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Abstract  

Systematically organizing the structural, molecular, and physiological properties 

of hippocampal neurons is important for understanding their computational functions in 

the cortical circuit. Hippocampome.org identifies 122 neuron types in the rodent 

hippocampal formation (dentate gyrus, CA3, CA2, CA1, subiculum, and entorhinal 

cortex) based on their somatic, axonal, and dendritic locations, putative 

excitatory/inhibitory outputs, molecular marker expression, and basic 

electrophysiological properties. Here we augment the electrophysiological data of this 

knowledge base by collecting, quantifying, and analyzing the firing responses to 

depolarizing current injections for every hippocampal neuron type from available 

published experiments. We designed and implemented objective protocols to classify 
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firing responses based on both transient and steady-state activity. Specifically, we 

identified 5 transients (delay, adapting spiking, rapidly adapting spiking, transient 

stuttering, and transient slow-wave bursting) and 4 steady states (non-adapting spiking, 

persistent stuttering, persistent slow-wave bursting, and silence). Leveraging this 

automated classification approach, we characterized the set of all firing responses 

reported for each hippocampal neuron type and defined 10 unique firing pattern 

phenotypes that reveal potential new neuronal subtypes. Several novel statistical 

associations emerge between firing responses and electrophysiological properties, 

morphological features, and molecular marker expression. The firing pattern 

parameters, stimulus conditions, digitized spike times, detailed reference to the original 

experimental evidence, and analysis scripts are released open-source through 

Hippocampome.org for all neuron types, greatly enhancing the existing search and 

browse capabilities. Collating this information online in human- and machine-accessible 

form will help design and interpret both experiments and hippocampal model 

simulations. 

 

SIGNIFICANCE STATEMENT  

Comprehensive classification of neurons is essential for understanding the functions of 

neuronal networks. Firing patterns are significant identification characteristics of a 

neuron and play an important role in information coding in neural systems. Utilizing 

groundwork laid by Hippocampome.org, a knowledge base characterizing 122 neuron 

types in the rodent hippocampus, we developed and implemented protocols to classify 

all known firing responses exhibited by each type based on analysis of transient and 
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steady-state activity. Leveraging an automated classification approach, we identified 10 

unique firing pattern phenotypes and revealed statistical associations of firing responses 

with electrophysiological properties, morphological features, and molecular marker 

expressions. The resulting, augmented knowledge base is a powerful tool for designing 

and interpreting experiments and hippocampal model development. 

 

 

Introduction  

  Neuroscience research produces an immense and constantly growing quantity of 

experimental data and publications. Comprehensive classification of neurons is 

essential for understanding the functions of neuronal networks at different hierarchical 

levels. The hippocampus provides an excellent test-bed for this exploration as it is one 

of the most intensively studied parts of the mammalian brain, which is responsible for 

learning (Rudy and Sutherland, 1989, 1995), memory (Eichenbaum et al., 1992; 

Eichenbaum, 2000, 2017), spatial navigation (Hafting et al. 2005; O'Keefe and 

Dostrovsky, 1971), and emotional associations (Buchanan, 2007).  

The Hippocampome.org knowledge base identifies neuron types based on the 

locations of their somata, axons, and dendrites across 26 hippocampal-formation 

parcels, putative excitatory/inhibitory character, synaptic selectivity, and major and 

aligned differences in molecular marker expressions and biophysical properties 

(Wheeler et al., 2015). Version 1.2 of Hippocampome.org identified 122 neuron types in 

the 6 areas of the rodent hippocampal formation: 18 in dentate gyrus (DG), 25 in CA3, 5 

in CA2, 40 in CA1, 3 in subiculum (SUB), and 31 in entorhinal cortex (EC). The core 
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assumption of the developed identification scheme is that neurons with different axonal 

or dendritic patterns belong to different types, but multiple substantial differences in 

other dimensions may also reveal distinct neuron types. For the majority of neuron 

types, Hippocampome.org reports 10 basic biophysical parameters that numerically 

characterize passive and spike properties (hippocampome.org/ephys-defs).  

Transmission of information between neurons and, by extension, neuron types is 

carried out by sequences of action potentials (APs), and the neuronal firing rates are 

commonly believed to represent the intensity of input stimuli. Since the first discovery in 

sensory neurons (Adrian and Zotterman, 1926), this principle was generalized and 

extended to neurons from different brain regions including the hippocampus 

(McNaughton et al, 1983). However, it was also found that the firing rate of certain 

neurons may not be constant over time, even if the stimulus is permanently applied. 

One form of such time-dependent responses is spike frequency adaptation manifested 

in a decrease of firing rate (Adrian and Zotterman, 1926). Neurons can produce diverse 

firing patterns in response to similar stimuli due to the inhomogeneity in their intrinsic 

properties (Connors and Gutnick 1990). Both firing rates and temporal firing patterns 

are now recognized to play important roles in coding of information in neural systems 

(Ferster and Spruston 1995).  

In electrophysiological experiments in vitro, hippocampal neurons demonstrate a 

vast diversity of firing patterns in response to depolarizing current injections. These 

patterns are referred to by many names, including delayed, adapting, accommodating, 

interrupted spiking, stuttering, and bursting (Canto and Witter 2012a,b; Hemond et al., 

2008; Lübke et al, 1998; Mercer et al., 2007; Pawelzik et al., 2002; Tricoire et al., 2011). 
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Uncertainties and ambiguities in classification and naming of neuronal firing patterns are 

similar to other terminological inconsistencies, which are widely spread in 

neuroscience literature and pose obstacles to effective communication within and 

across fields (Hamilton et al., 2017). 

 In recent years, several efforts have been made aiming to develop general firing 

pattern classification and to use it for identification of distinct electrical types of cortical 

neurons (Markram et al., 2004, 2015; Petilla Interneuron Nomenclature Group et al., 

2008). A refinement of the Petilla Interneuron Nomenclature was made using statistical 

analysis of a large set of electrical features of cortical interneurons with different firing 

patterns (Druckmann et al., 2013), however, the manual classification based on 

subjectively qualitative or intuitive criteria still have limitations and bias.  

 In this work, we developed an objective, numerically based automated 

classification protocol, applied it to available published electrophysiological recordings 

from identified hippocampal neurons, extended Hippocampome.org with classified firing 

patterns and their parameters, and uncovered firing pattern phenotypes, potential 

neuronal subtypes, and statistical associations between firing responses and other 

neuron type properties. 

 

Materials and Methods 

Firing pattern classification methods and algorithms 

From the dynamic point of view, firing responses consist of simple or complex 

transients and steady states. Transients and steady states can be categorized into 

similar groups of firing pattern elements based on the expression of delay, spike 
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frequency adaptation or acceleration, slow wave of membrane potential, and 

interruption of spiking. Figure 1 shows the proposed hierarchy of firing pattern elements 

and Figure 2 exemplifies the firing pattern elements observed in different hippocampal 

neuron types. From the variety of transients, we differentiated six firing pattern elements 

including delay (D), adapting spiking (ASP), rapidly adapting spiking (RASP), transient 

stuttering (TSTUT), transient slow-wave bursting (TSWB), and accelerating spiking 

(ACSP). We also distinguished four possible steady state neuronal responses to 

stimulation: silence (SLN), non-adapting spiking (NASP), and two interrupted firing: 

persistent stuttering (PSTUT) and persistent slow-wave bursting (PSWB). Simple firing 

patterns were composed of a single firing pattern element (NASP, PSTUT or PSWB). 

Complex firing patterns were introduced as a sequence of two or more firing pattern 

elements with dot-notation (e.g. delayed non-adapting spiking was represented as 

D.NASP, silence preceded by adapting spiking as ASP.SLN, and non-adapting spiking 

preceded by delayed transient slow-wave bursting as D.TSWB.NASP). Experimental 

recordings without identifiable steady states were classified as uncompleted firing 

patterns (e.g. ASP., D.ASP., or RASP.ASP.). 

[Figure 1 is near here] 

[Figure 2 is near here] 

Table 1 summarizes the principles of classification for firing pattern elements. 

The transient response was classified as delayed (D) if the latency to the first spike was 

longer than the sum of the first two interspike intervals (ISI1 and ISI2). Similarly, post-

firing silence (PFS) was considered to be a steady state (SLN) if it exceeded the sum of 
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the last two interspike intervals (ISIn-1 and ISIn). In addition, post-firing silence had to last 

at least twice the longest interspike interval (ISImax).  

A persistent firing response with relatively equal interspike intervals denotes non-

adapting spiking (NASP); in contrast, transients with a progressive increase or decrease 

of ISIs can be classified as adapting or accelerating spiking, respectively. To 

discriminate among several possible combinations of these firing patterns quantitatively 

and reproducibly, we devised a minimum information description criterion by comparing 

piecewise (segmented) linear regression models of increasing complexity. Specifically, 

non-adapting spiking (NASP) can be described by a single parameter, namely the 

(average) firing rate (Y=c). Similarly, fitting normalized interspike intervals versus 

normalized time with a (2-parameter) linear function Y=aX+b (with a>0) corresponds to 

adapting spiking (ASP.). Fitting data with a piecewise linear function  
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corresponds to adapting-non-adapting spiking (ASP.NASP) when a1>0 and a2=0 (3 

parameters), and to adapting-adapting spiking with different adaptation rates 

(ASP.ASP.) when both a1>0 and a2>0 (4 parameters). We selected a model with fewer 

parameters if increasing the number of parameters did not provide a statistically 

significant better fit than a less complex model. The significance level for the differences 

between one-parameter fitting (NASP) and two-parameter linear-regression fitting 
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(ASP.) was less than 0.05. In order to avoid very weak adaptations from being identified 

as ASP., a minimum threshold of 0.003 was used for the slope a1. 

[Table 1 is near here] 

For the next stage of comparison, we used a Bonferroni correction for the p-value 

for the differences between two-parameter linear-regression fitting (ASP.) and three-

parameter piecewise-linear-regression fitting (ASP.NASP). Specifically, in order for a 

pattern with an adapting spiking transient (i.e. ASP.) to be qualified as ASP.NASP, the 

p-value must be less than 0.025. Similarly, the p-value for the differences between 

three-parameter piecewise-linear-regression fitting (ASP.NASP) and four-parameter 

piecewise-linear-regression fitting (ASP.ASP.) must be less than 0.016. Examples of 

fitting spiking activity with linear regression and piecewise linear regression models are 

presented in Figure 3. If adaptation was only observed in the first two or three ISIs in a 

long train of spikes, and if the linear fitting of slope a1 exceeded 0.2, then this transient 

was classified as rapidly adapting spiking (RASP.). For accelerating spiking (ACSP.), 

the linear fitting slope must be negative. 

[Figure 3 is near here] 

We defined transient stuttering (TSTUT) as a short high-frequency (>25 Hz) 

cluster of APs followed by other distinctive activity. In addition, the first ISI after a 

TSTUT cluster must be 2.5 times longer than the last ISI of the cluster and 1.5 times 

longer than the next ISI. Under transient slow-wave bursting activity (TSWB), a cluster 

of two or more spikes rides on a slow depolarization wave (>5mV) followed by a strong 

slow AHP. Persistent stuttering (PSTUT) was classified as firing activity with high-

frequency clusters of action potentials separated by relatively long silence intervals. 
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According to our definition, each of the silence intervals must be more than 5 times 

longer than the sum of the previous ISI and the next ISI. Similarly, under persistent 

slow-wave bursting (PSWB) activity, these clusters of two or more tightly grouped 

spikes ride on slow depolarizing waves (>5 mV) followed by strong, slow AHPs.  

 

Experimental Design and Statistical Analysis 
 
Data collection, extraction and digitization 

The firing patterns of hippocampal neurons were classified based on their spiking 

responses to supra-threshold step-current pulses of different amplitude and duration. 

We extracted values of first spike latency (i.e. delay), interspike intervals (ISIs) and 

post-firing silence (in ms). In addition, the slow-wave amplitude (in mV) was extracted 

from burst firing recording. Firing pattern parameters were extracted from electronic 

figures using Plot Digitizer (plotdigitizer.sourceforge.net) for all 89 Hippocampome.org 

neuron types (Wheeler et al., 2015) for which they were available. For firing pattern 

identification and analysis, ISIs in each recording were normalized to the shortest 

interspike interval (ISImin) within that time series to allow meaningful comparison. 

 
Implementation of firing pattern classification algorithms 

The automated firing-pattern classification algorithms are implemented in 

Microsoft Excel using Solver and the Data Analysis Toolbox (F-test and t-test) to 

perform piecewise linear fitting and statistical tests (Fig. 4). They also are implemented 

in the Java programming language using the Apache Commons Mathematics Library 

(http://commons.apache.org/proper/commons-math). The Java implementation is 
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available as an open source at https://github.com/Hippocampome-

Org/NeuroSpikePatterns. 

[Figure 4 is near here] 

Representation of firing patterns in the database and web portal  

Hippocampome.org provides access to morphological, molecular, 

electrophysiological, connectivity, and firing pattern information for 122 neuron types. 

Amassed firing pattern information includes figures with recordings, the duration and 

amplitude of stimulation, digitized interspike intervals, firing pattern parameters, and the 

result of the firing pattern classification algorithm detailed here. The implementation of 

Hippocampome.org supports the model-view-control software design. The model 

component defines the database interface and is provided solely by server-side code. 

The view component rendering the web pages and the control code implementing the 

decision logic are both served up by the server, but are run in the user’s browser. The 

underlying relational database ensures flexibility in establishing relations between data 

records.  

Hippocampome.org is deployed on a CentOS 5.11 server running Apache 2.2.22 

and runs on current versions of several web browsers (Mozilla Firefox, Google Chrome, 

Apple Safari, and Microsoft Internet Explorer). Knowledge base content is served up to 

the PHP 5.3.27 website from a MySQL 5.1.73 database. Django 1.7.1 and Python 3.4.2 

provide database ingest capability of comma separated value annotation files derived 

from human-interpreted peer-reviewed literature. Hippocampome.org code is available 

at https://github.com/Hippocampome-Org. 
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Pairwise correlation analysis 

We explored pairwise correlations between all observed firing patterns, firing 

pattern elements, and 316 properties of Hippocampome.org neuron types, including: 

primary neurotransmitter; axonal, dendritic, and somatic locations in the 26 parcels and 

6 sub-regions of the hippocampal formation; the projecting (inter-area) or local (intra-

area) nature of axons and dendrites; axon and dendrite co-presence within any 

partition; axonal and dendritic presence in a single layer only or in ≥3 layers; clear 

positive or negative expression of any biomarkers; high (top third) or low (bottom third) 

values for electrophysiological properties (Wheeler et al., 2015); and connectivity 

patterns and superpatterns (Rees et al., 2016). To evaluate the correlations between 

these categorical properties, we used 2 × 2 contingency matrices with Barnard's exact 

test (Barnard, 1947), which provides the greatest statistical power when row and 

column totals are free to vary (Lydersen et al., 2009). The correlation analysis is 

implemented in Matlab (MathWorks, Inc.). 

 

Cluster analysis 

We conducted a cluster analysis of numerical electrophysiological data, such as 

the width of action potential and the minimum interspike interval, as well as categorical 

firing pattern data. Spike width is most commonly measured as the width at half-

maximal spike amplitude (Bean, 2007), as is done in Hippocampome.org (Wheeler et 

al., 2015). Minimum interspike intervals (ISImin) are extracted from digitized recordings 

or directly from corresponding papers. We assign weights for categorical firing pattern 

data according to the formula Wi=(N-ni)/N, where Wi is the weight of firing pattern 
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element i, ni is the number of cell types expressing firing pattern(s) with element i, N is 

the total number of cell types/subtypes, and i={ASP, D, RASP, NASP, PSTUT, PSWB, 

SLN, TSUT,TSWB}. We employed a two-step cluster analysis using the IBM SPSS 

Statistics 24 software for statistical analysis. Silhouette measures of cohesion and 

separation greater than 0.5 indicated that the elements were well matched to their own 

clusters and poorly matched to neighboring clusters, and that the clustering 

configuration was appropriate.  

Statistical data were expressed as mean ± standard deviation. 

 

Results 

Firing pattern matrix and its analysis 

Applying firing pattern identification algorithms to all available digitized 

electrophysiological recording data from 89 neuron types resulted in the detection of 23 

different firing patterns. They are presented in the form of a firing pattern matrix (Fig. 5). 

An interactive online version of the matrix is available at 

hippocampome.org/firing_patterns. 

[Figure 5 is near here] 

It is known that some cells can demonstrate different firing patterns with changes 

of stimulation amplitude. In addition, different cells belonging to the same neuron type 

often exhibit different firing patterns under the same experimental conditions. Therefore, 

we specified possible firing pattern subtypes within cell types based on their firing 

responses and distinguished the following groups of phenotypes: individual types with 

single behavior, individual types with multiple behaviors, subtypes with single behavior, 
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subtypes with multiple behaviors, and undetermined cases which may represent 

subtypes or multiple behaviors.  

As one can see from the matrix in Figure 5, the firing patterns have different 

distributions among neuron types. The total number of neuron types expressing each of 

the 23 detected firing patterns are shown in a bar diagram (see Fig. 6A).  

Firing patterns can be grouped for analysis based on the number of elements 

that comprise them (e.g. single, like ASP., NASP, PSTUT; double, like ASP.NASP, 

TSWB.SLN, D.NASP; and triple, like D.RASP.NASP, D.TSWB.NASP), whether they are 

completed (e.g. NASP, PSTUT, ASP.NASP, ASP.SLN, PSWB) or uncompleted (ASP., 

RASP.ASP., TSTUT.ASP.), and according to which are most frequent (ASP., NASP), 

common (PSTUT, ASP.NASP, D.NASP, etc.), and infrequent (TSWB.SLN, 

D.RASP.NASP,PSTUT, etc.). In addition, we also analyzed the nine firing pattern 

elements whose distributions are shown in Figure 6B, and we detected three major 

groups among them: the most frequent (ASP, NASP), common (RASP, SLN, PSUT, D), 

and infrequent (TSTUT, TSWB, PSWB). 

The set of firing patterns exhibited by a given neuron type forms its firing pattern 

phenotype. Figure 6C shows a pie diagram illustrating the complexity of firing pattern 

phenotypes of hippocampal neurons. Of those types for which information exists (72%), 

the largest group is individual types that show a single behavior (26%). The group of 

“individual types with multiple behaviors” contains 8% of types; the group of simple 

subtypes and the group of “subtypes AND multi-behavior” each represent 7% of types. 

The second largest group is composed of cases that may be “subtypes OR multi-

behavior” (25%).  
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Figure 6D presents the relationships between firing pattern elements within the 

firing patterns of hippocampal neuron types in a form of Venn diagram. Firing pattern 

elements are illustrated as ellipses. Areas formed by the intersections of overlapping 

ellipses represent complex firing patterns. Numbers within ellipses and their overlaps 

mark the number of cell types with specific firing patterns. In these intersections, the 

following features are evident: for the four main firing transients (ASP., RASP., TSTUT., 

TSWB.) often end with either NASP or with SLN, ASP. is often preceded by RASP. and 

occasionally by TSTUT., interrupted steady state firings (PSTUT and PSWB) stand out 

as a separate group, and delay (D.) most often precedes NASP. 

[Figure 6 is near here] 

Our classification of firing pattern elements implies the possibility of three single-

element firing patterns (NASP, PSTUT, PSWB) and 23 double-element firing patterns 

consisting of one of four steady states (SLN, NASP, PSTUT, PSWB) preceded by one 

of six transients (D, ACSP, ASP, RASP, TSTUT, TSWB). Also, five double-transients 

are possible after an initial delay, resulting in an additional 20 triple-firing patterns. Table 

2 shows the occurrences of these 46 completed firing patterns in hippocampal and 

other neurons. Only 15 of the firing patterns were discovered in literature data for 89 

hippocampal neuron types (green shading in Table 2), though 5 additional firing 

patterns were found in other neurons. ACSP.NASP has been shown in the ventral horn 

interneuron of turtles (Smith and Perrier 2006), D.PSWB in the cultured rutabaga 

mutant giant neuron of Drosophila (Zhao and Wu 1997), D.ASP.SLN in the neuron of 

the external lateral subnucleus of the lateral parabrachial nucleus (Hayward and Felder 

1999), D.ACSP.NASP in the motoneuron (Leroy et al. 2014), and D.TSUT.SLN in the 
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striatal fast-spiking neuron (Sciamanna and Wilson 2011)). Also, we categorized 12 

firing patterns as “not found but possible” (white shading and black text in Table 2) and 

14 firing patterns as “improbable” from a dynamical or physiological point of view (white 

shading and gray text). 

[Table 2 is near here] 

 

Firing pattern phenotypes and their characterization  

  For simplicity purpose, we determined a firing pattern phenotype on the basis of 

its constituent firing pattern elements, which received their weights according to 

frequency of occurrence among 116 neuron types and putative subtypes. As a result of 

weight assignment (see Materials and Methods), infrequent firing pattern elements 

(PSWB, TSTUT and TSWB) received high weights (0.99, 0.95 and 0.94, respectively), 

very frequent elements (ASP and NASP) got low weights (0.37 and 0.39), and common 

elements (D, RASP, PSTUT and SLN) obtained intermediate weights (0.90, 0.76, 0.88 

and 0.87). Eleven firing pattern phenotypes identified with two-step cluster analysis can 

be organized into a seven-level hierarchical binary tree, which is presented in Figure 

7A. Most generally, hippocampal neuron types and subtypes can be subdivided into two 

big groups: neuron types with spiking phenotypes (76%) and those with burst- and 

stutter-firing phenotypes (24%). Among the neuron types with spiking phenotypes, a 

group with a delayed spiking phenotype (9% of cell types) can be distinguished. The 

group with burst- and stutter-firing phenotypes was subdivided into groups of neuron 

types with bursting (6%) and stuttering phenotypes (18%). In turn, the bursting group 

contains persistent bursting (1%) and non-persistent bursting (5%) phenotypes. 
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Similarly, the stuttering group includes neurons types with persistent stuttering (12%) 

and non-persistent stuttering (6%) phenotypes. Besides delayed spiking neurons, there 

is a large group of non-delayed spiking neuron types (67%) that is subdivided into the 

group with non-adapting spiking (11%) and the group with adapting spiking phenotypes 

(56%). The latter group can be subdivided into rapidly adapting (21%) and normally 

adapting spiking phenotypes (35%). The rapidly adapting group consists of neuron 

types with RASP-ASP (15%) and RASP-NASP (6%) phenotypes; the normally adapting 

group includes the group with the continuous adapting spiking phenotypes (29%) and 

neuron types with discontinuous adapting spiking phenotype (7%), for which the silent 

steady state is typical. The group of continuous adapting spiking neurons can be 

subdivided into adapting-non-adapting spiking (14%) and simple adapting spiking (15%) 

phenotypes. However, the last of the groups is the incomplete phenotype, because a 

steady state that was not experimentally recorded could be either NASP or SLN. Thus, 

simple adapting spiking could be adapting-non-adapting spiking or discontinuous 

adapting spiking, and the total number of phenotypes could be potentially reduced to 

ten. This division of the adapting spiking groups reflects differences in adaptation rates, 

duration, and subsequent steady states.  

 Each sector of the circular diagram in Figure 7B shows the percentage of 

neuron-types with the corresponding firing pattern phenotype within the whole set of 

116 neuron types/subtypes. Certain phenotypes (e.g. persistent bursting, non-persistent 

bursting and rapidly adapting – non-adapting spiking) are composed predominantly of 

excitatory neuron types (100%, 83% and 83%, respectively). Conversely, persistent 

stuttering, delayed spiking, non-adapting spiking and simple adapting spiking are 
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phenotypes composed largely by inhibitory neuron types (93%, 70%, 77% and 71%, 

respectively). Non-persistent stuttering, adapting–non-adapting spiking, discontinuous 

adapting spiking and rapidly adapting–adapting spiking phenotypes have equal or 

comparably equal numbers of excitatory and inhibitory neuron types. 

 Figure 7C displays the percentage of occurrences of firing pattern elements in 

firing pattern phenotypes; 100% indicates that defining firing pattern elements are 

observed in all cell types of a phenotype, while non-defining firing pattern elements 

range from 8% to 82%. For example, D is the defining element for delayed spiking, 

PSTUT for persistent stuttering, ASP and SLN for discontinuous adapting spiking, and 

ASP and NASP for adapting-non-adapting spiking. Each of the four major elements of 

interrupted firing patterns (PSWB, PSTUT, TSWB and TSTUT) is observed in a single 

firing pattern phenotype (persistent bursting, non-persistent bursting, persistent 

stuttering, and non-persistent stuttering, respectively). Other firing pattern elements (D, 

RASP, ASP, NASP, and SLN) appear in several firing pattern phenotypes. 

 As shown in the three-dimensional column chart in Figure 7D, the firing pattern 

phenotypes have different distributions among all neuron types/subtypes in the sub-

regions of the hippocampal formation. The PSTUT (50%) and NASP (54%) phenotypes 

are more common in CA1, delayed spiking is most common phenotype in DG (50%), 

and ASP-NASP (50%), discontinuous ASP (50%), RASP-NASP (71%), and RASP-ASP 

(47%) occurred more often in EC than in other areas. There are no clear expressed 

tendencies in simple ASP, non-persistent bursting, and non-persistent stuttering 

phenotypes distributions; PSWB is presented by just a single type (CA3 Pyramidal cell).  

[Figure 7 is near here] 
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Usage of information from Hippocampome.org 

Searching and Browsing 

 The addition of firing pattern information to Hippocampome.org extends opportunities 

for broad-scope analytics and quick-use checks of neuron types. Similar to 

morphological, molecular, and electrophysiological information, firing pattern information 

can be browsed with the online version of the matrix presented in Figure 5 or searched 

with queries containing AND & OR Boolean connectors (see Hippocampome.org 

→Search → Neuron Type). Figure 8A shows a sample search for neuron types with 

combinations of molecular (CB-negative), morphological (axons in CA1 stratum 

pyramidale), electrophysiological (APwidth < 0.96 ms), and firing pattern properties 

(PSTUT firing, 
max

1
10i

i

ISI
ISI +

> ), which is represented schematically in the form of a Venn 

diagram. Each ellipse symbolically represents a set of neuron types with a distinct 

property, and intersections of several sets or overlapping regions represent neuron 

types with several properties. In the presented example, the compound search led to a 

single result: only CA1 Axo-axonic neurons express all five selected properties.  

 Browsing (i.e. by clicking on this result) leads to the Neuron Page (Fig. 8B) where 

all information associated with a given neuron type is amassed, including synonyms, 

morphology, electrophysiological parameters, molecular markers, synaptic connectivity, 

and firing patterns. Every property, including firing patterns, on the Neuron Page links to 

an evidence page that lists all supporting bibliographic citations, complete with extracted 

quotes, figures (Fig. 8C), tables with all firing pattern parameters (Fig. 8D), and 

interspike intervals. 
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[Figure 8 is near here] 

The portal also provides authors’ original firing pattern name descriptions, when 

available (see Hippocampome.org → Search → Original Firing Pattern).  

 

Statistical analysis of categorical data 

 Firing pattern information extends the Hippocampome.org knowledge base 

capacity to more than 27,000 pieces of knowledge, and it allows the unearthing of 

hidden relationships between electrophysiological, molecular, morphological, and firing 

data in hippocampal neurons, which are difficult to find amongst the large body of 

literature. Statistical co-occurrence of categorical data was analyzed with contingency 

tables. For this analysis, numerical electrophysiological parameters were converted to 

categorical variables by labeling values as high or low in the top and bottom one-third of 

the range, respectively; thus, only very high and very low values were analyzed. Several 

interesting examples of such findings are presented in Box 1. For example, positive 

expression of cholecystokinin (CCK) tends to co-occur with adapting spiking (ASP.) 

(p<0.011 with Barnard’s exact test from all n = 26 pieces of evidence). Moreover, 

neuron types with high input resistance (Rin) do not display adapting spiking (p<0.012, 

n=35), and, of the 25 neuron types that have narrow APs, only CA1 Basket CCK+ 

display rapidly adapting spiking (RASP.) (p<0.008, n=25). 

[Box 1 is near here] 

 

Analysis of numerical electrophysiological data 
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 Hippocampome.org contains characteristics of neuron types which are important 

for electrophysiological classifications (Druckmann et al., 2013; Tripathy et al., 2015). 

These data allow to study the correlations between electrical parameters and firing 

pattern characteristics, for example, the relationship between action potential width 

(APwidth) and the minimum of interspike intervals (ISImin). Figure 9 shows an APwidth 

plotted against ISImin in a scatter diagram (panel A) for 81 neuron types and subtypes 

for which both parameters are available. Corresponding APwidth histogram (panel B) and 

ISImin histogram (panel C) demonstrate polymodal distributions. Analysis of the scatter 

plot and distributions reveals several distinct groups of neuron types/subtypes. The 

horizontal dashed line (ISImin=34 ms) separates 9 neurons with slow spikes from 72 

neurons with fast and moderate spikes. Eighty-nine percent of neurons with slow spikes 

are excitatory; 61% of neurons with slow and moderate spikes are inhibitory. For the 

last group, a general trend of ISImin rise with increasing of APwidth is observed (black 

dashed line in panel A). This trend was adequately fitted with a linear function Y = 

13.79X - 0.05 (R2 = 0.52). The opposite trend is seen within the group with slow spikes, 

which was fitted with a decreasing linear function Y = - 26.72X + 76.42 (R2 = 0.83). The 

correlations for these trends are highly significant. In turn, the neuron types can be 

separated by spike width. The vertical dashed lines w1 (APwidth=0.73 ms) and w2 

(APwidth=1.12 ms) separate neuron types with narrow, medium and wide action 

potentials. The group of neuron types with narrow spikes (n=22) includes only inhibitory 

neurons which have APwidth in the range from 0.20 to 0.73 ms (0.54 ± 0.12 ms). In 

contrast to this, the group of neuron types with wide spikes (n=28) contains only 

excitatory neurons with APwidth in the range from 1.13 to 2.10 ms (1.49 ± 0.23 ms). The 
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group of neuron types with medium spikes (n = 31) with APwidth range from 0.74 to 1.12 

ms (0.89 ± 0.12 ms) includes predominantly inhibitory (74%) and some excitatory (26%) 

neurons.  

[Figure 9 is near here] 

Hippocampome.org data also allow to reveal how firing patterns and firing pattern 

phenotypes distributed among neuron types with different electrophysiological 

characteristics. For example, among 22 neuron types/subtypes from the group with 

APwidth<0.72 ms, 13 cell types demonstrated so-called fast spiking behavior which is 

distinguished by narrow spikes, high firing rate and the absence or weak expression of 

spike frequency adaptation (Jonas et al., 2004). Five of the 13 neuron types belong to 

PSUT firing pattern phenotypes (i.e. CA3 Trilaminar (Gloveli et al., 2005), CA3 Aspiny 

Lucidum ORAX (Spruston et al., 1997), CA2 Basket (Mercer et al., 2007), CA1 Axo-

axonic (Pawelzik et al., 2002), CA1 Radial Trilaminar (Tricoire et al, 2011)); 3 types 

belong to the NASP phenotype (DG Basket (Savanthrapadian et al., 2014), CA1 

Horizontal Axo-axonic (Tricoire et al, 2011), EC MEC LIII Superficial Multipolar 

Interneuron (Kumar and Buckmaster 2006)); 2 types belong to the simple adapting 

spiking phenotype (CA3 Axo-axonic (Dugladze et al., 2012), CA2 Bistratified (Mercer et 

al., 2007)); two types belong to the ASP-NASP phenotype (DG HICAP (Mott et al., 

1997), DG AIPRIM (Lubke et al, 1998; Scharfman 1992)); and 1 type belongs to non-

persistent stuttering phenotype (CA1 basket (Lee et al., 2011)). Firing pattern 

phenotypes are unequally distributed among group with different electrophysiological 

characteristics. Persistent and non-persistent stuttering phenotypes and non-persistent 

bursting phenotypes are composed entirely of neuron types with narrow and medium 
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fast/moderate spikes. On the other hand, the rapidly adapting – non-adapting spiking 

phenotype is represented solely by neurons with wide moderate spikes. Other firing 

pattern phenotypes are composed of varying proportions of neuron types from different 

electrophysiological groups.  

 

Discussion  

Neurons vary from each other by morphological and molecular features including 

the variety and distribution of ion membrane channels in somata and dendrites. These 

intrinsic properties determine important physiological functions such as excitability, 

efficacy of synaptic inputs (Häusser et al., 2000; London et al., 2002; Komendantov and 

Ascoli, 2009), shapes of individual action potentials, and their frequency (Bean, 2007) 

and temporal patterns (Mainen and Sejnowski, 1996). Since electrophysiological 

properties are sufficiently uniform in most types of neurons, as well as morphological 

and molecular properties (Wheeler et al., 2015), it is quite reasonable use them to refine 

neuronal classification. In the neuroscience literature, the firing patterns of neuronal 

activity are commonly used to characterize or identify groups of neurons (e.g. “strongly 

adapting, normally adapting, and nonadapting cells” (Mott et al., 1997); “fast-spiking and 

non-fast-spiking” interneurons (Bjorefeldt et al., 2016); “late spiking” cells (Tamas et al., 

2003); “stuttering interneurons” (Song et al., 2013); “bursting” and “non-bursting” 

neurons (Hablitz and Johnston, 1981; Maskawa et al., 1982); “regular spiking, bursting, 

and fast spiking” (McCormick et al., 1985), etc.). In this study, we show that with a 

quantitative, numerical approach based on the analysis of transients and steady states 

of evoked spiking activity, the firing patterns of hippocampal neuronal types can be 
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readily classified. This work is a further development of the qualitative approach of the 

Petilla Interneuron Nomenclature Group (2008), which was applied to firing patterns in 

cortical neurons (Druckmann et al., 2013; Markram et al., 2015). Our data-driven firing 

pattern classification technique can be used to identify more than 30 patterns. Among 

electrophysiological recordings from 89 neuron types in the rodent hippocampus, 23 

firing patterns were identified, including 15 that were completed (i.e., firing patterns with 

transient(s) and putative steady state components) (see Figs. 5 and 6). Taking into 

consideration the firing pattern information allows to improve and clarify neuronal 

classification by selecting putative electrophysiological subtypes among 18 neuron 

types. In addition, electrophysiological subtypes are possible for 29 neuron types. 

Subsequent two-step cluster analysis allows for the clear distinguishing of 10 unique 

firing pattern phenotypes among 116 hippocampal neuron types and putative subtypes. 

However, our firing pattern classification framework can be easily applied to spiking 

activity of neurons from other brain regions. While six of ten firing pattern phenotypes 

are more typical for excitatory or inhibitory neuron types, four of them are equally mixed 

(Fig. 7B). Thus, it seems that in many cases, categorization of a firing pattern 

phenotype by itself is a necessary but insufficient attribute for reliable neuronal 

electrophysiological identification of neurons.  

 The frequency of discharges is an important characteristic of neuronal 

communication. Many neuron types, especially interneurons, show fast spiking 

behavior: they are capable of firing at high frequencies (200 Hz or more) with little 

decrease in frequency during prolonged stimulation (Jonas et al., 2004; Bean 2007). 

Spike frequency correlates with electrophysiological characteristics such as action 
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potential duration or fast AHP amplitude (Druckmann et al., 2013). Fast spiking neurons 

typically have narrow action potentials and high amplitude fast AHP (Bean 2007). Our 

correlation analysis of Hippocampome.org data reveals that non-adapting spiking 

(NASP) is not inherent in neuron types with extremely wide action potentials or with very 

low amplitude fast AHPs. Otherwise, rapidly adapting spiking (RASP) is not typical for 

neurons with very narrow action potentials or with extremely high amplitude fast AHPs 

(Box 1). When ISImin is plotted against APwidth for all neuron types with fast and 

moderate spikes (ISImin < 34 ms or maximum frequencies more than 29 Hz) and for all 

neuron types with slow spikes (ISImin > 34 ms or maximum frequencies less than 29 Hz) 

highly significant linear relationships are observed (Fig. 9A). 

 The fast spiking phenotype is underlying by a fast delayed rectifier current, which 

is largely presented in these interneurons (Jonas et al., 2004; Bean 2007). The 

channels mediating this K+ current are assembled from Kv3 subunits (Rudy and 

McBain, 2001). The kinetics for fast AHP provided by these channels appear to be 

optimal to accelerate recovery of sodium channels from inactivation and to decrease 

delay in the onset of the AP initiation (Lien and Jonas, 2003). Firing pattern phenotypes 

of central mammalian neurons are determined by biophysical properties associated with 

expression and distribution of several types of Ca2+ and K+ channels, which modulate 

specific ion currents (Bean, 2007), as well as with expression of other molecular 

markers (Caballero et al., 2014; Markram et al., 2004; Petilla Interneuron Nomenclature 

Group et al., 2008). Despite the relative sparsity of molecular marker information in the 

current version of the Hipocampome.org knowledge base (Wheeler et al., 2015), 

analysis of the correlations between firing patterns and other neuronal properties 
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reveals interesting statistical peculiarities of molecular marker expression in the 

hippocampal neuron types (see Box 1 for examples). 

Firing patterns play important roles in neural networks including encoding input 

features, transmitting information or synchronizing activity across different regions. A 

single spike can provide temporally precise neurotransmitter release, however, in 

central synapses, this release usually has low probability. Neurons can compensate the 

unreliability of their synapses by transmitting signals via multiple synaptic endings or 

repeatedly activate a single synapse (Lisman, 1997).  Thus, spikes, which are grouped 

together in bursting or stuttering activity, increase probability of transmission via 

unreliable synapses compared to separated spikes with the same average frequency. In 

the hippocampus, a single burst can produce long-term synaptic modifications 

(potentiation or depression) (Lisman, 1997). It was hypothesized that, due to the 

interplay between short-term synaptic depression and facilitation, bursting with certain 

values of ISIs are more likely to cause a postsynaptic cell to fire than bursts with higher 

or lower frequencies (Izhikevich et al., 2003).   Experimental studies provide strong 

evidence that different brain circuits employ distinct schemes to encode and transmit 

information (Xu et al, 2012): while transmission of the information by isolated spikes is 

insignificant for acquisition of recent contextual memories in the hippocampus, it is 

essential for memory function in the medial prefrontal cortex. However, even within the 

hippocampus, different neuronal circuits probably may employ distinct coding schemes 

by relying on isolated spikes or bursts of spikes for execution of critical functions (Xu et 

al, 2012). Indeed, distinct sub-regions of the hippocampal formation show differential 

distributions of firing pattern phenotypes (Fig.7), among which the group of spiking 
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phenotypes contains the majority of neuron types/subtypes.  Parvalbumin (PV) – and 

cholecystokinin (CCK)-expressing basket cells are most famous examples of spiking 

interneurons with similar morphology but with different electrophysiological and 

molecular properties, and functions in the hippocampal networks (Bartos and Elgueta, 

2012; Freund and Katona, 2007). Non-adapting spiking (NASP) is typical for fast-spiking 

PV-positive interneurons, which synaptic terminals open P/Q-type calcium (Cav2.1) 

channels. In contrast, CCK-positive neurons demonstrate action potentials with  

adapting firing patterns and selectively open N-type calcium (Cav2.2) channels. The 

P/Q-type channels are localized at the synaptic active zone to provide precisely timed 

univesicular release. The N-type channels are distributed throughout the bouton, but not 

at the active zones, and the axon terminals of CCK-positive neurons have several active 

zones that allow asynchronous multivesicular release (Freund and Katona, 2007). 

These properties indicate that CCK-positive neurons may act as slow processing 

devises, whereas PV-positive neurons act as fast signaling units, which role in gamma 

oscillogenesis and cognition is well supported (Bartos and Elgueta, 2012).  

 The information on firing patterns of neuron types has been added to the 

Hippocampome.org knowledge base that already contained information on morphology, 

molecular marker expression, connectivity, and other electrophysiological 

characteristics (Wheeler et al., 2015). Computation of the potential connectivity map of 

all known 121 neuron types by supplementing available synaptic data with spatial 

distributions of axons and dendrites allows one to build a network containing more than 

3200 connections (Rees et al., 2016). Further directions of Hippocampome.org 

development include modeling and simulation of firing activity of different neuron types, 
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quantitative estimation of axonal and dendritic distributions across parcels, neuron 

count, synaptic profiles and others. All of this makes Hippocampome.org a powerful tool 

for experimentalists and modelers, especially for development of real-scale models of 

the hippocampus. Such knowledge bases are very important in view of the growing role 

of data sharing in neuroscience research. 
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Legends 

 

Figure 1. Classification of firing pattern elements. 

 

Figure 2. Firing pattern elements observable in hippocampal neurons in vitro.  ISI - 

interspike interval, PFS – post firing silence, sDW – slow depolarization wave, sAHP – 

slow afterhyperpolarization. Electrophysiological recording modified from Lübke et al. 

(1998) (D), Vida et al. (1998) (ASP), Pawelzik et al. (2002) (RASP), Hamam et al. 

(2002) (TSTUT), Chevaleyre and Seigelbaum (2010) (TSWB), Mercer et al. (2012) 

(SLN), Mott et al. (1997) (NASP), Fuentealba et al. (2010) (PSTUT), and Golomb et al. 

(2006) (PSWB, spontaneous bursting in Ca2+ free ACSF).  

	

Figure 3. Examples of fitting of spiking activity with linear regression and piecewise 

linear regression models. A. Responses to current injection of a DG aspiny interneuron 

with axonal projection to the inner molecular layer (AIPRIM in Hippocampome.org) 

(Modified from Lübke et al., 1998). B. Fitting of digitized experimental data with different 

models.  
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1 parameter fit is a constant function Y=2.78;   

2 parameter fit is a linear function Y=0.017X+1.67;   

3 parameter fit is a piecewise linear function 
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Based on p-values, the firing pattern was identified as adapting-non-adapting spiking 

(ASP.NASP): p2,1 < 0.05 (p2,1 =1.26.10-10), p3,2< 0.025 (p3,2=2.7.10-3 ), p4,3> 0.016 

(p4,3=5.5.10-2 ). p2,1, p3,2, p4,3 – p-values of differences between 2 parameter fit and 1 

parameter fit, 3 parameter fit and 2 parameter fit, 4 parameter fit and 3 parameter fit, 

respectively. 

 

Figure 4. Flow chart of general procedure of firing pattern identification. 

 

Figure 5. Identified firing patterns and firing pattern phenotypes complexity of 89 neuron 

types (A and B) with 42 subtypes (B). Online matrix: hippocampome.org/firing_patterns. 

Green and red cell type/sybtype names denote excitatory (e) and inhibitory (i) neurons, 

respectively. FPP is firing pattern phenotype. The numbers in the brackets correspond 

to the order in which the cell types were presented in the Hippocampome (ver. 1.0). 

 

Figure 6. Occurrence of firing patterns, firing pattern elements and firing pattern 

phenotypes among the hippocampal formation neuron types. A. Distribution of 23 firing 
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patterns; total numbers are shown above the bars. B. Distribution of 9 firing pattern 

elements; total numbers are in parentheses below and percentages of occurrence 

among 89 cell types are above the bars. C. Complexity of firing pattern phenotypes; 

percentages and ratios indicate occurrences of phenotypes of different complexity 

among 122 cell types. D. Relationships between firing pattern elements in the firing 

patterns of hippocampal neuron types. Numbers of cell types with distinctive firing 

patterns are indicated. 51+1 denotes number of cell types with ASP. and ASP.ASP. 

firing, respectively. 

 

Figure 7. Eleven firing pattern phenotypes of 116 neuron types/subtypes. Simple 

adapting firing pattern phenotype is not unique (see Results). A. Hierarchical tree 

resulting from two-step clustering of weighted firing pattern elements with representative 

examples of cell types/subtypes which belong to corresponding firing pattern 

phenotype. B. Relative proportions of firing pattern phenotypes among neuron 

types/subtypes. Green and red numbers represent excitatory and inhibitory cell 

types/subtypes as they numerated in Fig. 5. C. Percentage of occurrence of firing 

pattern elements in firing pattern phenotypes. D. Distribution of firing pattern 

phenotypes among sub-regions of the hippocampal formation. 

 

Figure 8. Hippocampome.org enables searching neuron types by neurotransmitter; 

axon, dendrite, and soma locations; molecular expression; electrophysiological 

parameters; input/output connectivity; firing patterns, and firing pattern parameters. A. 
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Sample query for cabining-negative neuron types with axons in CA1 stratum 

pyramidale, APwidth <0.96 ms, PSTUT firing, and ratio maximum ISI to the next ISI is 

more than 10. Numbers in parentheses indicate the number of neuron types with the 

selected property or combination of properties. B. Search results are linked to the 

neuron page(s). C. The neuron page is linked to the firing pattern evidence page. D. All 

firing pattern parameters and ISIs can be displayed.  

 

Figure 9. Relationships between the width of action potentials (APwidth) and minimum of 

interspike intervals (ISImin) for 84 neuron types and subtypes. A. APwidth - ISImin scatter 

diagram with results of linear regression. Green triangles and red circles indicate 

excitatory and inhibitory neurons, respectively. Dashed orange lines: horizontal line 

separates neurons with slow spikes from neurons with fast and moderate spikes; 

vertical lines (w1 and w2) separate neurons with narrow, medium and wide action 

potentials. Black lines: solid line shows linear fitting for slow spike neurons with a 

function Y = - 26.72X + 76.42 (R2=0.83); dashed lie shows general linear fitting for fast 

and moderate spike neurons with a function Y = 13.79X - 0.05 (R2=0.52). B. APwidth 

histogram. C. ISI histogram. 

 

Table 1. Principles of classification of firing pattern elements 

Abbreviations: a1 – slope of linear fitting for normalized ISIs vs normalized time; DF – 

delay factor; fmin – minimum frequency of stuttering or bursting; Fpre, Fpost and FPSTUT – ISI 

comparison factors,  ISImax –maximum interspike interval; p2,1 – p-value for differences 
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between two-  and one-parameter linear fitting; p3,2 – p-value for differences between  

three-  and two-parameter linear fitting; PFS – post firing silence; SF – silence factor; 

SRASP – slope of linear fitting of rapid transient;  SWA – slow wave amplitude; SWAmin – 

minimum slow wave amplitude. 

 

Table 2. Occurrences of completed firing patterns in hippocampal and other neurons  

NASP - HICAP(Mott et al. 1997, Fig. 11A); PSTUT - CA1 Neurogliaform (Fuentealba et 

al. 2010, Fig.5B); PSWB - CA3 Pyramidal (Bilkey and Schwartzkroin 1990, Fig. 1a); 

ASP.NASP - CA3 Basket-CCK (Gulyás et al. 2010, Fig. 1b, right); ASP.SLN – EC MEC 

LV Pyramidal (Canto and Witter 2012b, Fig.10C7); ACSP.NASP - ventral horn 

interneuron of turtle (Smith and Perrier 2006, Fig. 2D); RASP.NASP – EC LV Deep 

Pyramidal (Hamam et al. 2000, Fig.3C); RASP.SLN – CA1 Radiatum Giant (Bullis et 

al. 2007, Fig.5A); TSTUT.NASP - EC LV Deep Pyramidal (Hamam et al. 2002, Fig.5E); 

TSTUT.PSTUT - CA1 (Price et al. 2005, Fig.3A2); TSUT.SLN – CA2 SP-SR (Mercer et 

al. 2012; Fig. 3A); TSWB.NASP - CA1 Pyramidal (Zemankovics et al. 2009, Fig. 1B); 

TSWB.SLN - CA3 Pyramidal (Hemond et al. 2008, Fig. 4); D.NASP – DG 

Neurogliaform (Armstrong et al. 2011,  Fig.3A, top trace); D.PSTUT - CA2 Basket 

(Mercer et al. 2007, Fig. 5B); D.PSWB - cultured rutabaga mutant  giant  neuron of  

Drosophila (Zhao and Wu 1997, Fig.7, top left); D.ASP.SLN - neuron in external lateral 

subnucleus of lateral parabrachial nucleus (Hayward and Felder 1999, Fig.3A, top); 

D.ACSP.NASP – motoneuron (Leroy et al. 2014, Figure 1-figure supplement 1B); 

D.RASP.NASP - CA3 LMR-Targeting (Ascoli et al. 2009, Fig. 1A); D.TSUT.SLN - 
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striatal fast-spiking neuron (Sciamanna and Wilson 2011, Fig. 1C); D.TSWB.NASP - 

CA1 Axo-Axonic (Buhl et al. 1994, Fig. 5D). 

 

 

Illustrations and Tables 
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Figure 1.	
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Figure 3.	
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8. 
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Figure 9.	
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Table 1. Principles of classification of firing pattern elements 

Firing pattern 
element 

Transient  
responses 

Steady-state  
responses  Characteristics of responses  Values of  

parameters 
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a1 < - 0.003 
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Table 2. Occurrences of completed firing patterns in hippocampal and other neurons  
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Box 1. Correlations between electrophysiological, molecular, morphological and 
firing pattern data in the Hippocampome 

 
1) There is no neuron type that is neuropeptide Y (NPY) positive or has low value of 

membrane time constant (τm) and becomes silent (SLN)  after short firing 
discharge (p<0.014, n=29 and p<0.024, n=32, respectively). 

2) Of 25 cell types that have wide APs, only one (EC LV-VI pyramidal-polymorphic) 
can show delayed (D.) firing (p<0.021, n=25), and only one (EC LVI multipolar-
pyramidal) does show non-adapting spiking (NASP) (p<0.021, n=25). 

3) Only one (CA1 Schaffer collateral-associated) out of the 35 neuron types with low-
threshold (low Vthresh), only two (CA3 granule and EC LVI multipolar pyramidal) 
out of the 23 neuron types with low values for slow AHP, and two out of 33 cell 
types exist that have low values for fast after hyperpolarization (fAHP), which do 
not demonstrate non-adapting spiking (NASP) (p<0.02, n=35, p<0.016, n=23 and 
p<0.007, n=33, respectively). 

4) While positive expression of cholecystokinin (CCK) tends to coincide with 
adapting spiking (ASP.)  (p<0.011, n = 26), neuron types with high input 
resistance (Rin) do not demonstrate adapting spiking (ASP.) (p<0.012, n=35).  

5) Of the 25 neuron types that have narrow APs, only one (CA1 basket CCK+) of 
the 29 cell types with high value of hyperpolarization-induced sag potential, only 
one cell (CA3 pyramidal cell), and of the 33 neuron types that have high values for 
fast after-hyperpolarization (fAHP), only two (DG semilunar granule cell and CA1 
basket CCK+ cells) display rapidly adapting spiking (RASP.) (p<0.008, n=25, 
p<0.022, n=29 and p<0.018, n=33, respectively).  

6) Of the 33 glutamatergic neuron types (33/89), only CA1 pyramidal cell 
demonstrates persistent stuttering (PSTUT) (p<0.013, n=89). 

7) Only one (CA1 axo-axonic) out of 89 neuron types exist that are not projecting 
(61/89) and demonstrate transient slow-wave bursting (TSWB.) (p<0.026, n=89). 
 
 
The p values and sample sizes (n) are computed using Bernard's exact test for 2 
× 2 contingency tables (see Materials and methods).	
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