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Abstract

We examine the problem of rapidly and efficiently estimating a neuron’s linear
receptive field (RF) from responses to high-dimensional stimuli. This problem
poses important statistical and computational challenges. Statistical challenges
arise from the need for strong regularization when using correlated stimuli in high-
dimensional parameter spaces, while computational challenges arise from extensive
time and memory costs associated with evidence-optimization and inference in high-
dimensional settings. Here we focus on novel methods for scaling up automatic
smoothness determination (ASD), an empirical Bayesian method for RF estimation,
to high-dimensional settings. First, we show that using a zero-padded Fourier
domain representation and a “coarse-to-fine” evidence optimization strategy gives
substantial improvements in speed and memory, while maintaining exact numerical
accuracy. We then introduce a suite of scalable approximate methods that exploit
Kronecker and Toeplitz structure in the stimulus autocovariance, which can be
related to the method of expected log-likelihoods [1]. When applied together, these
methods reduce the cost of estimating an RF with tensor order D and d coefficients
per tensor dimension from O(d3D) time and O(d2D) space for standard ASD to
O(Dd log d) time and O(Dd) space. We show that evidence optimization for a
linear RF with 160K coefficients using 5K samples of data can be carried out on a
laptop in < 2s.

1 Introduction

For over a century scientists have characterized a neuron’s basic stimulus selectivity as a first step in
analyzing its other properties [2]. This is usually achieved by solving a regression problem whereby a
neuron’s linear receptive field (RF) is modeled as a noisy mapping from the space of high-dimensional
stimuli to a scalar variable describing the neuron’s response (ex. spike counts, calcium fluorescence,
membrane voltage, etc.). However, least-squares and maximum likelihood estimates of the RF exhibit
poor statistical performance in high-dimensional settings, requiring strong regularization [3]. This
regularization is especially necessary when stimuli display correlated structure.

Bayesian methods offer a solution to the statistical problem by using prior information to regularize
RF estimates. Ridge regression, the simplest such method, merely biases the estimated coefficients
towards zero. Recent advances have focused on priors that exploit known features of RF structure,
such as smoothness and sparsity, which give substantial improvements in statistical efficiency [4, 5, 6],
potentially reducing the time and costs of conducting laboratory experiments. However, these
methods become intractable as stimulus dimensionality grows large. In particular, for a d-dimensional
stimulus the empirical Bayes estimator requires O(d3) time and O(d2) memory per evaluation of the
marginal likelihood, making the Bayesian framework prohibitive for large d. Since this computational
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bottleneck can be localized to operations on covariance matrices, we focus our efforts on identifying
computational savings for operations in both the prior covariance and the stimulus covariance.

In this paper, we describe strategies for making empirical Bayes RF estimation tractable in high
dimensions and large sample sizes. We focus on the automatic smoothness determination (ASD)
estimator [5], though our results have applicability to a variety of models based on conditionally
Gaussian priors. We demonstrate these methods using both simulated and real neuronal data with
high-dimensional stimuli.

2 The ASD regression model

In this section we outline the basic elements of the ASD model of Sahani and Linden [5] and point
out some of the factors making it resistant to scalabilty.

The ASD model assumes that a neuron’s response at time t, yt, to the stimulus xt ∈ IRd is a linear
function of the stimulus corrupted by iid noise:

yt = w>xt + εt, εt ∼ N (0, σ2), (1)

where w ∈ IRd is the RF and N (ξ,Σ) represents the Gaussian distribution with mean ξ and
covariance Σ . The log-likelihood is therefore given by

L(w) , logP (Y |X,w, σ2) = logN (Y ;Xw, σ2I), (2)

where X = (x1,x2, . . . ,xN )T is the design matrix with stimuli for each trial along its rows, and
Y = (y1, . . . , yN )> is the vector of responses to each stimulus.

The key to the ASD model’s efficiency is the use of a Gaussian process (GP) prior over the weights,
w ∼ N (0, C(θ)), with covariance matrix C(θ) defined by [C(θ)]jk = ρ exp(−|zj − zk|2/2`2),
where hyperparameters θ = {`, ρ} include a length scale ` controlling smoothness and a marginal
variance ρ controlling magnitude, and zj , zk denote the location of RF elements in spatiotemporal
pixel space. This covariance function is commonly referred to as the squared exponential1 (SE) in the
machine learning literature [8].

The ASD model weights can be learned by an empirical Bayes procedure [9] (also known as type-2
maximum likelihood [10] and the evidence approximation [11, 12]) which involves 2 steps. First,
the hyperparameters θ and noise variance σ2 are set by maximizing the marginal likelihood (or
“evidence”) [13], which is the probability of the data given the hyperparameters,

P (Y |X, θ, σ2) ,
∫
P (Y |X,w, σ2)P (w|θ)dw. (3)

For the Gaussian likelihood and prior of the ASD model the log evidence has a convenient closed-form
expression;

E(θ, σ2) , logP (Y |X, θ, σ2) = −N2 log(2πσ2)− 1
2 log |C|+ 1

2 log |Λ| − 1
2σ2Y

>Y + 1
2µ
>Λ−1µ,

(4)
where

Λ =
(

1
σ2X

>X + C−1
)−1

, µ = 1
σ2 ΛX>Y = (X>X + σ2C−1)−1X>Y. (5)

are the posterior covariance and mean, respectively. Second, the RF estimate is given by µ = µ(θ̂),
the MAP estimate of w conditioned on the optimal values of θ and σ2.

This estimator has excellent performance in many settings and improves estimation accuracy and
generalizability of RF estimates compared to maximum likelihood [5]. Empirical Bayes is often
adopted as a computationally efficient alternative to MCMC or cross validation methods.

1Although we deal exclusively with the squared exponential kernel in this paper, the methods are applicable
to any stationary covariance with analytical Fourier transform including the Matérn kernel as well as more
expressive mixture kernels like those found in [7].
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2.1 Obstacles to scalability

While the ASD model is well known, it has not been used in high-dimensional settings due to the
poor scaling of the method when computed by brute force. The computational bottleneck comes
about from the fact that each evaluation of the log evidence (4) requires the calculation of both the
inverse and determinant of Λ, each of which requires O(d3) operations, where d is the number of
parameters. In the following sections we present several approaches to efficient evaluation of the
evidence function, some exact and some approximate, and we will examine the impact that these
methods have both on MAP inference and evidence optimization. We emphasize that these are not
methods for efficient GP regression but are methods for efficient inference of a GP–regularized linear
regression model.

3 Fourier-domain ASD

In this section we briefly outline the Fourier representation of a GP and show that this representation
allows for a significantly reduced dimension of the ASD model without appreciable loss in accuracy.
A more detailed discussion of the spectral representation of GPs is discussed elsewhere [14, 15, 16].

3.1 Padded Fourier representation of the ASD prior covariance

The prior covariance matrix C of the ASD model can be diagonalized by the Fourier transform, but
not without some modification. Here we describe that modification and its basic intuition.

The ASD prior covariance can be represented in frequency coordinates by C̃ = BCB> and the
frequency-domain stimulus can be expressed as X̃ = BX , where B is the orthonormal discrete
Fourier transform2 (DFT) matrix with Bj,k = 1√

P
e−i2πjk/m, i ≡

√
−1.

The ASD model uses a stationary GP for a prior on the regression weights. Covariance kernels of
stationary GP covariances have real, symmetric Fourier transforms and translate into making the
matrix C̃ asymptotically diagonal where, if the Fourier transform of the GP kernel is given by c̃,
then the matrix C̃ can be obtained by placing c̃ on the main diagonal with all other entries set to
zero. This property allows for significant computational savings [6, 17, 18, 15, 14]. However, the
covariance matrix of a finite observation of a stationary process is not directly diagonalizable. This is
because, for the finite DFT, the diagonal Fourier representation corresponds to a stochastic process
on a periodic domain.

In the context of the ASD model a periodic domain would imply that a RF had strong correlations
across left and right (or top/bottom) edges, which is unlikely to be the case in practice. In order to
take advantage of a diagonal Fourier domain covariance while avoiding spurious correlations over a
circular boundary we can define our problem on a larger domain than that which is actually observed
but with periodic boundaries. The basic idea is illustrated in Fig. 1A.

Figure 1A (left panel) shows a typical prior covariance for a 1D domain with d = 200. As it is, this
covariance matrix is not diagonal in Fourier coordinates. However, we can view this covariance as a
sub-matrix of a circulant matrix defined on a somewhat larger, but periodic, domain (Fig. 1A, middle
panel, note the spurious correlations at the top right and bottom left corners). This “extended" matrix
is diagonal in Fourier coordinates. (Fig. 1B, right panel). In practice, one should choose to extend
the spatial domain sufficiently to avoid appreciable correlations in the ASD prior sub matrix from
the periodic boundary (i.e. the shaded area in Fig. 1A should be large enough to avoid the boundary
effects to influence the true covariance). Put simply, we effectively pad the RF with enough zeros to
avoid correlations between the edges of the RF. How large the barrier should be will depend on the
the length scale of correlations in the GP kernel.

In our case, for the squared exponential kernel with length scale l, a sufficient boundary extension
was achieved by adding 3l extra coefficients, giving a extended frequency domain representation of
size d̃ = d+ b3lc, where b·c is the floor function. Note that this padding is virtual, in that it is never
implemented in practice. Instead is it used to define a DFT matrix of appropriate dimensions for
transforming the spatial-domain stimulus X . Because the size of the spatial representation determines

2The m-point discrete Fourier transform has frequencies ω ∈ {−m
2
, . . . , m

2
}.
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Figure 1: Efficient representation of ASD covariance. (A) Standard ASD covariance matrix for
1D (vector) filter with 200 coefficients, with length scale l = 15, and circularly extended (circulant)
version with (200+3l)=245 coefficients. (Gray region corresponds to “unobserved” filter components).
(B) The circularly extended covaraince has analytically computable eigenspectrum (left), allowing
for efficient pruning of unnecessary dimensions, and is diagonalized by the Fourier transform (right).

the size of the frequency representation, the extended domain determines which frequencies should
be represented by c̃(ω̃). Indeed, the appropriate DFT matrix need not ever be formed, since X can be
transformed by the d̃–point FFT. The resulting representation can be used to conduct all inference
procedures in precisely the same way as the spatial-domain problem.

3.2 Truncated spectrum

In order to ensure a diagonal Fourier domain prior covariance we extended the effective spatial extent
of the filter, making the dimensionality of the problem larger than when we started. However, the ASD
kernel has “low pass" character, indicating that there are many more frequencies represented than we

actually need. The SE kernel for example has the Fourier representation c̃(ω̃) = DFT{ρe−
τ2

2l2 } =

ρ̃e−
1
2 ω̃

2l2 where ρ̃ =
√

2πρl is the frequency-domain variance and ω̃ = 2π
m ω are the “effective

frequencies”. However, note that c̃ decays quickly as the frequencies become large, with faster
decay occurring as l increases. Figure 1B (left) shows the decay of the Fourier coefficients on the
log scale for l = 15 with a filter length of 200. Thus, the Fourier-domain filter coefficients at high
frequencies will tend to be small, suggesting that they may be safely disregarded. For a principled
rule for choosing which coefficients to ignore, one could set a threshold to maintain the condition
number of C̃ below some value δ. Again, because we have an analytical expression for c̃ we can
explicitly define this threshold for a given length scale for the SE kernel to be

ωmax <
d̃

πl

√
log δ

2
.

Cleary, the truncated representation is more efficient, and more accurate, as the length scale l increases.
Importantly, when the condition threshold is set high enough spectral ASD can be exact up to machine
precision, even though the dimension is reduced substantially.

The dimension-reducing effect of this thresholding can be dramatic, as is illustrated in the example
in Fig. 1B. For the threshold of δ = 108 (chosen to stay well - within floating-point accuracy), we
achieved a ≈ 5× reduction in the size of the representation (reducing the computational complexity
by 125×).

The computational savings are realized by reducing the number of frequencies for X̃ as well. Noting
that most of the high-cost computations are performed on the matrix

M = 1
σ2X

>X + C−1, (6)

we find that the truncated Fourier setting reduces M from by a degree governed by δ. This dimension
reduction principle applies for a 2D domain as well where, rather than setting the maximum frequency,
we set the spectral radius.

3.2.1 Course-to-fine parameter search

Because the Fourier representation of the ASD model becomes more computationally efficient as the
length scale l of the prior covariance becomes large, it would be prudent to prioritize the optimization
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algorithm to search over larger length scales first. This principle suggests a “course-to-fine" strategy
where we set the lower-bound on l fairly large to take advantage of computational efficiency in early
iterations of the optimization. When the optimization bumps up agains the lower bound, that bound
can be lowered and can be progressively decreased as needed, thereby ensuring that computation is
not wasted on searching very small values of l if it is not necessary.

4 Structured approximate estimators for extreme scalability

Even in the case where we can reduce the dimensionality of the ASD model by Fourier approximation,
the number of parameters may still be too large to make practical calculations. In particular, although
we are able to diagonalize the prior covariance C, the sample covariance X>X is still d′ × d′, where
d′ is the size of the reduced Fourier representation. This will mean that calculation of Λ and its log
determinant will still be prohibitive as they scale as O(d′3).

One way for us to further reduce the computational complexity of this problem is to replace X>X
with a structured estimator of its expectation. The intuition for this approach follows from the same
logic as the expected log-likelihood (ELL) approximation [19, 1].

The argument is as follows: If the stimulus covariance is given by R ≡ E[xtx
T
t ] (assuming wlog

E[xt] = 0) then as the number of samples N becomes large we have X>X → NR. Thus, in settings
with large N a law of large numbers argument can be made to approximate the likelihood with NR
in place of XTX [19, 1]. The resulting cost function is called the expected log-likelihood and is
given by

log L̃(w|X,Y ) =
1

2σ2

(
2w>X>Y −w>NRw

)
− 1

2
w>C−1θ w + constw (7)

which is simply the likelihood in (2) with X>X replaced by NR. Maximizing the ELL with respect
to w yields the maximum ELL estimator (MELE). IfR has special structure then this can be exploited
for computational efficiency.

Note however that we cannot simply use the ELL trick "out of the box" when we do not know R a
priori. This is especially true when we are interested in studying neuronal responses to naturalistic
stimuli, for which neither the spatio-temporal covariance, nor the relevant spatio-temporal resolution
are well established. In this case, we can employ similar reasoning behind the ELL estimator to
justify replacement of X>X with a structured estimator of R. The advantage of this approach is
that we need not have detailed knowledge of the statistics of the stimulus, only that we know that its
covariance has a certain properties.

Two properties that we will consider here are Toeplitz structure and Kronecker factorization. We next
outline each of these properties and show how they provide computational savings.

4.1 Kronecker structure in R

Covariance matrices of tensor-structured data admit a Kronecker factorization which makes for
convenient computational savings [20, 7]. An example of a tensor-structured RF would be a spatial
filter which has two space dimensions (i.e. a 2D tensor).

For tensor-structured RF weights and stimulus, the prior covariance C and the stimulus covariance R
can be represented as the Kronecker products of smaller matrices. For example, for tensor dimension
D = 2, with w ∈ IRd1×d2 , the prior covariance of w has dimensions (d1d2)× (d1d2) and given by
C = Cc ⊗ Cr, where Cc and Cr are the d2 × d2 column covariance, and d1 × d1 row covariance,
respectively.

Empirical Bayes estimation for the ASD model requires calculations involving both the evidence and
posterior with operations on the matrix M = N

σ2R+ C−1. In this case,

M = N
σ2 (Rc ⊗Rr) + (Cc ⊗ Cr) −1 = C−1/2( Nσ2A⊗B + I)C−1/2 = C−1/2M ′C−1/2, (8)

where A = C
1/2
c RcC

1/2
r , B = C

1/2
c RrC

1/2
r , and M ′ = ( Nσ2A ⊗ B + I) are real, symmetric and

positive definite. Therefore, A and B have eigen-decompositions A = UPU> and B = V QV >,
where U, V are orthonormal and P,Q are diagonal, respectively. This allows us to obtain the
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eigen-decomposition for M ′:

M ′ = (U ⊗ V )( Nσ2P ⊗Q+ I)(U ⊗ V )> (9)

where (U⊗V ) is orthonormal and ( Nσ2P ⊗Q+I) is diagonal [21]. This greatly simplifies operations
on M . In particular, the inverse and determinant of M ′:

M
′−1 = (U⊗V )( Nσ2P⊗Q+I)

−1
(U⊗V )>, |M ′| = | Nσ2P⊗Q+I| =

∏
i,j

( Nσ2 piqj+1), (10)

where pi and qj denote the diagonal entries of Q and P .

Thus, the the D = 2 case the Kronecker property has the effect that inversion and matrix determinant
calculations are now bought at the cost of calculating the eigenvalues/vectors of A and B. In fact,
the d1d2 × d1d2 Kronecker products never have to be formed and all operations can be performed
on using only the Kronecker factors, allowing for substantial memory savings as well. These tricks
become more efficient as the tensor dimension grows. In general, for tensor dimension D, and array
dimension dp along tensor dimension p, the Kronecker factorization allows us to reduce the compu-
tational and memory costs from O(

∏D
p=1 d

3
p) and O(

∏D
p=1 d

2
p) to O(

∑D
p=1 d

3
p) and O(

∑D
p=1 d

2
p),

respectively. Furthermore, matrix-vector multiplications, where matrices have Kronecker structure,
can be implemented by efficient algorithms [20], allowing for further computational savings.

4.2 Toeplitz structure

If the stimulus distribution is stationary, then its covariance will be Toeplitz. A Toeplitz matrix R
may be represented as a 1D autocovariance sequence r(τ), rather than a 2D matrix. Each row of R is
therefore a shifted copy of r(τ). The ASD prior covariance (Fig. 1, left) displays exactly this kind
of structure. If R is indeed Toeplitz, then it is subject to the same diagonal Fourier representation
as C (with the same caveat that diagonalization requires an extended representation as described in
Section 3.1). Therefore, since the same basis will diagonalize both R and C, the M matrix defined in
(8) will have the representation

M = B(NR̃+ σ2C̃−1
)
B>,

where both R̃ and C̃ are diagonal. Again, we need not ever apply the matrix multiplication of B (the
DFT matrix) or its inverse (BT ) since we can simply apply the FFT and its inverse to the first row of
R to obtain the Fourier coefficients.

Furthermore, provided that R has a “low-pass" character, we can apply all of the same tricks for
implementing a Fourier-domain dimensionality reduction toR as we did in Section 3.1 forC, reducing
the complexity of all operations onM accordingly. Thus, using the Toeplitz approximation reduces the
complexity of estimating an RF with tensor dimension D from O(

∏D
p=1 d

3
p) to O(

∑D
p=1 d

′
p log d′p),

where d′p is the reduced array dimension corresponding to thresholding the spectral norm.

4.3 ELL with approximate R

An important feature of both the Kronecker and Toeplitz strategies of the ELL approximation is that
both of these properties can be exploited even when the true stimulus covariance R is unknown,
such as when the stimulus is given by customized patterns or naturalistic scenes. For the Kronecker
method, Rc and Rr can be estimated from the data and used as plug-in estimators of R. Similarly,
the Toeplitz methods can be implemented with a sample autocovariance sequence r(τ).

5 Experiments

The empirical Bayes framework for the ASD model is implemented in two stages, evidence optimiza-
tion (for hyperparameters θ) and MAP estimation (for filter parameters w). Both the evaluation of the
evidence and filter estimation require operations with complexity O(d3) and the methods described
above may be used to make both computations tractable. In the interest of assessing the impact of the
approximate approaches on each stage, we will examine them separately and then provide examples
of empirical Bayes estimation of a large-scale RF for both real and simulated data.
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Figure 2: Quality of structured ELL approximations. A) Convergence of the log evidence for 2D
filter as a function of the length scale l. A 20×20 filter was drawn with σ2 = 1000. The true length
scale is l = 1. B) MSE of a 80× 80 filter as a function of sample size and the time for calculation as
a function of filter dimension for a sample of 5000 observations. C) Wallclock time for estimating
filters of specified dimension d. Metrics in B and C are averaged over 30 trials.

5.1 Evidence Approximation

We evaluated log evidence for data generated for a 20× 20 filter sampled from a GP with l = 1 and,
noise variance σ2 = 1000. Figure 2A shows the negative log-evidence for the true, spectral, Toeplitz
ELL and Kronecker ELL methods as a function of l over samples sizes ranging three orders of
magnitude. In the empirical Bayes framework this function is minimized in order to identify optimal
hyperparameters and therefore lower values of the negative log-evidence indicate higher evidence.
The spectral and ELL methods appear to be biased in opposing directions with respect to the true
evidence. Specifically, the spectral methods are biased upwards, while the ELL approximations
are biased downwards. This may be because the ELL approximation assumes more information
about the filter than is warranted due to the use of the estimated stimulus covariance in place of
the the sample stimulus covariance. The spectral method on the other hand correctly biases the
negative log-evidence upward to reflect the reduced information due to reduced stimulus dimensions.
However, the spectral approximations appear to be more strongly convex than either the ELL or the
true evidence, suggesting that the spectral methods may be better conditioned in practice for evidence
optimization. This improved resolution may be due to the low-pass properties of the dimension
reduction that may “filter out" information that is not important to the hyper parameters.

The three methods clearly appear to converge to the true evidence as the sample size increases,
particularly in the neighborhood of the true length scale (l = 1). However, they all appear to achieve
their minimum at a length scale that slightly deviates from the true l, depending on the sample size.
While the true evidence is extremized at l = 1, the Kronecker approximation appears to be extremized
at a slightly smaller value of l for smaller sample sizes (Fig. 2 left panel), while the spectral methods
are relatively unbiased. However, for larger sample sizes, the Kronecker approximation converges to
the true evidence for all l, while the spectral methods appear to be slightly biased. A deeper study of
this behavior is needed in order to understand why this occurs and to determine the appropriateness
of each method in a given sampling regime.

5.2 MAP estimation by empirical Bayes

To compare each method for filter estimation we generated 5K corrupted responses y simulated with
a 80× 80 Gabor filter with noise variance σ2 = 125. We generated random stimulus vectors x from
a GP with l = 1.5 and ρ = 2. Figure 3A shows results for filter estimation for the three methods
presented, demonstrating that they have comparable quality. Figure 2B shows the mean-squared error
(MSE) of the estimated 80 × 80 filter as a function of the number of samples and Fig. 2C shows
the wallclock time for calculation as a function of the number of filter coefficients for N = 5000
samples. Note that the spectral representation for ASD has nearly equal MSE with the conventional
estimator but is orders of magnitude faster and scales more favorably. The approximate methods
however (Toeplitz and Kronecker) admit large gains in speed over the unstructured MAP estimator,
and scale more modestly than the either the space-domain or spectral domain MAP estimates, but at
the cost of increased MSE. It is notable however, that the MSE of even the Toeplitz approximation,
which has the largest MSE of the methods presented, is only ≈ 9 % the size of the filter variance. We
notice that for small d the spectral MAP method is actually faster than the Toeplitz method. This may
be due to the additional cost of bookkeeping incurred by the diagonalization of R. However, since

7

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2017. ; https://doi.org/10.1101/212217doi: bioRxiv preprint 

https://doi.org/10.1101/212217
http://creativecommons.org/licenses/by-nc-nd/4.0/


100 200 300 400

50

100

150

200

250

300

350

400
100 200 300 400

50

100

150

200

250

300

350

400

10

20

30

40

50

60

70

80

True ASDspec TrueASDkron ASDtoep ASDtoepA B

20 40 60 80 100 120

20

40

60

80

100

120

C V1 cell
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from the calcium signal of a V1 cell using a 128×128 stimulus by the spectral method.

this cost is small, the Toeplitz estimator maintains extremely low computational cost even at very
high dimensions.

We note here that all of the times that we assess are clocked after the calculation of sufficient statistics,
where calculation of the stimulus covariance may require considerable time for very large sample
sizes and dimension. However, such a calculation only has to be performed once and all inferential
procedures can be iterated using the same set of sufficient statistics. Therefore, for our analyses we
assess the time required to evaluate the filter estimator or the evidence.

5.2.1 Large-scale empirical Bayes

We generated 5 thousand samples of a response from a 400×400 Gabor filter giving a total filter size
of 160K coefficients. Note that there are no reference hyperparameters for this filter since it is not a
realization of a GP and therefore is a model mis-fit. We instead identified optimal hyperparameters
by maximizing the evidence and estimated the filter using the Toeplitz ELL estimator. Also note that
the full stimulus covariance has 25.6 billion elements; more than can be represented on a desktop
computer with double precision accuracy with current technology. The result is shown in Figure 3B.

The spectral representation of the filter and Toeplitz estimate of the stimulus covariance reduced the
representation from 160K to 289 parameters. After calculation of sufficient statistics was completed,
the empirical Bayes estimate of the filter was calculated in 1.97 seconds. The resulting estimate (Fig.
3B) had a error variance that was 4.12% the magnitude of the filter variance.

5.2.2 Scalable ASD estimation of a neuronal RF

To demonstrate our spectral ASD method on real data we estimated the receptive field of a mouse V1
neuron (Fig. 3C). The stimulus was 128×128 and had 5600 stimulus presentations. Note that, due to
the size of the stimulus (16,384 coefficients) whitening of this RF would have been impossible using
conventional methods. Using the spectral method presented here, estimation of this RF, including
calculation of sufficient statistics, was performed in ≈ 27 seconds on a laptop computer. Notably, we
did not have to have detailed knowledge of the stimulus statistics, nor did we know the appropriate
resolution with which to estimate the RF (to inform ad hoc spatial down-sampling).

6 Conclusions
We have outlined three basic strategies for scalable Bayesian RF estimation:

1. Spectral representation: allows for a diagonal representation of the prior covariance
2. Kronecker plugin estimator: allows for Kronecker representation of posterior covariance, which
reduces all matrix calculations to the size of Kronecker factors.
3. Toeplitz plugin estimator: allows for diagonal representation of the posterior covariance.

All three strategies yielded considerable savings in computation and memory and all implementations
could easily carry out filter estimation of over ten thousand coefficients within seconds on a laptop
computer. We hope that the methods provided here will allow neuroscientists to consider large-scale
RF estimation problems that may have been previously precluded due to computational costs. Further
improvements in scalability may be achieved by combining the favorable properties of both the
spectral methods and the Kronecker method when the conditions are appropriate. Identifying these
conditions and how to implement them are the subject of current work in our lab.
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