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Abstract

Midbrain dopamine neurons are commonly thought to report a reward prediction error, as hypothe-
sized by reinforcement learning theory. While this theory has been highly successful, several lines of
evidence suggest that dopamine activity also encodes sensory prediction errors unrelated to reward.
Here we develop a new theory of dopamine function that embraces a broader conceptualization of
prediction errors. By signaling errors in both sensory and reward predictions, dopamine supports a
form of reinforcement learning that lies between model-based and model-free algorithms. We show
that the theory can account for the role of dopamine in phenomena such as sensory preconditioning
and identity unblocking, which ostensibly draw upon knowledge beyond reward predictions.
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Introduction

The hypothesis that midbrain dopamine neurons report a reward prediction error (RPE, the dis-
crepancy between observed and expected reward) enjoys a seemingly unassailable accumulation
of support from electrophysiology (Bayer & Glimcher, 2005; Eshel et al., 2015; Eshel, Tian, Buk-
wich, & Uchida, 2016; Roesch, Calu, & Schoenbaum, 2007; Waelti, Dickinson, & Schultz, 2001),
calcium imaging (Menegas, Babayan, Uchida, & Watabe-Uchida, 2017; Parker et al., 2016), opto-
genetics (Chang et al., 2016; Steinberg et al., 2013; Tsai et al., 2009), voltammetry (Day, Roitman,
Wightman, & Carelli, 2007; Hart, Rutledge, Glimcher, & Phillips, 2014), and human brain imaging
(D’ardenne, McClure, Nystrom, & Cohen, 2008; Pessiglione, Seymour, Flandin, Dolan, & Frith,
2006). The success of the RPE hypothesis is exciting because the RPE is precisely the signal a
reinforcement learning (RL) system would need to update reward expectations (Montague, Dayan,
& Sejnowski, 1996; Schultz, Dayan, & Montague, 1997). Support for this RL interpretation of
dopamine comes from findings that dopamine complies with basic postulates of RL theory (Waelti
et al., 2001), shapes the activity of downstream reward-predictive neurons in the striatum (Cheer
et al., 2007; Day et al., 2007), and plays a causal role in the control of learning (Chang et al., 2016;
Pessiglione et al., 2006; Steinberg et al., 2013; Tsai et al., 2009).

Despite these successes, however, there are a number of signs that this is not the whole story. First,
it has long been known that dopamine neurons respond to novel or unexpected stimuli, even in
the absence of changes in value (Horvitz, 2000; Ljungberg, Apicella, & Schultz, 1992; Menegas et
al., 2017; Strecker & Jacobs, 1985). While some theorists have tried to reconcile this observation
with the RPE hypothesis by positing that value is affected by novelty (Kakade & Dayan, 2002) or
uncertainty (Gershman, 2017), others have argued that this response constitutes a distinct function
of dopamine (Bromberg-Martin, Matsumoto, & Hikosaka, 2010; Redgrave, Gurney, & Reynolds,
2008; Schultz, 2016), possibly mediated by an anatomically segregated projection from midbrain
to striatum (Menegas et al., 2017). A second challenge is that some dopamine neurons respond
to aversive stimuli. If dopamine responses reflect RPEs, then one would expect aversive stimuli
to reduce responses (as observed in some studies; (Mirenowicz & Schultz, 1996; Ungless, Magill, &
Bolam, 2004)). A third challenge is that dopamine activity (Bromberg-Martin, Matsumoto, Hong,
& Hikosaka, 2010) and its putative hemodynamic correlates (Daw, Gershman, Seymour, Dayan,
& Dolan, 2011) are influenced by information, such as changes in stimulus contingencies, that
should in principle be invisible to a pure “model-free” RL system that updates reward expectations
using RPEs. This has led to elaborations of the RPE hypothesis according to which dopamine has
access to some “model-based” information (Daw, Courville, & Touretzky, 2006; Gershman, 2017;
Nakahara & Hikosaka, 2012; Starkweather, Babayan, Uchida, & Gershman, 2017).

While some of these puzzles can be resolved within the RPE framework by modifying assumptions
about the inputs to and modulators of the RPE signal, recent findings have proven more unyielding.
In this paper we focus on three of these findings: (1) dopamine transients are necessary for learning
induced by unexpected changes in the sensory features of expected rewards (Chang, Gardner,
Di Tillio, & Schoenbaum, 2017); (2) dopamine neurons respond to unexpected changes in sensory
features of expected rewards (Takahashi et al., 2017); and (3) dopamine transients are both sufficient
and necessary for learning stimulus-stimulus associations (Sharpe et al., 2017). Taken together,
these findings seem to contradict the RPE framework supported by so much other data.
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Here we will suggest one possible way to reconcile the new and old findings, based on the idea that
dopamine computes prediction errors over sensory features, much as was previously hypothesized for
rewards. This sensory prediction error (SPE) hypothesis is motivated by normative considerations:
SPEs can be used to estimate a predictive feature map known as the successor representation
(SR; Dayan, 1993). The key advantage of the SR is that it simplifies the computation of future
rewards, combining the efficiency of model-free RL with some of the flexibility of model-based
RL. Neural and behavioral evidence suggests that the SR is part of the brain’s computational
repertoire (Momennejad et al., 2017; Russek, Momennejad, Botvinick, Gershman, & Daw, 2017),
possibly subserved by the hippocampus (Garvert, Dolan, & Behrens, 2017; Stachenfeld, Botvinick,
& Gershman, 2017). Here we argue that dopamine transients previously understood to signal RPEs
may instead constitute the SPE signal used to update the SR.

Theoretical framework

The reinforcement learning problem

RL theories posit an environment in which an animal accumulates rewards as it traverses a sequence
of “states” governed by a transition function T (s′|s), the probability of moving from state s to state
s′, and a reward function R(s), the expected reward in state s. The RL problem is to predict and
optimize value, defined as the expected discounted future return (cumulative reward):

V (st) = E

[ ∞∑
k=0

γkrt+k

]
, (1)

where rt is the reward received at time t in state st, and γ ∈ [0, 1] is a discount factor that determines
the weight of temporally distal rewards. Because the environment is assumed to obey the Markov
property (transitions and rewards depend only on the current state), the value function can be
written in a recursive form known as the Bellman equation (Sutton & Barto, 1998):

V (st) = E[rt + γV (st+1)]. (2)

The Bellman equation allows us to define efficient RL algorithms for estimating values, as we explain
next.

Model-free and model-based learning

Model-free algorithms solve the RL problem by directly estimating V from interactions with the
environment. The Bellman equation specifies a recursive consistency condition that the value
estimate V̂ (st) must satisfy in order to be accurate. By taking the difference between the two sides
of the Bellman equation, E[rt + γV̂ (st+1)]− V̂ (st), we can obtain a measure of expected error; the
direction and degree of the error is informative about how to correct V̂ (st).

Because model-free algorithms do not have access to the underlying environment model (R and T )
necessary to compute the expected error analytically, they typically rely on a stochastic sample of
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the error based on experienced transitions and rewards:

δt = rt + γV̂ (st+1)− V̂ (st). (3)

This quantity, commonly known as the temporal difference (TD) error, will on average be 0 when
the value function has been perfectly estimated. The TD error is the basis of the classic TD learning
algorithm (Sutton & Barto, 1998), which in its simplest form updates the value estimate according
to ∆V̂ (st) ∝ δt. The RPE hypothesis states that dopamine reports the TD error (Montague et al.,
1996; Schultz et al., 1997).

Model-free algorithms like TD learning are efficient because they cache value estimates, which
means that state evaluation (and by extension action selection) can be accomplished by simply
inspecting the values cached in the relevant states. This efficiency comes at the cost of flexibility:
if the reward function changes at a particular state, the entire value function must be re-estimated,
since the Bellman equation implies a coupling of values between different states. For this reason,
it has been proposed that the brain also makes use of model-based algorithms (Daw et al., 2011;
Daw, Niv, & Dayan, 2005), which occupy the opposite end of the efficiency-flexibility spectrum.
Model-based algorithms learn a model of the environment (R and T ) and use this model to evaluate
states, typically through some form of forward simulation or dynamic programming. This approach
is flexible, because local changes in the reward or transition functions will instantly propagate across
the entire value function, but at the cost of relying on comparatively inefficient simulation.

Some of the phenomena that we discuss in the Results have been ascribed to model-based compu-
tations supported by dopamine (Langdon, Sharpe, Schoenbaum, & Niv, 2018), thus transgressing
the clean boundary between the model-free function of dopamine and putatively non-dopaminergic
model-based computations. The problem with this reformulation is that it is unclear what exactly
dopamine is contributing to model-based learning. Although prediction errors are useful for updat-
ing estimates of the reward and transition functions used in model-based algorithms, these do not
require a TD error. A distinctive feature of the TD error is that it bootstraps a future value esti-
mate (the γV̂ (st+1) term); this is necessary because of the Bellman recursion. But learning reward
and transition functions in model-based algorithms can avoid bootstrapping estimates because the
updates are local thanks to the Markov property. To make this concrete, a simple learning algo-
rithm (guaranteed to converge to the maximum likelihood solution under some assumptions about
the learning rate) is to update the model parameters according to:

∆R(s) ∝ rt −R(st) (4)

∆T (s′|st) ∝ I(st+1 = s′)− T (s′|st), (5)

where I(·) = 1 if its argument is true, and 0 otherwise (see also Gläscher, Daw, Dayan, & O’Doherty,
2010). These updates can be understood in terms of prediction errors, but not TD errors (they do
not bootstrap future value estimates). The TD interpretation is important for explaining phenom-
ena like the shift in signaling to earlier reward-predicting cues (Schultz et al., 1997), the temporal
specificity of dopamine responses (Hollerman & Schultz, 1998; Takahashi, Langdon, Niv, & Schoen-
baum, 2016), and the sensitivity to long-term values (Enomoto et al., 2011). Thus, it remains mys-
terious how to retain the TD error interpretation of dopamine, which has been highly successful as
an empirical hypothesis, while simultaneously accounting for the sensitivity of dopamine to SPEs.
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The successor representation

To reconcile these data, we will develop the argument that dopamine reflects sensory TD errors,
encompassing both reward and non-reward features of a stimulus. In order to introduce some
context to this idea, let us revisit the fundamental efficiency-flexibility trade-off. One way to
find a middle-ground between the extremes occupied by model-free and model-based algorithms
is to think about different ways to compile a model of the environment. Model-based algorithms
are maximally uncompiled: they explicitly represent the parameters of the model. Model-free
algorithms are maximally compiled: they only represent the summary statistics (state values) that
are needed for reward prediction. A third possibility is a partially compiled model. Dayan (1993)
presented one such scheme, based on the following mathematical identity:

V (st) =
∑
s′

M(st, s
′)R(s′), (6)

where M denotes the successor representation (SR), the expected discounted future state occu-
pancy:

M(st, s
′) = E

[ ∞∑
k=0

γkI(st+k = s′)

]
. (7)

Intuitively, the SR represents states in terms of the frequency of their successor states. From a
computational perspective, the SR is appealing for two reasons. First, it renders value computation
a linear operation, yielding efficiency comparable to model-free evaluation. Second, it retains some
of the flexibility of model-based evaluation. Specifically, changes in rewards will instantly affect
values because the reward function is represented separately from the SR. On the other hand, the
SR will be relatively insensitive to changes in transition structure, because it does not explicitly
represent transitions—these have been compiled into a convenient but inflexible format. Behavior
reliant upon such a partially-compiled model of the environment should be more sensitive to reward
changes than transition changes, a prediction recently confirmed in humans (Momennejad et al.,
2017).

The SR obeys a recursion analogous to the Bellman equation:

M(st, s
′) = E[I(st = s′) + γM(st+1, s

′)]. (8)

Following the logic of the previous section, this implies that a TD learning algorithm can be used
to estimate the SR:

∆M̂(st, s
′) ∝ δMt (s′) = I(st = s′) + γM̂(st+1, s

′)− M̂(st, s
′), (9)

where M̂ denotes the approximation of M .

One challenge facing this formulation is the curse of dimensionality : in large state spaces it is
impossible to accurately estimate the SR for all states. Generalization across states can be achieved
by defining the SR over state features and modeling this feature-based SR with linear function
approximation:

M̂(st, j) =
∑
i

fi(st)Wij , (10)
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where fi(s) denotes the ith feature of state s and W is a weight matrix that parametrizes the
approximation. In general the features can be arbitrary, but for the purposes of this paper, we will
assume that the features correspond to distinct stimulus identities; thus fi(s) = 1 if stimulus i is
present in state s, and 0 otherwise. Linear function approximation leads to the following learning
rule for the weights:

∆Wij ∝ δMt (j)fi(st), (11)

where

δMt (j) = fj(st) + γM̂(st+1, j)− M̂(st, j) (12)

is the TD error under linear function approximation. We will argue that dopamine encodes this
TD error.

There are several notable aspects of this new model of dopamine. First, it naturally captures SPEs,
as we will illustrate shortly. Second, it also captures RPEs if reward is one of the features. Specif-
ically, if fj(st) = rt, then the correspond column of the SR is equivalent to the value function,
M(s, j) = V (s), and the corresponding TD error is the classical RPE, δMt (j) = δt. Third, the
TD error is now vector-valued, which means that dopamine neurons are heterogeneously tuned to
particular features (Lau, Monteiro, & Paton, 2017), or they multiplex several features (Tian et al.,
2016), or both. Notably, although the RPE correlate has famously been evident in single-units, rep-
resentation of these more complex or subtle prediction errors may be an ensemble property. Lastly,
in order to make minimal assumptions pending additional data, we will assume that dopamine
neurons encode the superposition of feature-specific TD errors,

∑
j δ

M
t (j) (see also Daw et al.,

2006).

Simulations

Some of the most direct evidence for our hypothesis comes from a recent study by Chang et
al. (2017), who examined whether dopamine is necessary for learning about changes in reward
identity (Figure 1A). Animals first learned to associate two stimuli (XB and XUB) with different
reward flavors. These stimuli were then reinforced in compound with other stimuli (AB and AUB).
Critically, the XUBAUB trials were accompanied by a change in reward flavor, a procedure known
as “identity unblocking” that attenuates the blocking effect (Blaisdell, Denniston, & Miller, 1997;
McDannald, Lucantonio, Burke, Niv, & Schoenbaum, 2011; Rescorla, 1999). This effect eludes
explanation in terms of model-free mechanisms, but is naturally accommodated by the SR since
changes in reward identity induce sensory prediction errors. Chang et al. (2017) showed that
optogenetic inhibition of dopamine at the time of the flavor change prevents this unblocking effect
(Figure 1B). Our model accounts for this finding (Figure 1C), because inhibition suppresses SPEs
that are necessary for driving learning (see Methods for a formal description of how we model
optogenetic manipulations).

Electrophysiological experiments have confirmed that dopamine neurons respond to changes in
identity, demonstrating a neural signal that is capable of explaining the data from Chang et al.
(2017). We have already mentioned the sizable literature on novelty responses, but the significance
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of the food reward36, contrary to our results. Thus our results go far 
beyond what can be explained by a cached-value prediction error.

Nor could the results from either experiment have reflected changes 
in salience or associability caused by manipulation of the dopamine 
neurons, either directly or via the addition or subtraction of cached 
value. While such effects have been reported following optogenetic 
activation of dopamine terminals in medial prefrontal cortex37, we saw 
no evidence of this in either of our experiments involving manipula-
tion of the cell bodies. For example, while increasing the salience or 
associability of X on the AC trials in our first experiment might have 
indirectly allowed X to enter into an association more readily with C, 
all theoretical accounts of which we are aware38–40 would also pre-
dict lasting effects on processing and associability of X. These effects 
would facilitate learning for X in other parts of our task, but we did 
not observe any evidence of increased learning about X in other trials 
in the ChR2 rats. In particular, the ChR2 rats did not respond more 
to D than controls, nor did they show more rapid conditioning to 
X in the second phase of training. The same is true for our second 
experiment, in which we saw no changes in learning about Y during  

conditioning, indicating that suppressing dopamine neurons did not 
alter the salience or value of Y. It is also worth noting that direct effects 
on salience would be inconsistent with evidence that activation of VTA 
dopamine neurons diminishes extinction learning while inhibition of 
these neurons facilitates it12,14. These effects, achieved using the same 
optogenetic approaches applied here, are the opposite of what would 
be expected if manipulating these neurons directly altered salience.

Instead, the most parsimonious explanation of our results is that 
dopamine transients played a role in the formation of associative 
links between the neural representations of external events—whether 
rewarding or not—linking representations of neutral cues during pre-
conditioning and representations of neutral cues with representations 
of rewards in other settings. Notably, this interpretation holds whether 
the ultimate behavior in the probe test reflected inference (i.e., if A X  
and X US, then A US) or mediated learning during the condition-
ing phase (i.e., X evoked a memory of A that became directly associ-
ated with the US, so that later A US; Supplementary Fig. 1). In 
either case, dopamine must be influencing the association between the 
cues in the first phase of training. While this proposal does not negate 
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Figure 5 Brief optogenetic inhibition of dopamine neurons reduces the strength of associations between cues. Top: VTA dopamine neurons were 
inhibited by light delivery (orange symbol) in the 500 ms before the offset of A and carried through the first 2 s of X. Double dots and squares 
represent flavors of food pellets. (a–c) Plots show the percentage of time spent in the food cup during cue presentation across all phases of the sensory 
preconditioning task: (a) preconditioning, (b) conditioning and (c) the probe test. In each panel, top graph shows data from the eYFP control group  
(n = 24); bottom graph shows data from the experimental NpHR group (n = 17). To the extent that responding to A is equal to B in scatterplots 
represented in c, points should congregate around the diagonal. Histograms along the diagonal reveal the frequency (subject counts) of difference 
scores in responding to the cues that fall within a particular range. A two-factor ANOVA on food cup responding during cue presentations (cue × group) 
in preconditioning (a) revealed no main effect (F1,39 = 1.88, P = 0.177) nor any interaction with group (F3,117 = 0.425, P = 0.736). A three-factor 
ANOVA (cue × group × day) on data from conditioning (b) revealed a main effect of day (F3,105 = 43.181, P < 0.0001) but no main effect of cue  
(F1,39 = 0.008, P = 0.927), group (F1,39 = 0.094, P = 0.761) or any cue × group interaction (F1,39 = 1.113, P = 0.298). A two-factor ANOVA  
(cue × group) revealed a main effect of cue (F1,39 = 5.94, P = 0.019) and a significant cue × group interaction (F1,39 = 4.68, P = 0.037). Subsequent 
comparisons showed that this interaction was due to a significant difference in responding to cues A and B in the NpHR group (F1,39 = 4.952,  
P = 0.012), which was not present in the eYFP group (F1,39 = 0.742, P = 0.483). **P < 0.012. Error bars, = s.e.m. Please see Online Methods for 
comment on response measures and Supplementary Figure 4 for further details on responding during individual sessions in preconditioning.
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Figure 1: Inhibition of dopamine neurons prevents learning induced by changes in
reward identity. (A) Identity unblocking paradigm. Circles and squares denote distinct reward
flavors. Orange light symbol indicates when dopamine neurons were suppressed optogenetically
to disrupt any positive SPE; this spanned a 5s period beginning 500ms prior to delivery of the
second reward. (B) Conditioned responding on the probe test. Exp: experimental group, receiving
inhibition during reward outcome. ITI: control group, receiving inhibition during the intertrial
interval. Data replotted from Chang et al. (2017). (C ) Model simulation.

of this activity is open to question, because the animal’s prior value expectation is typically unclear.
A study reported by Takahashi et al. (2017) provides more direct evidence for an SPE signal, using
a task (Figure 2A) in which animals experience both shifts in value (amount of reward) and identity
(reward flavor). We will focus on the dopamine response at the time of reward in identity shift
blocks. Takahashi and colleagues found a stronger dopamine response on the first 5 trials of a
block following identity shift compared to the last 5 blocks prior to the identity shift (Figure 2B),
confirming the model’s prediction that identity shift will elicit an SPE (Figure 2C).

A strong form of our proposal is that dopamine transients are both sufficient and necessary for learn-
ing stimulus-stimulus associations. Recent experiments using a sensory preconditioning paradigm
(Sharpe et al., 2017) have tested this using sensory preconditioning. In this paradigm (Figure 3A),
various stimuli and stimulus compounds (denoted A, EF, AD, AC) are associated with another
stimulus X through repeated pairing in an initial preconditioning phase. In a subsequent condi-
tioning phase, X is associated with reward (sucrose pellets). In a final probe test, conditioned
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Sixty neurons out of 81 putative dopamine neurons in the
experimental group increased firing to reward. As in prior studies
(Roesch et al., 2007; Takahashi et al., 2011, 2016), classic value-
based prediction error signaling was observed almost exclu-
sively in these reward-responsive putative dopamine neurons.
These reward-responsive neurons (n = 60) changed firing in
response to shifts in reward number at the start of blocks 2
and 4, increasing specifically to unexpected delivery of the sec-
ond drop of reward at one well (Figure 3A) and decreasing to
omission of the expected second drop of reward at the other
well (Figure 3B). Changes in firing were not observed to the
delivery or omission of the third drop of reward. This is consistent
with signaling of the underlying prediction error, since in this

experiment (unlike our prior studies) the third drop was always
delivered after the second drop, so its occurrence or omission
was fully predicted by the presence or absence of the second
drop. To quantify these changes, we computed difference
scores for each neuron, comparing the average firing at the
beginning versus the end of the number shift blocks at the time
of delivery or omission of each potential drop of reward. Distribu-
tions of these scores were shifted above zero when an unex-
pected second reward was delivered (Figure 3C, middle) and
below zero when an expected second reward was omitted (Fig-
ure 3D, middle), but remained unchanged in the time windows
related to the first (Figures 3C and 3D, left) and third drops of
reward (Figures 3C and 3D, right). Changes in firing to second
reward were maximal at the beginning of the block and then
diminished with learning (Figure 3E; ANOVAs, F’s > 2.00,
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(A) Picture of apparatus used in the task, showing the odor port (!2.5 cm diameter) and two fluid wells.

(B) Line deflections indicate the time course of stimuli (odors and reward) presented to the animal on each trial. Dashed lines show when a reward was omitted,

and solid lines show when reward was delivered. At the start of each recording session, one well was randomly designated to deliver the big reward, which

consisted of three drops of flavoredmilk (chocolate or vanilla). One drop of the other flavoredmilk was delivered in the other well (block 1). In the second and fourth

blocks, number of drops delivered in the two wells was switched without changing the flavors (value shift). In the third and fifth blocks, the flavors delivered in the

two wells were switched without changing the number of drops (identity shift).

(C) Chocolate- and vanilla-flavored milk was equally preferred in 2 min consumption tests conducted at the end of some sessions. Gray lines indicate data from

individual rats.

(D and E) Choice rates in last 15 trials before and first 40 trials after a switch in reward number (D) or flavor (E). y axis indicates percent choice of side designated as

big reward after block switch. Inset bar graphs show average choice rates in the last 15 before and first 40 trials after the switch.

(F) Reaction times on the last ten forced-choice trials in response to big and small amounts of each flavor.

(G) Percentage correct on the last ten forced-choice trials in response to big and small amounts of each flavor.

(H) Number of licks in 500 ms after first drop of reward on the last 10 trials in response to big and small amounts of each flavor. B, big; S, small. Error bars, SEM.
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Figure 2: Dopamine neurons respond to changes in reward identity. (A) Time course of
stimuli presented to the animal on each trial. Dashed indicate reward omission, solid lines indicate
reward delivery. (B) Firing rate of dopamine neurons following first delivery of reward. Data
replotted from Takahashi et al. (2017). (C ) Model simulation of TD error.

responding to a subset of the individual stimuli (F, D, C) is measured in terms of the number of
food cup entries elicited by the presentation of the stimuli. During the preconditioning phase, one
group of animals received optogenetic activation of dopamine neurons via channelrhodopsin (ChR2)
expressed in the ventral tegmental area of the midbrain. In particular, optogenetic activation was
applied either coincident with X on AC→X trials, or (as a temporal control) 120-180 seconds after
X on AD→X trials. Another control group of animals received the same training and optogenetic
activation, but expressed light-insensitive enhanced yellow fluorescent protein (eYFP).

A blocking effect was discernible in the control (eYFP) group, whereby A reduced acquisition
of conditioned responding to C and D, compared to F, which was trained in compound with a
novel stimulus (Figure 3B). The blocking effect was eliminated by optogenetic activation in the
experimental (ChR2) group, specifically for C, which received activation coincident with X. Thus,
activation of dopamine neurons was sufficient to drive stimulus-stimulus learning in a temporally
specific manner.

These findings raise a number of questions. First, how does one explain blocking of stimulus-
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Finally, the rats received a probe test in which each of the critical 
test cues (C, D, F) were presented 4 times each, in an interleaved and 
counterbalanced order, alone and without reward. This probe test was 
designed to assess whether these preconditioned cues had acquired 
the ability to predict sucrose pellet delivery. As expected from studies 
of normal sensory preconditioning, rats in both groups demonstrated 
frequent responses to F, suggesting that, despite the use of a compound 
cue, they learned that F predicted X and used that relationship in the 
probe test to infer that F predicted sucrose pellets (Fig. 2c). Rats in 
both ChR2 and eYFP groups also demonstrated infrequent responses 
to D (as in our pilot study; Supplementary Fig. 1), indicating that 
the presence of A and its ability to predict X had blocked D from 
becoming associated with X (Fig. 2c). Notably, this occurred despite 
transient activation of the VTA dopamine neurons during the inter-
trial interval following AD trials. A two-factor ANOVA (cue × group) 
on responding during presentation of cues F and D revealed a main 
effect of cue (F1,35 = 4.372, P = 0.044) but no main effect (F1,35 = 0.001, 
P = 0.982) or interaction with group (F1,35 = 0.287, P = 0.595). Thus, 
both groups exhibited identical blocking of sensory preconditioning, 
as indexed by a significant difference between F and D.

When delivered at the start of X on the AC trials, however, tran-
sient activation of the dopamine neurons unblocked learning, so 
that responses to C were more common than responses to D in the 
ChR2 group but not in the eYFP controls (Fig. 2c). A two-factor 
ANOVA (cue × group) on responding to C and D revealed a main 
effect of cue (F1,35 = 4.599, P = 0.039) and a significant interaction 
with group (F1,35 = 4.154, P = 0.049). This interaction was due to a sig-
nificant difference between responding to C and D in the ChR2 group  
(F1,35 = 8.52, P = 0.006) but not in the eYFP group (F1,35 = 0.006,  
P = 0.940). In addition, responding to D did not differ between 
groups (F1,35 = 0.153, P = 0.698), whereas responding to C was sig-
nificantly more common in the ChR2 rats than in the eYFP controls  
(F1,35 = 5.277, P = 0.028). Thus, transient activation of the VTA 
dopamine neurons at the start of X on AC trials reversed the block-
ing effect, as indexed by the significant increase in responding  
to C only in the ChR2 rats.

But is the learning supported by transient activation of dopamine 
neurons the same as what is normally learned during sensory pre-
conditioning? That is, did the rats in the ChR2 group respond to C 
because it evoked a prediction that sucrose pellets would be delivered 
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Figure 2 Brief optogenetic activation of VTA dopamine neurons strengthens associations between cues. Top: VTA dopamine neurons were activated 
by light delivery (blue symbol) at the beginning of presentations of X when preceded by audiovisual compound AC and during the intertrial interval on 
AD trials. Double dots represent food pellets. (a–c) Plots show number of food cup entries occurring during cue presentation across all phases of the 
blocking of sensory preconditioning task: (a) preconditioning, (b) conditioning and (c) the probe test. Probe test data are represented as the mean level 
of entries (left) or as individual rats’ responses to F and D (middle), or C and D (right). In each panel, top graph shows data from the eYFP control group 
(n = 19); bottom graph shows data from the experimental ChR2 group (n = 18). To the extent that responding to F and C are equal to D in scatterplots 
represented in c, points should congregate around the diagonal. Histograms along the diagonal reveal the frequency (subject counts) of difference 
scores in responding to the cues that fall within a particular range. A two-factor ANOVA on food cup entries during cue presentations (cue × group) 
revealed no main effect (F4,140 = 1.52, P = 0.2) nor any interaction with group (F4,140 = 0.276, P = 0.893). A two-factor ANOVA (group × day) on 
responding during conditioning (b) revealed a main effect of day (F3,105 = 39.71, P < 0.0001) but neither main effect (F1,35 = 0.553, P = 0.46) nor 
any interaction with group (F3,105 = 0.13, P = 0.94). A two-factor ANOVA (cue × group) on responding during presentation of cues F and D revealed a 
main effect of cue (F1,35 = 4.372, P = 0.044) but no main effect (F1,35 = 0.001, P = 0.982) or interaction with group (F1,35 = 0.287, P = 0.595).  
A two-factor ANOVA (cue × group) on responding to C and D revealed a main effect of cue (F1,35 = 4.599, P = 0.039) and a significant interaction  
with group (F1,35 = 4.154, P = 0.049). This interaction was due to a significant difference between responding to C and D in the ChR2 group  
(F1,35 = 8.52, P = 0.006) but not in the eYFP group (F1,35 = 0.006, P = 0.940). **P < 0.01. Error bars, = s.e.m. Please see Online Methods for 
comment on response measures and Supplementary Figure 4 for further details on responding during individual sessions in preconditioning.
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Finally, the rats received a probe test in which each of the critical 
test cues (C, D, F) were presented 4 times each, in an interleaved and 
counterbalanced order, alone and without reward. This probe test was 
designed to assess whether these preconditioned cues had acquired 
the ability to predict sucrose pellet delivery. As expected from studies 
of normal sensory preconditioning, rats in both groups demonstrated 
frequent responses to F, suggesting that, despite the use of a compound 
cue, they learned that F predicted X and used that relationship in the 
probe test to infer that F predicted sucrose pellets (Fig. 2c). Rats in 
both ChR2 and eYFP groups also demonstrated infrequent responses 
to D (as in our pilot study; Supplementary Fig. 1), indicating that 
the presence of A and its ability to predict X had blocked D from 
becoming associated with X (Fig. 2c). Notably, this occurred despite 
transient activation of the VTA dopamine neurons during the inter-
trial interval following AD trials. A two-factor ANOVA (cue × group) 
on responding during presentation of cues F and D revealed a main 
effect of cue (F1,35 = 4.372, P = 0.044) but no main effect (F1,35 = 0.001, 
P = 0.982) or interaction with group (F1,35 = 0.287, P = 0.595). Thus, 
both groups exhibited identical blocking of sensory preconditioning, 
as indexed by a significant difference between F and D.

When delivered at the start of X on the AC trials, however, tran-
sient activation of the dopamine neurons unblocked learning, so 
that responses to C were more common than responses to D in the 
ChR2 group but not in the eYFP controls (Fig. 2c). A two-factor 
ANOVA (cue × group) on responding to C and D revealed a main 
effect of cue (F1,35 = 4.599, P = 0.039) and a significant interaction 
with group (F1,35 = 4.154, P = 0.049). This interaction was due to a sig-
nificant difference between responding to C and D in the ChR2 group  
(F1,35 = 8.52, P = 0.006) but not in the eYFP group (F1,35 = 0.006,  
P = 0.940). In addition, responding to D did not differ between 
groups (F1,35 = 0.153, P = 0.698), whereas responding to C was sig-
nificantly more common in the ChR2 rats than in the eYFP controls  
(F1,35 = 5.277, P = 0.028). Thus, transient activation of the VTA 
dopamine neurons at the start of X on AC trials reversed the block-
ing effect, as indexed by the significant increase in responding  
to C only in the ChR2 rats.

But is the learning supported by transient activation of dopamine 
neurons the same as what is normally learned during sensory pre-
conditioning? That is, did the rats in the ChR2 group respond to C 
because it evoked a prediction that sucrose pellets would be delivered 
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Figure 2 Brief optogenetic activation of VTA dopamine neurons strengthens associations between cues. Top: VTA dopamine neurons were activated 
by light delivery (blue symbol) at the beginning of presentations of X when preceded by audiovisual compound AC and during the intertrial interval on 
AD trials. Double dots represent food pellets. (a–c) Plots show number of food cup entries occurring during cue presentation across all phases of the 
blocking of sensory preconditioning task: (a) preconditioning, (b) conditioning and (c) the probe test. Probe test data are represented as the mean level 
of entries (left) or as individual rats’ responses to F and D (middle), or C and D (right). In each panel, top graph shows data from the eYFP control group 
(n = 19); bottom graph shows data from the experimental ChR2 group (n = 18). To the extent that responding to F and C are equal to D in scatterplots 
represented in c, points should congregate around the diagonal. Histograms along the diagonal reveal the frequency (subject counts) of difference 
scores in responding to the cues that fall within a particular range. A two-factor ANOVA on food cup entries during cue presentations (cue × group) 
revealed no main effect (F4,140 = 1.52, P = 0.2) nor any interaction with group (F4,140 = 0.276, P = 0.893). A two-factor ANOVA (group × day) on 
responding during conditioning (b) revealed a main effect of day (F3,105 = 39.71, P < 0.0001) but neither main effect (F1,35 = 0.553, P = 0.46) nor 
any interaction with group (F3,105 = 0.13, P = 0.94). A two-factor ANOVA (cue × group) on responding during presentation of cues F and D revealed a 
main effect of cue (F1,35 = 4.372, P = 0.044) but no main effect (F1,35 = 0.001, P = 0.982) or interaction with group (F1,35 = 0.287, P = 0.595).  
A two-factor ANOVA (cue × group) on responding to C and D revealed a main effect of cue (F1,35 = 4.599, P = 0.039) and a significant interaction  
with group (F1,35 = 4.154, P = 0.049). This interaction was due to a significant difference between responding to C and D in the ChR2 group  
(F1,35 = 8.52, P = 0.006) but not in the eYFP group (F1,35 = 0.006, P = 0.940). **P < 0.01. Error bars, = s.e.m. Please see Online Methods for 
comment on response measures and Supplementary Figure 4 for further details on responding during individual sessions in preconditioning.
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Figure 3: Dopamine transients are sufficient and necessary for learning stimulus-
stimulus associations. (A) Sensory preconditioning paradigm. The initial preconditioning phase
is broken down into two sub-phases. Letters denote stimuli, arrows denote temporal contingencies,
and circles denote rewards. Blue light symbol indicates when dopamine neurons were activated
optogenetically to mimic a positive SPE; this spanned a 2s period beginning at the start of X. (B)
Number of food cup entries occurring during the probe test for experimental (ChR2) and control
(eYFP) groups. Data replotted from Sharpe et al. (2017). (C ) Model simulation, using the value
estimate as a proxy for conditioned responding.

stimulus associations? Second, how does one explain why dopamine affects this learning in the
apparent absence of new reward information?

In answer to the first question, we can appeal to an analogy with blocking of stimulus-reward
associations. The classic approach to modeling this phenomenon is to assume that each stimulus
acquires an independent association and that these associations summate when the stimuli are
presented in compound (Rescorla & Wagner, 1972). While there are boundary conditions on this
assumption (see Soto, Gershman, & Niv, 2014), it has proven remarkably successful at capturing
a broad range of learning phenomenon, and is inherited by TD models with linear function ap-
proximation (e.g., Gershman, 2017; Schultz et al., 1997). Summation implies that if one stimulus
(A) perfectly predicts reward, then a second stimulus (C) with no pre-existing association will
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fail to acquire an association when presented in compound with A, because the sum of the two
associations will perfectly predict reward and hence generate an RPE of 0. The same logic can
be applied to stimulus-stimulus learning by using linear function approximation of the successor
representation, which implies that stimulus-stimulus associations will summate and hence produce
blocking, as observed in Sharpe et al. (2017).

In answer to the second question, we argue that dopamine is involved in stimulus-stimulus learning
because it reflects a multifaceted SPE, as described in the previous section. By assuming that
optogenetic activation adds a constant to the SPE (see Methods), we can capture the unblocking
findings reported by Sharpe and colleagues (Figure 3C). The mechanism by which optogenetic
activation induces unblocking is essentially the same as the one suggested by the results of Steinberg
et al. (2013) for conventional stimulus-reward blocking: by elevating the prediction error, a learning
signal is engendered where none would exist otherwise. However, while the results of Steinberg and
colleagues are consistent with the original RPE hypothesis of dopamine, the results of Sharpe et al.
(2017) cannot be explained by this model and instead require the analogous dopamine-mediated
mechanism for driving learning with SPEs.

In addition to establishing the sufficiency of dopamine transients for learning, Sharpe et al. (2017)
also established their necessity, using optogenetic inactivation. In a variation of the sensory precon-
ditioning paradigm (Figure 4A), two pairs of stimulus-stimulus associations were learned (A→X
and B→Y). Subsequently, X and Y were paired with different reward flavors, and finally condi-
tioned responding to A and B was evaluated in a probe test. In one group of animals expressing
halorhodopsin in dopamine neurons (NpHR), optogenetic inhibition was applied coincident with
the transition between the stimuli on B→Y trials. A control group expressing light-insensitive
eYFP was exposed to the same stimulation protocol. Sharpe and colleagues found that inhibition
of dopamine selectively reduced responding to B (Figure 4B), consistent with our model prediction
that disrupting dopamine transients (a negative prediction error signal) should attenuate stimulus-
stimulus learning (Figure 4C).

Limitations and extensions

One way to drive a wedge between model-based and model-free algorithms is to devalue rewards
(e.g., through pairing the reward with illness or selective satiation) and show effects on previously
acquired conditioned responses to stimuli that predict those rewards. Because model-free algorithms
like TD learning need to experience unbroken stimulus-reward sequences to update stimulus values,
the behaviors they support are insensitive to such reward devaluation. Model-based algorithms, in
contrast, are able to propagate the devaluation to the stimulus without direct experience, and hence
allow behavior to be devaluation-sensitive. Because of this, devaluation-sensitivity has frequently
been viewed as an assay of model-based RL (Daw et al., 2005).

However, such sensitivity can also be a property of SR-based RL, since the SR represents the asso-
ciation between the stimulus and food and is also able to update the reward function of the food
as a result of devaluation. Thus, like model-based accounts, an SR model can account for changes
in previously learned behavior to reward-predicting stimuli after devaluation, both in normal sit-
uations (Momennejad et al., 2017; Russek et al., 2017) and when learning about those stimuli
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of the food reward36, contrary to our results. Thus our results go far 
beyond what can be explained by a cached-value prediction error.

Nor could the results from either experiment have reflected changes 
in salience or associability caused by manipulation of the dopamine 
neurons, either directly or via the addition or subtraction of cached 
value. While such effects have been reported following optogenetic 
activation of dopamine terminals in medial prefrontal cortex37, we saw 
no evidence of this in either of our experiments involving manipula-
tion of the cell bodies. For example, while increasing the salience or 
associability of X on the AC trials in our first experiment might have 
indirectly allowed X to enter into an association more readily with C, 
all theoretical accounts of which we are aware38–40 would also pre-
dict lasting effects on processing and associability of X. These effects 
would facilitate learning for X in other parts of our task, but we did 
not observe any evidence of increased learning about X in other trials 
in the ChR2 rats. In particular, the ChR2 rats did not respond more 
to D than controls, nor did they show more rapid conditioning to 
X in the second phase of training. The same is true for our second 
experiment, in which we saw no changes in learning about Y during  

conditioning, indicating that suppressing dopamine neurons did not 
alter the salience or value of Y. It is also worth noting that direct effects 
on salience would be inconsistent with evidence that activation of VTA 
dopamine neurons diminishes extinction learning while inhibition of 
these neurons facilitates it12,14. These effects, achieved using the same 
optogenetic approaches applied here, are the opposite of what would 
be expected if manipulating these neurons directly altered salience.

Instead, the most parsimonious explanation of our results is that 
dopamine transients played a role in the formation of associative 
links between the neural representations of external events—whether 
rewarding or not—linking representations of neutral cues during pre-
conditioning and representations of neutral cues with representations 
of rewards in other settings. Notably, this interpretation holds whether 
the ultimate behavior in the probe test reflected inference (i.e., if A X  
and X US, then A US) or mediated learning during the condition-
ing phase (i.e., X evoked a memory of A that became directly associ-
ated with the US, so that later A US; Supplementary Fig. 1). In 
either case, dopamine must be influencing the association between the 
cues in the first phase of training. While this proposal does not negate 
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Figure 5 Brief optogenetic inhibition of dopamine neurons reduces the strength of associations between cues. Top: VTA dopamine neurons were 
inhibited by light delivery (orange symbol) in the 500 ms before the offset of A and carried through the first 2 s of X. Double dots and squares 
represent flavors of food pellets. (a–c) Plots show the percentage of time spent in the food cup during cue presentation across all phases of the sensory 
preconditioning task: (a) preconditioning, (b) conditioning and (c) the probe test. In each panel, top graph shows data from the eYFP control group  
(n = 24); bottom graph shows data from the experimental NpHR group (n = 17). To the extent that responding to A is equal to B in scatterplots 
represented in c, points should congregate around the diagonal. Histograms along the diagonal reveal the frequency (subject counts) of difference 
scores in responding to the cues that fall within a particular range. A two-factor ANOVA on food cup responding during cue presentations (cue × group) 
in preconditioning (a) revealed no main effect (F1,39 = 1.88, P = 0.177) nor any interaction with group (F3,117 = 0.425, P = 0.736). A three-factor 
ANOVA (cue × group × day) on data from conditioning (b) revealed a main effect of day (F3,105 = 43.181, P < 0.0001) but no main effect of cue  
(F1,39 = 0.008, P = 0.927), group (F1,39 = 0.094, P = 0.761) or any cue × group interaction (F1,39 = 1.113, P = 0.298). A two-factor ANOVA  
(cue × group) revealed a main effect of cue (F1,39 = 5.94, P = 0.019) and a significant cue × group interaction (F1,39 = 4.68, P = 0.037). Subsequent 
comparisons showed that this interaction was due to a significant difference in responding to cues A and B in the NpHR group (F1,39 = 4.952,  
P = 0.012), which was not present in the eYFP group (F1,39 = 0.742, P = 0.483). **P < 0.012. Error bars, = s.e.m. Please see Online Methods for 
comment on response measures and Supplementary Figure 4 for further details on responding during individual sessions in preconditioning.
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Figure 4: Inhibition of dopamine neurons reduces the strength of associations between
cues. (A) Sensory preconditioning paradigm. Circles and squares denote distinct reward flavors.
Orange light symbol indicates when dopamine neurons were suppressed optogenetically to disrupt
any positive SPE; this spanned a 2.5s period beginning 500ms prior to the end of B. (B) Number
of food cup entries occurring during the probe test for experimental (NpHR) and control (eYFP)
groups. Data replotted from Sharpe et al. (2017). (C ) Model simulation.

is unblocked by dopamine activation (Keiflin, Pribut, Shah, & Janak, 2017). However, the SR
model cannot spontaneously acquire transitions between states that are not directly experienced
(Momennejad et al., 2017; Russek et al., 2017). With this in mind, we consider the finding that
reward devaluation alters the learning induced by activation of dopamine neurons in the sensory
preconditioning paradigm of Sharpe et al. (2017).

A key aspect of the reward devaluation procedure is that the food was paired with illness after the
end of the entire preconditioning procedure and in the absence of any of the stimuli (and in fact
not in the training chamber). In the SR model, only stimuli already predictive of the food can
change their values after devaluation. In the paradigm of Sharpe and colleagues, X was associated
with food but C was not. Moreover, C was associated with X before any association with food was
established. Because of this, C is not updated in the SR model to incorporate an association with
food. It follows that, unlike the animals in Sharpe et al. (2017), the model will not be devaluation-
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Figure 5: Learning induced by activation of dopamine neurons is sensitive to devaluation
of the predicted reward. Data (A, replotted from Sharpe et al., 2017) and model simulation (B)
for conditioned responding to stimulus C in the probe test. Animals in the devalued group were
injected with lithium chloride in conjunction with ingestion of the reward (sucrose pellets), causing
a strong aversion to the reward. Animals in the nondevalued group were injected with lithium
chloride approximately 6 hours after ingestion of the reward. (C) A version of the model with
rehearsal of stimulus X during reward devaluation was able to capture the devaluation-sensitivity
of animals.

sensitive when probed with C (Figure 5B).

We can address this failure within our theoretical framework in one of two ways. One way we
considered was to allow optogenetic activation to increment predictions for all possible features,
instead of being restricted to recently active features by a feature eligibility trace (see Methods),
as in the simulations thus far. With such a promiscuous artificial error signal, the model can
recapitulate the devaluation effect, because C would then become associated with food (along with
everything else) in the preconditioning phase itself. The problem with this work-around is that
it also predicts that animals should develop a conditioned response to the food cup for all the
cues during preconditioning, since food cup shaping prior to preconditioning seeds the food state
with reward value. As a result, any cue paired with the food state immediately begins to induce
responding at the food cup. Such behavior is not observed, suggesting that the artificial update
caused by optogenetic activation of the dopamine neurons is locally restricted.

A second more conventional way to address this failure within our theoretical framework is to
assume that there is some form of offline rehearsal or simulation that is used to update cached
predictions (Gershman, Markman, & Otto, 2014; Johnson & Redish, 2005; Pezzulo, van der Meer,
Lansink, & Pennartz, 2014). Russek et al. (2017) have shown that such a mechanism is able to
endow SR-based learning with the ability to retrospectively update predictions even in the absence
of direct experience. A minimal implementation of such a mechanism in our model, simply by
“confabulating” the presence of X during reward devaluation, is sufficient to capture the effects of
devaluation following optogenetic activation of dopamine neurons (Figure 5C). This solution makes
the experimental prediction that the devaluation-sensitivity of this artificially unblocked cue should
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be time-dependent.

Discussion

The RPE hypothesis of dopamine has been one of theoretical neuroscience’s signature success sto-
ries. This paper has set forth a significant generalization of the RPE hypothesis that enables it to
account for a number of anomalous phenomena, without discarding the core ideas that motivated
the original hypothesis. The proposal that dopamine reports an SPE is grounded in a normative
theory of reinforcement learning (Dayan, 1993), motivated independently by a number of computa-
tional (Barreto et al., 2017; Russek et al., 2017), behavioral (Gershman, Moore, Todd, Norman, &
Sederberg, 2012; Momennejad et al., 2017; Smith, Hasinski, & Sederberg, 2013) and neural (Brea,
Gaál, Urbanczik, & Senn, 2016; Garvert et al., 2017; Stachenfeld et al., 2017) considerations.

An important strength of the proposal is that it extends the functional role of dopamine beyond
RPEs, while still accounting for the data that motivated the original RPE hypothesis. This is
because, if reward is treated as a sensory feature, then one dimension of the vector-valued SPE
will be the RPE. Indeed, dopamine SPEs should behave systematically like RPEs, except that
they respond to features: they should pause when expected features are unexpectedly omitted,
they should shift back to the earliest feature-predicting cue, and they should exhibit signatures
of cue competition, such as overexpectation. And SPEs, in our account, fundamentally act like
RPEs. They are used to update cached predictions, much like the RPE in model-free algorithms.
However these cached predictions extend beyond value to include information about the probability
of future states or successor representations. These SRs can be used in a semi-flexible manner that
allows behavior to be sensitive to changes in the reward structure, such as devaluation by pairing
a reward with illness. As a result, even if dopamine is constrained by the model proposed here, it
would support significantly more flexible behavior than supposed by classical model-free accounts
(e.g., Montague et al., 1996; Schultz et al., 1997), even without moving completely to an account
of model-based computation in the dopamine system (Langdon et al., 2018).

Nevertheless, the theory proposed here—particularly if it incorporates off-line rehearsal in order
to fully explain the results of Sharpe et al. (2017)—strains the dichotomy between model-based
and model-free algorithms that has been at the heart of modern RL theories (Daw et al., 2005).
However by defining the question, we can better frame places that the two accounts diverge. For
example, as noted earlier, SR requires offline rehearsal to incorporate the effects of devaluation after
preconditioning in Sharpe et al or manipulations of the transition structures of tasks (Momennejad
et al., 2017). If the effects of dopamine SPEs are mediated by some form of offline rehearsal or
simulation, then we should be able to control the effects of dopamine by manipulating retention
intervals or attention (see Gershman et al., 2014). For example, the strength of devaluation sen-
sitivity in Sharpe et al should vary with the retention interval prior to the probe test. Another
testable implication of the theory is that we should see heterogeneous tuning of dopamine neurons,
reflecting the vector-valued nature of the SPE. These predictions set an exciting new agenda for
dopamine research by embracing a broader conception of dopamine function.

Finally, while we have focused on dopamine in this paper, a complete account will need to integrate
the computational functions of several different brain regions. Two are particularly relevant: the

14

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted December 25, 2017. ; https://doi.org/10.1101/239731doi: bioRxiv preprint 

https://doi.org/10.1101/239731


hippocampus and the orbitofrontal cortex. Many lines of evidence are consistent with the idea that
the hippocampus encodes a “predictive map” resembling the SR (Stachenfeld et al., 2017). For ex-
ample, hippocampal place cells alter their tuning with repeated experience to fire in anticipation of
future locations (Mehta, Quirk, & Wilson, 2000), and fMRI studies have found predictive coding of
non-spatial states (Garvert et al., 2017; Schapiro, Turk-Browne, Norman, & Botvinick, 2016). The
orbitofrontal cortex has also been repeatedly implicated in predictive coding, particularly of reward
outcomes (e.g., Gottfried, O’Doherty, & Dolan, 2003; Schoenbaum, Chiba, & Gallagher, 1998), but
also of sensory events (Chaumon, Kveraga, Barrett, & Bar, 2013), and the orbitofrontal cortex is
critical for sensory-specific outcome expectations in Pavlovian conditioning (Ostlund & Balleine,
2007). Wilson, Takahashi, Schoenbaum, and Niv (2014) have proposed that the orbitofrontal cortex
encodes a “cognitive map” of state space, which presumably underpins this diversity of stimulus
expectations. Thus, evidence suggests that both hippocampus and orbitofrontal cortex encode
some form of predictive representation (see Wikenheiser & Schoenbaum, 2016, for a review), and
dopaminergic modulation of these regions is well-established (Aou, Oomura, Nishino, Inokuchi, &
Mizuno, 1983; Lisman & Grace, 2005). Whether these representations and their modulation by
dopamine complies with the theoretical framework elaborated here or goes beyond it remains to be
seen.

Methods

Linear value function approximation

Under the linear function approximation scheme described in the Results, the value function esti-
mate is given by:

V̂ (st) =
∑
i

fi(st)
∑
j

U(j)Wij , (13)

where U(j) is the reward expectation for feature j, updated according to:

∆U(j) = αUfj(st)[rt − R̂(st)] (14)

with learning rate αU and immediate reward expectation R̂(st) =
∑

j U(j)fj(st).

Simulation parameters

We used the following parameters in the simulations: γ = 0.95, αW = 0.2, αU = 0.1, where αW is
the learning rate for the weight matrix W , and αU is the learning rate for the reward expectations
U . We used the same set of parameters across all simulations. However, our results are largely
robust to variations in these parameters.
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Modeling optogenetic activation and inhibition

Optogenetic intervention was modeled by modifying the TD error as follows:

δoptot (j) = δMt (j) + ηbt(j), (15)

where η = 0.4 for optogenetic activation and −0.1 for inhibition (the asymmetry between activa-
tion and inactivation was chosen to better match the empirical data; making them symmetric, or
changing the constants, does not alter the substantive conclusions of the modeling). The multiplier
bt(j) is a feature eligibility trace updated according to:

bt(j) = λbt−1(j) + fj(st), (16)

where λ is a trace decay parameter which we fixed to 0.8. Intuitively, bt(j) encodes a trace of
recently activated stimuli and ensures that optogenetic stimulation does not affect expectations
about features that are not already at least weakly expected.
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