular to the direction of z̃t and Λs.707

The optimal recurrent weight can be derived by combining Eq. (29) and Eq. (17). We notice708

the recurrent input, ur, and neuronal responses, rt, have the same tuning width, a, in a network709

with only E neurons. This can only be achieved if E neurons are only self-connected (Eq. 10), as710

lateral connection broaden their tuning. The optimal recurrent weight generating recurrent input711

with appropriate strength is then,712

w∗E =
〈ur

j〉
〈rj〉

=

∑
j〈ur

j〉∑
j〈rj〉

=

∑
j〈ur

j〉∑
j

(
〈uf

j〉+ 〈ur
j〉
) =

Λs
Λf + Λs

, (30)

which yields Eq. (6) in the main text. Note that the self-connection is a result of the simplifying713

assumption that the network consists solely of E neurons (Eq. 10), which can be relaxed in a full714

network consisting both E and I neurons as we show below.715

The sampling of the context variable (Eq. 4c) can be implemented through variability in the716

recurrent input. To do this, we include diffusive term in the recurrent interactions, ur
t, and we717

equate the variance of the fluctuations with the mean to mimic a Poisson distribution:718

ur
t = ūr

t +
√

[ūr
t]+ξt, ūr

t = w∗Ert−∆t, (31)

where [·]+ denotes negative rectification. Here ξt is a NE dimensional Gaussian white noise with719

〈ξt(i)ξt′(j)〉 = δijδ(t− t′), δij and δ(t− t′) are Kronecker and Dirac delta functions respectively, ūr
t720

represents the conditional distribution p(z̃|s̃t−∆t), and ur
t represent a context sample z̃t (Eq. 29).721

The multiplicative variability on recurrent interaction may come from synaptic noise [66, 67].722

Coupled circuits sample a multi-dimensional posterior723

We consider a generative model which has multiple latent stimuli, s = (s1, s2, · · · , sm), which are724

organized in parallel (Fig. 6A). Without loss of generality, we consider the simplest case where725

m = 2, and the same mechanism can be straightforwardly extended to any m > 2. We assume the726
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joint prior of s is a multivariate normal distribution,727

p(s) = N (s|µs,Λ−1
s ) ∝ exp[−Λs(s1 − s2)2/2],

with Λs = Λs

(
1 −1

−1 1

)
,

(32)

and each stimulus sm is uniformly distributed in (−180◦, 180◦] with periodic boundary imposed.728

The definition of Gaussian distribution in a circular space works well as long as the variance of the729

distribution is much smaller than the range of stimulus space. Here Λs is the precision matrix,730

while the scalar variable Λs (Λs ≥ 0) characterizes the correlation between s1 and s2. Note that731

the covariance matrix Λ−1
s is not defined, and the prior (Eq. 32) is improper. The mean, µs, is a732

free parameter, because it doesn’t appear in the detailed expression of the prior (Eq. 32), which is a733

consequence from the zero determinant of the precision matrix, i.e., |Λs| = 0. A further consequence734

is that the prior is not centered at µs, but instead has a band structure along the diagonal, and735

the marginal prior of each stimulus feature p(sm) (m = 1, 2) is uniform (Fig. 6B). The uniform736

marginal prior simplifies our theoretical derivation as it implies the spatial homogeneity of the737

network model but doesn’t impact the proposed neural coding mechanism.738

Each stimulus sm (m = 1, 2) individually generates feedforward spiking input uf
m, whose likeli-739

hood p(uf
m|sm) is exactly the same as Eq. (2). Combined together, the generative model is740

p(uf |s)p(s) =
[∏2

m=1 p(u
f
m|sm)

]
p(s1, s2),

∝
[∏2

m=1N (sm|µfm,Λ−1
fm)
]
N (s|µs,Λ−1

s ),

∝ N (s|µf ,Λ
−1
f )N (s|µs,Λ−1

s ),

(33)

where µf = (µf1, µf2)>, and the likelihood precision matrix Λf = diag(Λf1,Λf2) is a diagonal matrix.741

Gibbs sampling of the multi-dimensional posterior in a coupled neural circuit742

Given the generative model (Eq. 33), the joint posterior of s1 and s2 is a bivariate normal distri-743

bution, i.e., p(s|uf) = N
(
s|µp,K−1

p

)
, whose precision matrix Kp and the mean µp are,744

Kp = Λf + Λs, µp = K−1
p Λfµf . (34)

The precision matrix of the posterior is the sum of the precision of the likelihood and the prior,745

implying increased reliability of the distribution after combining with the prior. Meanwhile, the746

posterior mean is the weighted average of the means of the two likelihoods, with the weight pro-747

portional to the precision of each likelihood. We use this expression for the posterior to evaluate748

the performance of the proposed sampling-based algorithm.749
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Using Gibbs sampling to approximate the posterior (Eq. 34) involves the following steps:750

Compute : p(s̃1|uf
1, s̃2,t−∆t) ∝ p(uf

1|s̃1)p(s̃2,t−∆t|s̃1), (35a)

Sample : s̃1t ∼ p(s̃1|uf
1, s̃2,t−∆t). (35b)

We note that we only describe the sampling from the posterior distribution of s1; as samples751

from the posterior of s2 can be obtained similarly after exchanging indices. This sampling can752

be implemented in a neural circuit model consisting of several coupled networks, in which each753

network generates samples from the posterior distribution of the corresponding stimulus. Therefore754

the number of networks in the coupled circuit equals the dimension of the latent stimuli. The755

dynamics of the coupled neural circuit is defined by:756

λ1t = uf
1 + ur

12,t = uf
1 + w12r2,t−∆t, (36)

r1t ∼
∏NE
j=1 Poisson(λ1t,j), (37)

We again note the dynamics of network 2 can be similarly obtained by changing indices. To757

implement Gibbs sampling (Eqs. 35a-35b) in the coupled circuit (Eqs. 36-37), spike generation in758

network 1 (Eq. 37) can be used to produce stimulus samples, s̃1t, when the conditional distribution759

determined by λ1t matches the conditional distribution required in the definition of Gibbs sampling760

(Eq. 35a), i.e., ln p(s̃1|uf
1, s̃2,t−∆t) = ln p(s̃1t|λ1t) = h(s̃1)>λ1t. Taking the logarithm of Eq. (35a)761

yields,762

ln p(s̃1|uf
1, s̃2,t−∆t) = ln p(uf

1|s̃1) + ln p(s̃2,t−∆t|s̃1). (38)

Comparing this expression with Eq. (36), we see that the feedforward input, uf
1, matches the763

conditional distribution p(uf
1|s̃1) (Eq. 33). We therefore require the recurrent input from network 2764

to network 1 to encode the conditional distribution p(s̃2,t−∆t|s̃1), i.e., ln p(s̃2,t−∆t|s̃1) = h(s̃1)>ur
12,t.765

This implies that ur
12,t should approximately have a Gaussian profile,766

ur
12,tj = U r

12 exp[−(θj − s̃t−∆t)
2/2a2] + δ⊥ur

12,tj ,

s̃2,t−∆t =
∑

j ur
12,tjθj/

∑
j ur

12,tj , Λs = a−2
∑

j ur
12,tj ,

(39)

where δ⊥ur
12,tj quantifies the deviation from a perfect Gaussian profile, and does not affect the767

decoded value s̃2,t−∆t and Λs.768

The recurrent input, ur
12, (Eq. 39) has the same width a as the neuronal response, r1. In circuit769

containing only E neurons, if the two networks have the same number of neurons, then across770

networks only neurons having the same preferred stimulus should be connected. The optimal771
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recurrent weight between two networks is then772

wmn =
〈ur

mn,j〉
〈rnj〉

=

∑
j〈ur

mn,j〉∑
j〈rnj〉

=
Λs

Λs + Λf
n

, (m 6= n) (40)

Since each network individually generate a stimulus sample, the sample of stimulus m can be773

locally read out from network m’s responses even if the activities of two networks are correlated774

(Fig. 6A), which greatly simplifies readout. Furthermore, due to the population firing rate of each775

network has Gaussian profile, the stimulus sample s̃mt can be linearly read out from rmt as776

s̃mt =
∑

j θjrmt,j/
∑

j rmt,j . (41)

We note that the circuit implementation of Gibbs sampling from a multi-dimensional posterior777

(Eq. 8a) does not require the recurrent connections between E neurons within a network. This is778

due to the assumption that the marginal priors of each stimulus feature, p(sm), are uniform. For779

a non-uniform marginal prior p(sm), recurrent connections between E neurons within a network780

would be required for generating samples from a distribution that matches the true posterior.781

Inference from an information-theoretic point of view782

The goal of the sampling algorithm is to approximate the posterior distribution of a latent variables,783

Θ, given a feedforward input, uf . Specifically, the latent variables Θ = {s, z} in the hierarchical784

generative model (Eq. 23), or Θ = s = {s1, s2} in the generative model with breadth (Eq. 33).785

When the sampling algorithm uses an internal model which does not match the structure of the786

generative model, the sampling distribution q(Θ|uf) will differ from the true posterior, p(Θ|uf)787

(Eq. 24). In this case the mutual information between the sampling distribution of the latent788

variables, Θ, and uf will be smaller than in the case when samples come from the true posterior,789

p(Θ|uf),790

I(Θ,uf) = −Ep(Θ)[log p(Θ)] + Ep(Θ,uf)[log p(Θ|uf)]

≥ −Ep(Θ)[log p(Θ)] + Ep(Θ,uf)[log q(Θ|uf)] ≡ Iq(Θ; uf), (42)

It is straightforward to show that the difference between I(Θ,uf) and Iq(Θ,u
f) is the Kullback-791

Leibler (KL) divergence between p and q, i.e., DKL[p||q] = I(Θ,uf)−Iq(Θ,uf) = Ep(ln p−ln q) ≥ 0.792

Equality in Eq. (42) holds only if the distribution q matches the true posterior p.793

The mutual information Iq(Θ; uf) can be computed analytically when the approximating dis-794

tribution q(Θ|uf) = N
(
Θ|µq,K−1

q

)
is a bivariate normal (substituting Eqs. 23 and 24 into Eq. 42),795

Iq(Θ; uf) = logL+
1

2

[
1 + log

|Kq|
2πΛs

− tr(KqK
−1
p )− (µp − µq)

>Kq(µp − µq)

]
. (43)

32

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.26.477877doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.26.477877
http://creativecommons.org/licenses/by-nc-nd/4.0/


Here L = 360◦ is the length of the stimulus feature subspace, while µp and Kp are the mean and796

the precision matrix of the posterior distribution (Eqs. 24 or 34). When q matches the posterior797

distribution, p, we have, I(Θ; uf) = logL− 1
2 [1 + log(2πΛs)− log |Kp|].798

The neuronal response distribution conditioned on external stimulus799

We compute the distribution of neuronal responses r over time/trial in response to an external800

stimulus s, i.e., p(r|s), in order to find a neural signature of network sampling and compare it801

with experimental data. For a fixed external stimulus s, the neuronal response r fluctuates due to802

both sensory transmission noise described by p(uf |s) (Eq. 18), as well as the internally generated803

variability described by p(r|uf) (Fig. 4A). Therefore, the distribution of r in response to an external804

stimulus s has the form805

p(r|s) =

∫
p(r|uf)p(uf |s)duf .

For simplicity, we only compute the covariability of p(r|uf) along the stimulus subspace (Fig. 1B,806

x-axis), because the covariability along other directions is not related with stimulus sampling. By807

approximating the Poissonian spiking variability p(r|λ) with a multivariate normal distribution808

(Eq. 11), and considering the limit of weak fluctuations in λ along the stimulus subspace over time,809

p(r|uf) can be computed approximately as (see math details in Supplemental Information),810

p(r|uf) =

∫
p(r|λ)p(λ|uf)dλ,

≈ N
[
r
∣∣f(s), diag(f(s)) + V (s̄|µf)f ′sf ′>s

]
, where s = µf . (44)

f(s) = 〈λt〉 denotes the temporally averaged population response. The covariance structure of the811

neuronal response includes two terms: diag(f(s)), a diagonal matrix whose entries equal that of812

the vector f(s) denoting the (independent) Poisson spiking variability (Eq. 23), and V (s̄|µf)f ′sf ′>s ,813

a term that captures the covariability due to firing rate fluctuations along the stimulus subspace814

(Fig. 8A), where f ′s = df(s)/ds is the derivative of f(s) over the stimulus feature s. The covariance815

f ′sf
′>
s is often termed differential (noise) correlations [4, 17]. With the Gaussian profile of f(s)816

(Eqs. 18 and 29), f ′sf
′>
s exhibits anti-symmetric structure (Fig. 8B) [17, 22, 50, 68, 69].817

In Eq. (44), V (s̄|µf) is the variance of s̄t (the mean of conditional distribution in Eq. 4a) over818

time and characterizes the amplitude of internally generated differential correlations. In network819

implementation, s̄t and µf are represented as the position of λt and uf on the stimulus subspace820

respectively (Eqs. 14 and 20). The dynamics of Gibbs sampling (Eq. S20 in Supplemental Infor-821

mation) and the network structure (Eq. 6) imply that822

V (s̄|µf) =
Λs

Λf(Λf + Λs)
= a2n−1

f w∗E . (45)
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Note that V (s̄|µf) is constrained by network connections, in that it is internally generated and823

shared within the network (for w∗E > 0).824

An expression for p(r|s) can be derived similarly, and includes an additional term contributing825

to differential correlations compared with p(r|uf) (Eq. 44) due to fluctuations in the feedforward826

inputs,827

p(r|s) ≈ N
[
r
∣∣f(s), diag(f(s)) + V (s̄|s)f ′sf ′>s

]
,

V (s̄|s) = V (s̄|µf) + V (µf |s) =
Λs

Λf(Λf + Λs)
+

1

Λf
= a2n−1

f (w∗E + 1). (46)

Here the variance, V (s̄|s), in the stimulus feature subspace is a mixture of internal variability,828

V (s̄|µf), and sensory noise, V (µf |s) (Eq. 23). The neuronal response distribution in coupled net-829

works (Fig. 6A) can be obtained similarly (see the Supplemental Information).830

A spiking network model with excitatory and inhibitory Poisson neurons831

To test the proposed inference mechanisms in a network consisting of E neurons (Eqs. 10-37), we832

simulated a well studied recurrently coupled cortical model [21, 22]. The network consisted of NE833

excitatory (E) and NI inhibitory (I) spiking neurons, with the activity of each neuron modeled as834

a Hawkes process [65]. At time t, we represent the response of neuron j in population a = {E, I},835

ratj , as a spike count drawn from a Poisson distribution with instantaneous firing rate, λatj ,836

ratj ∼ Poisson
[
λatj
]
. (47)

Each neuron has a refractory period of 2ms after emitting a spike. The firing rate λatj is the sum837

of feedforward input uaftj and recurrent input uartj , so that λatj = uaftj + uartj . The feedforward inputs838

are filtered spikes from upstream neurons, uaftj =
∑

n η
(
t − tfjn

)
, where tfjn is the time of the nth

839

spike received by neuron j of population a from the feedforward inputs. Here η(t) is the synaptic840

input profile which is modeled as η(t) = exp(−t/τd)/τd, (t > 0). Throughout, we set the synaptic841

time constant τd = 2ms. To mimic the Poisson-like variability to sample a context in a hierarchical842

generative model (Eqs. 23 and 31), the recurrent input received by neuron j in population a is843

defined by844

uartj = ūartj +
√

[ūartj ]+ξt,

ūartj =
∑

b={E,I}

Nb∑
k=1

Jabjk√
N

∑
n

η(t− tbkn),
(48)

where ūartj is the mean recurrent input at time t given the neuronal activities of the presynaptic845

neurons. The recurrent input in the network is corrupted by noise whose variance equals the mean846
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of the recurrent input. In a physiological network, recurrent noise may be generated by the chaotic847

state in network dynamics [70] or synaptic noise [66, 67]. In Eq. (48) the function [·]+ rectifies848

the negative input, and ξt is a random variable following a standard Gaussian distribution. The849

coefficient Jabij is the synaptic weight from neuron j in population b to neuron i in population a. The850

time tbkn is the time of the nth spike fired by neuron k in population b. The parameter N = NE+NI851

is the total number of neurons in the network. The scaling of the synaptic weights by 1/
√
N is852

standard in networks where excitation is balanced by recurrent inhibition [70]. Finally, the synaptic853

input profile of the recurrent input, η(t), is the same as the one we chose for the feedforward input854

for convenience. Note that the rectification in Eq. (48) on recurrent inputs will introduce errors855

resulting in deviations of the sampling distribution from the true posterior, and hence we chose856

the recurrent weights to be small (Fig. 5). The rectification only arises when using (continuous)857

recurrent inputs to sample the context variable, and doesn’t impact the generality of sampling by858

(discrete) Poisson spiking variability.859

To model the coding of a circular stimulus such as orientation, the excitatory neurons are860

arranged on a ring [22, 68]. The preferred stimuli, θj , of the excitatory neurons are equally spaced861

on the interval (−180◦, 180◦], consistent with the range of latent features (Eq. 21). Inhibitory862

neurons are not tuned to stimulus, and their role is to stabilize network responses. Note that the863

recurrent connections between E neurons are modeled using a Gaussian function decaying with864

the distance between the stimuli preferred by the two cells, rather than only self-connection in the865

simple network with only E neurons (Eqs. 30),866

JEEjk =
wEEL√

2πa
exp

[
−(θj − θk)2

2a2

]
, (49)

We imposed periodic boundaries on the Gaussian function to avoid boundary effect in simulations.867

Although in the generative model we assumed non-periodic feature variables (Eq. 3), as long as868

the variance of the associated distributions are smaller than the width of the feature space, the869

network model with periodic boundaries on the recurrent connection (Eq. 49) provides a good870

approximation of the non-periodic Gaussian posterior (Eq. 24). The weight wEE denotes the871

average connection strength of all E to E connections. The parameter a = 40◦ defines the footprint872

of connectivity in feature space (i.e the ring), and L = 360◦ is the length of the ring manifold873

(Eq. 21); Multiplication by L in Eq. (49) sets the sum of all E to E connection strengths equal874

to NEwEE . Moreover, the excitatory and inhibitory neurons are all-to-all connected with each875

other (similar for I to I connections). For simplicity, we consider the E to I, I to I and I to E876

connections all to be unstructured (in feature space) and assume that connections of the same type877

have equal weight, i.e., JEIjk = wEI , J
IE
jk = wEE and JIIjk = wII . To simplify the network further,878

we consider the connections from the same population of neurons to have the same average weight,879

i.e., wEE = wIE ≡ wE and wII = wEI ≡ wI . For the feedforward network model shown in Fig. 2,880
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we only remove the E recurrent connections between E neurons, i.e., wEE = 0, while keeping other881

connections, including wEI , wII , and wIE , the same as the recurrent network.882

The feedforward inputs applied to E neurons consist of independent Poisson spike counts as883

described by Eq. (18), with rate 〈uEf
j (s)〉 = U fe−(s−θj)2/(4a2). The inhibitory neurons also receive884

feedforward indpendent Poissonian inputs. The firing rate of the input received by every I neuorn885

is proportional to the overall feedforward rate of input to E neurons, in order to keep the excitatory886

and inhibitory balance of neuronal activities in the network,887

〈uIfj 〉 =
wIf
NI

NE∑
j=1

〈uEf
j (s)〉. (50)

In the simulations, we started with a network of NE = 180 excitatory and NI = 45 inhibitory888

neurons, and increased the number of neurons by a fixed factor in Fig. 1D. The ratio between the889

average connection from I neurons and the one from E neurons was kept fixed with wI/wE = 5.890

We set the feedforward weight of input to I neurons to wIf = 0.8. We simulated the dynamics891

of the model network using the Euler method with a time step of 0.1ms. The typical parameters892

used in simulation can be found in Table 1 in Supplemental Information. Further details about the893

simulations and numerical estimates of mutual information and linear Fisher information are also894

presented in Supplemental Information. The code of network simulation was written in MATLAB895

2018b, and can be found at GitHub (https://github.com/wenhao-z/Sampling PoissSpk Neuron).896

A spiking network model of coupled neural circuits897

In the coupled neural circuits used to infer latent variables organized in parallel (Fig. 6A) the two898

networks are copies of each other, i.e., the two networks have the same intrinsic parameters. Each899

network is equivalent to the one described in the previous section, except that there is no recurrent900

connections between E neurons in the same network, and no variability in recurrent interactions901

(no noise in Eq. 48). The absence of recurrent connections between E neurons in the same network902

is due to the uniform marginal prior of stimulus. Nevertheless, in the same network the E and I903

neurons are connected using the same connection profile as above to keep network activity stable.904

Between the two networks, there are only E connections which target both E and I neurons. The905

connections between E neurons across networks have the same pattern as that given described by906

Eq. (49) with the peak connection strength from network n to network m denoted as wmnEE . The907

connections from E neurons in one network to I neurons in the other is set to the same as the peak908

strength of E connections across networks for simplicity, i.e., wmnIE = wmnEE . To simplify the network909

model further, we set the inter-network connections to be symmetric, which means wmnEE = wnmEE . In910

the simulations wmnEE was adjusted to determine how the sampling distribution is affected (Fig. 7A).911
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Comparing the sampling distribution with posterior in coupled neural circuits912

We read out the samples from the posterior distribution of each stimulus, s̃mt, individually from913

the spiking activities of E neurons, rmt, in network m in every time window of 20ms by using a914

population vector. We used this collection of samples to estimate the mean, 〈s̃〉 = (〈s̃1〉, 〈s̃2〉)>,915

and covariance matrix, Σs, of the sampling distribution. Meanwhile, the mean µf and precision916

matrix Λf of the likelihood are linearly read out from the feedforward inputs fed into the network917

model (Eq. 33).918

If the sampling distribution is comparable with the posterior, the sampling mean 〈s̃〉 and co-919

variance Σs should satisfy Eq. (34). We use the actual sampling covariance and the likelihood920

parameters to predict the sampling mean, i.e., 〈s̃〉pred = ΣsΛfµf , and compare it with the ac-921

tual 〈s̃〉 (Fig. 7D-F). To obtain the posterior precision matrix, given the sampling mean 〈s̃〉 and922

the likelihood parameters, we vary the single parameter of prior precision Λs to minimize the KL923

divergence from the prediction of posterior by using the value of Λs, and the actual sampling distri-924

bution. Given this value of Λs, the prediction of posterior precision is computed as Kpred = Λs+Λf925

(Eq. 34) which is then compared with actual sampling precision matrix (Σ−1
s ; see Fig. 7C-G). The926

prior precision, Λs, is a subjective prior, which reflects the prior stored in the recurrent network927

and may change with input (see Discussion). More details of network simulation and parameters928

can be found in Supplemental Information.929
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