10
11

12
13

14

15

16

bioRxiv preprint doi: https://doi.org/10.1101/232702; this version posted December 14, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

An accumulation-of-evidence task using visual pulses for mice
navigating in virtual reality

Lucas Pinto ', Sue Ann Koay ", Ben Engelhard !, Alice M. Yoon !, Ben Deverett ', Stephan Y.
Thiberge 2, Ilana B. Witten '*, David W. Tank '*** Carlos D. Brody "**#

! Princeton Neuroscience Institute, * Bezos Center for Neural Dynamics, * Department of
Psychology, * Department of Molecular Biology, ° Howard Hughes Medical Institute, Princeton
University, Princeton, NJ, 08544, ® Robert Wood Johnson Medical School, New Brunswick, NJ

* # these authors contributed equally to this work

# Correspondence:

David W. Tank
dwtank@princeton.edu

Carlos D. Brody
brody@princeton.edu

Running title: Evidence-based navigation in VR
Key words: Evidence accumulation, spatial navigation, virtual reality, mouse, behavior

Word count: 15,738


https://doi.org/10.1101/232702

17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39

40
41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56

bioRxiv preprint doi: https://doi.org/10.1101/232702; this version posted December 14, 2017&%@%@%@%#&8WEWWW%

not certified by peer review) is the author/funder. All rights reserved. No re

ABSTRACT

The gradual accumulation of sensory evidence is a crucial component of perceptual decision
making, but its neural mechanisms are still poorly understood. Given the wide availability of
genetic and optical tools for mice, they can be useful model organisms for the study of these
phenomena; however, behavioral tools are largely lacking. Here, we describe a new
evidence-accumulation task for head-fixed mice navigating in a virtual reality environment. As
they navigate down the stem of a virtual T-maze, they see brief pulses of visual evidence on
either side, and retrieve a reward on the arm with the highest number of pulses. The pulses occur
randomly with Poisson statistics, yielding a diverse yet well-controlled stimulus set, making the
data conducive to a variety of computational approaches. A large number of mice of different
genotypes were able to learn and consistently perform the task, at levels similar to rats in
analogous tasks. They are sensitive to side differences of a single pulse, and their memory of the
cues is stable over time. Moreover, using model-free and model-based analyses, we show that the
mice indeed accumulate evidence: they use multiple pulses of evidence from throughout the cue
region of the maze to make their decision, albeit with a small overweighting of earlier cues, and
their performance is affected by the magnitude but not the duration of evidence. Additionally,
analysis of the mice's running patterns revealed that trajectories are fairly sterecotyped yet
modulated by the amount of sensory evidence, suggesting that the navigational component of
this task may provide a continuous readout correlated to the underlying cognitive variables. Our
task, which can be readily integrated with state-of-the-art techniques, is thus a valuable tool to
study the circuit mechanisms and dynamics underlying perceptual decision making, particularly
under more complex behavioral contexts.

INTRODUCTION

Making decisions based on noisy or ambiguous sensory evidence is a task animals must face on a
daily basis. Take, for instance, a mouse in the wild, whose navigation behavior relies on vision
(Alyan and Jander, 1994; Etienne et al., 1996; Stopka and Macdonald, 2003). Amidst tall grass,
deciding a route to a partially occluded food source (say, a corn plant) might require gradual
accumulation of visual evidence, i.e. short glimpses of what may or may not be part of that plant.
This example also highlights another important point about decision-making, namely that it is
often performed in conjunction with other complex behaviors and can itself be a dynamic
process occurring over seconds-long timescales. Here, the mouse must find its food source while
navigating in a potentially changing environment; the corn plant may turn out to be a scarecrow,
and evidence for or against this is typically used to interactively update a motor plan.

How the brain gradually accumulates sensory evidence has been the topic of extensive studies
performed primarily in primates (Gold and Shadlen, 2007). However, much remains unknown
regarding which brain areas are involved, and the specific circuit mechanisms and dynamics
underlying this computation (Brody and Hanks, 2016). More recently, several groups have
started using rodents to tackle such questions (Brunton et al., 2013; Carandini and Churchland,
2013; Hanks et al., 2015; Licata et al., 2017; Morcos and Harvey, 2016; Odoemene et al., 2017;
Raposo et al., 2014; Scott et al., 2015). Rodents provide many complementary advantages to the
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use of primates, such as lower cost, larger scalability, and, particularly for mice, the wide
availability of an ever-expanding arsenal of tools to record from and manipulate circuits with
great spatiotemporal and genetic specificity in behaving animals (Chen et al., 2013; Deisseroth,
2011; Dombeck et al., 2007; Guo et al., 2014; Luo et al., 2008; Rickgauer et al., 2014; Sofroniew
et al., 2016; Song et al., 2017; Svoboda and Yasuda, 2006).

Motivated by the above, we have developed a novel behavioral task in which head-fixed mice
are required to gradually accumulate visual evidence as they navigate in a virtual T-maze. The
side on which the majority of the evidence appears informs them of which of the two arms the
reward is located in. Compared to freely moving behaviors, the use of virtual reality (VR)
(Harvey et al., 2009) allows for better control of sensory stimuli, ease of readout of motor output,
and, crucially, the head fixation required for many state-of-the-art optical techniques (Dombeck
and Reiser, 2012; Minderer et al., 2016). In studying perceptual decision-making in conjunction
with navigation, we emulate a more naturalistic context of rodent behavior. As brains are highly
nonlinear systems that may engage qualitatively different mechanisms in different contexts,
trying to approximate such conditions is arguably an important component towards
understanding neural codes (Carew, 2005; Krakauer et al., 2017). Another highlight of our task is
the use of multiple short pulses of sensory stimuli that are randomly distributed per trial
according to Poisson statistics (Brunton et al., 2013; Scott et al., 2015). The diverse yet
well-controlled nature of this stimulus set allows for the use of powerful computational
approaches when analyzing the data (Brunton et al., 2013; Erlich et al., 2015; Hanks et al., 2015;
Scott et al., 2015). Specifically, the stimuli are designed to be delivered in perceptually distinct
pulses (“cues”), enabling neural recording and perturbation studies to trace/modulate precisely
timed inputs into the animal’s brain. The randomized locations of the cues decorrelates the
dynamics of evidence streams from the general progression of time, on a trial-by-trial basis,
allowing us to investigate the distinct contributions of the amount and the timing of incoming
evidence. This, in turn, gives us a better handle on the behavioral strategies the animals employ.

Here we perform a thorough characterization of various performance indicators, behavioral
strategies and navigational aspects of the task, with the goal of providing a bedrock for future
studies investigating the neural mechanisms underlying this behavior. We show that mice can
consistently learn this task and solve it by using multiple pulses of visual cues distributed
throughout the cue presentation period, thus accumulating evidence towards a decision.
Moreover, we show that their performance is influenced by the magnitude of the evidence but
not its duration. We also describe an intriguing, if small, tendency to alternate choices after
rewards, and present logistic regression models that combine evidence and trial history as tools
to quantify the behavior. Finally, we capitalize on the navigational component of the task and
show that trajectories, though fairly stereotyped, may provide an ongoing readout correlated with
cognitive variables.
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94 MATERIALS AND METHODS
95 Animals and surgery

96 All procedures were approved by the Institutional Animal Care and Use Committee at Princeton
97 University. Experiments were performed on both male and female mice aged 2 — 12 months,
98 from several strains:

99 e 5 wild types [C57BL6/J, Jackson Laboratories, stock # 000664]
100 e 14 VGAT-ChR2-EYFP  [B6.Cg-Tg(Slc32al-COP4*H134R/EYFP)8Gfng/J, Jackson
101 Laboratories, stock # 014548] (Zhao et al., 2011).
102 e 16 triple transgenic crosses expressing GCaMP6f under the CaMKIlo promoter, from the
103 following two lines: Ai93-D;CaMKIIa-tTA [[gs7mo3-1(tet0-GCaMPGhze
104 Tg(Camk2a-tTA)I Mmay/J, Jackson Laboratories, stock # 024108] (Madisen et al., 2015);
105 Emx1-IRES-Cre [B6.129S2-Emx1™!©®Xi/j  Jackson Laboratories, stock # 005628]
106 (Gorski et al., 2002).
107 e 8 Thyl-GCaMPo6f [C57BL/6J-Tg(Thy1-GCaMP6f)GP5.3Dkim/J, Jackson Laboratories,
108 stock # 028280] (Dana et al., 2014).
109 e 1| Thyl-YFP-H [B6.Cg-Tg(Thyl-YFP)HJrs/J, Jackson Laboratories, stock # 003782]
110 (Feng et al., 2000).

111 e 6 DAT-IRES-CRE [B6.SJL-Sicoadml.Itero)Bkmn/y = Jackson Laboratories, stock # 006660]
12 (Béckman et al., 2006).

113 The mice underwent sterile stereotaxic surgery to implant a custom lightweight titanium
114 headplate (~1 g, CAD design files available at
115 https://github.com/sakoay/AccumTowersTools.git) under isoflurane anesthesia (2.5% for
116 induction, 1.5% for maintenance). Briefly, after asepsis the skull was exposed and the periosteum
117 removed using a bonn micro probe (Fine Science Tools) or sterile cotton swabs. The headplate
118 was then positioned over the skull and affixed to it using metabond cement (Parkell). Some of
119 the animals underwent additional procedures to either implant an imaging cranial window or
120 make the skull optically transparent, as previously described (Guo et al., 2014; Harvey et al.,
121 2012). Additionally, in the DAT-cre mice only, AAV5-EF1a-DIO-hChR2 (Penn Vector Core) was
122" injected bilaterally in the ventral tegmental area (VTA), and 300-um optical fibers (Thorlabs)
123 were implanted bilaterally above the VTA. The animals received one pre-operative dose of
124 meloxicam for analgesia (1 mg/kg LP. or S.C.) and another one 24h later, as well as
125 peri-operative body-temperature I.P. saline injections to maintain hydration. Body temperature
126 was maintained constant using a homeothermic control system (Harvard Apparatus). For cranial
127 window implantation surgeries only, an intraperitoneal injection of dexamethasone (2-5 mg/kg)
128 was given at the beginning of the procedure in order to reduce brain swelling. The mice were
129 allowed to recover for at least 3 days before starting water restriction for behavioral training.
130 They were then restricted to an allotted water volume of 1 — 2 mL per day, always ensuring that
131 no clinical signs of dehydration were present and body mass was at least 80% of the initial value.
132 If any of these conditions were not met, the mice received supplemental water (or had ad libitum
133 access to water if more than mildly dehydrated) until recovering. Most typically, animals
134 received their whole allotment during behavioral training, but received supplemental water if
135 necessary, at least one hour after the end of training.
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136 The animals were handled daily from the start of water restriction until they no longer showed
137 any signs of distress, such as attempting to escape, defecating or urinating, which typically took
138 3 — 5 days. Mice were never picked up from the cage by their tails, instead voluntarily climbing
139 onto the experimenter's hand or being gently lifted with a hand scooping movement. They were
140 allowed to socialize in an enclosed enriched environment (~0.3 m?, with 5-10 mice) outside of
141 behavioral sessions and before being returned to the vivarium at the end of each day.

142 Behavioral task

143 Apparatus. We trained mice on virtual reality (VR) systems similar to ones described previously
144 (Harvey et al., 2012; Low et al., 2014)(Figure 1A). Subjects were head-fixed using custom-made
145 headplate holders and stood on a spherical treadmill comprised of a Styrofoam® ball (8-inch
146 diameter, Smoothfoam) placed on a custom 3D-printed cup and suspended by compressed air (60
147 — 65 p.si.). Compressed air was delivered through a 1.5 inch-diameter flexible hose
148 (McMaster-Carr) coupled to an enclosed chamber beneath the cup. The source of air to this hose
149 was first passed through a laminar flow nozzle (series 600 Whisperblast, Lechler), which
150 dramatically reduced ambient noise by reducing air turbulence. The animals were placed on the
151 ball such that their snouts were roughly aligned with the center of its upper surface, and at a
152 height such that they could touch the ball with their whole forepaw pads, while not displaying
153 noticeable hunching. This allowed them to run comfortably, with similar posture to when they
154 are freely moving. A custom alignment tool that was mounted on the posts supporting the
155 headplate holders was used to verify the mice's alignment with respect to VR system, and was
156 critical to prevent side biases stemming from lateral asymmetries in controlling the ball (a CAD
157 file for 3D printing the tool is available at https://github.com/sakoay/AccumTowersTools.git).

158 Ball movements controlled the mice's position within the VR environment, projected onto a
159 custom-built Styrofoam® toroidal screen with a 270° horizontal field of view, using a DLP
160 projector (Optoma HD 141X) with a refresh rate of 120 Hz, a pixel resolution of 1024 x 768, and
161 relative color balance of 0, 0.4 and 0.5, for the red, green and blue channels, respectively. Motion
162 was detected by an optical flow sensor (ADNS-3080 Optical Flow Sensor APM2.6), coupled to
163 infrared LED (890 nm, Digikey), and lying underneath the ball, within the cup on which the ball
164 gat, which contained a 30-mm aperture covered with Gorilla Glass® (Edmond Optics). Optical
165 flow was transformed into displacement and output to the behavior control PC using custom
166 code running on an Arduino Due (code and documentation may be downloaded from
167 https://github.com/sakoay/AccumTowersTools.git). The accuracy of this measurement depends
168 on the presence of sufficiently high-contrast features on the ball surface. In order to ensure this,
169 the styrofoam balls were either roughened with steel wool or small black marks were made
170 crisscrossing the entire area using a permanent marker. Treadmill displacements in X and Y (dX,
171 dY) resulted in equal translational displacements in the VR environment (i.e. gain of 1). To set
172 the virtual viewing angle 0, the acute angle between the line formed by the displacement vector
173 and the Y axis line was calculated as
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O = atan2(—dX x sign(dY), |dY'|)

174 The rate of change in 6 (radians/second) was then calculated using an exponential gain function
175 of @, as follows:

% — sign(df) x min([exp(1.4 x [d6]?) — 1, 7))

176 This gain was tuned to damp small values of df/dt, stabilizing trajectories in the maze stem
177 where mice typically made only small course corrections to maintain forward movement. The
178 exponential dependence ensured that mice could still perform sharp turns (i.e. generate large
179 values of d0/dt) into the maze arms.

180 Reward delivery was controlled by TTL pulses from the control PC sent to a solenoid valve
181 (NResearch) and done through a beveled plastic 100-uL pipette tip coupled to PVC plastic
182 tubing (McMaster-Carr). Sounds were played through conventional computer speakers
183 (Logitech). The apparatus was enclosed in a custom-designed cabinet (8020.inc) lined with
184 sound-absorbing foam sheeting (McMaster-Carr). The whole system was controlled by a PC
185 running the matlab-based software VIRMEn (Aronov and Tank, 2014) (available for download at
186 https://pni.princeton.edu/pni-software-tools/virmen-virtual-reality-matlab-engine).

187 Accumulating-towers task. Mice were trained to run down a virtual T-maze (total length: 330
188 ¢m, visual width: 10 cm, allowed travel width: 1 c¢cm, wall height: 5 cm) and retrieve a fluid
189 reward from one of the two end arms (each measuring 10.5 x 11 x 5 c¢m, length x width x
190 height)(Figure 1B). As they ran down the central stem they saw briefly-appearing, tall,
191 high-contrast objects (towers, width: 2 cm, height: 6 cm) on either side of the maze, and the arm
192 on the side with the most towers contained the reward. Towers appeared whenever the animals
193 were 10 cm away from them, and disappeared 200 ms later. In each trial, tower position within
194 the cue period (200 cm) was drawn randomly from spatial Poisson processes with means of 7.7
195 towers/m for the rewarded side and 2.3 towers/m for the non-rewarded (minority cue) side (i.e.
196 an overall tower density of 5 m™), and a refractory period of 12 cm.

197 At the start of each trial the mice were teleported to a 30-cm long starting location and the maze
198 appeared. The virtual view angle was restricted to be 0 throughout this region, in essence acting
199 as a buffer zone during which mice could straighten out their running patterns. After they ran
200 past the starting location, the floor and wallpapers changed to indicate they were in the main part
2017 of the maze, and mice were then free to rotate the view angle. Towers could appear anywhere
202 within the first 200 cm of the maze (cue period), and the last 100 cm of the maze (delay period)
203 did not contain any towers but had the same wallpaper as the cue period. The wallpaper changed
204 in the arms of the maze but was identical on both sides. After the mice reached one of the arms,
205 the world was frozen for 1 s and then disappeared (i.e. screen became black). A correct response
206 was rewarded with a drop of 10% (v/v) sweet condensed milk solution (4 — 8 uL) and followed
207 by an additional 2-s inter-trial interval, whereas an error was followed by a sound and a 10-s
208 timeout period. Trials timed out after 600 sec (or 60 sec in some sessions).

209 Every session started with warm-up trials of a visually-guided maze. In this maze, towers
210 appeared exclusively on one side, and a tall visual guide (30 cm) positioned in one of the arms
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21 indicated the reward location. In order to advance to the main maze, the mice were required to
212 perform at least 10 warm-up trials at a minimum of 85% correct, with a maximum side bias
213 (difference in percent correct between right- and left-rewarded trials) of 10% and at least 75% of
214 good-quality trials, defined as trials in which the total distance traveled is at most 110% of the
215 maze length. Once in the main maze, performance was constantly evaluated over a 40-trial
216 running window, with two purposes. First, if performance fell below 55% correct, animals were
217 automatically transferred to a block of trials in an easier maze, with towers shown only on the
218 rewarded side, but with no visual guide. This block had a fixed length of 10 trials, after which
219 the mouse returned to the main maze regardless of performance. The other purpose of the 40-trial
220 window was to assess and attempt to correct side bias. This was achieved by changing the
221 underlying probability of drawing a left or a right trial according to a balanced method described

222 in detail elsewhere (Hu et al., 2009). In brief, the probability of drawing a right trial, p,, is given
223 py

Pr = —\/ER
(Ver++er)

224 Where e, (e;) is the weighted average of the fraction of errors the mouse has made in the past 40
225 right (left) trials. The weighting for this average is given by a half-Gaussian with ¢ = 20 trials in
226 the past, which ensures that most recent trials have larger weight on the debiasing algorithm. To
227 discourage the generation of sequences of all-right (or all-left) trials, we capped \/eR and \/eL to be
228 within the range [0.15,0.85]. In addition, a pseudo-random drawing prescription was applied to
229 ensure that the empirical fraction of right trials as calculated using a ¢ = 60 trials half-Gaussian
230 weighting window is as close to PR as possible, i.e. more so than obtained by a purely random
231 strategy. Specifically, if this empirical fraction is above PR, right trials are drawn with

232 probability 0.5 pr, whereas if this fraction is below PR, right trials are drawn with probability
233 0.5 (1 +pr).

234 The six DAT-IRES-Cre mice included in the dataset ran a slightly different version of the task.
235 For these animals, the cue region was 220 cm and the delay was 80-cm long (vs. 200 and 100),
236 the tower density was 3.5 m™! (vs. 5), and the tower refractory period was 14 cm (vs. 12). For this
237 reason, these mice were not included in any of the analyses except the comparison of
238 performance between different strains (Supplementary Figure 4).

239 Shaping. Details about the shaping procedure can be found in Supplementary Figure 1 and
240 Supplementary Table 1. Briefly, mice underwent at least 11 shaping stages (T1 — T11, where
241 TI11 is the final maze explained in the previous paragraph). The first 4 stages (T1 —T4),
242 consisted of visually-guided mazes with cues throughout the stem, and with progressively
243 increasing lengths. Moreover, while the appearance of towers was triggered by proximity as
244 previously explained, they did not disappear after 200 ms. Final length was reached at maze T4.
245 Next, the visual guide was removed (T5) and the cue period length was progressively decreased
246 to its final value of 200 cm (T6 — T7). Up to T7, towers always appeared only on the rewarded
247 side. The next step in shaping was to progressively increase the rate of minority cues (i.e. towers
248 on the non-rewarded side, T8 — T11) and finally to make the towers disappear after 200 ms (T10
249 —TI11). An earlier version of the shaping procedure had 14 instead of 11 steps, whose only
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250 difference was to introduce changes more gradually, but eventually reaching an identical maze.
251 These animals were included in all the analyses except that in Supplementary Figure 1. Mice
252 were trained 5 — 7 days / week, for one 1-hour session per day. The only exceptions to this were
253 for the first two days of training, where mice were acclimated to the VR setup for 30 and 45
254 minutes, respectively.

255 Data Analysis

256 Data selection. The initial dataset was comprised of 1,067 behavioral sessions from 38 mice,
257 with a total of 194,766 trials from the final accumulation maze (182.5 + 2.2 trials/session, mean
258 £+ SEM). Besides regular behavioral training, we also included sessions occurring during either
259 two-photon or widefield Ca*" imaging, or optogenetic manipulation experiments. In the latter
260 case, we only included control (laser off) trials (70 — 85% of trials in a session). Unless otherwise
261 stated, we applied the following block-wise data inclusion criteria: 1) whole trial blocks (i.e.
262 consecutive trials in the same maze, of which there could be multiple in a session) with an
263 overall performance of at least 60% correct, including trials of all difficulties; 2) trials with a
264 maximal traveled distance of 110% of nominal maze length (Harvey et al., 2012); 3) no
265  timed-out or manually aborted trials; and 4) after applying criteria 1 — 3, individual mice with at
266 Jeast 1,000 trials. We thus selected 135,824 trials from 878 sessions and 25 mice (mean = SEM:
267 5,433 + 774 trials/mouse, range: 1,118 — 15,283; mean + SEM: 35.1 + 4.5 sessions/mouse, range:
268 7 — 86). For analyses involving effects of trial history (Figures 6A-F), we excluded all
269 optogenetic sessions to avoid the use of non-consecutive trials, as well as those without at least 5
270 trials of history (i.e. first five trials of a block). Those additional criteria yielded 66,411 trials
271 from 18 mice and 507 sessions. For all model fits except the SDT model (Figures 5-7,
272 Supplementary Figures 5, 6), we required one trial of history, to allow for fair comparison
273 between models with and without trial history. Those criteria yielded 81,705 trials from 20 mice
274 and 597 sessions.

275 Psychometric curves. We built psychometric curves by plotting the percentage of trials in which
276 the mouse chose the right arm as a function of the difference in the number of right and left
277 towers (#R — #L, or A). For Figures 2A and 7C, D, A was binned in groups of 3 and its value
278 defined as the average A weighted by the number of trials. We fitted the psychometric curves
279 using a 4-parameter sigmoid:

a

1+ exp(—(A = Ag)/N)

pPr="0+

280 .. . ..
The slope of this sigmoid (Figure 2C) was defined as a/4x (the derivative of the curve at A),

281 and lapse rate (Figure 2D) was defined as the average error rate (%) in all trials with |A] > 10.


https://doi.org/10.1101/232702

bioRxiv preprint doi: https://doi.org/10.1101/232702; this version posted December 14, 2017@Wg%ﬂgﬁffawﬁﬁvWWas

not certified by peer review) is the author/funder. All rights reserved. No re

282 Logistic regression analysis. To assess how evenly mice weighted sensory evidence from
283 different segments of the cue period (Figures 3A, B), we performed a logistic regression analysis
284 in which the probability of a right choice was predicted from a logistic function of the weighted
285 sum of the net amount of sensory evidence per segment, A(y), where y is one of 5 equally spaced
286 gegments between 10 and 200 cm (because tower appearance was triggered by proximity, the
287 earliest possible tower occurred at y = 10 cm):

1
14 exp(—(Bo + Z?:l Bi\;))

PR

288 Note that this analysis is similar to the commonly used reverse correlation (e.g., Brunton et al.,
289 2013). We have confirmed that both analyses yield very similar results (not shown). To estimate
290 the amount of recency or primacy effects from the logistic regression coefficients (Figure 3C)
291 we computed a weight decay ratio as [(A, + Ay)/2]/ [(A, + A,)/2], such that values smaller than 1
292 indicate primacy effects (i.e. initial portions of the cue period are weighted more towards the
293 decision) and 1 indicates spatially homogenous accumulation. To calculate the significance of the
294 decay ratio for each mouse, spatial bin identities for each trial were shuffled 200 times, and in
295 each iteration the logistic regression model was refit, yielding a null distribution for the ratio.
296 P-values were calculated as the proportion of shuffling iterations whose decay ratio was smaller
297 than the actual ratio. Errors on logistic regression coefficient estimates for individual mice were
298 calculated as the standard deviation of the distribution given by sampling the trials with
299 replacement and refitting the model 200 times.

300 Effect of number of towers, cue and delay duration. For this analysis, |A| and total number of
301 towers were binned into groups of two, and effective duration of cue and delay periods into
302 10-cm bins. Effective cue period duration was defined as the difference in the position of the last
303 and first tower, regardless of side, and effective delay duration was defined as 300 (stem length
304 in cm) minus the position of the last tower. We first calculated performance (% correct)
305 gseparately for each binned value of |A|, as a function of either cue duration (Figure 4A), total
306 number of towers (Figure 4B) or delay duration (Figure 4D). To better estimate the relative
307 contributions of |A|, total number of towers and period duration (Figure 4C), we fit a linear
308 model to the data as follows. First, for each mouse, we calculated performance for all 3-way
309 combinations of binned predictor values (where period duration is of either cue or delay), and
310 subtracted the average performance for that mouse. We then averaged these mean-subtracted
311 performance values across mice, and fit a 3-parameter linear regression. Fitted parameter
312 significance values were derived from the z-statistic of the parameter, i.e. its average divided by
313 its standard deviation, which follows a ¢ distribution with n — p — 1 degrees of freedom, where n
314 is the number of data points and p is the number of parameters (Chatterjee and Hadi, 2015).
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315 Trial history analysis. Alternation bias for each mouse (Figures 6C-E) was calculated as the
316 percentage of trials in which they chose the arm opposite to their previous choice, subtracting the
317 overall average percentage. In other words, we calculated the average difference between red and
318 black, and blue and black curves in Figures 6A, B, with appropriate sign conventions. Note that
319 positive alternation bias values indicate visiting the opposite arm in the following trial, whereas
320 negative values indicate perseveration, i.e. visiting the same arm. For the analyses going five
321 trials back (Figures 6D, E), bias is always defined with respect to trial zero (t,).

322 Analysis of running speed. Speed in cm/s was calculated on a trial-by-trial basis using the total
323 x-y displacement for 0 <y < 300 cm (i.e. for the central stem). For the analysis in Figure 8C, for
324 each mouse, within-session standard deviation is the standard deviation across trials in the same
325 gession, averaged across sessions, and across-session standard deviation is the standard deviation
326 of the distribution of average speeds for each session.

327 View angle analysis. In a given trial, the mouse traverses the T-maze with a y position trajectory
328 y(t) that is not necessarily monotonically increasing, as variations in motor control can cause
329 small amounts of backtracking. We therefore defined the view angle at a particular Y position,
330 O(Y), as the value of 0 at the first time t at which y(t) > Y. For the choice decoding analysis in
331 Figure 9B, we defined an optimal choice decoding boundary 6_,(y) for a given y position by
332 requiring that the fraction of right-choice trials with 8(y) > 6 _,(y) be equal to the fraction of
333 left-choice trials with 6(y) < 0 ,(y). Thus, 6_(y) is the boundary that most equally separates the
334 right- vs. left-choice distributions. The choice decoding accuracy was defined as the percent of
335 right-choice trials with with 6(y) > 0_,(y). For the analysis in Figure 9D, for each mouse we
336 subtracted single-trial view angle trajectories from their average trajectory, separately for left and
337 right choice trials. We then calculated tower-triggered trajectories separately for right and left
338 towers, where y = 0 was defined as the position of the mouse when the tower appeared.

339 Brunton et al model. For the analyses in Figures SA—C and Supplementary Figure 6, we fit
340 the model described in detail in Brunton et al. (2013). It is part of the family of the widely used
341 drift diffusion models (DDMs) (Gold and Shadlen, 2007; Ratcliff and Rouder, 1998), and models
342 alatent decision variable a, whose amount of change per maze y position is given by

0 ifa>B

da/dy = { .
0, dW/dy + (8y,4,MrC — 0y 4y, C)Aa  otherwise
343 where d,,r and o, , are delta functions at the spatial positions of right and left tower onset, 7 are
344 ii.d. variables drawn from N(1,6°), the initial value of a is drawn from N(1,6°,)), and dW is a
345 Wiener process. B parametrizes the height of a sticky bound, C is a function of two parameters, ¢
346 and ¢, and describes the adaptation dynamics to the sensory pulses. The memory time constant is
347 given by t = 1/4. Finally, a bias parameter determines the position of the threshold above which a
348 right decision and the lapse rate represents the probability of trials in which subjects will ignore
349 the stimulus and choose randomly. Both these parameters are applied at the end of the trial when
350 converting the continuous decision variable into a binary decision. The model was fit using a
351 gradient descent algorithm to minimize the negative log likelihood cost function, using the
352 interior-point algorithm from the Julia package Optim. Gradients were computed through
353 automatic differentiation with respect to model parameters for each trial. Automatic
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354 (differentiation makes it possible to efficiently compute complex derivatives with machine
355 precision, and greatly improves the optimizer’s performance. We used the following parameter
356 value constraints to fit the models: -5 <1 <5, 0 < ¢, <200, 0 <o, <200,0<0",<30,5<B<
357 25,0<¢9<1.2,0.001 < ¢ <2 (maximum length of the cue period), -5 < bias < 5, 0 <lapse < 1.

358 Signal detection theory (SDT) model. We used the SDT model (Figure 5D) developed by Scott
359 et al. (2015), where details about the method can be found. Briefly, the probability of making a
360 correct choice (p,) in a given trial was modeled as the difference of two Gaussian distributions
361 given by unique tower counts on the sides with the larger and smaller number of towers, L and S,
362 where the variance of the distributions were the free parameters ¢°, and o°;:

De = N(L —S,\/o% +02)d(L — S
/0 (L— 8, /0% + o3)d(L — S)

363 where L and S are an integer number of towers between 0 and 15 (we excluded trials with 16 or
364 more towers on one side since there were very few of them). The model thus had 16 free
365 parameters, whose best fit values were the ones that maximized the likelihood of the mice's
366 choices using the Matlab function fmincon's interior-point algorithm. To fit this model, we only
367 used the metamouse (aggregate) data, since individual mice had too few trials to obtain good fits.

368 In order to statistically distinguish between the linear variance and the scalar variability
369 hypotheses, we explicitly modeled o as either a linear or a square root function of the number of
370 towers instead of fitting separate o values. Specifically, we fit two separate two-parameter
371 models to the data, one where a(n) = S, + f,n and another where o°(n) =, + B,n , with 8, and j3,
372 being free parameters and requiring £, > 0 (similar to models b and d in Fig. 4 of Scott et al.,
373 2015). Statistical significance was calculated by bootstrapping the data 1000 times and defined
374 as the proportion of bootstrap experiments in which the linear variance model had better
375 goodness-of-fit than the scalar variability model (using the model information index, see below).
376 For the two-parameter models, we also fitted individual mouse data. Note that for all SDT
377 models, unlike the other models, we used the full dataset including non-contiguous trials (n = 25
378 mice, 135,824 trials), in order to gain statistical power.

379 Heuristic models with trial history. We fitted logistic regression models (Figures 6G, H and
380 Figure 7) where the probability of making a right choice, p,, was a function of both sensory
381 evidence (with two different parametrizations, see below), and trial history, as follows:

382 1— 0, — g
pr =1{r + —
1+ exp[—po — (1 + Bee)(Bo + BAA)] (1)
383 In the equation above, Po = — In(1/fr — 1) where fr is the fraction of right-choice trials in
384

the given dataset. This was introduced such that when all the free model parameters # — 0, then
Pr = fr, ie. the models considered here are a nested set w.r.t. the null hypothesis that the

mouse has a constant right-choice probability /R, which facilitates model comparison. ¢r ({r)
387 are lapse rates and can be interpreted as the probability of the mouse making a right choice in
388 very easy right- (left-) rewarded trials, which can depend on both the mouse’s previous choice

385
386
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389 and the resulting outcome of the previous trial (Figures 6A, B). In other words, because of the
390 observed trial-history-dependent vertical shifts in the psychometric curves (Figures 6A, 6B, 7C,
391 7D), history-dependent terms modulated the lapse rates and not the evidence terms inside the

392 Jogistic function. Because probabilities must be bounded such that 0 < pr < 1, we constrained

393 both lapse rates to be in the range 0<fri <05 by applying a cosine transform to the

394 otherwise linear model of dependence on history terms A :

lp = %[1 — cos(B + Egﬁ)]

£ = 51— cos(5§ — A7)
39 Here, B,f and B, are history-independent lapse rates, and h= (e, 0, ¢ % O-il), where the
223 previous-choice indicator function €1 is defined to be +1 (-1) if the mouse chose right (left) in

the previous trial, and the previous-outcome indicator function -1 is defined to be +1 (-1) if the
398 mouse was rewarded in the previous trial. Back to equation (1), 8, was introduced to account for
399 history effects that change the slope of the evidence dependence after errors (Figure 6B),

400 multiplying the “error” indicator function e, which is defined to be +1 if the mouse made a

401 wrong choice in the previous trial and -1 otherwise. Finally, A is a vector of evidence weights

402 that took two different forms. For the model in Figure 6H, this vector was equivalent to that in

403 the spatial bin logistic regression model described previously, i.e. the cue region was divided into

4045 equal-width bins spanning y = 10 — 200 cm, and A was set to be a 5-dimensional vector where

405 each coordinate corresponds to #R — #L towers in each of the bins. For the model in Figure 7
406 (cue order model), we built the evidence vector as follows. For a given trial, cues (including both
407 sides) were first ranked by their y position in ascending order, i.e. rank 1 corresponds to the first

408 cue seen by the mouse on that trial. To improve statistical power, this rank was downsampled by
409 4 factor of 3 before defining A as a vector of #R — #L restricted to cues with the corresponding
410 ranks. That is, the first coordinate of A is 01-3 = [#R — # L]vanks 1-3, the second coordinate is
41 04-6 = [#R — # L]ranks 4-6, and so forth. Because the total number of cues differs from trial to

412 trial due to random sampling, this means that not all trials have information for what would be
413

414

the 2" and onwards coordinates of A. In order for the model to be well-posed, the

dimensionality of A is fixed to be the maximum possible such that there are at least 50 trials that
415 have information for the last coordinate. Trials with fewer than this number of cues are therefore
416 assumed to have A; =0 for the remaining coordinates. The evidence vector was then

a7 normalized as 2 = (01-3, 046, .- )/<|A’>711/2 The normalization factor (|A[)n depends on the
418 number of cues n for the given trial, and defined to be the average |#R — #L| over all trials in the
419 dataset with the same number 7 of cues. These models were fit by maximizing the log-likelihood
420 including L1 penalty terms for all free parameters (Schmidt, 2010). For a more detailed treatment
421 of the models and fitting procedure, refer to Supplementary Methods.
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422 Alternative strategy models. 1) Trial-history-only model (Supplementary Figure 5A): we
423 fitted a logistic regression model in which choice was a function only of previous trial history.

424 The model is the same as in equation (1), except it did not contain the spatially binned evidence

425 terms A. 2) K random tower models: for these models, we assume that in each trial the mouse

426 chooses k towers at random (from all presented towers) and uses only those to make its decision.
427 The probability of making a right choice is thus equivalent to the probability that the majority of
428 the k towers is on the right side, i.e. k, > k/2. This is given by the hypergeometric distribution,
429 which gives us the probability of /2 in k random draws without replacement from a population
430 of size #R + #L, given that we know that #R towers are on the right. We implemented this using
431 the Matlab function hygecdf. Note that in the special case where k= 1 (i.e. the one random tower
432 model, Supplementary Figures 5B,C), the probability of choosing right reduces to #R/(#R+#L).
433 3) First tower and Last tower models: here we simply assume that the mouse will choose right
434 if the first (last tower) appears on the right. For better descriptions of the data, in the model
435 classes 2) and 3) the obtained probability of going right, p,”, was modulated by the
436 experimentally measured lapse rates (/) and side biases (b) for each animal, i.e.

437 pr=>b+1/24+ (1 —)PE. Side bias is defined as proportion correct in right trials —
438 proportion correct in left trials, and lapse is defined as the error rate for |A| towers > 10. For
439 further details on alternative strategy models, refer to Supplementary Methods.

440 Model comparison and cross-validation. All models except the SDT were fit separately for each
441 mouse using 70 runs of 3-fold cross-validation (i.e. using % of the data for training and s for
442 testing the model), making sure that the subsamples of data used in each run were identical for
443 all models. For each run we calculated the log likelihood (In L) of the test dataset given the
444 best-fit parameters on the training set, as follows. Let the mouse’s choice on the i trial be
445 ¢t =1,...,m which is 1 (0) if the mouse chose right (left), then the likelihood of observing
446 this choice is given by the binomial distribution B (1,pr) = pr(Z3)™ [1 — pr(7)]' ™. Taking
447 the product of individual-trial likelihoods we obtain:

InL, = Z {ci pR(fi) hlpR(fi) + (1 - Cz‘) ln[l - PR(@)]}

1<i<m

448 Additionally, we calculated a null log likelihood (In L,) of the test dataset given a constant
449 probability of going right, f, (the experimentally-measured fraction of trials in which the animal
450 went right), which we take to be our null model. We then defined our goodness-of-fit measure as
4517 the model information index, MT:

(In L — In Lg) /Ntrials
In(2)

MI =

452 In other words, we calculated a trial-averaged excess likelihood of the model (compared to the
453 null model) and converted the log to base 2, which gives us the amount of information of the
454 model in bits/trial (Paninski et al., 2004; Pillow et al., 2008). To compare models across the
455 population, we took the median MI across the 210 fits for each mouse. To assess significance of
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456 the difference between MIs for a given mouse, we calculated a P value as the proportion of runs
457 in which one model out(under)-performed the other.

458 General statistics. Datasets were tested for normality using the Lilliefors' modification of the
459 Kolmogorov-Smirnov test. For comparisons between two normally distributed datasets, we used
460 two-sided t-tests, and for non-normally distributed datasets we used the Wilcoxon sign rank test
461 (or their paired test counterparts where appropriate). Multiple comparisons were corrected using
462 the false discovery rate correction method described in (Benjamini and Hochberg, 1995) (see
463 also Guo et al., 2014). Briefly, P values are ranked in ascending order, and the ith ranked
464 P-value, P, is deemed significant if it satisfies P, < (ai)/n, where n is the number of comparisons
465 and a = 0.05 in our case. For tests involving the comparisons among multiple groups, we
466 performed one- or two-way ANOVAs with repeated measures, followed by Tukey's post-hoc
467 tests where appropriate. Binomial confidence intervals were calculated as 1-c intervals using
468 Jeffrey’s method.

469 RESULTS
470 Accumulating-towers task

471 We have developed a novel pulse-based evidence accumulation task for mice navigating in
472 virtual reality (VR) (Figure 1, Supplementary Movie 1). Briefly, mice were trained to navigate
473 on a virtual T-maze to retrieve water rewards from one of the two arms. While they ran down the
474 central part of the maze (cue region, 200 cm), salient visual cues (towers) appeared transiently
475 (200 ms) on either side. After a delay period without any cues (100 ¢m), the animal made either a
476 right or left turn into one of the arms, and was rewarded if this corresponded to the side that had
477 the highest number of towers (Figure 1B). Incorrect choices led to the playing of an
478 error-indicating sound and a time-out period of 9s, in addition to the regular 3-s intertrial
479 interval. The cues were distributed as spatial Poisson processes with different rates on the
480 rewarded and unrewarded sides, such that the positions and number of towers on either side
481 varied from trial to trial. This, together with the transient nature of the cues, meant that towers
482 needed to be incrementally accumulated towards a decision. Importantly, the precisely controlled
483 stimulus times allowed for powerful computational approaches when analyzing the data.

484 We developed detailed shaping procedures whereby different elements of the final task were
485 gradually introduced, with well-defined and automated criteria for progression through the
486 various stages (Supplementary Figure 1, Supplementary Table 1). Most animals in the dataset
487 underwent an 11-step procedure, taking 34.8 + 4.5 sessions (mean + SEM, n = 17 mice) to reach
488 the final stage.
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489 Figure 1 | Accumulating-towers task. (A) Schematic drawing of the VR setup used to train
490 mice in the task. (B) Schematic drawing of the task showing the progression of an example
491 left-rewarded trial.

492 Mice are sensitive to the amount of sensory evidence

493 We analyzed data from 25 mice with at least 1,000 trials on the final accumulation maze,
494 obtaining a total of 135,824 trials (see Materials and Methods for details on data selection).
495 Overall task performance including all trial difficulties was 68.7 + 0.5 % correct (mean = SEM, n
496 = 25, range: 64.7 — 72.8 %). We were able to obtain many good-performance sessions for most
497 mice (Supplementary Figure 2), including very high-performance sessions with steep
498 psychometric curves and low lapse rates (e.g. Figure 2A). Performance was variable across
499 gessions (standard deviation of overall performance across sessions: 7.0 + 0.4 %, mean + SEM
500 across mice), and could fluctuate within sessions (Supplementary Figure 2C and
5017 Supplementary Figure 3), typically dropping towards the end, presumably when the mice were
502 sated (Supplementary Figure 3A).

503 Importantly, performance was modulated by the amount of sensory evidence (#R — #L towers, or
504 A), as revealed by psychometric curves (Figures 2A, B, Supplementary Figure 3B). Taking all
505 blocks of consecutive trials in the same maze level into account (a block is defined here as
506 consecutive trials in the same maze level, and there could be multiple within a session, see
507 Materials and Methods), the slope of the psychometric function was 4.7 + 0.2 %/tower (mean +
508 SEM, Figure 2C), and the lapse rate, defined as the error rate for |A] > 10, was 21.4 = 0.9 %
509 (Figure 2D).

510 Given the variability we observed in performance, we next explored different performance
511 gelection criteria. For instance, if only the blocks over the 90th percentile of overall performance
512 were selected, psychometric slope and lapse rate were 8.2 + 0.4 %/tower and 12.8 + 1.1 %,
513 respectively (Figures 2C, D, green histograms). Of course, if we assume that different

15


https://doi.org/10.1101/232702

bioRxiv preprint doi: https://doi.org/10.1101/232702; this version posted December 14, 2017 W r i i ich was
not certified by peer review) is the author/funder. All rights reserved. No relfs gﬁﬂg#{fﬁi‘mﬁvw

514 behavioral blocks are noisy samples from static psychometric curves, applying these criteria
515 would trivially yield better performance indicators. To explicitly test for this possibility, we
516 assumed that each mouse had a static psychometric curve across all sessions and generated 200
517 surrogate datasets by drawing samples from the binomial distributions given by the psychometric
518 curves at the actual experienced values of A towers, and reselected the top 10% of blocks for
519 each of these 200 draws. Interestingly, only the average improvements in lapse rate, but not
520 psychometric slope, were significantly smaller in the surrogate data than the actual observed
521 improvement (P = 2.4 x 10* and 0.96 respectively for lapse and slope, one-sided signed rank
522 test; 7/18 mice have individually significant differences for lapse; data not shown). This can be
523 understood by noting that trials with |A| towers > 10 comprise only ~10% of the total number,
524 making them a relatively unimportant contribution to the overall performance and therefore not
525 much affected by selection in the simulated static-psychometric data. We thus conclude that
526 actual mice exhibit significantly lower lapse rates on high-performance behavioral blocks, but
527 not more sensitivity to evidence, beyond that expected by random sampling.

528 Example mice (best sessions) Individual mouse averages

A 100 B 100 ; Grand average C 25 D 8

X 75 < 75 o 20 o6

= = © 5 Q

< c £ €

2 50 2 50 4

- - E 10 £

c 5 3 Z

[0}

= 25 = 25 5 5

VN 0 L
-10 0 10 -10 0 10 0 10 20 30 0 10 20 30 40
A towers (#R - #L) A towers (#R - #L) Slope (% went right/tower) Lapse rate (%)

529 Figure 2 | Performance of the accumulating-towers task. (A) Best-session example
930 psychometric functions from three mice. Circles: data points, lines: sigmoidal function fits, error
531 bars: binomial confidence intervals. (B) Overall psychometric functions across the population.
532 Thin gray lines: sigmoidal function fits for all mice with at least 1000 trials (n = 25). Black
933 circles and line: psychometric function with sigmoidal fit for aggregate data (metamouse, n =
534 135,824 trials). Error bars: binomial confidence intervals. (C) Distribution of slope of the
535 psychometric function for the individual mice shown in B, pooling all data (gray) or selecting the
536 top 10% of blocks for each animal (with at least 300 remaining trials after this selection, n = 16),
537 as defined by average performance. Arrowheads: mean. (D) Distribution of lapse rates for the

938 mice shown in B, defined as the average error rate for trials where [#R —#L| > 10. Conventions
939 asinC.

540 We also wondered what impact within-session fluctuations in performance had in the measured
541 psychometric functions. We calculated ongoing performance using a sliding gaussian window
542 and recalculated psychometric functions after excluding low-performance bouts (i.e. consecutive
543 trials with performance below several different thresholds). Excluding these trial bouts yielded
544 sharper psychometric curves with lower lapse rates (Supplementary Figure 3B). While these
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945 criteria were not used for any other analyses in this work, they illustrate how more stringent trial
546 gselection criteria may be applied depending on data analysis needs.

547 Behavioral performance in the accumulating-towers task was thus on average comparable to that
548 gseen in rats doing an analogous task (Scott et al., 2015), consistent with the finding that mice and
549 rats perform similarly in several perceptual decision-making tasks (Jaramillo and Zador, 2014;
550 Mayrhofer et al., 2013). Additionally, mice of different strains did not show any statistically
951 significant differences in a variety of performance indicators, except for running speed
552 (Supplementary Figure 4).

553 Mice use multiple evidence pulses from the entire cue region

554 We next sought to determine whether mice solve the task by using towers from the entire cue
955 period. For each mouse we performed a logistic regression analysis to predict choice using the
556 amount of net evidence in each of 5 equally spaced bins spanning the 200-cm cue region. We
557 observed a variety of shapes in the curves given by the different spatial weights in the model
558 (Figures 3A, B): while some mice had fairly flat curves, suggesting spatially homogenous
559 accumulation of evidence (Figure 3A), others had curves with higher coefficients in the
960 beginning of the maze, indicating primacy effects, and a minority had higher coefficients in the
561 later spatial bins, suggesting recency effects (Figure 3B). To better quantify this, we computed a
562 weight decay ratio between the average weight in the two last and two first bins, such that
563 numbers smaller than one indicate primacy, and estimated statistical significance of individual
564 animals with a shuffling procedure (Figure 3C, see Materials and Methods). Across the
565 population, we obtained an average ratio of 0.73 +0.06 (mean + SEM), significantly different
566 than one (P = 1.3 x 10™, two-sided t-test). Furthermore, 10/25 mice had indices that were
567 significantly smaller than one. Next, to further quantify the contribution of towers from different
568 portions of the cue period, we calculated the percentage of trials containing cues on the
569 non-rewarded side (minority cues) in the different spatial bins, separately for correct and error
570 trials (Figures 3D,E). The overall magnitude of this percentage was significantly different
571 between correct and error trials (F,,, = 381.75, P=15.73 x 10™), as expected because trials with
572 a higher density of minority cues are more difficult by design. Unlike what was observed in a
573 (different evidence-based navigation task (Morcos and Harvey, 2016), the distribution of trials
574 with minority cues did not vary significantly as a function of position (F,, = 0.15, P = 0.96,
575 2-way repeated-measures ANOVA). On the whole, these analyses suggest that the mice take into
576 account evidence from the entire cue period, on average slightly overweighting earlier evidence.
577 This is consistent with findings from both humans and monkeys performing pulse-based
578  evidence accumulation tasks (Bronfman et al., 2016; Kiani et al., 2008; Tsetsos et al., 2012).
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580  Figure 3 | Mice use cues from the entire cue region. (A) Example logistic regression for three
581 mice. In this analysis, net evidence (#R — #L) in each of five spatial bins is used to predict the
582 mouse's final decision to turn left or right. Notice fairly flat shapes, suggesting that mice take
583 into account evidence from all parts of the cue period. (B) Logistic regression coefficients for all
584 mice with at least 1000 trials (thin gray lines, n = 25), along with average coefficients across the
585 population (thick black line). Error bars, + SEM. (C) Distribution of weight decay ratios for the
586 mice shown in B, defined as the average of coefficients in the last two bins divided by the
587 average of the coefficients in the first two bins. Dark gray: mice with significantly non-flat
588  logistic regression weight curves (P < 0.05), light gray: mice with flat curves (P > 0.05).
589 Arrowhead: mean. (D) Average percentage of trials containing at least one minority cue in each
590 binned cue region position for correct (black) and error trials (magenta). Error bars, = SEM. (E)
591 Difference between the percentage of trials containing at least one minority cue in each binned
592 cue region position between correct and error trials, shown for each individual mouse (thin gray
593 lines), and the average across mice (thick black line). Error bars, + SEM

994 1In theory, it is possible that some of the aforedescribed findings could be obtained if the mice
595 were selecting (one) random tower(s) in different trials, or, less likely, employing more
596 degenerate strategies that do not rely on sensory evidence at all. To test for these possibilities, we
597 built models that implemented such strategies and compared them against models containing
598 gpatially binned evidence terms (Supplementary Figure 5). First, we built a trial-history-only
599 model that only contains previous choice and reward terms, i.e. no evidence is used for the
600 decision (see Materials and Methods). This model had significantly worse cross-validated
601 predictions compared to the model also containing sensory evidence terms (P = 8.9 x 107, signed
602 rank test, Supplementary Figure 5A). We next assessed a model in which the mouse uses
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603 exactly one random tower per trial to make a decision. Again, this model had significantly worse
604 prediction accuracy (P = 5.2 x 107", paired t-test, Supplementary Figure 5A). Moreover, we
605  reasoned that, in this scenario, for a fixed number of total towers (#R + #L) behavioral
606 performance should vary linearly with #R —#L (Morcos and Harvey, 2016), whereas if the
607 mouse uses multiple cues the psychometric curve should deviate from linearity. The data
608 supported the latter: the experimentally obtained psychometric curve was significantly different
609 than the line predicted by the one-random-tower hypothesis (Supplementary Figure 5C, P <
610 0.001, shuffling test, see Supplementary Materials and Methods). Additionally, we reasoned
611 that the one-random-tower hypothesis predicted that, for trials without any minority cues (i.e. no
612 towers on the non-rewarded side), performance should not vary as a function of the number of
613 towers, since any randomly selected tower would lead to a correct decision. This, however, is not
614 what we observed. When we compared trials with fewer than 5 towers to trials with more than 9
615 towers (all on the rewarded side), performance was significantly higher in the latter case for all
616 mice with sufficient trials for this analysis (P < 0.001, signed rank test, not shown). Finally, we
617 implemented other models in which the mice adopt other trivial strategies, namely making a
618  choice based on the first tower, last tower, and 3, 5 or 7 random towers (see Materials and
619 Methods). For all but one animal, the spatial bin logistic regression model (Figure 3)
620 significantly outperformed all five alternative models (data not shown, P < 0.01, paired
621 difference tests with false discovery rate correction, see Materials and Methods). For this
622 exception mouse, the spatial bin model was not significantly better than the random 3 tower
623 model (P = 0.05), but was still better than the other alternatives (P < 0.01).

624 Performance is affected by the number of cues but not trial duration

625  Having thus established that mice accumulate multiple pulses of evidence from the whole cue
626 period, we next sought to quantify in more detail how the number of towers and cue or delay
627 period duration affected performance. For trials with similar difficulty (same |A| towers), we
628  plotted percent correct performance as a function of the effective duration of the cue and delay
629 periods, and noticed no apparent dependence (Figures 4A, D). Conversely, when we plotted
630 performance as a function of the total number of towers (#R + #L) for different values of |A|, we
631 observed a consistent decrease in performance with increasing numbers of towers (Figure 4B),
632 similar to previous findings in the rat (Scott et al., 2015). To quantify how |A|, #R + #L and
633 duration each influence performance, we fitted a linear model using these three quantities as
634 predictors (see Materials and Methods for details). The largest contribution to performance was
635  given by |A| (P = 3.1 x 10, t statistic for regression coefficients), and total number of towers
636 had a significant negative coefficient (P = 2.4 x 10'"), whereas the cue duration coefficient was
637 not significantly different than zero (P = 0.64)(Figure 4C).
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639 Figure 4 | Behavioral performance decreases with increasing total number of towers, but
640 not duration of cue period. (A) Overall performance as a function of effective cue period
641 duration in space, for various subsets of trials with different absolute differences between tower
642 counts (|A|, color code). Effective duration is defined as the position of the last viewed tower
643 minus the position of the first tower. Error bars: binomial confidence intervals. (B) Overall
644 performance as a function of the total number of towers (#R + #L), for subsets of trials with
645 different |A|. Conventions as in (A). (C) Best-fit coefficients from a linear regression model
646 predicting performance as a weighted combination of |A| towers, total towers, and effective cue
647 period duration. The data is the mean-subtracted performance averaged across mice. Error bars:
648  standard error for each parameter. Significance was calculated from parameter z-statistics. (D)
649 QOverall performance as a function of effective delay period duration in space for subsets of trials
650 with different |A|. Error bars: binomial confidence intervals. Conventions as in (A).

651 A potential explanation for the findings described above is the existence of one or more sources
652 of noise that grow proportionally with the number of visual pulses presented in the trial, and that
653 the noise generated by these sources is greater than stimuli-independent noise sources, such as
654 time-dependent accumulation (diffusion) noise in a drift-diffusion model (DDM) framework
655 (Brunton et al., 2013; Scott et al., 2015). Potential sources of stimulus-dependent noise are many,
656 and include noise in stimulus presentation and/or processing, which adds noise independently
657 with each pulse (Brunton et al., 2013; Smith and Ratcliff, 2004), or noise that scales non-linearly
658  with the total amount of pulses (Fechner, 1860; Scott et al., 2015).

659 To further investigate this, we fitted the data using two different models. First, to estimate the
660  magnitude of different noise sources, we employed a DDM developed by Brunton et al. (Brunton
661 et al., 2013), which models a latent decision variable as a function of memory leak (1), a sticky
662 accumulation bound, and three sources of noise: diffusion, stimulus and initial value of the
663 accumulator (in addition to four other parameters, see Materials and Methods, Supplementary
664 Figure 6). Consistent with findings in rats (Brunton et al., 2013; Scott et al., 2015), we found
665  that sensory noise was the dominant source of noise for the majority of mice (Figures SA,B and
666 Supplementary Figure 6, across the population: P =7.0 x 10, t test, and 5.9 x 10, signed rank
667 test, respectively for ¢°, vs. ¢°, and o7, vs. o°; 8/20 and 9/20 mice had significantly higher o°,
668  compared to ¢, and o°, respectively, based on proportions of cross-validation runs). Also
669  consistent with the previous studies, we found memory leaks close to zero (Figure SC)(4 = 0.03
670 +0.09 m!, mean + SEM, P = (.78, two-sided t-test vs. zero, only four animals had /1 values that
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671 were statistically different from zero). These results are also consistent with our model-free
672 analyses in Figure 4, where neither the duration over which the cues are presented nor the
673 effective delay interval after the last cue are significant factors (beyond #R and #L). Like other
674 DDMs, the Brunton et al. model assumes that each pulse of evidence is associated with
675 independent Gaussian noise, which results in linear scaling of the total variance with increasing
676 number of pulses. This assumption, however, has been shown not to hold for an analogous visual
677 pulse accumulation task in the rat or the acoustic version of Brunton et al. (Scott et al., 2015).
678  Instead, the standard deviation of the perceived evidence (i.e., not the variance but its squared
679 root) increased linearly with increasing number of pulses, favoring a scalar variability framework
680  (Fechner, 1860; Gallistel and Gelman, 2000). We attempted to quantify this in our data by fitting
681  the same Signal Detection Theory (SDT) model as Scott et al. In this model, each unique tower
682 count is associated with a Gaussian distribution of mean number of towers u, and standard
683 deviation o, the latter being the free parameter. The probability of choosing a side is given by
684 the difference in the distributions of left and right tower counts (see Materials and Methods for
685  details). For the data aggregated across mice (we failed to obtain low-noise parameter estimates
686  from fits to individual mice), best-fit o, grew monotonically with the number of towers T
687 (Figure 5D). We then fitted two competing two-parameter models to directly test whether scalar
688  variability or linear variance predicted the data better. Again in agreement with the visual and
689  auditory rat tasks (Scott et al., 2015), we found that the scalar variability was, on average, a
690 better model than the alternative, although the results were variable at the level of individual
691 mice (for aggregate data: P < 0.003, bootstrapping; 10/25 individual mice had significantly better
692 predictions from the scalar variability model, 2/25 had better linear variance, 13/25 were
693 statistically indistinguishable).

694 N P < 0.05
A 3 B 8 Cc 8 D 400
o o(n) fit
Linear var.
.8 2 _8 6 _8 6 300 Scalar var.
£ s Es o 200 [
E g E L)
= 1 Z, Z5 100 / ;/
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-50 0 50 -50 0 50 -1 0 1 0 5 10 15
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695  Figure 5 | Behavioral performance seems to be limited by cue-dependent noise. (A)
696 Distribution across mice (n = 20) of the difference between best-fit sensory and diffusion noise
697 parameters (¢°, and o°,, respectively) from the Brunton et al. model, color coded according to
698 whether they are significantly different from zero according to 95% confidence intervals
699 determined from cross-validation runs. Arrowhead, population mean. (B) Distribution across
700 mice of the difference between best-fit sensory and initial noise parameters (¢°, and o,
701 respectively) from the Brunton et al. model. Conventions as in a. (C) Distribution of the memory
702 leak (1) parameter from the Brunton et al. model. Conventions as in a. (D) Best-fit parameters
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703 for the SDT model (aggregate mouse data). Black data points: parameters from the full model
704 where o’ is determined separately for each tower count. Yellow line: prediction from the
705 two-parameter scalar variability model. Green line: prediction from the two-parameter linear
706 variance model. Scalar variability yielded significantly better predictions (P < 0.003). Error bars:
707 standard deviation from bootstrapping iterations (n = 200).

708 Choice is influenced by previous trial history

709 Having determined that mice are sensitive to the amount of sensory evidence and that they use
710 multiple pulses throughout the maze to make their decision, we next investigated how previous
[y choice and reward history influenced current choice. Rodents have been shown to display
712 behavioral effects of trial history in a variety of task designs (Busse et al., 2011; Narayanan et al.,
713 2013; Pinto and Dan, 2015; Scott et al., 2015). In particular, in two-alternative forced choice
714 tasks in operant conditioning chambers, they are more likely to repeat previously rewarded
715 choices (Busse et al., 2011; Scott et al., 2015). We were therefore surprised to uncover the
716 opposite pattern of trial history, albeit of small magnitude: on average, the mice were more likely
717 to go to the opposite arm to a previously rewarded one, and to repeat an unrewarded choice
718 (Figures 6A, B). This behavior is potentially reminiscent of the well-documented tendency to
719 gspontaneously alternate arms when mice explore a (physical) T-maze (Lalonde, 2002). To better
720 quantify this effect, we defined the alternation bias for each mouse as the mean-subtracted
721 percentage of trials in which they chose the arm opposite to their previous choice (see Materials
722 and Methods for details). Post-error and post-reward biases did not significantly differ in
723 magnitude (Figure 6C, P = 0.48, two-sided paired #-test), although only post-error biases were
724 significantly different than zero (P = 0.006 and 0.11 for post-error and post-reward, respectively,
725 two-sided t-test). There was no correlation between the magnitude of post-reward and post-error
726 biases across mice (r = —0.28, P = 0.25, Pearson's correlation, analysis not shown). Post-error
727 biases also had a longer time scale than post-reward, going at least five trials in the past (Figure
728 6D). Note that for the analysis Figure 6D a long-lasting negative bias with respect to trial zero
729 indicates higher probability of going to same arm over consecutive trials. In other words, this
730 would indicate the presence of choice perseveration bouts, particularly following an error trial.
731 To directly assess this, we calculated the alternation bias selecting trials with consecutive
732 rewards or errors in the same arm (Figure 6E). We noted an increase in the magnitude of
733 negative bias with increasing numbers of consecutive erroneous visits to the same arm, as
734 expected from the interaction between choice perseveration and our debiasing algorithm. For
735 example, a mouse that perseverates in going left with little regard to the evidence will cause the
736 debiasing algorithm to sample more right-rewarded trials, increasing the fraction of consecutive
737 left-choice, right-rewarded trials. To estimate how these perseveration bouts affected overall
738 performance, we recomputed the aggregate psychometric curve after removing trial bouts in
739 which the mice made at least three consecutive identical choices. Applying this additional trial
740 gelection criterion resulted in little performance improvement (Figure 6F, and changing the
741 criterion to more trials did not qualitatively change the results).
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Figure 6 | Choice is moderately influenced by previous trial history. (A) Psychometric curves
for aggregate data (metamouse) divided according to previous choice in rewarded trials. Black:
average post-reward curve, blue: psychometric curve for trials following rewarded right choices,
red: psychometric curve for trials following rewarded left choices. Error bars: binomial
confidence intervals. (B) Psychometric curves divided according to previous choice in error
trials. Conventions as in (A). (C) Distribution of alternation bias after reward (gray) or error
(magenta) trials. Arrowheads: population mean. (D) Magnitude of alternation bias calculated for
1 — 5 trials after a choice, separately for rewarded and unrewarded trials. Error bars: + SEM
across mice (n = 18 with at least 1,000 trials after removing trials with fewer than 5 history
trials). (E) Magnitude of alternation bias calculated for 1 — 5 trials after identical rewarded or
unrewarded choices. Error bars: = SEM. (F) Psychometric curves for aggregate data
(metamouse) with the trial selection adopted throughout the paper (black) and adopting an
additional criterion to exclude at least 3 consecutive-choice trials (gray). Error bars: binomial
confidence intervals. (G) Comparison of cross-validated model prediction performance for the
Brunton et al. DDM, the spatial-bin logistic regression, and the latter plus trial history terms.
Thin gray lines: individual mice, black lines and error bars: mean + SEM. *** P < (0.001. MI:
model information index. (H) Best-fit standardized coefficients for the spatial bins model with
trial history terms. Thin gray lines: individual mice, thick black lines: population mean, error
bars: + SEM.

Thus, choice and reward history impacted present choice in the accumulating-towers task. To
provide a more complete description of the behavior, we added trial history to our behavioral
models. First, however, we compared the performance of the Brunton et al. DDM to the logistic
regression model in which choice is a weighted function of the net amount of sensory evidence
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765 in different spatial bins (Figures 2A, B). This latter heuristic model performed better than the
766 Brunton DDM in cross-validated datasets across the population (Figure 6G, P = 9.6 x 107,
767 Tukey's post-hoc test after a one-way ANOVA with repeated measures for the three models in
768 the figure; P = 2.3 x 10" for main effect of model type). We therefore added trial history to the
769 logistic regression model (Figure 6H), adding terms to account for both the observed vertical
770 shifts in the psychometric curves and the decrease in psychometric slope following errors
771 (Figures 6A, B, see Materials and Methods for details). As expected, doing so significantly
772 increased model performance (Figure 6G, P = 2.0 x 10, Tukey's post-hoc test).

773 Tower order explains behavior at least as well as position does

774 The heuristic model that best describes behavior so far (Figure 6H) has the underlying
775 assumption that the mice adopt a spatial strategy, i.e. that weights are assigned to net evidence in
776 different segments of the nominal cue region, regardless of how many towers the mice have seen
777 before reaching that segment. An alternative hypothesis is that mice weight towers according to
778  the order in which they occur. In this scenario, the first tower in a trial would have the same
779 impact on the mouse's decision, whether it occurred on the first or n™ spatial segment. To test for
780 this possibility, we constructed another logistic regression model in which towers are ranked (in
781 bins of three) according to their ascending order of occurrence (Figure 7). The model, which
782 confirmed the predominance of primacy effects on the behavior (i.e. earlier cues have more
783 weight on the decision), performed marginally better than its spatial counterpart, with a trend
784 towards significantly better cross-validated predictions (Figure 7B, P = 0.07, two-sided paired
785 t-test, both cases had the same trial history parameters). It also captured well the aforedescribed
786 trial history effects (Figures 7C, D).
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788 Figure 7 | Tower order explains behavior at least as well as position does. (A) Best-fit model
789 coefficients for the tower order model with trial history terms. Thin gray lines: individual mice,
790 thick black lines: population mean, error bars: + SEM. (B) Comparison of cross-validated
791 prediction performance of the spatial bins and tower order models, both with trial history (n = 20
792 mice). MI: model information index. (C) Psychometric curve predictions for an example mouse
793 with large trial history effects, divided according to previous choice in rewarded trials. Circles:
794 (data, lines: model prediction. Black: average post-reward curve, blue: trials following rewarded
795 right choices, red: trials following rewarded left choices. Error bars: binomial confidence
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796 intervals. (D) Psychometric curve predictions for the same mouse in (C), divided according to
797 previous choice in error trials. Conventions as in (C).

798 Mice display fairly stereotyped running patterns

799 Lastly, we turned to the analysis of the mice's running patterns as they navigated the maze. We
800  characterized the time course of movements that the mice made, as well as how these are
801 modulated by choice and evidence, as this navigational behavior is presumably reflective of the
802 ongoing decision process in a given trial. Secondly, we quantified the motor skill element of our
803 task, as it generally adds to the difficulty and may specifically contribute to the observed lapse
804 rates of the mice.

805  Inspection of single-trial speed vs. maze position (trial time) traces suggested that mice run at
806 fairly stereotyped speeds in different portions of the maze (Figure 8A). Average running speed
807 in the maze stem across the population was 61.1 + 2.4 cm/s (Figure 8B, mean = SEM, range:
808 442 —92.9), translating into a nominal cue period duration of 3.4 + 0.1 s (mean + SEM, range:
809 2.2 —4.5). The standard deviation of running speeds for each mouse across different behavioral
810 gsessions averaged at 6.7 + 0.6 cm/s (mean = SEM), while trials within the same session had an
811 average standard deviation of 7.5 £ 0.6 cm/s (Figure 8C). Likewise, analysis of the distributions
812 of view angle trajectories for each mouse revealed more stereotyped average trajectories across
813 gsessions than across trials within a session (Figure 8D, standard deviation of 4.9 = 0.4 ° vs. 10.4
814 £ 0.9 °, respectively, mean = SEM). Given the broad distribution of speeds across mice, we next
815 wondered whether there was any systematic relationship between running speed and
816 performance across the population. Indeed, we found a significant correlation between the these
817 two indicators, averaged across all sessions (Figure 8E, r = 0.48, P = 0.02, Pearson's
818 correlation). In other words, faster mice tended to perform better. This relationship, however, did
819 not in general hold within individual mice in a session-by-session analysis. Only 4/25 mice had
820 significant correlations between running speed and performance across sessions, and the sign of
821 the correlation was negative for one of these mice (Figure 8F, » = 0.06 + 0.05, mean = SEM).

822 We also sought to analyze how frequently mice made putative motor errors. We defined five
823 types of unusual motor events: trials with large-magnitude view angles during the cue period (>
824 60°), trials with early turns (i.e. a turn immediately before the arm, resulting in a wall collision),
825 trials in which the mouse first entered the opposite arm to its final choice, trials with speeds
826 below the 10th percentile (defined separately for each mouse), and trials with traveled distance in
827 excess of 110% of nominal maze length. We found an overall low occurrence of such unusual
828 trials, at an average of 5.6 + 1.0 % (mean + SEM, excluding low-speed trials, which are 10% by
829 definition). The distribution of these events differed significantly among event types and between
830 correct and error trials (Figure 8G, 2-way repeated measures ANOVA, P, .. = 2.8 x 107,
831 Pt oweome = 2-6 x 107), with events being more common in error trials. The frequency of unusual
832 motor events did not depend on trial difficulty (2-way repeated measures ANOVA, P =0.25, data
833 not shown). We thus conclude that while motor aspects did contribute to error trials, they cannot
834 fully explain the lapse rates.
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Figure 8 | Stability of running patterns. (A) Examples of running speed over time during 25
consecutive trials, aligned by entry in the cue region (t = 0). Each line is color-coded according
according to the portion of the maze (start, cue, delay or turn). Tower onset times are shown as
leftward red or rightward blue arrows on top of each trace. (B) Distribution of average running
speed across trials and sessions for animals with at least 1000 trials (n = 25). Arrowhead
indicates population mean. (C) Distribution of standard deviations of average running speed
across session-wide averages (gray) and across trials within a session (green). Arrowheads
indicate population mean, and follow the same color code. (D) Distribution of standard
deviations of average view angle across sessions and across trials within a session, calculated
separately for right- and left-choice trials and then averaged. Conventions as in C. (E)
Correlation between average running speed and average overall performance across all sessions
for each mouse (n = 25). (F) Distribution of session-wise correlations between average running
speed and average overall performance, showing that although there is an overall correlation
between the two indicators, for any given mouse there is little correlation of speed and
performance on individual sessions. (G) Average frequency of different types of putative motor
errors, calculated separately for correct and error trials. Error bars, + SEM. *** P < 0.001, n.s.:
not significant.
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853 We then turned to the analysis of view angle trajectories. For each mouse, we calculated the
854 distribution over trials of view angles as a function of y position in the maze, separately for left
855 and right choice trials (Figure 9A). We observed diverging distributions with increasing y
856 positions, indicating that the animals progressively turned to their choice side as they ran down
857 the stem of the maze. To better quantify this phenomenon, we built choice decoders that
858  predicted the future choice based on the current view angle at a particular y position along the
859 maze stem (see Materials and Methods). At y = 100 cm (half-way through the cue period),
860 average decoding accuracy was 73.1 + 1.3% (mean + SEM), whereas at the end of the cue period
861 (y =200 cm) we could predict choice with an accuracy of 87.3 + 1.1% (Figure 9B). We reasoned
862 that this divergence of view angles during the cue period could be related to the observed
863 primacy effects (i.e. mouse weighting earlier evidence more, Figures 2 and 7), prompting us to
864 ook for such relationship at the subject level. We thus calculated the correlation between the
865  weight decay ratio (Figure 2C) and choice decoding accuracy at y = 100. We found a
866 significantly negative correlation between the two (Figure 9C, r = -0.71, P = 7.6 x 107,
867  Pearson's correlation), indicating that in fact animals integrating more evenly across the maze
868  also tended to run straighter during the cue period. This finding possibly indicates that they
869  commit later to a particular decision. In fact, the view angle trajectories of mice were on average
870 modulated by the strength of evidence within the trial, with view angles diverging earlier towards
871 the target side (as defined by the eventual choice) for trials with larger magnitudes of |A| towers
872 (Figure 9E). Although highly variable on a per-trial basis (Figure 8D), this aspect of the
873 navigational behavior seemed to be sensitive to parameters of the cognitive strategy employed by
874 the mice (weighting of cues vs. space, trial difficulty), and may prove useful for future studies.

875 Finally, we considered the possibility that mice circumvent the memory demands of the task by
876 using the view angle throughout the maze as a mnemonic for the side with more evidence. To
877 address this possibility, we computed tower-triggered view angles separately for left and right
878  choices, subtracting the average trajectories for each mouse (Figure 9D). There were no
879 significant differences in pre- (averaged over —20 to 0 ¢cm) and post-tower (0 to 50 or 80 c¢m)
880 view angles, for neither left- nor right-choice trials (P > 0.05, two-sided paired t-test). This
881  argues against stereotyped, memoryless mnemonics, e.g. where the mouse makes a +1° (-1°)
882 deflection in view angle 300ms after seeing a right (left) tower, and eventually uses this
883 “accumulated” view angle to make a choice.
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884 Figure 9 | View angle trajectories. (A) Distribution of view angles in left and right choice trials
885  (arbitrary units, normalized to equal area for both choice categories) for an example mouse,
886 sampled at several y positions (0, 50, ..., 250, 295 cm) along the stem of the T-maze. (B)
887 Accuracy of decoding the eventual choice of a given mouse using a threshold on the view angle,
888  evaluated at various y positions along the T-maze. (C) Scatter plot across mice of the evidence
889 weight decay ratio (see Figure 3C) vs. the choice decoding accuracy evaluated at halfway into
890 the cue region as indicated in (B). (D) Cue-triggered change in the view angle 0 relative to the
891 average trajectory <0) for trials of the same choice. The bands indicate the 1 standard deviation
892 spread across mice, with the thick lines being the median across mice. (F) Average view angle
893 for subsets of left/right choice trials with various values of #R — #L (color code). For a given
894 choice, the mean view angle trajectory of individual mice are aligned to the aggregate data
895 (metamouse) before averaging.

896 DISCUSSION

897 We have developed a new virtual navigation-based, pulsed evidence-accumulation task for
898  head-fixed mice, along with tools to quantify their performance and behavioral strategy. We
899 show that mice can gradually accumulate visual evidence in virtual reality over seconds. First,
900 large numbers of mice from several strains can be reproducibly trained in the task (Figure 2,
901 Supplementary Figures 1-4). Second, using a combination of model-free analyses and
902 modeling approaches, we also show that mice solve this task by using multiple pulses of
903 evidence across the cue region, although they tend to slightly overweight earlier evidence
904 (Figures 3, 6 and 7). Moreover, our analyses suggest that sensory evidence-dependent noise, but
905  not accumulation memory, is an important performance-limiting factor, much like analogous
906  tasks in rats and humans (Figures 4 and 5) (Brunton et al., 2013; Scott et al., 2015). An
907 intriguing difference from previous reports was our observation that the mice tended to alternate
908 instead of repeating a previously rewarded choice (Figure 6), unlike what has been observed in
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909 both rats and mice (Busse et al., 2011; Scott et al., 2015). We speculate that this is related to the
910 mice's tendency to spontaneously alternate their choices in T-mazes (Lalonde, 2002), but note
911 that choice alternation has also been reported in humans performing perceptual decision making
912 tasks, and has been found to be modulated by the magnitude of uncertainty in the previous trial
913 (Urai et al., 2017). Finally, analysis of the mice's virtual navigation trajectories suggested that
914 ongoing behavioral readouts may provide useful proxies for latent cognitive variables.

915 A central aspect of the accumulating-towers task is that decision-making must occur while the
916 animal navigates a (virtual) environment. Despite introducing complexity in the behavioral
917 training and data analyses, we argue that this is a desirable feature. Natural behavior seldom
918 occurs in isolated modules, and is instead dynamic and high-dimensional, and it is precisely
919 these behavioral constraints that are thought to have shaped the evolution of neural circuits
920 (Darwin, 1998; Gomez-Marin et al., 2014; Krakauer et al., 2017). The study of highly reduced
921 decision-making behaviors have allowed the field to make large strides in understanding their
922 underlying neural mechanisms (Brody and Hanks, 2016; Carandini and Churchland, 2013; Gold
923 and Shadlen, 2007). The study of these processes under more complex contexts should yield
924 novel insights into how they are flexibly composed to produce real-world solutions.

925 A recent study has described a similar visual evidence-accumulation task for mice navigating in
926 VR (Morcos and Harvey, 2016). The accumulating-towers task differs from theirs in a few
927 crucial ways, in terms of stimulus design, task difficulty and apparent strategies adopted by the
928  mice. We used Poisson-distributed, brief pulses of spatially discrete evidence (200 ms, 12-cm
929 geparation), which resulted in up to 16 cues on one side (median: 4) and up to 25 cues total
930 (median: 10). Conversely, Morcos and Harvey always had six cues of an optical flow (wallpaper)
931 nature that were four times as long (~800 ms) and occurred in stereotyped positions throughout
932 the stem of the maze. The latter design sampled the same stimulus configurations at high
933 frequencies, which is beneficial for increasing statistical power via averaging. However, we
934 argue that there are complementary advantages to sampling a much larger region of stimulus
935 gspace with spatially random cues. For example, decorrelating cue locations from space/time
936 allowed us to tease apart the effects of stimulus strength vs. an important aspect of working
937 memory, i.e. retention time (Figure 4), while maintaining a quasi-fixed trial duration. Moreover,
938 using brief pulses of sensory evidence gives one the ability to study cue-triggered neural
939 responses (Koay et al., 2016; Scott et al., 2017). This highly heterogeneous design did likely
940 increase task difficulty, which may explain the slightly lower performance we observed
941 compared to the Morcos and Harvey task. Note, however, that we used deliberately liberal trial
942 gelection criteria, and that when more stringent criteria were applied we could obtain very high
943 performance sessions (Figure 2, Supplementary Figure 3), which might be desirable for neural
944 recording and perturbation experiments. Interestingly, these task design differences led to
945 apparent differences in the strategies that the mice employed. Specifically, the mice in the
946 Morcos and Harvey study displayed more pronounced primacy effects than ours
947 (Supplementary Figure 7).

948 The primacy effects we observed in many of our mice (Figures 3, 6 and 7) agree with several
949 other evidence pulse-based tasks in mice, monkeys and humans (Bronfman et al., 2016; Kiani et
950 al., 2008; Ludwig et al., 2005; Odoemene et al., 2017; Tsetsos et al., 2012), but are at odds with
951 findings of temporally even evidence integration in rats performing a high-rate auditory clicks
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952 task (Brunton et al., 2013). The reasons behind these differences are a matter of ongoing debate.
953 In particular, it has been argued that primacy in pulsed-based tasks is due to either reaching an
954 accumulator bound (Kiani et al., 2008) or to competition between leaky integrators that mutually
955 inhibit each other (Tsetsos et al., 2012). Interestingly, it has been recently shown that in humans
956 the degree of primacy and even the monotonicity of the evidence weighting curve can change
957 with stimulus duration, which prompted the authors to postulate a dynamic evidence
958 accumulation mechanism (Bronfman et al., 2016). Thus, it is conceivable that different
959 decision-making and integration mechanisms might be at play depending on stimulus and task
960 features (Piet et al., 2017; Uchida et al., 2006). Task design differences could also explain why
961 we did not observe an improvement in performance with increased stimulus durations (Figure
962 4), as what might be expected if a diffusion-to-bound-type mechanism is at play. Specifically, our
963 stimulus period durations were longer than when the benefits of prolonged stimulus saturate
964 (Brunton et al., 2013; Gold and Shadlen, 2007; Kiani et al., 2008).

965  In summary, the accumulating-towers task is a valuable behavioral tool to study evidence
966 accumulation and decision-making in mice. The task is conducive to further automation and
967 scaling, and interesting modifications such as designed stimulus sets can be easily incorporated.
968  Most importantly, it is readily integratable with any number of optical or electrophysiological
969 techniques requiring head fixation (Koay et al., 2016; Pinto et al., 2017), allowing us to leverage
970 the comprehensive mouse toolkit in understanding neural mechanisms underlying this important
971 cognitive behavior.
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Supplementary Figure 1 | Shaping. (A) Schematic illustration of the 10 different shaping
mazes (T1 — T10) and the final accumulation maze (T11). (B) Progression through shaping
stages of two example mice, where each color indicates a different maze according to the
colorbar on the bottom right. (C) Number of sessions training sessions spent on each shaping
stage. Gray crosses: individual mice, black circles: population mean (n = 17), error bars: = SEM.
(D) Average overall performance for each shaping stage. Conventions as in (C).
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Supplementary Figure 2 | Mice display stable performance over many sessions. (A) Overall
performance in the final accumulation maze as a function of session number, for mice with at
least 5 sessions (n = 30), and selecting all trials regardless of overall performance (i.e. not
applying any performance thresholds). Thin gray lines: individual mice, black line: average
across mice, error bars: = SEM. Red line is best linear fit to average data. (B) Distribution of
slopes extracted from best-fitting lines to performance of each mouse as a function of session
number (i.e. thin gray lines in panel A). Bars are color-coded according to whether the slope is
significant (dark gray, i.e. its 95% confidence interval does not overlap zero) or not (light gray).
Arrowhead indicates population mean. The distribution was not significantly different from zero
(P = 0.99, signed rank test), indicating stable performance across sessions. (C) Distribution of
standard deviation of average performance across (gray) and within (green) sessions for the
mice. Arrowheads: population means. Within-session standard deviation was calculated using
performance over a 40-trial running window.
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Supplementary Figure 3 | Mice can undergo bouts of high/low performance (A) Three
individual examples of consecutive trial blocks on the final accumulation maze, showing
performance calculated with a sliding half-Gaussian window (o = 15 trials), plotted as a function
of trial number (trial 1 is the first within the block, not necessarily the first in the session). Dotted
lines of different shades of green indicate performance thresholds applied in the analysis shown

in D. (B) Psychometric curves for aggregate data (metamouse), obtain after excluding trials with
performance below different thresholds (illustrated in A).
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Supplementary Figure 4 | Different mouse strains have comparable performance. (A)
Psychometric curves for aggregate data (metamouse) divided into five different strains according
to the color code on the top left. Error bars: binomial confidence intervals, lines: best sigmoidal
function fits. (B) Overall performance averaged across blocks with performance over 60% (see
Materials and Methods). Crosses: individual animals, error bars: SEM for each mouse strain. (C)
Percentage of sessions with at least one trial block over our performance threshold (60%).
Conventions as in B. (D) Logistic regression of choice on net evidence for each spatial bin. (E)
Weight decay index according to genotype. Conventions as in B. (F) Average running speed,
conventions as in B. (G) Accuracy of decoding choice from view angle as a function of maze
position for different strains. For all but one measure above, there was no significant difference
between the different strains, (P > 0.05, one-way ANOVA)(Decoding accuracy was measured in
the cue period, y < 200 cm). The exception was running speed, significantly different between
genotypes (P =0.04).
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Supplementary Figure 5 | Mice rely on multiple cues to perform the task. (A) Comparison of
cross-validated prediction performance of a model containing both trial history and spatially
binned evidence (Figure 6H) and one containing only trial history terms (n = 20 mice). MI:
model information. (B) Comparison of cross-validated prediction performance of a model in
which the mouse makes a decision based on a single random tower and one with spatially binned
evidence (no history) (n =20 mice). (C) Psychometric curves for the actual data and a model that
chooses from each trial 1 of the presented cues (randomly) and bases the trial choice on the
identity of that cue. Data is aggregated across mice for trials where the total number of cues
(#R+#L) is equal to 12. In the scenario where #R + #L is fixed, we expect the “1 random cue”
model’s performance to be linear with #R — #L (as is borne out in the figure). In contrast, if mice
used multiple cues the psychometric curve should be different from a line. The psychometric
curve for the actual data (blue) is significantly different from that predicted by the ‘1 random
cue’ model (P < 0.001, shuffle test, see Supplementary Materials and Methods).
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Supplementary Figure 6 | Best-fit parameters for the Brunton et al. model for each mouse.
(A) — (D). Vertical red bars indicate the median of best-fit parameters across cross-validation runs,
gray shadings indicate one standard deviation of the distribution obtained from cross-validation
runs. All panels are sorted according to the same mouse order.
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Supplementary Figure 7 | Comparison between the degree of primacy in the
accumulating-towers and the Morcos and Harvey tasks. For direct comparison with the
Morcos and Harvey task, we recalculated the logistic regression from the final accumulation
maze of our task using 6 bins. Data from Supplementary Figure 2, panel d, in Morcos and
Harvey (2016) was kindly provided by A.S. Morcos and C.D. Harvey. We then calculated the
weight decay ratio as previously described (Materials and Methods and Results, Fig. 3C).
Arrowheads, median.
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T1 T2 T3 T4 TS T6 T7 T8 T9 T10 T11

Total length

60 170 270 330 330 330 330 330 330 330 330
(cm)
Cue period (cm) |45 120 220 280 280 240 200 200 200 200 200
Delay (cm) 10 20 20 20 20 60 100 100 100 100 100

P L FY 3.8 338 38 |42 |42 |42 |45 43 438 5.0

(m™)

Tower duration|, .|, o 1o et mf |mf |Wf  |mf |20 |200
(ms)

ooe? — uililie [, 10 10 10 10 10 10 10 10 10 10
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Visual guide? Y Y Y Y N N N N N N N

Tower side ratio

(m'l) Inf Inf Inf Inf Inf Inf Inf 8.3:0.7 |8.0:1.6 |8.0:1.6 |7.7:2.3

10 T4
30 T4(30 T4|30 T4 |and 15|10 T4 |10 T4|10 T4
trials trials trials T7 trials trials trials
with < |with < |with < |trials with < |with < |with <
10% 10% 10% with < |10% 10% 10%
bias bias bias 10% bias bias bias
and >|and > |and > |bias and >|and > |and >
80% 80% 80% and > |85% 85% 85%
correct |correct |correct |80% correct |correct |correct
correct

Warm-up none none none none

2 1 1 1 1 1 1
" 40 st sessiqrtlh se‘st;ion se‘st;ion se_st;ion se_s;lion seizion seislfon
. s with [wi wi wi wi wi wi
Advancement | o | complet ef malj 100|100 [100 [100 [100 |100 100 |wa
criteria ed trials | ed trials 20% trials at |trials at |trials at |trials at |trials at |trials at |trials at
o > 90% |> 80% |> 80% |> 80% |> 75% |> 70% |> 70%
correct |correct |correct |correct |correct |correct |correct

80

Easy blocks 10 T4[10 T4|10 T4|10 T4|10 T7|10 T7|10 T7
(performance none none none none trials if |trials if |trials if |trials if |trials if |trials if |trials if
calculated over < 70%|< 70%|< 70%|[< 65% (< 60% |[< 60% |< 55%

40-trial window) correct |correct |correct |correct |correct |correct |correct

Supplementary Table 1 | Detailed parameters for all shaping mazes and main accumulation
maze.
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Supplementary Movie 1. Playback of six example trials from the accumulating-towers task.
Left: flattened view of the mice's perspective as they navigated the maze. The red lines indicate
the estimated boundaries of the binocular field (£ 17.5° at the horizon), and the yellow lines
indicate + 45° for reference. Luminance has been increased for convenience. Right: equivalent
top-down view of the virtual maze. The mouse avatar turns according to its recorded virtual view
angle, and towers become gray outlines when they disappear from the maze. Movie has been
slowed down by 2x.
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Supplementary Methods

Heuristic models: optimization technique

Here we defined several models where the choice of the mouse in a series of trials is assumed to
be a Bernoulli process parameterized by a probability of making a choice to the right,

pr = Pr(T ), that depends on a set of trial-specific quantities ¥ (see Materials and Methods).

We obtained best-fit parameters for each model by maximizing the log likelihood of the model
for a given dataset comprising of m trials. Let the mouse’s choice on the i trial be
¢,t=1,...,m which is 1 (0) if the mouse chose right (left), then the likelihood of observing
this choice is given by the binomial distribution B (1,pr) = pr(Z:)* [1 — pr(d)]' ™, Taking
the product of individual-trial likelihoods we obtain:

InL, = Y {c; pr(Z)Inpr(&) + (1 — ¢;) In[l — pr(Z)]}

1<i<m

Additionally we subtracted L1 penalty terms for all free parameters of the model. For a model
that includes all factors, the quantity that is maximized is therefore:

InL =1L, — A (||Balls + 18wl + 15u]l)

where I7ll1 = 2_; 4l is the L1 norm. This regularization is used as a method for selecting the
most parsimonious model in terms of driving coefficients to zero when they do not result in a
significantly better fit for the model (Schmidt, 2010). It was also crucial for some models,
particularly those that contain history-dependent lapse terms, because of the presence of multiple
local maxima that made the problem otherwise ill-posed.

The regularization strength hyperparameter A was determined by using a 3-fold cross-validation
(CV) procedure to find the optimal model in terms of predictive power. A given dataset was first
divided into thirds, and each third is used exactly once as a test set and the remaining two thirds

as its complementary training set. To equalize the highly different scales of the A factors
compared to the rest of the factors which are bounded within [-1,1], for each coordinate the
standard deviation @i = V/{(Ai — 1))/ (may3 — 1) yag computed using the "7%2/3 trials in the
training set, and used to scale the evidence factors, A; = Ai/oi n other words, the only thing

that this changed was that the coefficients Sa were expressed in units of 1/3 where & are
constants derived using the training set (the same are used for the test set, as it would be unfair
use of information if they were re-derived for the test set).
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Alternative strategy models: one-random-tower analysis details

For the analysis in Supplementary Figure SC, for each mouse we selected the top 1 third
performance blocks, and only analyzed mice that had at last 200 trials in these blocks; we pooled
together all trials from these blocks and mice. To test the 1-random tower hypothesis, we
reasoned that we expect to obtain a linear psychometric curve when the sum of towers (#R+#L)
was fixed for all trials. This is because the probability to go right for the 1-random tower strategy
is given by #R/(#R+#L), and if the denominator is fixed, then the psychometric curve (which is
given by (#R-#L)/(#R+#L)) is linear in the difference of towers #R-#L, which is the standard
x-axis of the psychometric curve. However, we have empirically observed sigmoid shapes for the
psychometric curves of the mice's choices. Thus, we proceeded to quantify if the psychometric
curves of the mice choices were different from that of the 1-random tower model (as described in
Materials and Methods). To obtain a dataset with fixed #R+#L, we next selected only trials
where #R+#L=12. This number was chosen because it was the maximum number of #R+#L for
which there were at least 4000 trials. We then found the psychometric curve for the actual data
and the 1l-random tower model. As expected, the 1-random tower model results in a linear
psychometric curve, whereas the actual data appears more sigmoidal. To find whether these
curves are significantly different from each other, we performed a shuffling test in the following
way: we generated 5000 bootstrapped pairs of curves by pooling for all trials with a given #R —
#L the number of times the mice (or model) chose right, and then randomly assigning the same
number of right choices between the two curves, while keeping the total number of trials as in
the original data. The sum of absolute differences between the two curves was used as the test
statistic.
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