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1 Introduction 2

10 Abstract

11 Transformations between sensory representations are shaped by neural mechanisms at the cellular
12 and the circuit level. In the insect olfactory system encoding of odour information undergoes a
13 transition from a dense spatio-temporal population code in the antennal lobe to a sparse code in
14 the mushroom body. However, the exact mechanisms shaping odour representations and their role
15 in sensory processing are incompletely identified. Here, we investigate the transformation from
16 dense to sparse odour representations in a spiking model of the insect olfactory system, focusing
17 on two ubiquitous neural mechanisms: spike-frequency adaptation at the cellular level and lateral
1e  inhibition at the circuit level. We find that cellular adaptation is essential for sparse representations
19 in time (temporal sparseness), while lateral inhibition regulates sparseness in the neuronal space
20 (population sparseness). The interplay of both mechanisms shapes dynamical odour representations,
21 which are optimised for discrimination of odours during stimulus onset and offset. In addition, we
22 find that odour identity is stored on a prolonged time scale in the adaptation levels but not in the
23 spiking activity of the principal cells of the mushroom body, providing a testable hypothesis for the
22 location of the so-called odour trace.

25 Keywords: sensory processing, odour trace, efficient coding, lateral inhibition, adaptation,
26 spiking network

.» 1 Introduction

2  How nervous systems process sensory information is a key issue in systems neuroscience.
20 Animals are required to rapidly identify behaviourally relevant stimulus features in a rich
30 and dynamic sensory environment, and neural computation in sensory pathways is tailored
31 to this need. Sparse stimulus encoding has been identified as an essential feature of sensory
32 processing in higher brain areas in both, invertebrate [1, 2, 3, 4, 5] and vertebrate [6, 7, 8, 9]
33 Systems. Sparse representations provide an economical means of neural information coding
s« [10, 11] where information is represented by ounly a small fraction of all neurons (popula-
35 tion sparseness) and each activated neuron generates only few action potentials (temporal
ss sparseness) for a highly specific stimulus configuration (lifetime sparseness).

sz The nervous systems of insects have limited neuronal resources and thus require particularly
s efficient coding strategies. The insect olfactory system is analogue to the vertebrate olfactory
3e  system and has become a popular model system for the emergence of a sparse code. We
a0 use a computational approach to study the transformation from a dense olfactory code in
a1 the sensory periphery to a sparse code in the mushroom body (MB), a central structure
a2 of the insect brain important for multimodal sensory integration and memory formation.
a3 A number of recent studies emphasised the role of sparse coding in the MB. In locusts,
2a sparse responses were shown to convey temporal stimulus information [12]. In Drosophila,
«s  sparse coding was found to reduce overlap between odour representations and facilitate their
«s discrimination [13]. Consequently, sparse coding is an essential feature of plasticity models
a7 for olfactory learning in insects [14, 15, 16, 17, 18] and theoretical work has emphasised the
«s analogy of the transformation from a dense code in projection neurons (PNs) to a sparse
2 code in Kenyon cells (KCs) with dimensionality expansion in machine learning methods
so [14, 19, 20].

51 Central to our modelling approach are two fundamental mechanisms of neural computation
s2 that are ubiquitous in the nervous systems of invertebrates and vertebrates. Spike-frequency
53 adaptation (SFA) is a cellular mechanism that has been suggested to support efficient and
s« sparse coding and to reduce variability of sensory representation [21, 22, 23]|. Lateral in-
ss  hibition is a basic circuit design principle that exists in different sensory systems, mediates
ss contrast enhancement and facilitates stimulus discrimination [24, 25, 26, 27]. Both mech-
sz anisms are evident in the insect olfactory system. Responses of olfactory receptor neurons
s2 (ORNSs), local interneurons (LNs) and PNs in the antennal lobe (AL) show stimulus ad-
s aptation [28, 29] and strong adaptation currents have been identified in KCs [30]. Lateral
o inhibition in the AL is mediated by inhibitory LNs [31]. It is crucial for establishing the
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2 Results 3

e1 population code at the level of PNs [29, 32], for gain control [33, 34], for decorrelation of
s2 odour representations [35], and for mixture interactions [29, 36, 37].

o3 Taken together, we find that lateral inhibition and spike-frequency adaptation account for
ea the transformation from a dense to sparse coding, decorrelate odour representations, and
es facilitate precise temporal responses on short and long time scales.

s 2 Results

e« Spiking Network Model of the Olfactory Pathway with Lateral
«« Inhibition and Spike Frequency Adaptation

6o We designed a spiking network model that reduces the complexity of the insect olfactory pro-
70 cessing pathway to a simplified three-layer network (Fig. 1A) that expresses the structural
71 commonality across different insect species: an input layer of olfactory receptor neurons
72 (ORNs), subdivided into different receptor types, the AL, a first order olfactory processing
73 centre, and the MB. Furthermore, the model combines two essential computational elements:
7a (i) lateral inhibition in the AL, and (ii) spike-frequency adaptation in the AL and the MB.

75 The processing between the layers is based on excitatory feed-forward connections. Conver-
76 ging receptor input from all ORNs of one type is received by spatially confined subunits of
7z the AL called glomeruli. In our model, glomeruli are represented by a single PN and a single
ze  inhibitory local interneuron (LN). In the MB, each KC receives on average 12 PN inputs [2],
7o based on a random connectivity between the AL and the MB [38]. All neurons in the AL and
so the MB were modelled as leaky integrate-and-fire neurons with spike-triggered adaptation.
s Based on evidence from theoretical [39] and experimental studies [40], adaptation channels
s2 cause slow fluctuations. We accounted for this fact by simulating channel noise in the slow
s3 adaptation currents (cf. Methods).

sa  We simulated ORN responses to different odour stimuli. ORN responses were modelled in
ss the form of Poisson spike trains with firing rates dependent on the receptor type and the
ss presented stimulus. The relationship is set by a receptor response profile (Fig. 1B left)
sz which determines ORN firing rates for all receptor types to a given stimulus. Responses to
ss different stimuli are generated by shifting the response profile along the receptor space (Fig.
so 2). The offset between any two stimuli reflects their dissimilarity - similar stimuli activate
90 overlapping sets of olfactory receptors, whereas dissimilar stimuli activate largely disjoint
91 sets of receptors. Stimuli were presented for one second, reflected by a step-like increase of
o2 ORN firing rate.

o3 In the absence of stimuli, ORNSs fired with a rate of 20 Hz reflecting their spontaneous activ-
s« ation [28]. Both LNs and PNs receive direct ORN input. We tuned synaptic weights of the
os model to match physiologically observed firing rates of PNs and LNs, which are both about
os 8Hz [1, 41, 42] (for details see Methods). Lateral inhibition and spike-frequency adaptation,
oz the neural mechanisms under investigation, both provide an inhibitory contribution to a
es neuron’s total input. In our model, spike-frequency adaptation is a cellular mechanism me-
9o diated by a slow, spike-triggered, hyperpolarizing current in LNs, PNs and KCs, whereas a
100 global lateral inhibition in the AL is mediated by LNs with fast synapses that receive input
12 from a single ORN type and inhibit all PNs in a uniform fashion.
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Fig. 1 — Structure and odour response of the spiking network model. (A4) Network structure
resembles the insect olfactory pathway with three main processing stages. PNs (blue) and LNs receive
convergent ORN input (red). Each LN provides unspecific lateral inhibition to all PNs. KCs (orange) receive
on average 12 inputs from randomly chosen PNs. (B) Receptor response profile (red bars; AL input) depicts
the evoked firing rate for each ORN type. Evoked PN spike counts (dashed blue line; AL output) follow
the ORN activation pattern. Raster plots depict single trial responses of PNs (blue) and KCs (orange).
Presentation of an odour during 1000 ms is indicated by the shaded area. Population firing rates were
obtained by averaging over 50 trials. PN spikes display a temporal structure that includes evoked transient
responses at stimulus on- and offset, and a pronounced inhibitory post-odour response. PN population rate
was averaged over PNs showing “on” responses (blue) and “off” responses (cyan). KC spikes were temporally
sparse with majority of the spikes occurring at the stimulus onset.
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Fig. 2 — Receptor response profile for two similar odours (red, blue) and a dissimilar odour (green).

12 Dense and Dynamic Odour Representations in the Antennal Lobe

103 Figure 1B illustrates PN and KC responses to an odour. PNs driven by the stimulus showed
10a  a strong transient response at the stimulus onset, a pronounced adaptation during the
105 stimulus, and a period of silence after stimulus offset due to the slow decay of the strong
106 adaptation current. This resembles the typical phasic-tonic response patterns of PNs [42, 43].

10z PNs receiving direct input from ORNs activated by the stimulus, showed a strong response
10s  at the stimulus onset. Interestingly the “on” responses follow a biphasic profile with an
100 early and a late component. In addition, PNs with no direct input from stimulated ORNs
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2 Results 5

110 showed an “off” response at the stimulus offset. Non-driven PNs were suppressed during a
11 short period after stimulus onset, and showed reduced firing during the tonic response. The
112 PN population response consisted of complex activations of individual PNs with phases of
13 excitation and inhibition.

s Taken together, in the presence of both mechanisms, the PN population response is com-
us  prised of complex activations of individual PNs with phases of excitation and inhibition.
1e Hence, in the AL, odours were represented as spatio-temporal spike patterns across the PN
117 population.

us  Sparse Odour Representations in the Mushroom Body

1o At the level of the MB, KCs typically show none or very little spiking during spontaneous
120 activity and respond to odours with only a few spikes in a temporally sparse manner [1, 3, 4].
121 In our model, synaptic weights between PNs and KCs were tuned to match a very low
122 probability of spontaneous firing. Resulting KC responses were temporally sparse. Due to
123 the negative feedback mediated by strong spike-frequency adaptation, most KC spikes were
122 confined to stimulus onset.

25 Isolating effects of lateral inhibition and adaptation

126 In order to explore effects of lateral inhibition and cellular adaptation on stimulus repres-
127 entations, we simulated odour responses in conditions in which we deactivated one or both
126 mechanisms. Lateral inhibition was deactivated by setting the inhibitory synaptic weight
120 between LNs and PNs to zero and simultaneously reducing the value of the excitatory syn-
130 aptic weight between ORNs and PNs, such that the spontaneous firing rate of 8 Hz was
131 kept. Adaptation was deactivated by replacing the dynamic adaptation current by a con-
132 stant current with an amplitude which approximately maintained the spontaneous firing
133 rate.

13a  Figure 3 illustrates the effects of lateral inhibition and adaptation on odour responses in
135 the PN population. In all conditions, PNs fired spontaneously before stimulation due to
136 spontaneous ORN activation. PNs driven by stimulation receive input from ORNs that were
137 activated by the presented odour. In the absence of adaptation and lateral inhibition (Fig. 3
18 (1)) the stimulus response followed the step-like stimulation and showed no further temporal
130 structure. In the presence of lateral inhibition (Fig. 3 (ii)), PNs not driven by the stimulus
10 were strongly suppressed. In the presence of both mechanisms (Fig. 3 (iv), identical with
1a1  the results of Fig. 1B) we observed the characteristic phasic-tonic response. Moreover, the
12 amplitude of the transient response was diminished, and, interestingly, followed a biphasic
13 profile with an early and a late component.


https://doi.org/10.1101/240671
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/240671,; this version posted December 29, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

2 Results 6
A + Lateral Inhibition («) B
35 0=0 0= P”/ﬁ e el beind, () =0, b=0nd
AT e AT I .
g ot i B ol W, £ 100
8 ““\““‘ ‘: ‘1‘:‘\H.}.\.‘.--‘H-‘.--“-m}u‘\H\: ‘\‘ “H“‘\ ‘H ! “:‘ “‘ﬁmww | ‘: H:“ 8
Z 0 — U PRI T
T — W, ) — o (”) a=3, b=0nA
= & e — g Wt T—— 0 g
o) - TU Ittty 1 1t Ty AL A T [ [e)
o| R AL % 100
° O b u‘ \” g 'H‘\”l \1 STIRT A" LT R ETTA
,g n-l IR “u“l”‘\l‘ b et R NETTI foma
© . — —
| st acopceona, 09 acebcotsn ey e
g £ N ‘.?i “:\1 | w7 100-
3| ¢ -
3 3 R A RN .
o= & (iv)a=3, b=0.13n4
PR i G
R < 100 |
§ ‘\:\“ C‘\\H"\“\“‘\“'\“‘\"“\"‘\\““j \““I:H““. “\“1 H\“‘\“\
Qe °

05s

Fig. 3 — Lateral inhibition and cellular adaptation shape PN odour response dynamics. (A)
Single trial PN spiking responses simulated with (right column) and without (left column) lateral inhibition,
and with (bottom row) and without (top row) adaptation. Presentation of a single odour during 1000
ms is indicated by the shaded area. With adaptation PNs display a temporal structure that includes a
transient and a tonic response, and a pronounced inhibitory post-odour response. (B) Trial averaged firing
rate: PNs driven by stimulation (blue) and remaining PNs (cyan). Panels (i)-(iv) indicate presence and
absence of lateral inhibition and adaptation as in (A). In the presence of lateral inhibition firing rates during
stimulation are reduced. In the presence of lateral inhibition and adaptation (iv) PNs show either transient
“on” responses (blue) or “off” responses (cyan).

1a In our model, the interaction of lateral inhibition and the intrinsic adaptation currents in
1es  LNs and PNs accounts for biphasic PN responses. Because lateral inhibition is strongest at
16 stimulus onset, the most of the phasic PN response was delayed (late component) whereas
1a7  the immediate PN response (early component) was not affected. Comparable evidence for
s the interplay of cellular and network mechanisms behind biphasic PN responses was found
we in the pheromone system of the moth [44].

150 To isolate the contributions of adaptation and lateral inhibition (present at the AL level)
152 to the odour responses at the MB level, we again test the four conditions by deactivating
12 one or both mechanisms. In all four conditions, KCs were almost silent and spiked only
153 sporadically during spontaneous activity, whereas amplitude and temporal profile of their
s« odour response differed across conditions (Fig. 4).

155 In the presence of adaptation we observed temporally sparse responses (Fig. 4 (iii)-(iv)).
1ss KCs typically responded with only 1-3 spikes (mean spikes per responding KC were slightly
157 above one, compare T in Fig. 4B (iii),(iv)). Due to the negative feedback mediated by strong
158 splke—frequency adaptation, most KC spikes were confined to stimulus onset.

15 In the absence of adaptation and regardless of the presence (Fig. 4 (i)) or absence (Fig. 4
10 (ii)) of lateral inhibition, responding KCs fired throughout stimulation, because they received
161 persistently strong input from PNs. Such persistent KC responses are in disagreement with
162 experimental observations [1, 3, 4].
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Fig. 4 - KC odour response dynamics of the population. Figure layout follows Figure 3. (4) Single
trial population spike raster responses. (B) Trial averaged KC population firing rate. Numbers to the
right indicate the fraction of activated KCs (n,) and the mean number of spikes per activated KC during
stimulation (Z). Without adaptation (i,ii) KCs spike throughout stimulation because PN drive is strong and
persistent. The fraction of activated KCs drops in the presence of lateral inhibition (ii,iv). With adaptation
(iii,iv) most of KC spikes are confined to the stimulus onset, indicating temporally sparse responses.

163 We quantified temporal sparseness of KC responses by calculating a measure modified from
16a  [45] (cf. Methods). Comparison of temporal sparseness across the four conditions confirms
1es  that KC responses were temporally sparse only in the presence of adaptation whereas lateral
s inhibition had no effect on temporal sparseness (Fig. 5A).
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Fig. 5 — Quantification of temporal and population sparseness in the KC population. Sparseness
was measured in the absence (o = 0) and presence (o = 3) of lateral inhibition, averaged over 50 trials.
Error bars indicate standard deviation. A value of one corresponds to maximally sparse responses. Gray
bars represent a control condition in the absence of spike-frequency adaptation (b = 0). (A) Adaptation
promotes temporal sparseness. (B) Lateral inhibition in the AL promotes KC population sparseness.

- Lateral Inhibition Supports Population Sparseness in the MB

s We observed that the fraction of responding KCs was considerably lower in the presence of
160 lateral inhibition (compare n, across panels in Fig. 4B). We recall that lateral inhibition
170 in our model is acting on PNs. A reduced PN population rate caused by lateral inhibition
i (compare Fig. 3 (ii),(iv)) is reflected in a lower net input to KCs. How does this affect KC
172 responses on a population level?

173 We visualised MB odour representations with activation patterns obtained by arranging
17a  evoked KC spike counts on a 30x30 grid in arbitrary order (Fig. 6A). In the absence of
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175 lateral inhibition (Figure 6A top), a majority of the KC population was activated by both
17e  tested odours, due to strong PN input. KCs responded with 1-3 spikes. In the presence of
17z lateral inhibition (Figure 6A bottom), the fraction of activated KCs underwent a substantial
1zs  drop (KCs activated, trial averaged: 9%, std: 3%), whereas the range of individual KC
7o responses (1-3 spikes) was not affected. These activation patterns demonstrate that the MB
180 odour representations are sparse on a population level, as each odour is represented by the
181 activity of a small fraction of the KC population.
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Fig. 6 — Lateral inhibition in the AL facilitates population sparseness and reduces pattern
correlation in the MB. Spike counts (single trial) of 900 randomly selected KCs in response to two
similar odours (“Odour A” and “Odour B”) arranged on a 30x30 grid in the absence (top row) and in
the presence (bottom row) of lateral inhibition. Inactive KCs are shown in black. (A4) In the absence of
lateral inhibition KCs readily responded to both odours, resulting in an activation pattern where most KCs
are active. In the presence of lateral inhibition both odours evoked sparse KC activation patterns. (B)
Superposition of responses to the two odours. KCs that were activated by both odours are indicated by hot
colours (colour bar denotes spike count of the stronger response). KCs that were activated exclusively by
one of the two odours are indicated in grey. The fraction of KCs that show overlapping responses is reduced
in the presence of lateral inhibition. (C) Pattern correlation of the two odours obtained for PN (blue) and
KC (orange) spikes counts, in the absence (o = 0) and presence (o = 3) and of lateral inhibition. Input
overlap indicated by the dashed line. Pattern correlation was retained at the AL and reduced at the MB
level. Lateral inhibition in the AL reduced pattern correlation in KCs but not in PNs.

182 To quantify population sparseness of odour representations in the MB, we again calculated
183 a sparseness measure adopted from [45]. Lateral inhibition increased population sparseness,
1sa whereas adaptation increased temporal sparseness (Fig. 5). Both mechanisms act independ-
15 ently. With both mechanisms active, in our model, odour representations at the MB level
186 are characterised by a small fraction of the KC population responding with a small number
187 of spikes. Population and temporal sparseness are in qualitative and quantitative agreement
188 with experimental findings [1, 2, 3, 4].

1 Decorrelation of Odour Representations between AL and MB

190 In our model, lateral inhibition in the AL increased population sparseness of MB odour
101 representations. Given sparse population responses, does the overlap between MB odour
12 representations decrease? We visualised the overlap between odour representations in the
103 MB by overlaying KC activation patterns in response to two similar odours (Fig. 6B). With
10a lateral inhibition, most of the KC responses were unique to odour A or odour B (shown in
105 grey in Fig. 6B) and only relatively few KCs were activated by both odours. In contrast, with
106 lateral inhibition deactivated (Fig. 6B top), the ratio of KCs with unique responses (grey)
17 to the total number of activated cells (all colours) was low, indicating highly overlapping
198 I'eSponses.

100 We measured overlap between odour representations evoked by two similar odours, in the PN
200 and the KC population. To this end, we calculated Pearson’s correlation coefficient between
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201 spike counts evoked by both odours, across the corresponding population (cf. Methods).
202 Interestingly, PNs retained to overlap of the input, independent of lateral inhibition. In
20 contrast, KC representations showed a reduced overlap that decreased even further in the
20 presence of lateral inhibition (Fig. 6C).

205  Pattern decorrelation and strength of lateral inhibition We tested how scaling of the
206 lateral inhibition strength affected the pattern overlap in PN and KC odour representations.
20z To this end, we varied the strength of lateral inhibition in the AL by increasing the strength
20s  of inhibitory synapses and adjusting feed-forward weights (see Methods). In addition, we
200 calculated pattern correlations in the absence of adaptation. As before, pattern correlation
210 was calculated for two similar odours that activated an overlapping set of receptors. In
211 the absence of adaptation, lateral inhibition robustly decorrelated odour representations in
212 both populations (Fig. 7C). In the presence of adaptation, increasing lateral inhibition had
a3 different effects on the PN and KC population (Fig. 7B). In PNs the correlation of the
212 input was retained for all tested values of lateral inhibition. In KCs pattern correlation first
215 decreased for weak to moderate lateral inhibition strength but then increased for strong
216 lateral inhibition. For an intermediate strength of the inhibitory weights the pattern correl-
217 ation between KC responses to similar odours attained a minimal value. In general, overlap
218 reduction between KC representations is characteristic for the insect MB [46]. Furthermore
210 low overlap between KC representations has been found to facilitate discrimination of odours
220 [47]. We therefore choose the intermediate strength of the inhibitory weights (o = 3) as a
221 reference point in our model.
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Fig. 7 — Pattern correlation in the antennal lobe and the mushroom body for different strengths
of lateral inhibition a. The correlation coefficient between the response patterns to two similar odours was
calculated and averaged over 50 trials for PNs (blue) and KCs (green). Error bars indicate standard deviation.
Pattern correlation of the input is indicated by the dashed line. Input correlation is high because similar
odours activate largely overlapping set of receptors. (A) In the presence of adaptation (b = 0.132nA), pattern
correlation in PNs (blue) stays close to the input correlation for all values of lateral inhibition strength. In
KCs (green) the correlation decreases for small values of lateral inhibition strength, and increases for large
values of lateral inhibition strength. Pattern correlation in KCs is minimal for o = 3. (B) In the absence
of adaptation (b = 0nA), pattern correlation decreases with the lateral inhibition strength both in PNs and
KCs. The decrease is stronger in KCs.

22 Odour Encoding on Short and Long Time Scales

223 Next, we tested if in our model the information about stimulus identity is contained in AL
224 and MB odour representations, by performing a decoding analysis in subsequent time bins
225 of 50ms (cf. Methods). In PNs decoding accuracy peaked during stimulus on- and offset
26 (Fig. 8A). Both peaks coincide with a state of transient network activity caused by the
227 odour on- or offset. The “on” and the “off” responsive PNs establish odour representation
28 optimised for discrimination. After the stimulus onset, decoding accuracy dropped but
220 remained on a plateau well above chance level. Remarkably, after stimulus offset, odour
230 identity could be decoded for an extended time period (several hundreds of ms) albeit
231 with a reduced accuracy. Such odour after effects have been demonstrated previously in
232 experiments [48, 43](cf. Discussion).

233 In KCs decoding accuracy was above chance level only in the first 2-3 time bins (about
23 100 ms) after stimulus onset (Fig. 8B). In all other time bins decoding accuracy remained
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235 at chance level. Notably, in our model we found that some KCs showed “off” responses (not
23s shown). These KC “off” spikes are driven by the PN “off” response and occur very rarely
237 because the PN “off” response is much weaker compared to the “on” response. Because the
238 spiking activity in the KC population is temporally sparse, the continuous information at
230 the AL output is lost in the MB spike count representation. This raises the question whether
2e0  and if so how the information throughout the stimulus could be preserved in the MB. The
2a1  intrinsic time scale of the adaptation currents might potentially support prolonged odour
2e2  representations (Fig 8C). We therefore repeated the decoding analysis on the adaptation
a3 currents measured in KCs (Fig. 8D). Indeed, the stimulus identity could reliably be decoded
222 based on the intensity of the adaptation currents in subsequent time bins of 50ms. Decoding
2as  accuracy peaked after stimulus onset and then slowly decreased. Remarkably, because KCs
246 show very little spontaneous activity, the decay of the classification performance in the
247 absence of stimulation, is caused by slow adaptation current fluctuations due to channel
248 NOI1SE.
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Fig. 8 - Decoding of odour identity indicates a prolonged and reliable odour information in KC
adaptation currents. (A,B,D) Decoding accuracy was calculated for non-overlapping 50 ms time bins,
based on a set of seven stimuli (chance level &~ 0.14) presented for one second (shaded area). Blue shading
indicates standard deviation obtained from a cross-validation procedure (see Methods). (A) Decoding of
odour identity from PN spike counts. Decoding accuracy peaks at odour on- and offset, and remains high
after stimulation. (B) Decoding of odour identity from KC spike counts. Decoding accuracy is above chance
only in the first three bins following stimulus onset. (C) Adaptation current amplitudes (single trial, hot
colours in arbitrary units) of 100 selected KCs in response to “odour A” (top) and “odour B” (bottom).
(D) Decoding of odour identity from KC adaptation currents. Decoding accuracy peaks 150 ms after odour
onset, then drops during stimulation but remains high and is sustained after odour offset.

20 3 Discussion

20 We investigated the transformation between dense AL and sparse MB odour representations
251 in a spiking network model of the insect olfactory system. Our model demonstrates lateral
252 inhibition and spike-frequency adaptation as sufficient mechanisms underlying dynamic and
253 combinatorial responses in the AL that are transformed into sparse MB representations. To
2sa simulate responses to different odours we incorporated simple ORN tuning and glomerular
255 structure in our model. This approach allows us to investigate how different odours are
256 represented in the AL and MB population activity and asses information contained in re-
257 spective odour representation. We inspected overlap between odour representations in both
2ss populations. Sparse coding reduces overlap between representation, as has been predicted on
ase  theoretical grounds [49, 50, 51] and shown for MB odour representations [2, 4, 13]. Similarly,
260 our model shows pattern decorrelation in the MB but not in the AL.
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3 Discussion 11

21 Post-odor Responses in PNs.

262 In our model, we found “on” and and “off” responsive . At the stimulus offset, the “off”
263 responsive PNs transiently increase, whereas the “on” responsive PNs transiently decrease
2ee  their firing rate (cf. Fig. 3). ”"On” responsive PNs remain adapted beyond stimulus offset;
265 their excitability is reduced until the slow adaptation current decays. In contrast, in “off”
266 responsive PNs increased inhibition during stimulation leads to below-baseline adaptation
267 levels at the stimulus offset. Effectively, the odour evoked and the post-odor PN activation
268 patterns are reversed: the post-odor pattern is reversed compared to the activation pattern
260 during stimulation. This result matches well the experimental observations in honeybee
a0 [48, 52, 43] and Drosophila [53] PNs. Those results show highly correlated response patterns
211 during stimulation, and stable post-odour response patterns. Similar to our result, the
272 post-odour response patterns are anti-correlated with the actual odour response patterns.

s Differential Mechanism Underlying Temporal and Population
2 Sparseness in KCs

275 Sparse responses in the MB have been shown to rely on various properties of neural circuits
276 such as connectivity, synaptic properties, as well as intrinsic properties of KCs. Presum-
277 ably sparse KC responses are achieved by an interplay of different mechanisms, i.e. KCs’
a7s high thresholds together with active subthreshold properties to detect coincident input from
a7e  convergent PN synapses [1, 54, 4], or pre- and post-synaptic inhibition [2, 55, 56, 57, 13].
220 On a cellular level, strong adaptation currents in KCs, which are suitable for generation of
a1 sparse responses, have been found in the honeybee [58] and cockroach [30]. The facilitating
282 role of cellular adaptation in temporal sparseness has also been confirmed in the modelling
263 framework by [23]. Our model results indicate that adaptation is indeed sufficient for tem-
»sa  porally sparse responses in the MB. KC responses were confined to the stimulus onset due
2es to the negative feedback mediated by spike-frequency adaptation. In addition, we found
286 that lateral inhibition in the AL promotes population sparseness, because it redistributes
2s7 PN output activity such that only a small fraction of KCs is activated for each odour. In
28 our model, the mechanisms acting on population- and temporal sparseness are independent.
280 We thus clearly differentiate between those two types of sparseness in our analysis.

200 The KC population sparseness in our model matches qualitatively and quantitatively with
201 experimental estimates from extracellular responses in locust and Drosophila [1, 4] and from
202 calcium imaging in Drosophila [5]. Our model shows sparse KC responses on a population
203 level in the presence but not in the absence of lateral inhibition. Calcium imaging experi-
20« ments in the honeybee [59, 23| have shown that deactivating GABA transmission (through
205 pharmacological blocking of different GABA receptor types) disrupts population sparseness
206 in line with our modelling results.

2z Temporal sparseness of KC responses in our model again compares well to the experiment-
208 ally recorded responses in Drosophila, locust and moth (electrophysiology) [1, 2, 3, 4], and
200 calcium imaging experiments in the honeybee [2]. Our model relies on spike-frequency ad-
300 aptation for temporally sparse responses. In our model temporal sparseness is not affected
s1 by the deactivation of lateral inhibition, a finding supported a previous study [23]. There
302 is further evidence for a GABA-independent mechanism for the temporal shortening of KC
303 responses. Calcium imaging studies in Drosophila [57, 13] and in the honeybee [59] showed
s0a  that the temporal profile of KCs’ fast response dynamics is preserved independent of GABA
s0s inhibition.

s06  Several studies have stressed the role of inhibitory circuits at the MB level in generating or
s07  regulating sparse responses. These include local inhibition in microcircuits [2], feed-forward
sos inhibition [60, 61] and feed-back inhibition [2, 56, 12, 57, 62], regarding population sparse-
300 ness, temporal sparseness, or both. In fact, the existence of inhibitory feedback neurons in
s10 the MB has been demonstrated experimentally in different insect species (cockroach [63],
s Drosophila [64], honeybee [65], locust [56]), whereas evidence for feed-forward inhibition to
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3 Discussion 12

sz the MB so far has not been found [12]. We show with our model that global inhibition at
;13 the level of the MB is not strictly necessary to obtain sparse responses. However, those
s1a  different mechanism of sparseness are not exclusive and may be at work at the same time.

si5 In addition, global inhibition in the MB has been proposed to provide gain control via
se  feed-forward [61] or feedback [56] connections. The authors of these studies found gain
;17 control was necessary to maintain population sparseness in response to odours of different
;18 concentrations. In our approach, the input to our model is normalised by construction,
319 hence we did not address gain control at the MB. Decorrelation of Odour Representations
s20 between AL and MB

321 Decorrelation of stimulus representations has been postulated to be one fundamental prin-
322 ciple underlying sensory processing [66, 67]. In particular, in the olfactory system odour
323 representations are transformed to decorrelate activity patterns evoked by similar odours
324 [68, 69, 70] making them more distinct. Transformations decreasing the overlap between
325 representations are termed pattern decorrelation. Less overlapping representations increase
326 memory capacity [45] and make discrimination of odours easier [47]. In our model, we found
32z that AL odour representations preserved the similarity of the input, whereas at the level of
s2s  the MB, representations of similar odours were decorrelated.

320 We have examined the effects of lateral inhibition and adaptation on pattern correlations
330 between representations of similar odours. We have found that, in the AL decorrelation
s;n of activity patterns occurred only in the absence of adaptation. Moreover, the amount
332 of decorrelation depended on lateral inhibition strength. In computational studies lateral
;33 inhibition was previously shown to decorrelate odour representations [61, 19]. In a Drosophila
;32 study using extracellular recording, lateral connection in the AL were found not to affect
s correlations between glomerular channels [71], but there is also evidence for decorrelation
s3s  of AL representations [72]. In our model, pattern correlation between representations of
337 similar odours is preserved at the level of the AL but not in the MB.

ss  Odour representation in adaptation currents

33  Rarly investigations of dynamical odour representations have shown that odour identity can
30 be reliably decoded from PN spike counts in 50 ms time bins [33, 73]. We used this approach
sa1 to show that odour representations were specific and reliable in our model, including both
sa2 AL and MB odour representations. We found that at the AL level, odour representation were
33 optimised for discrimination during odour on- and offset. In line with previous findings in
sae  PNs [73, 29] the peak accuracy coincided with transient network activity. Unlike in the AL,
sas  at the MB level, stimulus identity could be decoded from KC spike counts only during a short
36 time window after stimulus onset (up to about 150 ms, see Fig. 8B). This is a consequence
saz  Of the temporally sparse responses of KCs. However, we found that KC adaptation currents
sas retain a representation of stimulus identity, resembling a prolonged odour trace.

sas  In our model, an odour trace present in adaptation levels extends well beyond the brief
30 spiking responses. Adaptation currents constitute an internal dynamical state of the olfact-
351 ory network that is not directly accessible to downstream neurons - a “hidden” state [74])
352 However, adaptation levels influence the responses to (subsequent) stimuli [23] and may also
sss affect downstream processing through an indirect pathway. An odour trace in the adapta-
ss«  tion levels could be mediated via a calcium signal. Supporting this hypothesis, calcium and
35 calcium-dependent currents likely to mediate strong cellular adaptation have been found in
sss  KCs in the cockroach [30].

sz Nevertheless, our results suggest that odour representations are not exclusively found in
sss  the spiking activity. Odour representations in the calcium signal are likely to mediate
sso  and regulate the formation of associative memories through biochemical mechanisms on
0 the cellular level. We predict that, long-lasting levels of calcium in the KC population
se1  contain information about the odour an animal is perceiving. Therefore, as in our model,
sz classification of calcium levels recorded in the MB should reveal odour identity on long
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4 Methods 13

ses  temporal scales. This might underlie the eligibility of a stimulus in classical conditioning
sea and trace conditioning experiments.

ses 4 Methods

ss 4.1 Spiking Network Model

sz A spiking network model with 3 layers (ORN, AL and MB, see Fig. 1AB) was simulated
ses  using Brian 1.4 [75]. The model includes 35 ORN types, 35 PNs and LNs, and 1000 KCs. A
s3eo  LN-PN pair constitutes 35 glomeruli. Across insect species, the number of glomeruli varies
370 from a few tens to several hundred (cf. Supplementary Materials), we based our model on
1 the lower end of this range. The ratio between the number of PNs and KCs is roughly based
sz on the data available in Drosophila [4].

373 The connections between the 3 network layers (ORNs, AL, MB) are feed-forward and excit-
372 atory. Within the AL, LNs provide lateral inhibition to PNs. ORNs provide input to PNs
szs and LNs. All ORNs of the same receptor type target the same, single glomerulus. Every
376 LN has inhibitory connections with all PNs, mediating unspecific lateral inhibition within
sz the AL. Every KC receives 12 PN inputs on average [2]. PN-KC connections were drawn
s7zs from a random distribution. Synaptic weights between all neurons are given in Table 1 for
se  four different simulation conditions (see below). The synaptic weight wor was adjusted
ss0  t0 achieve a spontaneous LN firing rate of ~ 8 Hz that is well within the experimentally
observed range [1, 41].

IO [m] ™
wor | 1 nS 1 nS 1 nS 1 nS
wop | 1nS | 1.12nS | 1 nS | 1.12 nS
wrp | 0nS 3 nS 0 nS 3 nS
wpr | 5nS 5nS 5nS 5nS

Tab. 1 — Synaptic weights for wo;, (ORN-LN), wop (ORN-PN), wrp (LN-PN) and wpg (PN-KC) con-
nections in different simulation conditions ((i)-(iv)).

381

ss22 4.1.1 Neuron Model

ses PNs, LNs, and KCs were modelled as leaky integrate-and-fire neurons with conductance-
ssa  based synapses and a spike-triggered adaptation [76] current 7“. The membrane potential
sss  Of the i-th neuron from the PN, LN, and KC populations obeys:

Cm%”z‘ = (EL—v )—i—gz (EE—UZ-P) (E[—v )_IzA7 (1)
cm%v{‘ = g1 (B — o) + 98 (Ep — oF) - IA, (2)
cm%vf{ = g1 (EL—vf) + ¢ (Bp —vf) — I (3)

sss  Membrane potentials follow a fire-and-reset rule. The fire-and-reset rule defines the spike
ss7  trains of PNs, LNs and KCs denoted by z? =3, ¢ (t — tﬁc) for the i-th neuron of type B.
388 The spike trains of the ORN neurons are generated by a Poission process with spike times

0 1y k for the j-th receptor neuron of the k-th receptor type:

No/Ngiu Ngiu

Z Z 5 (t—t5) (4)
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30 Synaptic conductances g; obey:

d
o0l = —g0" +mpwopa? (1), (5)
d
gt = =g+ mpwora? (1), (6)
d Ngiu
TI@QLP = —g""+rwLp Xj: zf (t), (7)
d pg PK & P
TE % = 9 t7E Xj: Wijai (1) . (8)
san  Adaptation currents I obey:
d
TA— I8 = I + TAAT %, (8) + (/274026 (1) (9)

dt "

sz where 7,4 is the time constant and AI* the spike-triggered increase of the adpatation current.
303 The last term reflects the diffusion approximation of channel noise [39], where £ (¢) represents

sea  Gaussian, white noise. The variance of the adaptation currents Ii“‘ is given by o%.

o5 4.1.2 Receptor Input

s3e6  ORNs were modelled as Poisson spike generators, with evoked firing determined by a receptor
3oz response profile and a spontaneous baseline. In the absence of stimulus the spontaneous firing
ses rate of all ORNS is set to 75¢ = 20 Hz. In the presence of a stimulus the ORN firing rate
300 is given by the summation of the spontaneous rate and an activation Aro:

10
rgG else (10)

’I"gG + AT’O for tstart <t < tstop
To ( ) = .
a0 The intensity (amplitude) of ORN activation Aro is given by the receptor response profile
a1 that depends on receptor type and stimulus identity. Receptor activation follows a sine
sz profile over half a period (0...):

i f 1
Aro — 40 Hz sin (zm) for 0 < x < ,
0 else

403

_ (krr — ks) mod Ngr
Ny+1 ’
aa  where kg is the stimulus index, kry the receptor type index, Nrr = 35 is the total number
a5 of receptor types and N, = 11 is the number of receptor types activated by a stimulus.
a6 Given these parameters 35 different odour responses can be simulated (ks = 0...34). This
a0z profile ensures that odour responses are evenly distributed across receptor types, while the
as  choice of the sine shape was arbitrary. If the difference between the index of two stimuli
a0 Ak is small, those two stimuli are called similar, because they elicit largely overlapping
a0 responses. For Ak, > 12 the responses do not overlap representing dissimilar stimuli.

a1 4.1.3 Simulations

a1 Responses to a set of 7 stimuli, 50 trials each, and 3000 ms trial duration were simulated.
a1z Stimuli had a duration of 1000 ms and were presented at t=1000 ms. To ensure steady state
a1 initial conditions simulations were initialised for 2000 ms without recording the activity.
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a5 Four different scenarios were simulated: without lateral inhibition and cellular adaptation
a6 (i), with lateral inhibition (ii), with cellular adaptation (iii) and with lateral inhibition and
a1z cellular adaptation (iv). We quantified the strength of lateral inhibition with a multiplicative
ais  factor , that set by the synaptic weight wyp in units of woy. In scenarios without cellular
a0 adaptation ((i), (ii)) the dynamic adaptation current was replaced by a static current A =
a0 Igp = 0.38 nA in the PN and LN populations, whereas in the KC population it was set to
w21 zero I = 0 nA. In scenarios without lateral inhibition ((i),(iii)) the inhibitory weights wzp
a2 were set to zero by setting a = 0. In all scenarios the spontaneous firing rate of PNs was
a3 set to ~ 8 Hz [1, 41, 42|, by adjusting the synaptic weights between the ORNs and the PNs
424 WOP-

a2s  The spike count of the i-th neuron, in the k-th time bin with size At is given by:

kAt

Nk = / dt i3 (t) . (11)
(k—1)At

426 Population firing rates were obtained from the spike count in a small time bin (At = 10 ms)

1
Pk = Aq (i), s

a2z where (.), indicates the population average. In addition population firing rates were averaged
a8 over 50 trials.

w2 4.2 Data Analysis

a30 Sparseness Measure Sparseness of evoked KC responses was quantified by the widely used
a1 modified Treves—Rolls measure [45, 77]:

2
N
1 (% Dim1 ai)
1N o
N Dim1 af

a2 where a; indicates either the distribution of KC spike counts (population sparseness, for i
433 between 1 and 1000), or binned KC population firing rate (temporal sparseness, At = 50 ms,
a3 for ¢ between 1 and 20). The sparseness measure takes values between zero and one, high
435 values indicate sparse responses. Both measures were averaged over 50 trials.

S = s

a3 Pattern Overlap Pattern overlap between two similar odours was calculated using Pear-
437 son’s correlation coefficient:

((ni — (n4)) (mi — (ma)))

OXy = )
= ) (G (m?)

a3 where n; and m; are the spike count vectors of the i-th neuron in response to two respective
a3s  odours (Akgs = 2). The averages (indicated by (.)) are taken over neurons. The correlation
a0 coefficient was calculated both for the PN and the KC population, and averaged over 50
a1 trials and 5 network realisations with randomly drawn PN-KC connectivity.

(12)

22> Lateral Inhibition scaling with parameter o« In order to test if the decrease of overlap was
a3 robust for different strengths of lateral inhibition, the synaptic weight wyp was scaled with
4aa  a parameter a.
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wrLp = Qwyp. (13)

a5 The synaptic weight wop was adjusted as follows:

wop = wp (1 + ab), (14)

a6 where b was estimated from simulations under the condition that for a range of lateral
2e7 inhibition strengths (« € [0,9]) the spontaneous PN firing rate was close to 8 Hz.

s Decoding Analysis Odour identity was recovered from odour representations by Gaussian
a9 mnaive Bayes classification [78], using the scikit-learn package [79]. Training and testing data
a0 consisted of simulated odour representations for a set of seven stimuli (ks = 0,2,...,12),
ss1 50 trials each. Classification was repeated for every time bin (At = 50 ms, 60 bins total)
a2 for PN spike counts, KC spike counts, or amplitudes of KC adaptations currents. Data was
a3 divided into a training and testing set using a 3-fold cross-validation procedure. Decoding
ssa  accuracy was estimated by the mazimum a posteriori method and is given by the fraction
a5 of successful classification trials divided by the total number of test trials.

s 4.3 Parameters of the Neuron Model

’ Neuron Parameters ‘ ‘ ‘

membrane capacitance Cm 289.5 pF
leak conductance gL 28.95 nS
leak potential Er -70 mV
reset potential Vr -70 mV
threshold potential Vr -57 mV
refractory time Tref 5 ms

Synaptic Parameters

as7 synaptic weight wo 1 nS
excitatory synaptic potential | Eg 0 mV
excitatory time constant TE 2 ms
inhibitory synaptic potential | Ej -75 mV
inhibitory time constant TI 10 ms

Adaptation Parameters
spike triggered current AI? | 0.132 nA
adaptation time constant TA 389 ms
adaptation current variance | o7 | 87.1 pA?
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