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Abstract	(150	words)	 	

Interpretation	and	execution	of	 complex	 sequences	 is	 crucial	 for	 various	 cognitive	 tasks	

such	as	language	processing	and	motor	control.	The	brain	solves	this	problem	arguably	by	

dividing	 a	 sequence	 into	discrete	 chunks	of	 contiguous	 items.	While	 chunking	has	 been	

accounted	 for	 by	 predictive	 uncertainty,	 alternative	 mechanisms	 have	 also	 been	

suggested,	 and	 the	 mechanism	 underlying	 chunking	 is	 poorly	 understood.	 Here,	 we	

propose	 a	 class	 of	 unsupervised	 neural	 networks	 for	 learning	 and	 identifying	 repeated	

patterns	 in	 sequence	 input	with	 various	 degrees	 of	 complexity.	 In	 this	model,	 a	 pair	 of	

reservoir	 computing	modules,	 each	of	which	 comprises	 a	 recurrent	 neural	 network	 and	

readout	units,	supervise	each	other	to	consistently	predict	others’	responses	to	frequently	

recurring	segments.	Interestingly,	this	system	generates	neural	responses	similar	to	those	

formed	 in	 the	 basal	 ganglia	 during	 habit	 formation.	 Our	 model	 extends	 reservoir	

computing	 to	 higher	 cognitive	 function	 and	 demonstrates	 its	 resemblance	 to	 sequence	

processing	by	cortico-basal	ganglia	loops.	
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Introduction	

When	a	sequence	of	stimuli	is	repeated,	these	stimuli	may	be	segmented	and	then	bound	

together	 into	 “chunks”	 that	 are	 stored	 and	 processed	 as	 single	 units.	 Chunking	 or	

"bracketing"	(Graybiel,	1998)	appears	in	various	cognitive	behaviors	that	require	sequence	

processing	 (Miller,	 1956;	 Ericcson	 et	 al.,	 1980;	 Sakai	 et	 al.,	 2004;	 Orban	 et	 al.,	 2007;	

Christiansen	 and	 Chater,	 2016).	 For	 instance,	 in	 language	 acquisition	 continuous	 vocal	

sounds	are	segmented	into	recurring	groups	of	contiguous	sounds	 that	 are	 processed	 as	

words	 (Builatti	 et	 al.,	 2009;	 Estes	 et	 al.,	 2007;	 Gentner	 et	 al.,	 2006).	 A	 sequence	 of	

movements	 may	 be	 executed	 as	 one	 compound	 movement	 after	 repetitive	 practice,	

which	 is	 thought	to	be	the	formation	of	motor	habits	 (Fujii	and	Graybiel,	2003;	Graybiel	

1998;	Jin	et	al.,	2014;	Smith	and	Graybiel,	2013).	 In	the	context	of	sequence	generation,	

chunking	is	thought	to	reduce	the	complexity	of	sequence	processing	and	the	associated	

cost	(Miller	1956;	Ramkumar	et	al.,	2016;	Verwey	and	Abrahamse,	2012).	Thus,	chunking	

constitutes	 a	 crucial	 step	 in	 representing	 the	 hierarchical	 structure	 of	 sequential	

knowledge	(Dehaene	et	al.,	2015).	

However,	 chunking	 is	 still	 a	 challenge	 in	 neural	 computation.	 Chunking	 has	 been	

thought	to	occur	through	two	processes.	Long	and	complex	sequences	are	first	segmented	

into	 shorter	 and	 simple	 sequences.	 Then,	 frequently	 repeated	 segments	 may	 be	

concatenated	 into	 a	 single	 unit	 (Wymbs	 et	 al.,	 2012).	 Various	mechanisms	 of	 chunking	

have	 been	 proposed	 based	 on	 Bayesian	 computation	 (Orban	 et	 al.,	 2007;	 Kiebel	 et	 al.,	

2009),	statistical	learning	guided	by	prediction	errors	(Reynolds	et	al.,	2007),	a	bifurcation	

structure	 in	 nonlinear	 dynamical	 systems	 (stable	 heteroclinic	 orbits)	 (Rabinovich	 et	 al.,	

2014;	 Fonollosa	 et	 al.,	 2015),	 and	 even	 a	 neuromorphic	 hardware	 has	 been	 proposed	

(Guoqi	et	al.,	2016).	However,	whether	a	bifurcation	theoretic	mechanism	enables	flexible	

chunking	 of	 complex	 sequences	 remains	 elusive	 and	 a	 recent	 experiment,	 as	 explained	

below,	has	suggested	a	prediction-free	mechanism	(Schapiro	et	al.,	2013).	Therefore,	the	

neural	mechanisms	of	flexible	chunk	formation	remain	unclear.	 	 	 	 	 	
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A	widely	accepted	hypothesis	 is	 that	 chunking	 relies	on	prediction	errors	or	 surprise.	

Evidence	 supporting	 this	 hypothesis	 is	 typically	 obtained	 from	 studies	 of	 mismatch	

negativity,	 a	 brain	 signal	 (such	 as	 electoencepharogram	 and	 functional	 magnetic	

resonance	imaging)	indicating	the	detection	of	deviance	from	a	regular	temporal	pattern	

of	 sensory	 stimuli	 (Bekinschtein	 et	 al.,	 2009;	 Chait	 et	 al.,	 2012;	 Schröger	 et	 al.,	 2014;	

Wacongne	et	al.,	2012;	Uhrig	et	al.,	2014;	Näätänen,	2003;	Garrido	et	al.,	2009;	Kremláček	

et	al.,	2016).	It	is	likely	that	deviant	stimuli	are	detectable	if	the	brain	has	a	prediction	on	

the	 stimulus	 pattern.	 In	 other	 words,	 the	 brain	 should	 know	 the	 recurring	 sequence	

patterns	before	 it	can	perceive	deviance.	Actually,	the	brain	can	detect	the	repetition	of	

patterns	in	random	sequences	(Huettel	et	al.,	2002;	Romberg	and	Saffran,	2013),	and	it	is	

likely	 that	 a	 common	 neural	 mechanism	 may	 underlie	 chunking	 and	 such	 a	 pattern	

detection.	 In	 fact,	 chunking	 favors	 an	 account	 based	 on	 the	 temporal	 community	

detection,	 in	 which	 the	 stimuli	 that	 frequently	 go	 together	 are	 grouped	 into	 a	 chunk	

(Schapiro	et	al.,	2013).	However,	 the	underlying	mechanism	of	those	cognitive	functions	

largely	remains	unclear.	 	

In	this	study,	we	propose	a	novel	mechanism	of	unsupervised	chunk	learning	without	

relying	on	prediction	errors.	To	this	end,	we	utilize	a	recurrent	network	model	for	cortical	

computation	 (Maass	 et	 al,	 2002;	 Jaeger	 and	Haas,	 2004).	We	 extend	 the	 framework	 of	

reservoir	 computing	 (RC)	 to	 unsupervised	 learning.	 RC	 consists	 of	 a	 recurrent	 neural	

network,	 readout	 units,	and	 feedforward	 and	 feedback	 projections	 between	 them,	 and	

undergoes	supervised	learning	in	its	original	form	(Sussillo	and	Abbott,	2009).	The	key	of	

our	 proposal	 is	 to	 use	 a	 pair	 of	 independent	 RC	 modules	 that	 supervise	 each	 other.	

Sequence	 leaning	 with	 RC	 has	 been	 extensively	 studied	 in	 motor	 control	 (Laje	 and	

Buonomano,	2013;	Shenoy	et	al.,	2011;	Sussillo	et	al.,	2015)	and	decision	making	(Mante	

et	al.,	2013;	Carnevale	et	al.,	2015),	and	theoretical	extensions	have	also	been	proposed,	

for	 instance,	 to	 spiking	 neuron	 networks	 (Abbott	 et	 al.,	 2016)	 and/or	 reward-based	

learning	 (Hoerzer	 et	 al.,	 2014).	 In	 our	model,	 teaching	 signals	 necessary	 for	 supervised	
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learning	 are	 provided	 by	 the	 partner	 networks,	 and	 consequently	 the	 entire	 RC	 system	

learns	 in	 an	 unsupervised	 fashion	 to	 extract	 various	 irregularly	 recurring	 patterns	 in	

complex	sequences.	

Another	 biological	 implication	 of	 our	 model	 is	 that	 it	 self-organizes	 task-related	

activities	similar	to	those	formed	in	the	basal	ganglia	during	motor	habit	formation.	Some	

striatal	neurons	respond	selectively	to	the	first	(Start	cells)	or	the	last	(Stop	cells),	or	both,	

element	of	a	motor	sequence	after	a	repetitive	training	of	sequence	execution	(Jin	et	al.,	

2014;	 Smith	 and	Graybiel,	 2013).	 Because	 all	 the	 elements	 of	 the	 sequence	 are	 equally	

represented	in	the	striatum	before	training,	the	Start/Stop	cells	are	thought	to	encode	the	

motor	 chunks	 acquired	 by	 the	 training.	 Our	 model	 consistently	 replicates	 task-related	

neurons	similar	to	the	Stop	cells	through	learning	an	arbitrary	complex	sequence.	

	

RESULTS	

Reservoir	computing	modules	with	mutual	supervision	

To	demonstrate	the	basic	framework	of	our	model,	we	first	consider	the	case	where	input	

sequence	alternates	a	single	chunk	(i.e.,	a-b-c-d)	and	random	sequences	of	discrete	items.	

To	be	specific,	we	use	26	letters	of	the	English	alphabet	(e	to	z)	to	denote	these	items	(Fig.	

1a).	In	reality,	each	alphabet	may	correspond	to	a	brief	stimulus	in	any	sensory	modality	

such	 as	 a	 brief	 tone	 signal.	 The	 random	 sequence	 components	 are	 introduced	 to	

unambiguously	define	the	initial	and	end	points	of	a	chunk,	and	their	lengths	vary	in	every	

repetition	cycle	within	the	length	range	of	5	to	8.	Each	alphabet	causes	a	phasic	activation	

of	 synaptic	 current	 from	 the	 corresponding	 input	 neuron	 with	 slow	 rise	 and	 decay	

constants	(Fig.	1b).	

	 Our	network	model	comprises	 two	mutually	non-interacting	RC	modules,	each	

of	which	consists	of	a	recurrent	network	(reservoir)	of	rate-based	neurons	and	a	readout	

unit,	and	receives	an	 identical	 input	sequence	(Fig.	1c).	Each	reservoir	neuron	receives	a	
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selective	input	from	one	of	the	input	neurons.	However,	this	condition	is	not	essential	for	

chunking	 and	 can	 be	 relaxed,	 as	 shown	 later.	 Within	 each	 reservoir,	 all	 neurons	 are	

mutually	 connected	 and	 project	 to	 a	 readout	 unit,	 which	 projects	 back	 to	 all	 neurons	

belonging	 to	 the	 same	 reservoir.	 Note	 that	 the	 two	 reservoirs	 have	 different	 recurrent	

wiring	patterns	and	hence	are	not	identical.	Activity	of	each	readout	unit	z(t)	is	given	as	a	

weighed	 sum	of	 the	 activities	 r(t)	 of	 reservoir	 neurons	 projecting	 to	 the	 readout:	 z(t)	 =	

wTr(t).	Note	 that	one	 readout	unit	per	 reservoir	 is	 sufficient	 for	 learning	a	 single	chunk.	

We	will	consider	more	complex	cases	later.	The	weight	vector	w	is	modifiable	through	the	

FORCE	 learning	 algorithm	 (Sussillo	 and	 Abbott,	 2009),	 whereas	 recurrent	 and	 feedback	

connections	 are	 non-plastic	 because	 the	 model	 can	 solve	 the	 present	 task	 without	

modifying	these	connections.	The	 initial	states	of	 the	reservoirs	are	weakly	chaotic	as	 in	

the	 previous	model	 (Sussillo	 and	Abbott,	 2009).	 See	 the	Methods	 for	 the	 details	 of	 the	

model	and	the	values	of	parameters.	

	 A	unique	feature	of	the	present	model	is	that	the	output	of	each	readout	unit	is	

used	 as	 a	 teacher	 signal	 to	 train	 the	 readout	 weights	 of	 the	 other	 reservoir	 module,	

implying	 that	 the	 two	RC	modules	 supervise	 each	other.	As	 a	 consequence,	 though	 the	

FORCE	learning	per	se	is	a	supervised	learning	rule,	the	entire	network,	which	we	may	call	

"dual	 RC	 system",	 is	 subject	 to	 unsupervised	 leaning	 because	 teaching	 signals	 originate	

from	the	system	itself.	The	details	of	the	teaching	signals	will	be	shown	later.	

	

Chunk	learning	from	a	random	sequence	

The	design	of	teaching	signals	is	the	key	for	successful	chunk	learning	in	the	present	model.	

The	 teaching	 signals	 should	 be	 symmetric	 with	 respect	 to	 the	 interchange	 of	 the	 two	

readout	units,	and	should	be	determined	such	that	the	two	systems	stop	 learning	when	

the	 two	 readout	 units	 output	 similar	 response	 patterns.	 In	 other	 words,	 the	 teaching	
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signals	eventually	become	identical	between	the	two	RC	modules	during	the	learning.	The	

following	teaching	signals	  𝑓! 	 enable	chunk	learning	in	the	proposed	dual	RC	system:	

𝑓! 𝑡 = [tanh (𝑧! 𝑡 /β)]! .  (𝑖, 𝑗 = 1, 2;  𝑖 ≠ 𝑗)	

where	 𝑧! 	 is	 the	 normalized	 output	 of	 the	 i-th	 readout	 unit	 (Methods),	 the	 threshold	

linear	function	[𝑥]+	returns	0	if	 𝑥≦0,	and	[𝑥]+	=	 𝑥	 if	 𝑥＞0,	and	the	constant	was	set	as	

𝛽 = 3.	 Defining	 error	 signals	 as	 𝑒! 𝑡 = 𝑧! 𝑡 − 𝑓! 𝑡 ,	 we	 train	 the	 pair	 of	 RC	modules	

through	 the	 FORCE	 learning	 algorithm	 until	 the	 error	 signals	 become	 sufficiently	 small	

(typically,	 about	 0.01)	 and	 the	 readout	 weights	 converge	 to	 equilibrium	 values	 (within	

small	fluctuations).	Note	that	the	sigmoidal	function	allows	the	system	to	learn	nontrivial	

solutions	 𝑧! 𝑡 ≠ 0,	 and	 also	 maintains	 the	 outputs,	 hence	 the	 teaching	 signals,	 finite	

during	learning.	The	threshold	linear	function	makes	the	outputs	positive.	These	nonlinear	

transformations	greatly	improved	the	performance	of	learning.	Importantly,	the	teaching	

signals	do	not	explicitly	contain	 information	about	the	structure	and	timing	of	chunks	 in	

input	sequence.	

	 This	dual	RC	system	converged	to	a	state	of	stable	operations	when	the	two	RC	

systems	 produced	 similar	 teaching	 signals	 (hence	 similar	 outputs)	 that	 were	 consistent	

with	the	temporal	structure	of	input	sequence	(Supplementary	Fig.	1).	The	readout	units	

didn’t	respond	to	the	chunk	before	learning	(Fig.	1d).	After	learning,	the	responses	of	the	

readout	units	were	tested	for	the	input	sequences	that	had	not	been	used	for	the	training.	

The	 test	 sequences	contained	the	same	chunk	“a-b-c-d”,	but	 the	 random	sequence	part	

was	 different.	 The	 readout	 units	 exhibited	 steady	 phasic	 responses	 time-locked	 to	 the	

chunk	 (Figs.	 1e).	 The	 readout	 activity	 piled	 up	 gradually	 in	 the	 beginning	 of	 the	 chunk,	

rapidly	 increased	 at	 its	 end,	 and	 then	 returned	 to	 a	 baseline	 level	 outside	 of	 it.	 The	

selective	 responses	 to	 the	 chunk	 was	 also	 successfully	 learned	 when	 each	 reservoir	

neuron	 was	 innervated	 by	 multiple	 input	 neurons.	 As	 shown	 in	 Fig.	 1f,	 the	 system	

succeeded	 in	 learning	 when	 10%	 and	 40%	 of	 input	 neurons	 projected	 to	 a	 reservoir	

neuron,	but	failed	when	the	fraction	was	70%.	Thus,	the	responses	of	individual	reservoir	
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neurons	 should	 be	 sufficiently	 independent	 of	 each	 other	 to	 robustly	 capture	 the	

recurrence	of	chunks.	 	

	

Learning	of	multiple	chunks	

We	 can	 extend	 the	 previous	 learning	 rule	 for	 the	 learning	 of	 multiple	 chunks	 without	

much	 difficulty.	 To	 show	 this,	 we	 now	 embedded	 three	 chunks	 into	 a	 random	 input	

sequence	 (Fig.	 2a).	 The	 three	 chunks	 had	 the	 same	 occurrence	 probability	 of	 1/3.	 To	

process	this	complex	input	sequence,	we	made	two	modifications	in	the	previous	model.	

First,	 each	 reservoir	 was	 now	 connected	 to	 three	 readout	 units	 (z1,	 z2,	 z3	 for	 the	 1st	

reservoir	and	z4,	z5,	z6	for	the	2nd	reservoir)	each	responsible	for	the	learning	of	one	of	the	

three	chunks	(Fig.	2b).	Second,	we	modified	teaching	signals	as	follows:	 	

𝑓!(𝑡) = [tanh ((𝑧! 𝑡 −  𝛾 𝑧!(𝑡)
!!!,!,! 

)/β)]!   (𝑎 = 1,2,3)   	

𝑓!(𝑡) = [tanh ((𝑧! 𝑡 −  𝛾 𝑧!(𝑡)
!!!,!,!

)/β)]!   (𝑏 = 4,5,6)   	

where	 constant	 𝛾	 was	 set	 as	 0.5	 and	 the	 indices	 represent	 the	 exchanges	 of	 teaching	

signals	between	the	RC	modules.	These	teaching	signals	are	symmetric	with	respect	to	the	

permutation	 of	 indices	 per	 reservoir	 and	 allow	 each	 output	 unit	 to	 adopt	 to	 a	 specific	

chunk.	 A	 further	 extension	 of	 the	 learning	 rule	 to	 an	 arbitrary	 number	 of	 chunks	 is	

straightforward.	

	 As	in	the	case	with	a	single	chunk,	all	readout	units	displayed	a	ramping	activity	

selective	to	a	specific	chunk,	signaling	a	successful	chunk	learning	(Fig.	2c).	The	question	

then	 arises	 whether	 the	 RC	 system	 could	 learn	 the	 multiple	 chunks	 as	 they	 were	

temporally	separated	by	random	sequences.	To	show	this	is	not	the	case,	we	trained	the	

model	 by	 using	 input	 sequences	 in	 which	 three	 chunks	 appear	 randomly	 and	

consecutively	with	equal	probabilities	without	any	interval	of	random	sequences	(Fig.	2d).	
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The	same	RC	system	as	before	could	easily	learn	the	multiple	chunks	(Fig.	2e).	A	notable	

difference	 was	 that	 outside	 of	 the	 chunks	 the	 readout	 activity	 decayed	 faster	 for	 the	

undisturbed	sequences	than	for	the	temporally	separated	ones	(Fig.	2f).	 In	fact,	 learning	

proceeded	a	little	faster	for	the	former	sequences	(Fig.	2g),	suggesting	that	the	learning	is	

more	effective	when	chunks	are	not	disrupted	by	random	sequences.	

	

Selective	recruitment	of	reservoir	neurons	for	chunk	learning	

Next,	 we	 investigate	 how	 the	 activities	 of	 reservoir	 neurons	 encode	 chunks.	 Here,	 the	

network	was	 trained	 on	 sequences	 containing	 three	 chunks	 and	 random	 sequences.	 In	

each	reservoir,	a	subset	of	neurons	selectively	responded	to	each	chunk	after	learning	(Fig.	

3a).	 We	 therefore	 classified	 reservoir	 neurons	 into	 three	 ensembles	 according	 to	 the	

selectivity	 of	 their	 responses	 to	 each	 chunk	 (Materials	 and	 Methods).	 Although	 some	

reservoir	 neurons	 responded	 to	 more	 than	 one	 chunk,	 we	 excluded	 them	 from	 the	

following	analysis	 for	 the	 sake	of	 simplicity.	Readout	weights	were	averaged	over	 these	

encoding	assemblies	and	their	time	evolution	during	learning	is	shown	in	Fig.	3b.	Through	

learning,	the	neural	ensemble	encoding	a	particular	chunk	developed	stronger	projections	

to	 the	 corresponding	 readout	 unit	 compared	 with	 the	 other	 neural	 ensembles.	

Consistently	with	this,	the	distribution	of	readout	weights	was	more	positively	skewed	in	

the	 encoding	 ensemble	 than	 in	 the	 non-encoding	 ensembles	 (Fig.	 3c).	 Moreover,	 a	

readout	 unit	 projected	 back	 to	 the	 corresponding	 encoding	 neuron	 ensemble	 more	

strongly	 than	 to	 the	other	ensembles	 (Fig.	 3d).	Because	 feedback	 connections	were	not	

modifiable,	 these	 results	 imply	 that	 readout	 connections	were	 strengthened	between	 a	

readout	 unit	 and	 the	 reservoir	 neurons	 that	 happened	 to	 receive	 relatively	 strong	

feedback	 from	 the	 readout	 unit.	 Furthermore,	 each	 neural	 ensemble	 received	 slightly	

stronger	inputs	from	the	specific	chunk	it	encoded,	which	determines	the	selectivity	of	the	

encoding	ensemble	(Fig.	3e).	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 9, 2017. ; https://doi.org/10.1101/215392doi: bioRxiv preprint 

https://doi.org/10.1101/215392
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

	

The	role	of	low-dimensional	network	dynamics	in	chunk	learning	

To	get	further	insight	into	the	mechanism	of	chunking,	we	explored	the	low-dimensional	

characteristics	of	the	dynamics	of	reservoir	networks.	In	our	model,	the	two	RC	modules,	

say	 R1	 and	R2,	 are	 thought	 to	mimic	 others,	 and	 this	would	 be	 possible	when	 the	 two	

recurrent	networks	receiving	the	same	input	sequence	well	predict	the	responses	of	other	

modules.	To	 see	how	 this	prediction	 is	 formed,	we	calculated	 the	principal	 components	

(PCs)	of	 recurrent	network	dynamics	 in	 the	example	 shown	 in	Fig.	1.	After	 learning,	 the	

lowest	 principal	 component	 (PC1)	 well	 approximated	 to	 the	 phasic	 response	 of	 the	

corresponding	 readout	unit	during	 the	presentation	of	chunks	 (Fig.	4a).	Accordingly,	 the	

direction	 of	 readout	 weight	 vector	 was	 more	 strongly	 correlated	 with	 that	 of	 PC1	

compared	 to	 other	 PCs	 (Fig.	 4b).	 These	 results	 suggest	 that	 the	 low-dimensional	

characteristics	of	neural	dynamics	play	a	pivotal	role	in	the	present	chunking.	

	 	 	 	 We	 then	asked	 to	what	extent	 the	 responses	of	R1	and	R2	are	 represented	by	 the	

low-dimensional	dynamical	characteristics	of	R1.	We	calculated	the	principal	components	

(PCs)	of	recurrent	network	dynamics	 in	R1,	and	expanded	 its	population	rate	vector	and	

readout	weight	vector	up	to	the	M-th	order	of	these	PCs	(M≦NG).	Then,	we	reconstructed	

the	output	of	R1	by	using	the	M-th	order	rate	vector	and	M-th	order	weight	vector	on	the	

low-dimensional	subspace	spanned	by	the	first	M	PCs	(Methods).	In	Fig.	4c,	we	calculated	

differences	between	 the	 reconstructed	R1-output	and	 the	 full	outputs	of	R1	 (within-self	

difference)	 and	 R2	 (between-partner	 difference).	 Before	 learning,	 both	 differences	

remained	 large	 as	M	 was	 increased.	 After	 learning,	 the	 “within-self”	 difference	 rapidly	

decreased	for	M	<	30-40	and	then	gradually	approached	to	zero.	The	“between-partner”	

difference	also	rapidly	dropped	for	relatively	small	values	of	M,	but	it	stooped	decreasing	

for	 M	 >	 50	 and	 remained	 at	 relatively	 large	 values.	 These	 results	 suggest	 that	 R1’s	

reservoir,	and	similarly	R2’s	reservoir,	learns	to	mimic	the	partner's	response	by	using	the	

low-dimensional	characteristics	of	its	recurrent	neural	dynamics.	
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Network-	and	chunk-size	dependences	of	learning	

Chunk	 learning	may	 be	 easier	 and	more	 accurate	 if	 chunks	 are	 shorter,	 but	 this	 is	 not	

necessarily	 the	case	 in	our	model.	 To	 see	 this,	we	measured	 learning	performance	with	

instantaneous	 correlations	 between	 the	 activity	 of	 a	 readout	 unit	 and	 a	 reference	

response	 pattern,	 which	 takes	 the	 value	 1	 during	 the	 presentation	 of	 a	 chunk	 and	 0	

otherwise.	 The	 correlations	 were	 calculated	 every	 15	 seconds	 during	 learning	 and	

averaged	 over	 20	 independent	 simulations.	 Note	 that	 the	 maximum	 value	 of	 the	

correlation	 is	 0.5	 if	 the	 readout	 activity	 grows	 linearly	 from	 0	 to	 1	 during	 the	 chunk	

presentation.	Figure	5a	shows	the	correlations	for	input	sequences	containing	a	short	or	a	

long	chunk	(the	length	4	or	7,	respectively)	 in	the	networks	of	various	sizes	(N	=	30,	300	

and	 500).	 The	 correlations	 were	 nearly	 zero	 before	 learning	 and	 reached	 to	 similar	

maximum	 values	 approximately	 within	 ten	 learning	 steps.	 The	 average	 values	 of	 the	

correlations	 were	 generally	 larger	 for	 chunk	 size	 4	 than	 for	 chunk	 size	 7,	 but	 the	

differences	 were	 not	 statistically	 significant	 for	 any	 network	 size	 tested	 here	 (Fig.	 5b).	

These	 results	 suggest	 that	 learning	 performance	 does	 not	 significantly	 depend	 on	 the	

chunk	size.	 	

	 In	addition,	a	larger	network	did	not	necessarily	show	better	performance.	The	

magnitude	 of	 post-learning	 instantaneous	 correlations	 was	 not	 significantly	 increased	

when	 the	 network	 size	 was	 200	 or	 greater	 (Fig.	 5b).	 Thus,	 the	 performance	 of	 chunk	

learning	 does	 not	 scale	 with	 the	 network	 size.	 This	 seems	 to	 be	 reasonable	 because	

increasing	 the	 size	 of	 reservoirs	 does	 not	 necessarily	 increase	 the	 variety	 of	 neural	

responses	useful	for	learning	if	the	size	is	already	sufficiently	large.	

	

Crucial	role	of	noise	in	chunk	learning	
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We	found	that	external	noise	plays	an	active	role	in	successful	chunking.	We	demonstrate	

this	in	the	case	where	input	only	contains	a	single	chunk	(Fig.	6a).	In	the	absence	of	noise	

readout	units	 still	 exhibited	phasic	 responses,	but	 these	 responses	were	not	necessarily	

time-locked	to	chunks.	As	shown	later,	the	two	RC	modules	in	principle	may	agree	on	an	

arbitrary	feature	of	input	sequence,	which	implies	the	RC	system	may	converge	to	a	local	

minimum	of	learning.	Noise	may	help	the	system	to	escape	from	the	local	minima.	On	the	

other	 hand,	 too	 strong	 noise	 completely	 deteriorated	 the	 phasic	 responses	 to	 chunks.	

Thus,	 the	 RC	 system	 could	 learn	 chunks	 only	when	 a	modest	 amount	 of	 external	 noise	

existed	 (Fig.	 6b).	 In	 the	 presence	 of	 adequate	 noise	 (σ	 =	 0.25),	 the	 average	 weight	 of	

readout	 connections	was	 rapidly	decreased	 to	 a	 small	 equilibrium	value	during	 learning	

(Fig.	 6c),	 leaving	 some	 readout	weights	much	 stronger	 than	 the	majority	 (Fig.	 6d).	 This	

reduction	was	expected	because	external	noise	gives	a	 regularization	effect	on	 synaptic	

weights	 in	error-minimization	 learning	 (Bishop,	1995).	The	strong	weights	were	attained	

for	readout	connections	from	the	reservoir	neurons	responding	to	the	chunk,	hence	were	

crucial	for	the	chunk	detection.	However,	this	was	not	the	case	in	the	absence	of	noise	(σ	

=	 0).	 We	 counted	 the	 fraction	 of	 strong	 readout	 connections	 emergent	 from	 the	

chunk-encoding	reservoir	neurons,	where	strong	connections	were	such	connections	that	

were	greater	than	the	standard	deviation	of	the	weight	distribution.	Such	a	fraction	was	

significantly	 larger	 in	 the	 presence	 of	 adequate	 noise	 than	 in	 the	 absence	 of	 noise.	 	

Under	strong	noise	(σ	=	1),	although	the	weight	distribution	becomes	more	bimodal,	noise	

disrupted	learning	and	the	system	failed	to	capture	the	chunks	(Fig.	6e).	

	 Though	the	results	so	far	suggest	that	mutual	supervision	enables	the	RC	system	

to	learn	the	recurring	groups	of	items	in	a	sequence,	these	results	do	not	indicate	how	the	

system	chooses	the	particular	groups	for	learning.	Then,	the	question	arises	whether	our	

model	detects	any	“chunk”	if	a	sequence	merely	repeats	each	alphabet	randomly	without	

temporal	 grouping.	 To	 study	 this,	 we	 constructed	 a	 set	 of	 input	 sequences	 of	 ten	

alphabets,	 where	 all	 these	 alphabets	 appeared	 equally	 often	 in	 each	 sequence,	 and	
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exposed	the	RC	system	with	a	readout	unit	to	these	sequences.	We	found	that	the	system	

learned	 to	 respond	 to	 one	 of	 the	 alphabets	 with	 approximately	 equal	 probabilities	

(Supplementary	Fig.	2a).	Then,	we	made	the	occurrence	probability	of	alphabet	“a”	twice	

as	large	as	the	occurrence	probabilities	of	the	others	and	found	that	the	system	detected	

“a”	about	twice	as	frequent	as	the	others	(Supplementary	Fig.	2b).	These	results	indicate	

that	 the	 RC	 system	 learns	 a	 repeated	 feature	 with	 the	 probability	 proportional	 to	 its	

occurrence	frequency.	

	 This	 frequency	dependence	of	our	model	partially	accounts	 for	 the	features	of	

sequence	 that	 are	 grouped	 into	 chunks.	 Further,	 as	 demonstrated	 in	 Fig.4	 our	 model	

engages	 a	 pair	 of	 RC	modules	 in	 the	mutual	 prediction	of	 partners'	 responses,	 and	 this	

prediction	would	be	easier	for	the	items	in	input	that	repeatedly	occur	in	a	fixed	temporal	

order.	However,	the	explicit	role	of	temporal	grouping	in	chunking	remains	to	be	further	

clarified.	

Finally,	we	demonstrate	that	the	RC	system	can	simultaneously	chunk	multiple	

sequences	with	overlaps,	where	input	sequences	share	some	alphabets	as	common	items.	

In	some	sequences,	common	alphabets	appeared	 in	 the	beginning	or	 the	end	of	chunks	

(Fig.	7a),	whereas	other	sequences	involve	common	alphabets	in	the	middle	of	chunks	(Fig.	

7d).	 In	 both	 cases,	 the	 RC	 system	 (with	 two	 readout	 units)	 successfully	 chunked	 these	

input	sequences	without	much	difficulty	(Figs.	7b,	e).	Interestingly,	the	activity	of	readout	

units	averaged	over	repetitive	presentations	ceased	to	increase	during	the	presentation	of	

the	overlapping	part	of	chunks	(Fig.	7c,	f).	This	seems	reasonable	as	overlapping	part	does	

not	contribute	to	the	prediction	of	the	following	items	in	the	chunks	and	hence	needs	not	

be	learned.	

	

	

Discussion	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 9, 2017. ; https://doi.org/10.1101/215392doi: bioRxiv preprint 

https://doi.org/10.1101/215392
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

Chunking	 refers	 to	 the	 segmentation	 of	 a	 continuous	 flow	 of	 stimuli	 into	 discrete,	

temporally	bound	events.	We	constructed	a	dual	RC	framework	for	unsupervised	learning	

of	multiple	chunks	hidden	in	random	sequences	of	alphabets.	While	each	RC	system	obeys	

supervised	 learning	 (i.e.,	 FORCE	 learning),	 the	 entire	 system	 performs	 unsupervised	

learning	 through	 mutual	 supervision	 between	 the	 two	 RC	 systems.	 Chunks	 are	

represented	 by,	 and	 the	 probability	 of	 detection	 is	 proportional	 to	 the	 frequency	 of	

repetition	 in	 the	 sequence.	 The	 dual	 RC	 system	 successfully	 detects	 the	 groups	 of	

alphabets	 that	 repeatedly	 appear	 in	 a	 sequence	 without	 a	 priori	 knowledge	 on	 the	

contents,	lengths	and	temporal	positions	of	target	chunks.	

	 	 	 	 	 	 Chunking	 has	 been	 often	 accounted	 for	 by	 predictive	 uncertainty	 or	 surprise	

(Reynolds	et	al.,	2007;	Baldwin	et	al.,	2008;	Zacks	et	al.,	2011;	Saffran	et	al.,	1996).	This	

explanation	 essentially	 relies	 on	 the	 detection	 of	 differences	 in	 transition	 probabilities	

between	 different	 sequence	 components,	 i.e.,	 the	 non-uniform	 statistical	 structure	 of	

sequence.	 However,	 some	 recent	 evidence	 suggests	 the	 existence	 of	 an	 alternative	

mechanism	 of	 chunking	 in	 which	 events	 are	 segmented	 on	 the	 basis	 of	 the	 temporal	

community	structure	of	sequential	stimuli	(Schapiro	et	al.,	2013).	It	has	been	shown	that	

individual	 items	 in	a	 sequence	are	concatenated	 into	an	event	when	 they	 frequently	go	

together	in	the	sequence.	Our	dual	RC	system	automatically	chunks	a	continuous	flow	of	

stimuli	based	on	the	temporal	clustering	structure	and	occurrence	probabilities	of	stimuli	

without	relying	on	predictive	uncertainty	or	surprise.	In	this	sense,	our	model	supports	a	

neural	mechanism	relying	on	the	community	structure	of	sequences.	

The	dual	RC	system	shows	good	performance	in	the	presence	of	external	noise.	

Without	noise,	the	system	also	learns	certain	segments	of	sequence,	but	these	segments	

do	not	often	coincide	with	any	of	the	repeated	chunks.	An	adequate	amount	of	external	

noise	 eliminates	 such	 spurious	 responses	 and	 enables	 the	 system	 to	 respond	 to	 the	

repeated	chunks.	This	finding	is	interesting	because	the	initial	state	of	the	dual	RC	system	

is	 chosen	 on	 the	 so-called	 “edge	 of	 chaos”,	 on	 which	 weakly	 chaotic	 neural	 dynamics	
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provides	 an	 adequate	 amount	 of	 flexibility	 for	 supervised	 learning	 in	 the	 RC	 system	

(Sussillo	 and	 Abbott,	 2009;	 Toyoizumi	 and	 Abbott,	 2011;	 Rivkind	 and	 Barak	 2017).	 The	

present	 system	assumes	 a	 similar	 initial	 state	 and	 further	 requires	 the	 regularization	 of	

synaptic	weights	dynamics	by	noise	 in	addition	to	the	chaotic	state	evolution	(Fig.	6c).	A	

RC	 system	 (with	 a	 single	 reservoir)	 was	 previously	 used	 to	 account	 for	 the	 observed	

variety	 of	 task-related	 activity	 in	 the	 motor	 cortex,	 and	 the	 regularization	 of	 synaptic	

weights	 greatly	 contributed	 to	 the	elimination	of	 strange	neuronal	 responses	 that	were	

never	observed	in	experiment	and	were	presumably	unrelated	to	the	actual	motor	control	

(Sussillo	 et	 al.,	 2015).	 External	 noise	 plays	 a	 similar	 role	 in	 the	 present	 mutually	

supervising	RC	system.	 	 	 	 	 	

It	is	worthwhile	pointing	out	an	interesting	similarity	between	the	responses	of	

readout	units	in	our	model	and	those	observed	in	the	basal	ganglia	during	the	formation	

of	motor	habits.	If	animals	repeatedly	perform	a	sequential	motor	behavior,	the	behavior	

becomes	more	rigid	and	automatic	over	the	course	of	learning	and	practice.	This	process	

is	accompanied	by	the	chunking	of	motor	sequences,	and	the	basal	ganglia	is	thought	to	

play	a	pivotal	role	in	habit	formation	in	various	species	and	behaviors	(Smith	and	Graybiel,	

2013;	 Graybiel	and	 Grafton,	 2015).	 For	 instance,	 in	 the	 rats	 running	 on	 a	 T	 maze,	 the	

majority	 of	 dorsolateral	 striatal	 neurons	 exhibit	 burst	 firing	when	 the	 run	 is	 initiated	or	

completed,	or	both	 (Barnes	et	al.,	2011).	 In	 the	mice	 trained	 to	generate	a	sequence	of	

actions,	 an	 increased	 population	 of	 striatal	 neurons	 selectively	 responds	 to	 the	 initial	

(Start	cells)	or	the	last	(Stop	cells),	or	both,	action	in	the	sequence	(Jin	and	Costa,	2010;	Jin	

et	al.,	2014).	In	our	model,	readout	units	always	respond	strongly	to	the	last	component	of	

each	chunk,	like	the	Stop	cells.	On	the	other	hand,	our	model	does	not	show	Start	cell-like	

responses,	which	is	reasonable	as	chunks	are	preceded	by	random	sequences	and	nothing	

predicts	 the	 beginnings	 of	 chunks.	 It	 is	 intriguing	 to	 investigate	whether	 and	 how	 Start	

cells	are	formed	in	the	proposed	framework	of	unsupervised	learning.	 	
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	 The	proposed	learning	scheme	works	most	efficiently	when	two	RC	systems	are	

not	 interconnected	 and	 work	 independently.	 A	 small	 amount	 of	 recurrent	 connections	

between	 them	abolishes	 the	 ability	of	 chunking.	 For	 instance,	 the	whole	network	 could	

not	 learn	a	 single	 chunk	 if	only	60	connections	are	 induced	between	 the	 two	 reservoirs	

each	 of	 which	 has	 more	 than	 90000	 internal	 recurrent	 connections.	 Where	 can	 such	

independent	networks	located	in	the	brain?	Because	they	are	functionally	equivalent,	it	is	

unlikely	 that	 they	 are	 implemented	 in	 functionally	 distinct	 areas.	One	 possibility	 is	 that	

they	 are	 represented	 by	mutually	 disconnected	 recurrent	 neuronal	 networks	 in	 a	 local	

cortical	area.	This	may	occur	if	the	two	networks	are	spatially	separated	with	a	sufficiently	

long	 distance.	 Another	 intriguing	 possibility	 is	 that	 they	 are	 distributed	 to	 functionally	

similar	 cortical	 areas	 in	 different	 hemispheres.	 For	 instance,	 inferior	 frontal	 gyrus	 and	

anterior	insula	are	bilaterally	activated	when	a	sequence	of	visual	stimuli	is	chunked	(Bor	

et	al.,	2003,	Schapiro	et	al.,	2013).	Interhemispheric	and	subcortical	projections	of	cortical	

pyramidal	 cells	 have	 been	 extensively	 studied.	Whether	 subnetworks	 of	 pyramidal	 cells	

perform	chunking	in	the	above	or	other	cortical	areas	(Zacks	et	al.,	2001)	is	an	intriguing	

open	question.	

In	 sum,	 we	 proposed	 an	 unsupervised	 learning	 system	 by	 combining	 two	

independent	 reservoir	 computing	 modules.	 During	 learning	 the	 two	 systems	 supervise	

each	 other	 to	 generate	 coincident	 outputs,	 which	 in	 turn	 allows	 the	 entire	 system	 to	

consistently	 learn	 chunks	 hidden	 in	 irregular	 input	 sequences.	 As	 chunking	 is	 a	

fundamental	 step	 in	 the	 analysis	 of	 sequence	 information,	 our	 results	 have	 significant	

implications	for	understanding	how	the	brain	models	the	external	world.	

	

	

METHODS	

Neural	network	model	
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In	 this	 study,	 the	 proposed	model	 is	 composed	 of	 two	 recurrent	 networks	 (reservoirs).	

Each	recurrent	network	 is	composed	of	 𝑁! 	 neurons.	Each	neuron	 follows	 the	 following	

dynamics	as	 𝑖 = 1, 2,…  𝑁! ,	

𝜏𝑥! 𝑡 =  −𝑥! 𝑡 + 𝑔! 𝐽!"!!𝑟! 𝑡
!!

!!!

+ 𝐽!
!!𝑧 𝑡 + 𝐽!"!"

!!

µ=1

𝐼! 𝑡 + σ 𝜉!(𝑡),	

𝑟!(𝑡) = tanh 𝑥!(𝑡) ,	

where	 𝜉!(𝑡)	 is	 a	 random	 (Wiener)	 process	 and	 σ	 is	 the	 standard	 deviation.	 𝑁!	 is	 the	

number	of	 input	neurons.	The	parameter	 𝑔! determines	the	complexity	of	 the	behavior	

of	 the	 reservoir,	 and	 shows	 chaotic	 spontaneous	 activity	 if	 𝑔! > 1.	 The	 instantaneous	

output	is	given	by	where	 𝒘	 is	the	readout	weight	vector.	The	readout	unit	is	connected	

with	 𝑛	 reservoir	 neurons	 by	 the	 readout	 weights	 𝒘.	 The	 initial	 values	 of	 the	 readout	

weights	 𝒘	 are	generated	by	a	Gaussian	distribution	with	the	mean	0	and	variance	 1/𝑛.	

The	readout	weights	are	modified	according	to	the	FORCE	learning	rule	in	which	the	error	

between	the	actual	output	and	the	teaching	signal	is	minimized	(Sussilo	and	Abbott,	2009).	

The	 activity	 of	 the	 readout	 unit	 is	 transmitted	 to	 the	 reservoir	 via	 the	 feedback.	 Each	

element	of	 the	 feedback	 coupling	 𝐽!! 	 is	 randomly	 sampled	 from	a	uniform	distribution	

[-1,	+1].	 𝐽!! 	 is	the	connection	matrix	of	the	reservoir	and	each	element	is	taken	from	a	

Gaussian	 distribution	 with	 mean	 0	 and	 variance	 1/(𝑝𝑁!),	 where	 𝑝	 is	 the	 connection	

probability	 of	 the	 reservoir	 neurons.	 In	 addition,	 𝐽!"	 is	 the	 connection	matrix	 between	

input	neurons	and	the	reservoir,	and	each	row	has	only	one	non-zero	element	drawn	from	

a	normal	distribution	of	mean	0	and	variance	1.	We	simulated	the	model	with	time	steps	

of	1	[ms].	

	 	 	 	 	 The	 values	 of	 parameters	 used	 in	 simulations	 are	 as	 follows:	 in	 Figs.	 1,	 4	 and	 6,	

𝑁! = 300,𝑝 = 1,𝑛 = 300	 and	 σ = 0.3;	 in	 Figs.	 2	 and	 3,	 𝑁! = 600,𝑝 = 0.5,𝑛 = 300	

and	 σ = 0.3;	 in	 Fig.	 5,	 𝑝 = 1,	 σ = 0.3,𝑛 = 𝑁! ,	while	 the	values	of	 𝑁! 	 were	varied;	 in	

Fig.	 7,	 𝑝 = 1,𝑛 = 300,	 and	 𝑁! = 800, σ = 0.15	 (b)	 or	 𝑁! = 500,σ = 0.1 (e).	 In	 all	
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simulations,	 𝜏 = 10 [ms],𝑁! = 26,	 and	 𝑔! = 1.5.	The	learning	rate	was	set	as	α	 =	100	

because	 larger	 values	 could	 cause	 instability	 in	 the	 learning	 process.	 The	 network	 was	

trained	typically	 for	several	hundreds	of	 seconds	except	 in	Figs.	2,	7b	and	7e	where	 the	

simulation	time	was	5000,	2500	and	25,000	[s],	respectively.	

	

Normalized	output	for	teaching	signals	

In	our	learning	rule,	we	changed	the	outputs	of	readout	units	such	that	the	mean	outputs	

coincide	with	zero	and	the	standard	deviation	becomes	unity:	

𝑧(𝑡)⟶ 𝑧(𝑡) =  
𝑧(𝑡)−  𝜇(𝑡)

𝜎(𝑡) ,	

where	 𝜇(𝑡)	 and	 𝜎(𝑡)	 were	calculated	as	 	

𝜇 𝑡 =  
1
𝑇  𝑧 𝑡!

!

!!!
𝑑𝑡!,	

𝜎 𝑡 =  
1
𝑇 𝑧 𝑡! !

!

!!!
𝑑𝑡! −  𝜇 𝑡 !,	

with	 a	 sufficiently	 long	 period	 T	 (=	 15	 [s]).	 The	 modified	 output	 𝑧(𝑡) 	 was	 then	

transformed	 by	 two	 nonlinear	 functions	 to	 generate	 the	 teaching	 signal	 shown	 in	 the	

Results.	

	

Selectivity	of	reservoir	neurons	

In	Fig.	3a,	the	activities	of	all	reservoir	neurons	were	first	averaged	and	then	normalized.	

To	define	the	response	selectivity	of	neurons,	we	sorted	all	of	the	neurons	by	their	mean	

activation	phases	defined	as,	
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𝑡! =
𝑇
𝜋 arg

𝑟! 𝑡′ exp 𝑖 2𝜋𝑡
′

𝑇
!
!′!!

𝑟! 𝑡′!
!′!!

   ms ,	

where	 𝑟(𝑡)	 is	 the	 normalized	 average	 response	 of	 each	 cell	 and	 T	 =	 2400	 [ms].	 Each	

reservoir	neuron	generally	showed	a	significantly	large	and	prolonged	phasic	response	to	

a	particular	chunk,	which	determined	the	selectivity	of	the	reservoir	neuron.	We	defined	a	

phasic	 response	 as	 such	 transient	 activity	 that	 exceeded	 the	 threshold	 value	μ	 +	 3σ	 for	

more	 than	100	 [ms],	where	μ	and	σ	stand	 for	 the	average	and	standard	deviation	of	 its	

activity	during	the	presentation	of	input	sequence.	Neurons	that	were	not	related	to	any	

chunks	or	responded	to	multiple	chunks	were	discarded	in	the	analysis.	

	

Analysis	of	the	low-dimensional	dynamics	of	reservoirs	

In	Fig.4,	we	expanded	the	neural	responses	rR1(t)	of	recurrent	network	in	R1	in	terms	of	its	

top	M	(≦NG)	principal	components:	

𝒓!!,! 𝑡 =  𝑎! 𝑡 𝝋!
!!

!

!!!

.	

Here,	φλ
(R1)	is	the	λ-th	eigenvector	of	R1	reservoir	and	the	coefficient	is	given	as	the	inner	

product	aλ(t)	 =	 rR1Τ(t)φλ
(R1).	 Similarly,	we	 expanded	 the	 readout	weight	 vectors	 from	R1	

and	R2	as	 	

𝒘!!,! 𝑡 =  𝑏! 𝑡 𝝋!
!!

!

!!!

,	

where	bλ(t)	=	wR1
Τ(t)φλ

(R1).	The	above	expansions	represent	neural	responses	and	weight	

vectors	 projected	 onto	 the	 low-dimensional	 subspace	 spanned	 by	 the	 first	M	 PCs.	We	

then	calculated	difference	between	the	actual	output	of	R1	and	the	output	reconstructed	

on	the	subspace	as	
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	 	 𝐸! =
!
!

|𝑧!! 𝑡 −𝒘!!,!
𝑻 𝑡 𝒓!!,! 𝑡 |!𝑑𝑡!

! .	 	

Difference	 between	 the	 output	 of	 R2	 and	 the	 projected	 R1-output,	wR1
Τ(t)r(R1)(t),	 was	

calculated	in	a	similar	fashion.	
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FIGURE	LEGENDS	

Figure	1.	Learning	of	a	single	chunk	repeated	in	random	sequence.	

(a)	 Input	sequence	repeated	a	single	chunk.	 In	 this	example,	chunk	 is	composed	of	 four	

alphabets	(a,	b,	c,	d).	The	components	and	lengths	of	random	sequences	varied	during	the	

repetition	of	chunks.	(b)	Example	responses	are	shown	for	input	neurons.	(c)	 In	the	dual	

RC	model,	 two	non-identical	 reservoirs	 are	 activated	by	 the	 same	 set	 of	 input	neurons.	

Readout	weights	 of	 each	 RC	 system	undergo	 supervised	 learning	with	 a	 teaching	 signal	
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given	 by	 the	 output	 of	 the	 partner	 network.	 (d)	 and	 (e)	 Pre-	 and	 post-learning	 trial	

averaged	activities	of	a	readout	unit	are	shown,	respectively.	Shaded	intervals	designate	

the	presentation	periods	of	the	chunk.	The	other	readout	unit	exhibited	a	similar	activity	

pattern.	(f)	Readout	activity	was	trained	with	many-to-one	input	projections.	The	fraction	

of	 input	 neurons	 projecting	 to	 a	 reservoir	 neuron	was	 10%	 (red),	 40%	 (green)	 and	70%	

(black).	

	

Figure	2.	Readout	activity	after	learning	detects	multiple	chunks.	

(a)	 In	 input,	 three	 chunks	 a-b-c-d	 (red),	 e-f-g-h	 (green),	 and	 i-j-k-l	 (blue)	 separated	 by	

random	 sequences	 recurred	 at	 equal	 frequencies.	 (b)	 Each	 reservoir	 was	 connected	 to	

three	 readout	 units.	 (c)	 Selective	 readout	 responses	 to	 the	 individual	 chunks	 (colored	

intervals)	were	self-organized.	The	responses	are	colored	according	to	their	selectivity	to	

the	 chunks.	 (d)	 The	 same	 chunks	 were	 repeated	 without	 the	 intervals	 of	 random	

sequences.	 Previous	 models	 of	 chunking	 typically	 processed	 such	 input	 sequences.	 (e)	

Selective	readout	responses	were	formed	for	the	individual	chunks.	(f)	Readout	activities	

formed	with	(left)	and	without	(right)	random	sequence	intervals	were	averaged	over	the	

recurrence	of	chunk	“a-b-c-d”.	(g)	Time	evolution	of	average	readout	weights	is	shown	at	

every	 50	 [s],	which	 corresponds	 to	 “one	 step”	 in	 the	 abscissa,	 during	 learning	 for	 trials	

with	(gray)	and	without	(black)	random	sequence	intervals.	

	

Figure	3.	Cell	assemblies	selected	in	the	reservoirs.	

(a)	The	activity	of	each	reservoir	neuron	was	averaged	over	repeated	trials	and	normalized	

by	 its	 maximum	 activity.	 Neurons	 were	 sorted	 according	 to	 the	 onset	 times	 of	 their	

activations	 to	 reveal	 the	 cell	 assemblies	 encoding	 the	 three	 chunks	 (Methods).	 (b)	

Temporal	 evolution	 is	 shown	 for	 the	 average	 weights	 to	 the	 three	 readout	 units.	 (c)	

Normalized	distributions	are	shown	for	readout	weights	from	each	cell	assembly.	(d)	The	
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distribution	of	 feedback	weights	 from	 readout	units	 to	 each	 cell	 assembly	 is	 shown.	 (e)	

The	distributions	of	 input	weights	onto	each	cell	 assembly	are	 shown	 for	 input	neurons	

belonging	to	the	corresponding	chunk	(solid)	and	the	others	(dashed).	

	

Figure	4.	principal	component	analysis	of	recurrent	networks.	

Each	 recurrent	 network	 consists	 of	 300	 neurons.	 (a)	 Activities	 of	 the	 reservoir	 network	

projected	onto	the	top	five	eigenvectors	of	the	correlation	matrix	(PC1	to	PC5	from	top	to	

bottom)	are	shown.	Shaded	areas	indicate	the	intervals	of	the	presentation	of	chunks.	(b)	

Readout	 weights	 are	 projected	 onto	 the	 eigenvectors.	 (c)	 “Within-self”	 difference	

between	 the	 R1-output	 and	 the	 projected	 R1-output	 (green)	 and	 “between-partner”	

difference	between	the	R2-output	and	the	projected	R1-output	 (blue)	are	shown	before	

(dashed)	and	after	(solid)	learning.	

	

Figure	5.	Learning	with	different	sizes	of	reservoirs	and	chunks.	 	

(a)	 The	 time	 course	 and	 performance	 of	 learning	 are	 shown	 for	 an	 input	 sequence	

involving	a	 single	 chunk	of	 the	 length	4	 (blue)	or	7	 (red).	 Three	networks	with	different	

sizes	 (NG	=	30,	300,	500)	were	 tested.	 (b)	 The	correlation	after	 learning	are	plotted	as	a	

function	of	the	network	size.	 	

	

Figure	6.	Effects	of	noise	on	successful	chunk	learning.	

(a)	Activity	of	a	readout	unit	after	learning	a	chunk	at	different	noise	levels:	σ	=	0	(black),	

0.25	 (red)	 and	 1	 (green).	 (b)	 Learning	 performance	 is	 a	 non-monotonic	 function	 of	 the	

noise	level.	The	optimal	performance	was	shown	at	σ	=	0.5~0.6.	(c)	Evolution	of	the	norm	

of	readout	weights	during	learning	is	shown	for	σ	=	0	(black),	0.25	(red)	and	1	(green).	(d)	

The	distributions	of	readout	weights	from	chunk-encoding	(red)	and	non-encoding	(blue)	
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reservoir	neurons	are	shown	after	 learning	at	different	noise	 levels.	Arrows	 indicate	 the	

maximum	 weight	 values	 from	 the	 chunk-encoding	 neurons.	 (e)	 The	 fraction	 of	 strong	

readout	 weights	 (see	 the	main	 text)	 from	 the	 encoding	 neurons	 is	 shown	 for	 different	

noise	 levels.	 The	 fraction	 is	 significantly	 larger	 for	σ	 =	 0.25	 compared	with	σ	 =	 0	 and	 1	

(p<0.01,	Mann–Whitney	U	test).	

	

Figure	7.	Learning	chunks	with	mutual	overlaps.	

(a)	Two	chunks	shared	the	last	component	“d”	in	a	random	input	sequence.	(b)	Activities	

of	 two	 readout	 units	 were	 selective	 to	 different	 chunks	 after	 learning.	 (c)	 The	 average	

response	profiles	are	shown	for	the	two	readout	units.	(d)	Two	chunks	shared	the	middle	

components	“d-e”	in	a	random	input	sequence.	(e)	and	(f),	Activities	of	two	readout	units	

and	the	average	response	profiles	are	shown,	respectively.	
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