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1 Introduction 2

Abstract10

Transformations between sensory representations are shaped by neural mechanisms at the cellular11

and the circuit level. In the insect olfactory system encoding of odour information undergoes a12

transition from a dense spatio-temporal population code in the antennal lobe to a sparse code in13

the mushroom body. However, the exact mechanisms shaping odour representations and their role14

in sensory processing are incompletely identi�ed. Here, we investigate the transformation from15

dense to sparse odour representations in a spiking model of the insect olfactory system, focusing16

on two ubiquitous neural mechanisms: spike-frequency adaptation at the cellular level and lateral17

inhibition at the circuit level. We �nd that cellular adaptation is essential for sparse representations18

in time (temporal sparseness), while lateral inhibition regulates sparseness in the neuronal space19

(population sparseness). The interplay of both mechanisms shapes dynamical odour representations,20

which are optimised for discrimination of odours during stimulus onset and o�set. In addition, we21

�nd that odour identity is stored on a prolonged time scale in the adaptation levels but not in the22

spiking activity of the principal cells of the mushroom body, providing a testable hypothesis for the23

location of the so-called odour trace.24

Keywords: sensory processing, odour trace, e�cient coding, lateral inhibition, adaptation,25

spiking network26

1 Introduction27

How nervous systems process sensory information is a key issue in systems neuroscience.28

Animals are required to rapidly identify behaviourally relevant stimulus features in a rich29

and dynamic sensory environment, and neural computation in sensory pathways is tailored30

to this need. Sparse stimulus encoding has been identi�ed as an essential feature of sensory31

processing in higher brain areas in both, invertebrate [1, 2, 3, 4, 5] and vertebrate [6, 7, 8, 9]32

systems. Sparse representations provide an economical means of neural information coding33

[10, 11] where information is represented by only a small fraction of all neurons (popula-34

tion sparseness) and each activated neuron generates only few action potentials (temporal35

sparseness) for a highly speci�c stimulus con�guration (lifetime sparseness).36

The nervous systems of insects have limited neuronal resources and thus require particularly37

e�cient coding strategies. The insect olfactory system is analogue to the vertebrate olfactory38

system and has become a popular model system for the emergence of a sparse code. We39

use a computational approach to study the transformation from a dense olfactory code in40

the sensory periphery to a sparse code in the mushroom body (MB), a central structure41

of the insect brain important for multimodal sensory integration and memory formation.42

A number of recent studies emphasised the role of sparse coding in the MB. In locusts,43

sparse responses were shown to convey temporal stimulus information [12]. In Drosophila,44

sparse coding was found to reduce overlap between odour representations and facilitate their45

discrimination [13]. Consequently, sparse coding is an essential feature of plasticity models46

for olfactory learning in insects [14, 15, 16, 17, 18] and theoretical work has emphasised the47

analogy of the transformation from a dense code in projection neurons (PNs) to a sparse48

code in Kenyon cells (KCs) with dimensionality expansion in machine learning methods49

[14, 19, 20].50

Central to our modelling approach are two fundamental mechanisms of neural computation51

that are ubiquitous in the nervous systems of invertebrates and vertebrates. Spike-frequency52

adaptation (SFA) is a cellular mechanism that has been suggested to support e�cient and53

sparse coding and to reduce variability of sensory representation [21, 22, 23]. Lateral in-54

hibition is a basic circuit design principle that exists in di�erent sensory systems, mediates55

contrast enhancement and facilitates stimulus discrimination [24, 25, 26, 27]. Both mech-56

anisms are evident in the insect olfactory system. Responses of olfactory receptor neurons57

(ORNs), local interneurons (LNs) and PNs in the antennal lobe (AL) show stimulus ad-58

aptation [28, 29] and strong adaptation currents have been identi�ed in KCs [30]. Lateral59

inhibition in the AL is mediated by inhibitory LNs [31]. It is crucial for establishing the60
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2 Results 3

population code at the level of PNs [29, 32], for gain control [33, 34], for decorrelation of61

odour representations [35], and for mixture interactions [29, 36, 37].62

Taken together, we �nd that lateral inhibition and spike-frequency adaptation account for63

the transformation from a dense to sparse coding, decorrelate odour representations, and64

facilitate precise temporal responses on short and long time scales.65

2 Results66

Spiking Network Model of the Olfactory Pathway with Lateral67

Inhibition and Spike Frequency Adaptation68

We designed a spiking network model that reduces the complexity of the insect olfactory pro-69

cessing pathway to a simpli�ed three-layer network (Fig. 1A) that expresses the structural70

commonality across di�erent insect species: an input layer of olfactory receptor neurons71

(ORNs), subdivided into di�erent receptor types, the AL, a �rst order olfactory processing72

centre, and the MB. Furthermore, the model combines two essential computational elements:73

(i) lateral inhibition in the AL, and (ii) spike-frequency adaptation in the AL and the MB.74

The processing between the layers is based on excitatory feed-forward connections. Conver-75

ging receptor input from all ORNs of one type is received by spatially con�ned subunits of76

the AL called glomeruli. In our model, glomeruli are represented by a single PN and a single77

inhibitory local interneuron (LN). In the MB, each KC receives on average 12 PN inputs [2],78

based on a random connectivity between the AL and the MB [38]. All neurons in the AL and79

the MB were modelled as leaky integrate-and-�re neurons with spike-triggered adaptation.80

Based on evidence from theoretical [39] and experimental studies [40], adaptation channels81

cause slow �uctuations. We accounted for this fact by simulating channel noise in the slow82

adaptation currents (cf. Methods).83

We simulated ORN responses to di�erent odour stimuli. ORN responses were modelled in84

the form of Poisson spike trains with �ring rates dependent on the receptor type and the85

presented stimulus. The relationship is set by a receptor response pro�le (Fig. 1B left)86

which determines ORN �ring rates for all receptor types to a given stimulus. Responses to87

di�erent stimuli are generated by shifting the response pro�le along the receptor space (Fig.88

2). The o�set between any two stimuli re�ects their dissimilarity - similar stimuli activate89

overlapping sets of olfactory receptors, whereas dissimilar stimuli activate largely disjoint90

sets of receptors. Stimuli were presented for one second, re�ected by a step-like increase of91

ORN �ring rate.92

In the absence of stimuli, ORNs �red with a rate of 20 Hz re�ecting their spontaneous activ-93

ation [28]. Both LNs and PNs receive direct ORN input. We tuned synaptic weights of the94

model to match physiologically observed �ring rates of PNs and LNs, which are both about95

8Hz [1, 41, 42] (for details see Methods). Lateral inhibition and spike-frequency adaptation,96

the neural mechanisms under investigation, both provide an inhibitory contribution to a97

neuron's total input. In our model, spike-frequency adaptation is a cellular mechanism me-98

diated by a slow, spike-triggered, hyperpolarizing current in LNs, PNs and KCs, whereas a99

global lateral inhibition in the AL is mediated by LNs with fast synapses that receive input100

from a single ORN type and inhibit all PNs in a uniform fashion.101
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Fig. 1 � Structure and odour response of the spiking network model. (A) Network structure
resembles the insect olfactory pathway with three main processing stages. PNs (blue) and LNs receive
convergent ORN input (red). Each LN provides unspeci�c lateral inhibition to all PNs. KCs (orange) receive
on average 12 inputs from randomly chosen PNs. (B) Receptor response pro�le (red bars; AL input) depicts
the evoked �ring rate for each ORN type. Evoked PN spike counts (dashed blue line; AL output) follow
the ORN activation pattern. Raster plots depict single trial responses of PNs (blue) and KCs (orange).
Presentation of an odour during 1000 ms is indicated by the shaded area. Population �ring rates were
obtained by averaging over 50 trials. PN spikes display a temporal structure that includes evoked transient
responses at stimulus on- and o�set, and a pronounced inhibitory post-odour response. PN population rate
was averaged over PNs showing �on� responses (blue) and �o�� responses (cyan). KC spikes were temporally
sparse with majority of the spikes occurring at the stimulus onset.

Fig. 2 � Receptor response pro�le for two similar odours (red, blue) and a dissimilar odour (green).

Dense and Dynamic Odour Representations in the Antennal Lobe102

Figure 1B illustrates PN and KC responses to an odour. PNs driven by the stimulus showed103

a strong transient response at the stimulus onset, a pronounced adaptation during the104

stimulus, and a period of silence after stimulus o�set due to the slow decay of the strong105

adaptation current. This resembles the typical phasic-tonic response patterns of PNs [42, 43].106

PNs receiving direct input from ORNs activated by the stimulus, showed a strong response107

at the stimulus onset. Interestingly the �on� responses follow a biphasic pro�le with an108

early and a late component. In addition, PNs with no direct input from stimulated ORNs109
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2 Results 5

showed an �o�� response at the stimulus o�set. Non-driven PNs were suppressed during a110

short period after stimulus onset, and showed reduced �ring during the tonic response. The111

PN population response consisted of complex activations of individual PNs with phases of112

excitation and inhibition.113

Taken together, in the presence of both mechanisms, the PN population response is com-114

prised of complex activations of individual PNs with phases of excitation and inhibition.115

Hence, in the AL, odours were represented as spatio-temporal spike patterns across the PN116

population.117

Sparse Odour Representations in the Mushroom Body118

At the level of the MB, KCs typically show none or very little spiking during spontaneous119

activity and respond to odours with only a few spikes in a temporally sparse manner [1, 3, 4].120

In our model, synaptic weights between PNs and KCs were tuned to match a very low121

probability of spontaneous �ring. Resulting KC responses were temporally sparse. Due to122

the negative feedback mediated by strong spike-frequency adaptation, most KC spikes were123

con�ned to stimulus onset.124

Isolating e�ects of lateral inhibition and adaptation125

In order to explore e�ects of lateral inhibition and cellular adaptation on stimulus repres-126

entations, we simulated odour responses in conditions in which we deactivated one or both127

mechanisms. Lateral inhibition was deactivated by setting the inhibitory synaptic weight128

between LNs and PNs to zero and simultaneously reducing the value of the excitatory syn-129

aptic weight between ORNs and PNs, such that the spontaneous �ring rate of 8 Hz was130

kept. Adaptation was deactivated by replacing the dynamic adaptation current by a con-131

stant current with an amplitude which approximately maintained the spontaneous �ring132

rate.133

Figure 3 illustrates the e�ects of lateral inhibition and adaptation on odour responses in134

the PN population. In all conditions, PNs �red spontaneously before stimulation due to135

spontaneous ORN activation. PNs driven by stimulation receive input from ORNs that were136

activated by the presented odour. In the absence of adaptation and lateral inhibition (Fig. 3137

(i)) the stimulus response followed the step-like stimulation and showed no further temporal138

structure. In the presence of lateral inhibition (Fig. 3 (ii)), PNs not driven by the stimulus139

were strongly suppressed. In the presence of both mechanisms (Fig. 3 (iv), identical with140

the results of Fig. 1B) we observed the characteristic phasic-tonic response. Moreover, the141

amplitude of the transient response was diminished, and, interestingly, followed a biphasic142

pro�le with an early and a late component.143
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2 Results 6

Fig. 3 � Lateral inhibition and cellular adaptation shape PN odour response dynamics. (A)
Single trial PN spiking responses simulated with (right column) and without (left column) lateral inhibition,
and with (bottom row) and without (top row) adaptation. Presentation of a single odour during 1000
ms is indicated by the shaded area. With adaptation PNs display a temporal structure that includes a
transient and a tonic response, and a pronounced inhibitory post-odour response. (B) Trial averaged �ring
rate: PNs driven by stimulation (blue) and remaining PNs (cyan). Panels (i)-(iv) indicate presence and
absence of lateral inhibition and adaptation as in (A). In the presence of lateral inhibition �ring rates during
stimulation are reduced. In the presence of lateral inhibition and adaptation (iv) PNs show either transient
�on� responses (blue) or �o�� responses (cyan).

In our model, the interaction of lateral inhibition and the intrinsic adaptation currents in144

LNs and PNs accounts for biphasic PN responses. Because lateral inhibition is strongest at145

stimulus onset, the most of the phasic PN response was delayed (late component) whereas146

the immediate PN response (early component) was not a�ected. Comparable evidence for147

the interplay of cellular and network mechanisms behind biphasic PN responses was found148

in the pheromone system of the moth [44].149

To isolate the contributions of adaptation and lateral inhibition (present at the AL level)150

to the odour responses at the MB level, we again test the four conditions by deactivating151

one or both mechanisms. In all four conditions, KCs were almost silent and spiked only152

sporadically during spontaneous activity, whereas amplitude and temporal pro�le of their153

odour response di�ered across conditions (Fig. 4).154

In the presence of adaptation we observed temporally sparse responses (Fig. 4 (iii)-(iv)).155

KCs typically responded with only 1-3 spikes (mean spikes per responding KC were slightly156

above one, compare x in Fig. 4B (iii),(iv)). Due to the negative feedback mediated by strong157

spike-frequency adaptation, most KC spikes were con�ned to stimulus onset.158

In the absence of adaptation and regardless of the presence (Fig. 4 (i)) or absence (Fig. 4159

(ii)) of lateral inhibition, responding KCs �red throughout stimulation, because they received160

persistently strong input from PNs. Such persistent KC responses are in disagreement with161

experimental observations [1, 3, 4].162
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2 Results 7

Fig. 4 � KC odour response dynamics of the population. Figure layout follows Figure 3. (A) Single
trial population spike raster responses. (B) Trial averaged KC population �ring rate. Numbers to the
right indicate the fraction of activated KCs (na) and the mean number of spikes per activated KC during
stimulation (x̄). Without adaptation (i,ii) KCs spike throughout stimulation because PN drive is strong and
persistent. The fraction of activated KCs drops in the presence of lateral inhibition (ii,iv). With adaptation
(iii,iv) most of KC spikes are con�ned to the stimulus onset, indicating temporally sparse responses.

We quanti�ed temporal sparseness of KC responses by calculating a measure modi�ed from163

[45] (cf. Methods). Comparison of temporal sparseness across the four conditions con�rms164

that KC responses were temporally sparse only in the presence of adaptation whereas lateral165

inhibition had no e�ect on temporal sparseness (Fig. 5A).166

A B

Fig. 5 � Quanti�cation of temporal and population sparseness in the KC population. Sparseness
was measured in the absence (α = 0) and presence (α = 3) of lateral inhibition, averaged over 50 trials.
Error bars indicate standard deviation. A value of one corresponds to maximally sparse responses. Gray
bars represent a control condition in the absence of spike-frequency adaptation (b = 0). (A) Adaptation
promotes temporal sparseness. (B) Lateral inhibition in the AL promotes KC population sparseness.

Lateral Inhibition Supports Population Sparseness in the MB167

We observed that the fraction of responding KCs was considerably lower in the presence of168

lateral inhibition (compare na across panels in Fig. 4B). We recall that lateral inhibition169

in our model is acting on PNs. A reduced PN population rate caused by lateral inhibition170

(compare Fig. 3 (ii),(iv)) is re�ected in a lower net input to KCs. How does this a�ect KC171

responses on a population level?172

We visualised MB odour representations with activation patterns obtained by arranging173

evoked KC spike counts on a 30x30 grid in arbitrary order (Fig. 6A). In the absence of174
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2 Results 8

lateral inhibition (Figure 6A top), a majority of the KC population was activated by both175

tested odours, due to strong PN input. KCs responded with 1-3 spikes. In the presence of176

lateral inhibition (Figure 6A bottom), the fraction of activated KCs underwent a substantial177

drop (KCs activated, trial averaged: 9%, std: 3%), whereas the range of individual KC178

responses (1-3 spikes) was not a�ected. These activation patterns demonstrate that the MB179

odour representations are sparse on a population level, as each odour is represented by the180

activity of a small fraction of the KC population.181

A B C

Fig. 6 � Lateral inhibition in the AL facilitates population sparseness and reduces pattern

correlation in the MB. Spike counts (single trial) of 900 randomly selected KCs in response to two
similar odours (�Odour A� and �Odour B�) arranged on a 30x30 grid in the absence (top row) and in
the presence (bottom row) of lateral inhibition. Inactive KCs are shown in black. (A) In the absence of
lateral inhibition KCs readily responded to both odours, resulting in an activation pattern where most KCs
are active. In the presence of lateral inhibition both odours evoked sparse KC activation patterns. (B)
Superposition of responses to the two odours. KCs that were activated by both odours are indicated by hot
colours (colour bar denotes spike count of the stronger response). KCs that were activated exclusively by
one of the two odours are indicated in grey. The fraction of KCs that show overlapping responses is reduced
in the presence of lateral inhibition. (C) Pattern correlation of the two odours obtained for PN (blue) and
KC (orange) spikes counts, in the absence (α = 0) and presence (α = 3) and of lateral inhibition. Input
overlap indicated by the dashed line. Pattern correlation was retained at the AL and reduced at the MB
level. Lateral inhibition in the AL reduced pattern correlation in KCs but not in PNs.

To quantify population sparseness of odour representations in the MB, we again calculated182

a sparseness measure adopted from [45]. Lateral inhibition increased population sparseness,183

whereas adaptation increased temporal sparseness (Fig. 5). Both mechanisms act independ-184

ently. With both mechanisms active, in our model, odour representations at the MB level185

are characterised by a small fraction of the KC population responding with a small number186

of spikes. Population and temporal sparseness are in qualitative and quantitative agreement187

with experimental �ndings [1, 2, 3, 4].188

Decorrelation of Odour Representations between AL and MB189

In our model, lateral inhibition in the AL increased population sparseness of MB odour190

representations. Given sparse population responses, does the overlap between MB odour191

representations decrease? We visualised the overlap between odour representations in the192

MB by overlaying KC activation patterns in response to two similar odours (Fig. 6B). With193

lateral inhibition, most of the KC responses were unique to odour A or odour B (shown in194

grey in Fig. 6B) and only relatively few KCs were activated by both odours. In contrast, with195

lateral inhibition deactivated (Fig. 6B top), the ratio of KCs with unique responses (grey)196

to the total number of activated cells (all colours) was low, indicating highly overlapping197

responses.198

We measured overlap between odour representations evoked by two similar odours, in the PN199

and the KC population. To this end, we calculated Pearson's correlation coe�cient between200
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spike counts evoked by both odours, across the corresponding population (cf. Methods).201

Interestingly, PNs retained to overlap of the input, independent of lateral inhibition. In202

contrast, KC representations showed a reduced overlap that decreased even further in the203

presence of lateral inhibition (Fig. 6C).204

Pattern decorrelation and strength of lateral inhibition We tested how scaling of the205

lateral inhibition strength a�ected the pattern overlap in PN and KC odour representations.206

To this end, we varied the strength of lateral inhibition in the AL by increasing the strength207

of inhibitory synapses and adjusting feed-forward weights (see Methods). In addition, we208

calculated pattern correlations in the absence of adaptation. As before, pattern correlation209

was calculated for two similar odours that activated an overlapping set of receptors. In210

the absence of adaptation, lateral inhibition robustly decorrelated odour representations in211

both populations (Fig. 7C). In the presence of adaptation, increasing lateral inhibition had212

di�erent e�ects on the PN and KC population (Fig. 7B). In PNs the correlation of the213

input was retained for all tested values of lateral inhibition. In KCs pattern correlation �rst214

decreased for weak to moderate lateral inhibition strength but then increased for strong215

lateral inhibition. For an intermediate strength of the inhibitory weights the pattern correl-216

ation between KC responses to similar odours attained a minimal value. In general, overlap217

reduction between KC representations is characteristic for the insect MB [46]. Furthermore218

low overlap between KC representations has been found to facilitate discrimination of odours219

[47]. We therefore choose the intermediate strength of the inhibitory weights (α = 3) as a220

reference point in our model.221

A B

Fig. 7 � Pattern correlation in the antennal lobe and the mushroom body for di�erent strengths

of lateral inhibition α. The correlation coe�cient between the response patterns to two similar odours was
calculated and averaged over 50 trials for PNs (blue) and KCs (green). Error bars indicate standard deviation.
Pattern correlation of the input is indicated by the dashed line. Input correlation is high because similar
odours activate largely overlapping set of receptors. (A) In the presence of adaptation (b = 0.132nA), pattern
correlation in PNs (blue) stays close to the input correlation for all values of lateral inhibition strength. In
KCs (green) the correlation decreases for small values of lateral inhibition strength, and increases for large
values of lateral inhibition strength. Pattern correlation in KCs is minimal for α = 3. (B) In the absence
of adaptation (b = 0nA), pattern correlation decreases with the lateral inhibition strength both in PNs and
KCs. The decrease is stronger in KCs.

Odour Encoding on Short and Long Time Scales222

Next, we tested if in our model the information about stimulus identity is contained in AL223

and MB odour representations, by performing a decoding analysis in subsequent time bins224

of 50ms (cf. Methods). In PNs decoding accuracy peaked during stimulus on- and o�set225

(Fig. 8A). Both peaks coincide with a state of transient network activity caused by the226

odour on- or o�set. The �on� and the �o�� responsive PNs establish odour representation227

optimised for discrimination. After the stimulus onset, decoding accuracy dropped but228

remained on a plateau well above chance level. Remarkably, after stimulus o�set, odour229

identity could be decoded for an extended time period (several hundreds of ms) albeit230

with a reduced accuracy. Such odour after e�ects have been demonstrated previously in231

experiments [48, 43](cf. Discussion).232

In KCs decoding accuracy was above chance level only in the �rst 2-3 time bins (about233

100 ms) after stimulus onset (Fig. 8B). In all other time bins decoding accuracy remained234
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at chance level. Notably, in our model we found that some KCs showed �o�� responses (not235

shown). These KC �o�� spikes are driven by the PN �o�� response and occur very rarely236

because the PN �o�� response is much weaker compared to the �on� response. Because the237

spiking activity in the KC population is temporally sparse, the continuous information at238

the AL output is lost in the MB spike count representation. This raises the question whether239

and if so how the information throughout the stimulus could be preserved in the MB. The240

intrinsic time scale of the adaptation currents might potentially support prolonged odour241

representations (Fig 8C). We therefore repeated the decoding analysis on the adaptation242

currents measured in KCs (Fig. 8D). Indeed, the stimulus identity could reliably be decoded243

based on the intensity of the adaptation currents in subsequent time bins of 50ms. Decoding244

accuracy peaked after stimulus onset and then slowly decreased. Remarkably, because KCs245

show very little spontaneous activity, the decay of the classi�cation performance in the246

absence of stimulation, is caused by slow adaptation current �uctuations due to channel247

noise.248

A B

C D

Fig. 8 �Decoding of odour identity indicates a prolonged and reliable odour information in KC
adaptation currents. (A,B,D) Decoding accuracy was calculated for non-overlapping 50 ms time bins,
based on a set of seven stimuli (chance level ≈ 0.14) presented for one second (shaded area). Blue shading
indicates standard deviation obtained from a cross-validation procedure (see Methods). (A) Decoding of
odour identity from PN spike counts. Decoding accuracy peaks at odour on- and o�set, and remains high
after stimulation. (B) Decoding of odour identity from KC spike counts. Decoding accuracy is above chance
only in the �rst three bins following stimulus onset. (C) Adaptation current amplitudes (single trial, hot
colours in arbitrary units) of 100 selected KCs in response to �odour A� (top) and �odour B� (bottom).
(D) Decoding of odour identity from KC adaptation currents. Decoding accuracy peaks 150 ms after odour
onset, then drops during stimulation but remains high and is sustained after odour o�set.

3 Discussion249

We investigated the transformation between dense AL and sparse MB odour representations250

in a spiking network model of the insect olfactory system. Our model demonstrates lateral251

inhibition and spike-frequency adaptation as su�cient mechanisms underlying dynamic and252

combinatorial responses in the AL that are transformed into sparse MB representations. To253

simulate responses to di�erent odours we incorporated simple ORN tuning and glomerular254

structure in our model. This approach allows us to investigate how di�erent odours are255

represented in the AL and MB population activity and asses information contained in re-256

spective odour representation. We inspected overlap between odour representations in both257

populations. Sparse coding reduces overlap between representation, as has been predicted on258

theoretical grounds [49, 50, 51] and shown for MB odour representations [2, 4, 13]. Similarly,259

our model shows pattern decorrelation in the MB but not in the AL.260
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Post-odor Responses in PNs.261

In our model, we found �on� and and �o�� responsive . At the stimulus o�set, the �o��262

responsive PNs transiently increase, whereas the �on� responsive PNs transiently decrease263

their �ring rate (cf. Fig. 3). �On� responsive PNs remain adapted beyond stimulus o�set;264

their excitability is reduced until the slow adaptation current decays. In contrast, in �o��265

responsive PNs increased inhibition during stimulation leads to below-baseline adaptation266

levels at the stimulus o�set. E�ectively, the odour evoked and the post-odor PN activation267

patterns are reversed: the post-odor pattern is reversed compared to the activation pattern268

during stimulation. This result matches well the experimental observations in honeybee269

[48, 52, 43] and Drosophila [53] PNs. Those results show highly correlated response patterns270

during stimulation, and stable post-odour response patterns. Similar to our result, the271

post-odour response patterns are anti-correlated with the actual odour response patterns.272

Di�erential Mechanism Underlying Temporal and Population273

Sparseness in KCs274

Sparse responses in the MB have been shown to rely on various properties of neural circuits275

such as connectivity, synaptic properties, as well as intrinsic properties of KCs. Presum-276

ably sparse KC responses are achieved by an interplay of di�erent mechanisms, i.e. KCs'277

high thresholds together with active subthreshold properties to detect coincident input from278

convergent PN synapses [1, 54, 4], or pre- and post-synaptic inhibition [2, 55, 56, 57, 13].279

On a cellular level, strong adaptation currents in KCs, which are suitable for generation of280

sparse responses, have been found in the honeybee [58] and cockroach [30]. The facilitating281

role of cellular adaptation in temporal sparseness has also been con�rmed in the modelling282

framework by [23]. Our model results indicate that adaptation is indeed su�cient for tem-283

porally sparse responses in the MB. KC responses were con�ned to the stimulus onset due284

to the negative feedback mediated by spike-frequency adaptation. In addition, we found285

that lateral inhibition in the AL promotes population sparseness, because it redistributes286

PN output activity such that only a small fraction of KCs is activated for each odour. In287

our model, the mechanisms acting on population- and temporal sparseness are independent.288

We thus clearly di�erentiate between those two types of sparseness in our analysis.289

The KC population sparseness in our model matches qualitatively and quantitatively with290

experimental estimates from extracellular responses in locust and Drosophila [1, 4] and from291

calcium imaging in Drosophila [5]. Our model shows sparse KC responses on a population292

level in the presence but not in the absence of lateral inhibition. Calcium imaging experi-293

ments in the honeybee [59, 23] have shown that deactivating GABA transmission (through294

pharmacological blocking of di�erent GABA receptor types) disrupts population sparseness295

in line with our modelling results.296

Temporal sparseness of KC responses in our model again compares well to the experiment-297

ally recorded responses in Drosophila, locust and moth (electrophysiology) [1, 2, 3, 4], and298

calcium imaging experiments in the honeybee [2]. Our model relies on spike-frequency ad-299

aptation for temporally sparse responses. In our model temporal sparseness is not a�ected300

by the deactivation of lateral inhibition, a �nding supported a previous study [23]. There301

is further evidence for a GABA-independent mechanism for the temporal shortening of KC302

responses. Calcium imaging studies in Drosophila [57, 13] and in the honeybee [59] showed303

that the temporal pro�le of KCs' fast response dynamics is preserved independent of GABA304

inhibition.305

Several studies have stressed the role of inhibitory circuits at the MB level in generating or306

regulating sparse responses. These include local inhibition in microcircuits [2], feed-forward307

inhibition [60, 61] and feed-back inhibition [2, 56, 12, 57, 62], regarding population sparse-308

ness, temporal sparseness, or both. In fact, the existence of inhibitory feedback neurons in309

the MB has been demonstrated experimentally in di�erent insect species (cockroach [63],310

Drosophila [64], honeybee [65], locust [56]), whereas evidence for feed-forward inhibition to311
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the MB so far has not been found [12]. We show with our model that global inhibition at312

the level of the MB is not strictly necessary to obtain sparse responses. However, those313

di�erent mechanism of sparseness are not exclusive and may be at work at the same time.314

In addition, global inhibition in the MB has been proposed to provide gain control via315

feed-forward [61] or feedback [56] connections. The authors of these studies found gain316

control was necessary to maintain population sparseness in response to odours of di�erent317

concentrations. In our approach, the input to our model is normalised by construction,318

hence we did not address gain control at the MB. Decorrelation of Odour Representations319

between AL and MB320

Decorrelation of stimulus representations has been postulated to be one fundamental prin-321

ciple underlying sensory processing [66, 67]. In particular, in the olfactory system odour322

representations are transformed to decorrelate activity patterns evoked by similar odours323

[68, 69, 70] making them more distinct. Transformations decreasing the overlap between324

representations are termed pattern decorrelation. Less overlapping representations increase325

memory capacity [45] and make discrimination of odours easier [47]. In our model, we found326

that AL odour representations preserved the similarity of the input, whereas at the level of327

the MB, representations of similar odours were decorrelated.328

We have examined the e�ects of lateral inhibition and adaptation on pattern correlations329

between representations of similar odours. We have found that, in the AL decorrelation330

of activity patterns occurred only in the absence of adaptation. Moreover, the amount331

of decorrelation depended on lateral inhibition strength. In computational studies lateral332

inhibition was previously shown to decorrelate odour representations [61, 19]. In aDrosophila333

study using extracellular recording, lateral connection in the AL were found not to a�ect334

correlations between glomerular channels [71], but there is also evidence for decorrelation335

of AL representations [72]. In our model, pattern correlation between representations of336

similar odours is preserved at the level of the AL but not in the MB.337

Odour representation in adaptation currents338

Early investigations of dynamical odour representations have shown that odour identity can339

be reliably decoded from PN spike counts in 50 ms time bins [33, 73]. We used this approach340

to show that odour representations were speci�c and reliable in our model, including both341

AL and MB odour representations. We found that at the AL level, odour representation were342

optimised for discrimination during odour on- and o�set. In line with previous �ndings in343

PNs [73, 29] the peak accuracy coincided with transient network activity. Unlike in the AL,344

at the MB level, stimulus identity could be decoded from KC spike counts only during a short345

time window after stimulus onset (up to about 150 ms, see Fig. 8B). This is a consequence346

of the temporally sparse responses of KCs. However, we found that KC adaptation currents347

retain a representation of stimulus identity, resembling a prolonged odour trace.348

In our model, an odour trace present in adaptation levels extends well beyond the brief349

spiking responses. Adaptation currents constitute an internal dynamical state of the olfact-350

ory network that is not directly accessible to downstream neurons - a �hidden� state [74])351

However, adaptation levels in�uence the responses to (subsequent) stimuli [23] and may also352

a�ect downstream processing through an indirect pathway. An odour trace in the adapta-353

tion levels could be mediated via a calcium signal. Supporting this hypothesis, calcium and354

calcium-dependent currents likely to mediate strong cellular adaptation have been found in355

KCs in the cockroach [30].356

Nevertheless, our results suggest that odour representations are not exclusively found in357

the spiking activity. Odour representations in the calcium signal are likely to mediate358

and regulate the formation of associative memories through biochemical mechanisms on359

the cellular level. We predict that, long-lasting levels of calcium in the KC population360

contain information about the odour an animal is perceiving. Therefore, as in our model,361

classi�cation of calcium levels recorded in the MB should reveal odour identity on long362
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temporal scales. This might underlie the eligibility of a stimulus in classical conditioning363

and trace conditioning experiments.364

4 Methods365

4.1 Spiking Network Model366

A spiking network model with 3 layers (ORN, AL and MB, see Fig. 1AB) was simulated367

using Brian 1.4 [75]. The model includes 35 ORN types, 35 PNs and LNs, and 1000 KCs. A368

LN-PN pair constitutes 35 glomeruli. Across insect species, the number of glomeruli varies369

from a few tens to several hundred (cf. Supplementary Materials), we based our model on370

the lower end of this range. The ratio between the number of PNs and KCs is roughly based371

on the data available in Drosophila [4].372

The connections between the 3 network layers (ORNs, AL, MB) are feed-forward and excit-373

atory. Within the AL, LNs provide lateral inhibition to PNs. ORNs provide input to PNs374

and LNs. All ORNs of the same receptor type target the same, single glomerulus. Every375

LN has inhibitory connections with all PNs, mediating unspeci�c lateral inhibition within376

the AL. Every KC receives 12 PN inputs on average [2]. PN-KC connections were drawn377

from a random distribution. Synaptic weights between all neurons are given in Table 1 for378

four di�erent simulation conditions (see below). The synaptic weight wOL was adjusted379

to achieve a spontaneous LN �ring rate of ∼ 8Hz that is well within the experimentally380

observed range [1, 41].

(i) (ii) (iii) (iv)

wOL 1 nS 1 nS 1 nS 1 nS
wOP 1 nS 1.12 nS 1 nS 1.12 nS
wLP 0 nS 3 nS 0 nS 3 nS
wPK 5 nS 5 nS 5 nS 5 nS

Tab. 1 � Synaptic weights for wOL (ORN-LN), wOP (ORN-PN), wLP (LN-PN) and wPK (PN-KC) con-
nections in di�erent simulation conditions ((i)-(iv)).

381

4.1.1 Neuron Model382

PNs, LNs, and KCs were modelled as leaky integrate-and-�re neurons with conductance-383

based synapses and a spike-triggered adaptation [76] current IA. The membrane potential384

of the i-th neuron from the PN, LN, and KC populations obeys:385

cm
d

dt
vPi = gL

(
EL − vPi

)
+ gOP

i

(
EE − vPi

)
− gLP

(
EI − vPi

)
− IAi , (1)

cm
d

dt
vLi = gL

(
EL − vLi

)
+ gOL

i

(
EE − vLi

)
− IAi , (2)

cm
d

dt
vKi = gL

(
EL − vKi

)
+ gPK

i

(
EE − vKi

)
− IAi . (3)

Membrane potentials follow a �re-and-reset rule. The �re-and-reset rule de�nes the spike386

trains of PNs, LNs and KCs denoted by xB
i =

∑
k δ

(
t− tBik

)
for the i-th neuron of type B.387

The spike trains of the ORN neurons are generated by a Poission process with spike times388

tOijk for the j-th receptor neuron of the k-th receptor type:389

xO
i (t) =

NO/Nglu∑
j

Nglu∑
k

δ
(
t− tOijk

)
. (4)
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Synaptic conductances gi obey:390

τE
d

dt
gOP
i = −gOP

i + τEwOPx
O
i (t) , (5)

τE
d

dt
gOL
i = −gOL

i + τEwOLx
O
i (t) , (6)

τI
d

dt
gLP = −gLP + τIwLP

NGlu∑
j

xL
j (t) , (7)

τE
d

dt
gPK
i = −gPK

i + τE

NGlu∑
j

Wijx
P
i (t) . (8)

Adaptation currents IAi obey:391

τA
d

dt
IAi = −IAi + τA∆IAxi (t) +

√
2τAσ2

Iξ (t) . (9)

where τA is the time constant and∆IA the spike-triggered increase of the adpatation current.392

The last term re�ects the di�usion approximation of channel noise [39], where ξ (t) represents393

Gaussian, white noise. The variance of the adaptation currents IAi is given by σ2
I .394

4.1.2 Receptor Input395

ORNs were modelled as Poisson spike generators, with evoked �ring determined by a receptor396

response pro�le and a spontaneous baseline. In the absence of stimulus the spontaneous �ring397

rate of all ORNs is set to rBG
O = 20 Hz. In the presence of a stimulus the ORN �ring rate398

is given by the summation of the spontaneous rate and an activation ∆rO:399

rO (t) =

{
rBG
O +∆rO for tstart < t < tstop

rBG
O else

. (10)

The intensity (amplitude) of ORN activation ∆rO is given by the receptor response pro�le400

that depends on receptor type and stimulus identity. Receptor activation follows a sine401

pro�le over half a period (0 . . . π):402

∆rO = 40 Hz

{
sin (xπ) for 0 < x < 1

0 else
,

403

x =
(kRT − kS) mod NRT

NA + 1
,

where kS is the stimulus index, kRT the receptor type index, NRT = 35 is the total number404

of receptor types and Na = 11 is the number of receptor types activated by a stimulus.405

Given these parameters 35 di�erent odour responses can be simulated (kS = 0 . . . 34). This406

pro�le ensures that odour responses are evenly distributed across receptor types, while the407

choice of the sine shape was arbitrary. If the di�erence between the index of two stimuli408

∆ks is small, those two stimuli are called similar, because they elicit largely overlapping409

responses. For ∆ks > 12 the responses do not overlap representing dissimilar stimuli.410

4.1.3 Simulations411

Responses to a set of 7 stimuli, 50 trials each, and 3000 ms trial duration were simulated.412

Stimuli had a duration of 1000 ms and were presented at t=1000 ms. To ensure steady state413

initial conditions simulations were initialised for 2000 ms without recording the activity.414
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4 Methods 15

Four di�erent scenarios were simulated: without lateral inhibition and cellular adaptation415

(i), with lateral inhibition (ii), with cellular adaptation (iii) and with lateral inhibition and416

cellular adaptation (iv). We quanti�ed the strength of lateral inhibition with a multiplicative417

factor α, that set by the synaptic weight wLP in units of wOL. In scenarios without cellular418

adaptation ((i), (ii)) the dynamic adaptation current was replaced by a static current IAi ≡419

I0 = 0.38 nA in the PN and LN populations, whereas in the KC population it was set to420

zero IAi ≡ 0 nA. In scenarios without lateral inhibition ((i),(iii)) the inhibitory weights wLP421

were set to zero by setting α = 0. In all scenarios the spontaneous �ring rate of PNs was422

set to ∼ 8 Hz [1, 41, 42], by adjusting the synaptic weights between the ORNs and the PNs423

wOP .424

The spike count of the i-th neuron, in the k-th time bin with size ∆t is given by:425

ni,k =

k∆tˆ

(k−1)∆t

dt xi (t) . (11)

Population �ring rates were obtained from the spike count in a small time bin (∆t = 10 ms)426

ρk =
1

∆t
〈ni,k〉i ,

where 〈.〉i indicates the population average. In addition population �ring rates were averaged427

over 50 trials.428

4.2 Data Analysis429

Sparseness Measure Sparseness of evoked KC responses was quanti�ed by the widely used430

modi�ed Treves�Rolls measure [45, 77]:431

s = 1−

(
1
N

∑N
i=1 ai

)2

1
N

∑N
i=1 a

2
i

,

where ai indicates either the distribution of KC spike counts (population sparseness, for i432

between 1 and 1000), or binned KC population �ring rate (temporal sparseness, ∆t = 50ms,433

for i between 1 and 20). The sparseness measure takes values between zero and one, high434

values indicate sparse responses. Both measures were averaged over 50 trials.435

Pattern Overlap Pattern overlap between two similar odours was calculated using Pear-436

son's correlation coe�cient:437

%XY =
〈(ni − 〈ni〉) (mi − 〈mi〉)〉√〈
(ni − 〈ni〉)2

〉〈
(mi − 〈mi〉)2

〉 , (12)

where ni and mi are the spike count vectors of the i-th neuron in response to two respective438

odours (∆kS = 2). The averages (indicated by 〈.〉) are taken over neurons. The correlation439

coe�cient was calculated both for the PN and the KC population, and averaged over 50440

trials and 5 network realisations with randomly drawn PN-KC connectivity.441

Lateral Inhibition scaling with parameter α In order to test if the decrease of overlap was442

robust for di�erent strengths of lateral inhibition, the synaptic weight wLP was scaled with443

a parameter α.444
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wLP = αw0. (13)

The synaptic weight wOP was adjusted as follows:445

wOP = w0 (1 + αb) , (14)

where b was estimated from simulations under the condition that for a range of lateral446

inhibition strengths (α ∈ [0, 9]) the spontaneous PN �ring rate was close to 8 Hz.447

Decoding Analysis Odour identity was recovered from odour representations by Gaussian448

naive Bayes classi�cation [78], using the scikit-learn package [79]. Training and testing data449

consisted of simulated odour representations for a set of seven stimuli (kS = 0, 2, . . . , 12),450

50 trials each. Classi�cation was repeated for every time bin (∆t = 50 ms, 60 bins total)451

for PN spike counts, KC spike counts, or amplitudes of KC adaptations currents. Data was452

divided into a training and testing set using a 3-fold cross-validation procedure. Decoding453

accuracy was estimated by the maximum a posteriori method and is given by the fraction454

of successful classi�cation trials divided by the total number of test trials.455

4.3 Parameters of the Neuron Model456

Neuron Parameters

membrane capacitance cm 289.5 pF
leak conductance gL 28.95 nS
leak potential EL -70 mV
reset potential VR -70 mV

threshold potential VT -57 mV
refractory time τref 5 ms

Synaptic Parameters

synaptic weight w0 1 nS
excitatory synaptic potential EE 0 mV
excitatory time constant τE 2 ms

inhibitory synaptic potential EI -75 mV
inhibitory time constant τI 10 ms

Adaptation Parameters

spike triggered current ∆IA 0.132 nA
adaptation time constant τA 389 ms

adaptation current variance σ2
I 87.1 pA2

457
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