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SUMMARY 
 It has become possible to observe neural activity in freely moving animals via calcium 

imaging using a microscope, which could not be observed previously. However, it remains 

difficult to extract the dynamics of nerve cells from the recorded imaging data. In this study, we 

greatly improved the stability, and robustness of the cell activity estimation method via 

non-negative matrix decomposition with shrinkage estimation of the baseline. In addition, by 

improving the initial state of the iterative algorithm using a newly proposed method to extract 

the shape of the cell via image processing, a solution could be obtained with a small number of 

iterations. These methods were applied to artificial and real data, and their effectiveness was 

confirmed. 
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INTRODUCTION 
Calcium imaging is used to visualize the activity of large neural populations, and it is 

becoming a standard technique for recording neural activity in normally behaving animals. 

Recent advances in genetic engineering and recording technologies have significantly improved 

the signal intensity of calcium-binding fluorescent indicators, increasing the spatial and 

temporal resolutions of imaging data (Chen, et al., 2013). Some calcium indicators are 

sufficiently sensitive to detect action potentials in vivo (Chen, et al., 2013). Furthermore, we 

can currently image neuronal activity in vivo in a wider region of the brain for longer periods 

(Cotton, et al., 2013; Ahrens, et al., 2013; Prevedel, et al., 2014; Diego-Andilla & Hamprecht, 

2013). Accordingly, the demand for efficient and accurate methods for detecting the spatial 

locations and shapes (footprints) of individual cells together with their temporal firing patterns 

from imaging data has increased. 

Conventionally, the spatial locations of individual cells are first identified in the imaging data. 

Then, the shape of each cell is extracted from these data and marked as the region of interest 

(ROI) or footprint, which usually occupies multiple pixels. Knowing that cells occupy localized 

spatial regions, we may use local correlations of neighboring pixels (Smith & Häusser, 2010) or 

principal component analysis (Mukamel, et al., 2009) to attempt an automatic extraction of their 

footprints. However, the accuracy of these methods is not always sufficient, and 

time-consuming manual extraction via visual inspection remains the primary modality for this 

purpose. At the second step, the spiking activity of each neuron is estimated from slowly 

varying image intensity, which is usually averaged over the imaged pixels belonging to each 

footprint to improve the signal-to-noise (S/N) ratio (Smith & Häusser, 2010). Several methods 

exist for deconvoluting spike sequences (Grewe, et al., 2010; Oñativia, et al., 2013; Theis, et al., 

2016), among which Markov chain Monte Carlo methods (Pnevmatikakis, et al., 2013) often 

work accurately. However, the accuracy of these methods is significantly degraded when the 

footprints of different cells spatially overlap, and this often occurs because of the projection of 

the 3D neural circuit structure onto a 2D image space or a low spatial resolution in optical 

recordings. Separating spatially overlapping cells represents a challenge even with 

state-of-the-art methods for analyzing calcium imaging data. 

To handle this problem, it has been proposed to represent a recorded image using the sum of 

the products of spatial (footprints) and temporal components (intensity changes). Independent 

component analysis was examined for this purpose (Mukamel, et al., 2009), but it was not 
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sufficient for decorrelating signals from spatially overlapping cells. Some nonlinear methods 

based on multilevel sparse matrix factorization (Diego-Andilla & Hamprecht, 2013) or 

nonnegative matrix factorization (NMF) (Maruyama, et al., 2014) improved the decorrelation 

performance. However, these methods did not consider the dynamics of neuronal firing or the 

intracellular calcium concentration. As a result, these methods were impaired by the noise effect 

that deteriorates the accuracy in decomposing optical signals into activity-dependent and noise 

components. 

In addition to the aforementioned problem, another technical challenge is finding an adequate 

estimate of the baseline level of imaging data. Only the relative intensity of optical signals from 

different cells is meaningful in calcium imaging recordings. However, because the baseline 

signal intensity of silent cells is unknown, it is difficult to unambiguously distinguish the faint 

intensity changes caused by actual biological processes, such as neuronal firing at low 

frequencies, from the stochastic fluctuations arising from the spatial inhomogeneity of recorded 

materials or temporal fluctuations during optical recordings. 

Against this background, a framework called constrained nonnegative matrix factorization 

(CNMF), which introduced calcium dynamics and the sparsity of spikes into NMF, was recently 

proposed (Pnevmatikakis, et al., 2013; Pnevmatikakis, et al., 2016). In addition, enhanced 

CNMF, which considers baselines inadequate for data with significant overlap, has been 

described. Because CNMF fixes time and spatial elements and optimizes the remaining 

elements, it is important to set good initial conditions and ensure convergence via iteration. 

However, in the current situation, ad hoc processing is performed on the result with few 

iterations and corrected, and coverage is not guaranteed; thus, doubt remains regarding the 

validity and stability of the obtained result. As the data size further increases in the future, 

strategies for evaluating the data will become more important. 

In this study, we propose a novel initialization method for footprints and two simple but 

powerful extensions for CNMF. The proposed initialization method using a Laplacian of 

Gaussian (LoG) filter can acquire footprints with small false-negative results even if the data 

contain cells with low S/N ratios and firing frequencies. The introduction of shrinkage 

estimation for baseline to CNMF improves the stability of the iterative steps of CNMF. 

Simultaneous estimation of the cell components and baseline also improves the accuracy and 

stability, especially when data contain strongly overlapped the cells. By combining the 

initialization and iterative methods, it is possible to accurately detect temporal and spatial 
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structures for artificial and real data, even for cells with low firing rates of signals that were 

overlooked using conventional methods. 

RESULTS 

LoG filters can reliably detect low-firing-rate cells 

Using the footprint as the initial condition, in most studies, cell candidates are selected on the 

basis of statistics over the frames. However, cells with low SN ratios and/or firing rates are 

difficult to detect using such a method. Therefore, we developed a method to detect cell 

candidates for each frame. The LoG filter, which is used for blob detection in the field of image 

processing, is utilized to emphasize a closed region of a specific size from an image with 

substantial noise, and it is possible to efficiently detect a cell candidate from each frame.  

In this study, we evaluated the proposed method to initialize cell footprints using artificial 

data. The composition of the artificial data is shown in Fig. 1. In this example, the activities of 

200 cells with strong overlap were simulated. Cell size and signal intensity also significantly 

fluctuated (see Simulation Data in Method Details). In the proposed method, LoG filters with 

multiple scales are first applied to each frame (i.e., Fig. 2A), as shown in Fig. 2B. The peaks in 

LoG-filtered images are detected within three dimensions of position and scale (Fig. 2C).  

Next, peaks representing neighborhoods are detected from all detected peaks in all frames 

(Fig. 2D). The selected peaks are derived from artifacts due to noise as well those as from real 

cells, and their distribution differs largely depending on the scale of the LoG and the signal 

strength (Fig. 2E). Then, we applied the watershed method to each selected peak to segment out 

the footprint (Fig. 3F). Footprints can be also roughly divided into noise and cells based on the 

peak value and area size (Fig. 2G). 

Using simple criteria (as shown in Fig. 2G), all 200 cells can be detected, suppressing the 

number of duplicated footprints (Fig. 2H). In this step, LoG processing can be performed 

independently for each frame as well as each peak to remove peripheral regions; thus, the 

calculation can be effectively performed via parallelization. 

Enhanced CNMF improves iterative temporal and spatial components with 

automatic relevance determination 

The calcium time series averaged over a footprint can be easily calculated (Fig. 3A and B), 

and the cell activities can be estimated from the average time series and data on overlapped 
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footprints (Fig. 3C) using the CNMF framework. In this step, we introduced a method that can 

estimate calcium signal simultaneously with whole baseline, which was conventionally done 

separately. A priori knowledge of spike-calcium dynamics as impulse responses and the firing 

rate of each cell as a parameter are also modeled similarly as the original CNMF (see Algorithm 

for Temporal Steps in Method Details).  

Conversely, in the spatial steps, the footprints can be estimated from the estimated calcium 

activities and a priori knowledge of cell shape and size (Fig. 3D). By applying the time and 

space steps in order, the footprint is obviously closer to the grand truth (Fig. 3E). Conversely, 

the estimated calcium signal for the false-positive footprint has a relatively small amplitude, and 

it is automatically removed during the space step. 

Shrink estimation of the baseline enhances the robustness and stability of 

the automatic relevance determination 

As described in the previous section, it is expected that by repeating the time and space steps, 

the cell shape and activity estimations will be accurate. Indeed, it is possible to reproduce nearly 

all 200 cells in the artificial data by removing false positives via iteration using the proposed 

method (Fig. 4A and B). In the proposed method, even if the spike firing frequency and sparsity 

parameter for cell shape are changed, almost equivalent results are obtained (Fig. 4C). 

Conversely, when shrink estimation of the baseline is not performed, false positives are not 

properly eliminated (Fig. 4D), and for some parameters, correlation with the grand truth 

deteriorates due to repetition, resulting in divergence of the calculation (Fig. 4E). This 

stabilization property is obtained by balancing sparse parameters and the baseline reduction 

estimation while simultaneously estimating cellular elements and the baseline. In addition, the 

number of conditions of the matrix appearing in the iterative method for solving the 

optimization problem at each step improves, and thus, the number of calculations is reduced. 

As a result, calcium time series can be estimated with high accuracy via repetition. Even 

when particularly strong overlap exists, it is possible to stably improve and converge the cell 

shape and activity time series. 

Application of the method to hippocampal CA1 data 

It is necessary to confirm the properties for the artificial data using real data. Thus, the 

proposed method was applied to recorded hippocampal data. First, to detect cell candidates 

using the LoG filter, comparison with ROI data confirmed via visual recognition revealed 
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results similar to the artificial data regarding footprint size and signal intensity, and footprint 

matching with the manual recognition result appeared together in the upper right (Fig. 6A). 

Using this distribution, cell candidates were selected as the initial conditions, and repeating the 

time and spatial steps covered all ROIs via visual recognition, although cell candidates that 

could not be confirmed via visual recognition remained (Fig. 6B). 

By applying the iterative algorithm from the obtained initial condition, results including 18 

cell candidates in addition to 84 manually obtained cells were obtained (Fig. 6C). In addition, 

almost the same number of cells was detected when more initial candidates were selected or 

even when the sparseness parameter was changed (Fig. 6D).  

DISCUSSION 
In this paper, we proposed a footprint initialization method and baseline shrinkage estimation 

for the CNMF framework and its efficient calculation method. The latter method stabilizes the 

convergence when repeating time and space steps and confirms that the robustness of the result 

is obtained. The proposed method is considered effective for several other methods already 

proposed in the CNMF framework. Conversely, it is also expected that further improvements in 

accuracy can be obtained by introducing a local background. In our current implementation, 

FISTA was used as a solver of the sparse model, but it is expected that higher speed can be 

achieved using alternating direction method of multipliers (ADMM) or linearized ADMM, 

which can make good use of the relationship between the spike and calcium. Simultaneous 

estimation of prior parameters can be performed using LARS, but it is not necessarily effective 

in terms of reducing the calculation time because of the relatively large number of nonzero 

elements. 
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Figure 1. 

Explanation of the model concept using artificial data. Observed motion picture data are 

presented. The maximum value of imaging data was obtained in the time direction. Contour 

diagrams were overlaid onto cell shape data. Expanding a part of C. The spike activity and 

change in the calcium concentration in each cell are presented, in addition to the time series 

observed for each cell. Gray denotes the position of the peak. Green denotes the average value 

by region of interest. 
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Figure 2. 

Detection of cell candidates. (A) Example frame of data. (B) Filtered images of (A) using the 

Laplacian of Gaussian filter with 2-, 4-, 6-, 8-, and 10-pixel scales. (C) Peaks of (B) in three 

dimensions (position and scale). (D) Peaks in all frames. (E) The scale and strength of peaks are 

distributed into two groups, and the color illustrates the cosine similarity to the grand truth cell 

footprint. (F) Randomly selected footprints corresponding to peaks in (E). (G) Area size and 

peak strength of the footprints in (F). (H) Selected footprints by the line indicated in (G). 
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Figure 3. 

Spatial and temporal components are iteratively improved by enhanced constrained 

nonnegative matrix factorization. (A) Grand truth of four cells. (B) Initial footprints. (C) 

Observed activities averaged over initial footprint. (D) Estimated calcium activities from 

observed activities with the information of overlap. (E) Reconstructed footprints. Even a 

footprint with a weak correlation (cyan) can be reconstructed using the temporal and spatial 

steps. Contrarily, false positives (i.e., yellow) are automatically removed. 
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Figure 4. 

Convergence in multiple iterative steps. (A) False positives were eliminated by repeating the 

iteration (initial state, 2-, 4-, 6- and 8-th iteration, respectively). (B) Correlation to the grand 

truth. (C) Results of different parameter settings. (D–E) Results without shrink estimation 

corresponding to (B) and (C). Without shrink estimation of the baseline, false positives were not 

eliminated, and correlation with the grand truth was decreased. 
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Figure 5. 

Accuracy of the estimation of calcium activities. The activities to three overlapped cells can 

be reconstructed by removing crosstalk from the observed signals. The peak-to-noise ratio of 

three cells are 1.32, 1.18 and 1.36, respectively. 
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Figure 6. 

Result for hippocampus data. Peak and footprint detection using the Laplacian of Gaussian 

filter. (A) Distribution of cell sizes and peak signal intensities. (B) Selected cell candidates. 

(C-D) Footprint and time series obtained as the final result are presented. (E) The calculation 

was repeated while changing the initial state. 

 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 9, 2017. ; https://doi.org/10.1101/215145doi: bioRxiv preprint 

https://doi.org/10.1101/215145


 

15 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Hippocampal CA1 data 

All procedures involving the use of animals complied with the guidelines of the National 

Institutes of Health, and they were approved by the Animal Care and Use Committee of the 

University of Toyama and the Institutional Committee for the Care and RIKEN Animal 

Experiments Committee and Genetic Recombinant Experiment Safety Committee. 

Thy1::G-CaMP7-T2A-DsRed2 mice that express the fluorescent calcium indicator protein 

G-CaMP7 and the red fluorescent protein DsRed2 under the control of the neuron-specific Thy1 

promoter were used. Details on the generation and characterization of the transgenic mice will 

be described elsewhere (Sato et al., submitted). The mice were maintained on a 12-h/12-h 

light-dark cycle (lights on 7:00 am) at 24 ± 3°C and 55 ± 5% humidity, provided ad libitum 

access to food and water, and housed with littermates until 1–5 days before surgery. 

We performed hippocampal surgery for gradient refractive index (GRIN) relay lens setting as 

previously described (Barretto, et al., 2011; Ghosh, et al., 2011; Ziv, et al., 2013). All surgeries 

were conducted on approximately 12-week-old male Thy1::G-CaMP7-p2A-DsRed mice on a 

C57BL/6J background. Mice were anesthetized with a pentobarbital solution (80 mg/kg of body 

weight; intraperitoneal injection), and the fully anesthetized mice were placed in a stereotactic 

apparatus (Narishige, Japan). To set the cannula lens sleeve (outer diameter, 1.8 mm; length, 3.6 

mm; Inscopix, CA), craniotomy was performed with a diameter of 2.0 mm. The cylindrical 

column of the neocortex and corpus callosum above the alveus covering the dorsal 

hippocampus was aspirated using a 27-gauge blunt drawing up needle with saline. The cannula 

lens sleeve was gently placed on the alveus and fixed to the edge of the burr hole with bone wax, 

which was melted using a low-temperature cautery. The cannula lens sleeve targeted the right 

hemisphere (AP 2.0 mm, ML 1.5 mm at center). After setting the anchor screws onto the skull, 

we covered the skull with dental cement, which fixed the cannula lens sleeve to the skull and 

anchor screws. 

Approximately 3–4 weeks after surgery, mice were anesthetized with isoflurane (1.5–2%), 

and a GRIN lens (outer diameter, 1.0 mm; length, 4.0 mm; Inscopix) was inserted into the 

cannula lens sleeve and fixed with ultraviolet-curing adhesive (Norland, NOA 81). The 

integrated microscope (nVista HD, Inscopix) (Ghosh, et al., 2011) with a microscope baseplate 

(Inscopix) was placed above the GRIN lens, at which G-CaMP7 fluorescence was observed. 

The microscope baseplate was fixed with the head of the anchor screw using dental cement, via 
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which the GRIN lens was shaded, after which the integrated microscope was detached from the 

baseplate. The GRIN lens was covered by attaching the microscope baseplate cover to the base 

plate until calcium imaging was performed. 

Calcium imaging was performed during the light cycle, and calcium events were captured at 

20 Hz using nVista acquisition software (Inscopix). The integrated microscope was re-attached 

to the baseplate, and then mice were introduced into a novel context consisting of a cylindrical 

chamber (diameter × height: 180 × 230 mm2) with a white acrylic floor and walls covered with 

black tape. The captured movie was processed as previously described (Kitamura, et al., 2015). 

After motion correction using Mosaic software (Inscopix) and division of each image on a 

pixel-by-pixel basis using a low-passed [r = 20 pixels] filtered version on ImageJ, the dF/F 

signal movie was prepared using Mosaic software. 

To manually detect calcium signals in each cell, ROIs for cell locations were selected using 

Mosaic software. 

METHOD DETAILS 

Finding cell candidates from movie data using LoG filters 

The recoded movie data can be represented by the matrix 𝑓",$ ∈ ℝ'×), where 𝑇 is the 

number of frames and 𝑋 is the number of pixels in the target area. To detect cell-like blobs in 

each frame, we applied a scale-normalized LoG filter with multiple scales and searched local 

peaks larger than threshold 𝜃𝜎. as LoG2 𝑖, 𝑗 = 6
728

98:;8

<28
− 1 exp − 98:;8

<28
, 

𝑧 𝑡, 𝑠, 𝑖, 𝑗 = 𝑓" 𝑖, 𝑗 ∗ LoG2 𝑖, 𝑗 , 

where the position is denoted as 𝑥 = 𝑖, 𝑗 , 𝜃 is the S/N ratio, and 𝜎. is the noise level 

estimated using the following equation: 

𝜎.< = 𝑇𝑋 G61",$ 𝑓",$ − 𝑋G61$,$H𝑓",$H − 𝑇G61","H𝑓"H,$ − 𝑇𝑋 G61","H,$,$H𝑓"H,$H
<
. 

Note that the representation of the sum in the same index is omitted by the notation of the 

tensor. 

Then, duplicated peaks were removed from all detected peaks, and the footprints were 

segmented around the peak. Finally, we can choose cell candidates according to the footprint 

size and peak intensity using the following procedure. 

１For each 𝑡 

１-１Find local peaks 𝑡, 𝑠, 𝑖, 𝑗 𝑠, 𝑖, 𝑗 	is	local	maximum	of	𝑧 𝑡, 𝑠, 𝑖, 𝑗 , 𝑧 𝑡, 𝑠, 𝑖, 𝑗 > 𝜃𝜎.  
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２Remove duplicated peaks 

２-１Sort detected peaks 𝑡∗, 𝑠∗, 𝑖∗, 𝑗∗  by signal strength z 𝑡∗, 𝑠∗, 𝑖∗, 𝑗∗  

２-２Initialize 𝑚𝑎𝑠𝑘 𝑖, 𝑗 ← 0 

２-３Pop 𝑡∗, 𝑖∗, 𝑗∗, 𝑠∗ , to step 3 if empty 

２-４If 𝑚𝑎𝑠𝑘 𝑖, 𝑗 = 0, then select and 𝑚𝑎𝑠𝑘 𝑖, 𝑗 ← 1 for neighbor 𝑖, 𝑗  of 𝑖∗, 𝑗∗   

３Obtain the footprint from the peak 𝑡∗, 𝑠∗, 𝑖∗, 𝑗∗  using a watershed-like algorithm 

３-１-１Push 𝑖∗, 𝑗∗  to the list 

３-１-２Pop 𝑖, 𝑗  with the largest 𝑡∗, 𝑠∗, 𝑖, 𝑗  while list is not empty 

３-１-３Push neighbor pixels 𝑖Z, 𝑗Z  of 𝑖, 𝑗  if 0 < 𝑧 𝑖Z, 𝑗Z ≤ 𝑧 𝑖, 𝑗  

Mathematical model for calcium imaging data 

We assumed that the imaging field contained a total number of 𝐾 neurons. The cell activity 

of the 𝑘-th neuron is the direct product of the nonnegative “spatial footprint” 𝑎^,$  and 

“temporal fluorescence intensity” 𝑣^," for this neuron. The movie signal 𝑓",$ is observed as 

the sum of the baseline 𝑏",$ and the cell activities 𝑎^,$𝑣^," with noise 𝜀",$ as follows: 

𝑓",$ = 1",$𝑏 + 1$𝑏" + 1"𝑏$ + 𝑎^,$𝑣^," + 𝜀",$, 𝜀",$ ∼ 𝒩(0, 𝜎<), 

where 𝜀",$ obeyed the normal distribution with variance 𝜎<. 

We assumed that the baseline signal level of the calcium imaging data could be separated into 

constant 𝑏., temporal 𝑏g, and spatial 𝑏$	components as follows: 

1"𝑏" = 1$𝑏$ = 0, 𝑎^,$ ≥ 0, max
$

𝑎^,$ = 1. 

The temporal component 𝑣^,"  is the impulse response 𝑔",j  of the nonnegative spiking 

activity 𝑢^,j. The calcium sensitivity to the spike signal is denoted by 𝑠^. 

𝑔",j = 𝑒Gmn "Gj − 𝑒Gm8 "Gj 0 ≤ 𝑡 − 𝜏 ≤ 𝐺
0 others

 

𝑣^," = 𝛿^,^H𝑔",j𝑢^H,j, 𝑢^,j ≥ 0. 

Baseline prior 

We assumed a normal distribution as a prior distribution of the baseline for both time and 

space. The variance of the prior distribution is set to a constant multiple of the error variance as 

follows:  

𝑏" ∼ 𝒩 0, 𝜆'G6
𝜎<

𝑋
, 𝑏$ ∼ 𝒩 0, 𝜆)G6

𝜎<

𝑇
, 

At this time, the log posterior distribution becomes 
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log 𝑝 𝑓 𝜎, 𝑏, 𝑎, 𝑢 + log 𝑝 𝑏 = const −
𝑇𝑋 + 𝑇 + 𝑋

2
log 𝜎< 

− 6
<z8

1",$	 1",$𝑏 + 1$𝑏" + 1"𝑏$ + 𝑎^,$𝑣^," − 𝑓",$
<
− ){|

<z8
1"𝑏g< −

'{}
<z8

1$𝑏$<, 

and minimizing this by 𝑏∗ and 𝜎∗ results in the following: 

log 𝑝 𝑓 𝜎∗, 𝑏∗, 𝑎, 𝑣 + log 𝑝 𝑏∗ = const −
𝑇𝑋 + 𝑇 + 𝑋

2
log 𝐸 𝑎, 𝑣  

where 

𝑑",$ = 𝑎^,$𝑣^," − 𝑓",$, 𝑏 = 𝑇𝑋 G61",$𝑑",$,	 

𝑏g = 1 + 𝜆' G6𝑋G6 1$ − 𝑇G61",$ 𝑑",$, 𝑏$ = 1 + 𝜆) G6𝑇G6 1" − 𝑋G61",$ 𝑑",$ 

𝜎< =
𝐸 𝑎, 𝑣

𝑇𝑋 + 𝑇 + 𝑋
, 

𝑐. = 1, 𝑐' =
𝜆'
𝑋
, 𝑐) =

𝜆)
𝑇
, 𝑐') =

𝜆' + 𝜆) − 1
𝑇𝑋

, 

𝐸 𝑎, 𝑣 = 𝑓",$𝑓",$ − 2𝑓",$𝑎^,$𝑣^," + 𝑐.𝑎^,$𝑎^H,$𝑣^,"𝑣^H," 

−𝑐'1$,$H 𝑓",$𝑓",$H − 2𝑓",$𝑎^,$H𝑣^," + 𝑎^,$𝑎^H,$H𝑣^,"𝑣^H," . 

−𝑐)1","H 𝑓",$𝑓"H,$ − 2𝑓",$𝑎^,$𝑣^,"H + 𝑎^,$𝑎^H,$𝑣^,"𝑣^H,"H  

+𝑐')1","H,$,$H 𝑓",$𝑓"H,$H − 2𝑓",$𝑎^,$H𝑣^,"H + 𝑎^,$𝑎^H,$H𝑣^,"𝑣^H,"H . 

Main solving problem 

Our main solving problem can be simply defined as 

𝐿 =
𝑇𝑋 + 𝑇 + 𝑋

2
log 𝐸 𝑎, 𝑔𝑢 + 𝜆� 𝑎 + 𝜆� 𝑢 , 

𝑎 ≥ 0, 𝑢 ≥ 0, max
$

𝑎^,$ = 1. 

The main problem can be solved via iterative temporal and spatial steps. We used an accelerated 

proximal gradient method called FISTA (Beck & Teboulle, 2009) for each step.  

Algorithms for temporal steps 

We used a normalized norm for the penalty term 𝜆� 𝑢  as 

𝑢 = 𝑈^1^,"𝑢^,", 𝑈^ =
1

max
"
𝑢^,"

. 

If we fixed 𝑎∗, the main solving problem could be simplified as 

𝐿 = 𝜙 𝑢 + 𝜓 𝑢 + const 

𝜙 𝑢 =
𝑇𝑋 + 𝑇 + 𝑋

2
log 𝐸 𝑎∗, 𝑔𝑢 , 𝜓 𝑢 = 𝜆�1j𝑈^𝑢^,j. 
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The target function 𝐿(𝑢) can be decreased via the update step of the proximal gradient method 

as 

𝑢 9:6 = argmin
�

∇𝜙 𝑢 9 �
𝑢 + 𝜓 𝑢 +

1
2𝜂(9)

𝑢 − 𝑢 9 <
. 

The right term can be divided into the element-wise function 

𝑢^,j
9:6 = max 0, 𝑢^,j

9 − 𝜂(9) 𝑟 ,j
9 + 𝜆�1j𝑈^

(9) , 

where 

𝑟 ,j
9 = ∂^,j𝜙 𝑢 9 =

𝑇𝑋 + 𝑇 + 𝑋
2𝐸 𝑎∗, 𝑔𝑢 9 ∂^,j	𝐸 𝑎∗, 𝑔𝑢 9

=
𝑇𝑋 + 𝑇 + 𝑋
2𝐸 𝑎∗, 𝑔𝑢 9 𝑔",j 𝜉^,^H𝑔",jH𝑢^H,jH

9 − 𝜁^,"  

and  

𝜉^,^H = 𝛿","H 𝑐.𝑎^,$𝑎^H,$ − c61$,$H𝑎^,$𝑎^H,$H − 1","H c<𝑎^,$𝑎^H,$ + 𝑐�1$,$H𝑎^,$𝑎^H,$H , 

𝜁^," = 𝑐.𝑓",$𝑎^,$ − c61$,$H𝑓",$𝑎^,$H − 𝑐<1","H𝑓"H,$𝑎^,$ + c�1","H,$,$H𝑓"H,$𝑎^,$H. 

Algorithms for the spatial steps 

If we fix 𝑢∗, the main solving problem can be simplified as 

𝑎 = 𝑠𝑎, 𝐴^ =
1

max
$

𝑎^,$
 

𝐿 = 𝜙 𝑎 + 𝜓 𝑎 + const 

The target function 𝐿(𝑎) can be decreased via the update step of the proximal gradient method 

as 

 

𝜙 𝑎 =
𝑇𝑋 + 𝑇 + 𝑋

2
log 𝐸 𝑎, 𝑔𝑢∗ , 𝜓 𝑎 = 𝜆�1$𝐴^𝑎^,$ 

The right term can be divided into an element-wise function as follows: 

𝑎 9:6 = argmin
�

∇𝜙 𝑎 9 �
𝑎 + 𝜓 𝑎 +

1
2𝜂(9)

𝑎 − 𝑎 9 <
, 

𝑎^,$
9:6 = max 0, 𝑎^,$

9 − 𝜂(9) 𝑟 ,$
9 + 𝜆�1$𝐴^

(9) , 

where 

𝑟 ,$
9 = ∂^,$𝜙 𝑎 9 =

𝑇𝑋 + 𝑇 + 𝑋
2𝐸 𝑎(9), 𝑔𝑢∗

∂^,$	𝐸 𝑎(9), 𝑔𝑢∗ =
𝑇𝑋 + 𝑇 + 𝑋
2𝐸 𝑎(9), 𝑔𝑢∗

𝜉^,^H𝑎^H,$
(9) − 𝜁^,$  
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and 

𝜉^,^H = 𝛿","H 𝑐.𝑎^,$𝑎^H,$ − c61$,$H𝑎^,$𝑎^H,$H − 1","H c<𝑎^,$𝑎^H,$ + 𝑐�1$,$H𝑎^,$𝑎^H,$H , 

𝜁^," = 𝑐.𝑓",$𝑎^,$ − c61$,$H𝑓",$𝑎^,$H − 𝑐<1","H𝑓"H,$𝑎^,$ + c�1","H,$,$H𝑓"H,$𝑎^,$H. 

Segment footprints 

Despite not introducing a spatial structure in the optimized model, the result obtained in the 

space step is suitable as the footprint of the cell. Nonetheless, increased restriction of the cell 

area makes the iterative convergence more stable. In this study, the cell area was limited using 

the same LoG filter and segment method as described for the initialization. However, in the 

initialization, the output was also set to the value of the LoG filter. In this case, the result of the 

calculation of the region using the LoG filter was used as the image mask for the originally 

estimated footprint. 

Remove false positives and merge existing components 

It is possible to aggressively eliminate cell candidates using the difference of the score. When 

the score is increased by removing cell candidate 𝑘, we can remove 𝑘 as follows: 

𝑇𝑋 + 𝑇 + 𝑋
2

log
𝐸 𝑎G^, 𝑔𝑢G^
𝐸 𝑎, 𝑔𝑢

< 𝜆� 𝑎^ 6 + 𝜆� 𝑢^ 6. 

We can also merge similar components. The merged component of 𝑙  and 𝑚  can be 

obtained via simple NMF as follows: 

𝑎�, 𝑣� = argmin
�,�

𝑎𝑣 − 𝑎�𝑣� − 𝑎�𝑣� < , 𝑎� > 0, 𝑣� > 0, max
$

𝑎�,$ = 1. 

We can replace the cell candidate pair 𝑙, 𝑚 to the merged components 𝑛 when the score 

increases as follows: 

𝑇𝑋 + 𝑇 + 𝑋
2

log
𝐸 𝑎�,�→�, g𝑢�,�→�

𝐸 𝑎, g𝑢

< 𝜆� 𝑎� 6 + 𝑎� 6 − 𝑎� 6 + 𝜆� 𝑢� 6 + 𝑢� 6 − 𝑢� 6 . 

Overall framework 

1. Initial footprints  

2. Temporal step 

3. Spatial step 

4. Segment footprints 

5. Temporal step 

6. Remove small candidates (optional) 
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7. Merge similar candidates (optional) 

8. Return to 3 if not converged 

At this point, we will explain the process used to numerically solve the aforementioned 

temporal and spatial steps. These technical issues are not essential for the accuracy of the 

obtained solutions, but they are crucial for efficiently solving the time-consuming maximization 

problem for a large data set.  

Solving the primary duality problem is a standard method for solving a maximization 

problem in the presence of constraints. In this method, we switch the roles of the primary 

objective functions and the constraints, noting that the maximization with respect to the model 

parameters and the minimization with respect to Lagrange multipliers should occur 

simultaneously at the optimal point. 

Parameter settings 

We roughly approximate the prior parameter of the temporal component 𝜆� using ratio 

between the sampling 𝑆 and typical firing rate 𝑅 as follows: 

𝑃 𝑢 = 0 =
𝑆 − 𝑅
𝑆

, 𝑃 𝑢 = 1 =
𝑅
𝑆
, 𝜆� = 	 log

𝑆 − 𝑅
𝑅

. 

The prior parameter of the spatial components was approximated using the ratio between the 

total number of pixels 𝑋 and typical footprint size 𝐴 as follows: 

𝑃 𝑎 = 0 =
𝑋 − 𝐴
𝑋

, 𝑃 0 < 𝑎 ≤ 1 =
𝐴
𝑋
, 𝜆� = 2 log

𝑋 − 𝐴
𝑋

. 

Complexity analysis 

In the spatial step, the time cost is mainly determined by two components, namely 𝑂 𝐾𝑇𝑋  

for calculating 𝑓",$𝑎^,$ and 𝑂 𝐼𝐾<𝑋  for iteratively calculating 𝜉^,^H𝑎^H,$
(9) − 𝜁^,$. The number 

of iterations is always smaller than 20 for both simulated and real data. 

In the temporal step, the update procedure includes an additional step to translate from u to v 

via the impulse response of length G. Therefore, the time cost is 𝑂 𝐾𝑇𝑋 + 𝐼𝐾<𝑇 + 𝐼𝐾𝐺𝑇 . 

The number of iterations is always smaller than 200 for both simulated and real data. 

Implementation 

All analyses were performed with custom-written Python code using numpy/scipy (van der 

Walt, et al., 2011) and scikit-image (van der Walt, et al., 2014) packages. The implementation 

uses Dask (Dask Development Team, 2016; Rocklin, 2015), MKL (Intel), and TBB (Intel) for 

parallelized effective computation. 
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Simulation data 

In the simulation data for Fig. 1 to Fig. 5, we simulated 200 cells in 12,000 frames of 300 × 

300 pixels. Firing rates of cells followed a log-normal distribution (𝜇^~𝐿𝑁 0.5,0.4 ) and the 

number of spikes were between 24–283. The peak-to-noise ratio also followed a log-normal 

distribution (𝑠^~𝐿𝑁 1,0.2 ) and were between 0.7–2.1 as a result. The footprints were two 

dimensional Gaussian function of random center and uniform distributed standard deviation 

(4-6 pixel). The spatial and temporal baseline were quadratic and sinusoidal function, 

respectively and the simulated data can be described as 𝑓",$,¡ = 𝑎^,$,¡𝑣^," −
$8:¡8

¢.8
+ sin 𝑡 +

𝜀",$,¡. 
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