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Abstract 

 

The effect of temporal correlations in the activity of sensory neurons remains a subject of debate, with 

some studies suggesting that correlations may be detrimental to population coding (by reducing the 

amount of information that can be extracted) or may actually enhance population coding. The study of 

neuronal responses to random-dot motion patterns has provided the some of the most valuable insights 

into how the activity of neurons is related to perception. However, it is currently unknown how 

changes in the strength of motion signals, through the reduction of coherence of random dot patterns, 

affects correlated activity and population decoding. To address this question, we recorded neuronal 

populations in the middle temporal (MT) and medial superior temporal (MST) areas of anaesthetized 

marmosets with electrode arrays, while varying the coherence of random dot patterns. We used the 

spike rates of simultaneously recorded neurons to decode the direction of motion at each level of 

coherence using linear classifiers. We found that reducing motion coherence increased neuronal 

correlations, yet the correlation structure was conserved. We also found that removing correlations 

with trial shuffling generally improved population decoding performance and ignoring correlations 

generally impaired decoding performance. Finally, we showed that decoders trained at 100% 

coherence have similar performance to decoders optimized for each level of coherence, demonstrating 

that the optimal linear readout is independent of coherence. These results have implications for how 

information is encoded by populations of neurons, as well as how they may be decoded by 

downstream areas in decision making tasks.  
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Introduction 

 

Perception arises from the activity of neurons, and understanding the way in which stimulus features 

are represented by the activity of neurons is one of the key challenges in system neuroscience. One of 

the most effective paradigms for addressing this question has been the decoding the direction of visual 

motion from the activity of single neurons in the middle temporal area (MT) of the primate cerebral 

cortex. Decreasing the strength of the motion signal decreases both the behavioural performance and 

the amount of information neurons carry regarding direction in an opposite directions discrimination 

task (Newsome et al., 1989; Britten et al., 1992, 1996). While it was initially found that the activity of 

single neurons may account for behavioural performance (Newsome et al., 1989; Britten et al., 1992), 

it has since become clear that the activity of a pool of neurons must combined to form the perceptual 

decision (Britten et al., 1996; Shadlen et al., 1996; Law and Gold, 2008; Cohen and Newsome, 2009). 

 

Combining the activity of a population of neurons can reduce the effects of single neuron variability 

(Tolhurst et al., 1983) and increase the reliability of the of the neural signal. However, combining the 

activity of single neurons recorded on different trials, even in response to the exact same stimulus, can 

only approximate the population responses, since it does not capture the trial to trial correlations of 

pairs of neurons (Zohary et al., 1994; Bair et al., 2001). Correlated activity has the potential to change 

the amount of information contained in populations of neurons. Initially, it was believed that these 

correlations would impair population decoding performance (Zohary et al., 1994), but it was found 

later that certain correlation structures can actually improve population decoding (Abbott and Dayan, 

1999; Sompolinsky et al., 2001; Averbeck et al., 2006; Shamir and Sompolinsky, 2006; Graf et al., 

2011; Zylberberg et al., 2016). Furthermore, it has recently been shown with modelling that neurons 

that are not informative individually, but are correlated with activity of informative neurons, could still 

contribute to improvements in population decoding (Goris et al., 2014; Zylberberg, 2017). Therefore, 

one has to consider population activity recorded concurrently on the same set of trials to fully account 

for the information in a neuronal population. In this study, we addressed the effects of correlations on 

population decoding in MT using random dot motion.  
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Previous studies have modelled large neuronal populations by assuming spiking correlation structures 

using data obtained by simultaneously recording pairs of neurons (Cohen and Newsome, 2009; Law 

and Gold, 2009), but these assumptions have not been fully substantiated in physiological 

experiments. For example, because decreasing motion signal strength causes changes firing rates 

(Britten et al., 1992, 1993; Chaplin et al., 2017a), and possibly correlations, decoding could require a 

different strategy depending on the strength of the motion signal. Alternatively, the optimal decoding 

method for high signal strength (supra-threshold) stimuli may be the same as the optimal decoding 

method for low signal strength (near threshold) stimuli, but this is yet to be tested with real neuronal 

population data. 

 

We decoded population activity in area MT and the medial superior temporal area (MST, a higher 

order motion processing area: Van Essen et al., 1981; Tanaka et al., 1986; Celebrini and Newsome, 

1994) for opposite directions while manipulating the strength of the motion signal through changes in 

the coherence of random dot patterns. We found that MT/MST cells were weakly correlated, and 

correlations increased as motion strength decreased for non-zero motion strengths. Correlations were 

detrimental to population decoding, however, using a decoder that accounted for the correlation 

structure mitigated some of the negative effects of correlated activity on population coding. Despite 

the changes in correlation with respect to coherence, the same decoding strategy can be generalized 

across all coherences.  
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Methods 

 

Animals and surgical preparation 

Single unit and multi-unit extracellular recordings in areas MT and MST were obtained from 5 

marmoset monkeys; 2 males and 3 females, between 1.5 and 3 years of age, with no history of 

veterinary complications. These animals were also used for unrelated anatomical tracing and visual 

physiology experiments. Experiments were conducted in accordance with the Australian Code of 

Practice for the Care and Use of Animals for Scientific Purposes, and all procedures were approved by 

the Monash University Animal Ethics Experimentation Committee.  

 

The preparation for electrophysiology studies of marmosets has been described previously (Bourne 

and Rosa, 2003; updated as in Yu and Rosa, 2010). Anesthesia was induced with alfaxalone (Alfaxan, 

8 mg/kg), allowing a tracheotomy, vein cannulation and craniotomy to be performed. After all surgical 

procedures were completed, the animal was administered an intravenous infusion of pancuronium 

bromide (0.1 mg⁄kg⁄h) combined with sufentanil (6-8 μg⁄kg⁄h, adjusted to ensure no physiological 

responses to noxious stimuli) and dexamethasone (0.4 mg ⁄ kg ⁄ h), and was artificially ventilated with 

a gaseous mixture of nitrous oxide and oxygen (7:3). The electrocardiogram and level of cortical 

spontaneous activity were continuously monitored. Administration of atropine (1%) and 

phenylephrine hydrochloride (10%) eye drops was used to produce mydriasis and cycloplegia. 

Appropriate focus and protection of the corneas from desiccation were achieved by means of hard 

contact lenses selected by retinoscopy.  

 

Electrophysiology, data acquisition and pre-processing 

We recorded neural activity with single shaft linear arrays (NeuroNexus) consisting of 32 electrodes 

separated by 50 µm. MT and MST recording sites were identified during experiments using 

anatomical landmarks, receptive field progression and size (Rosa and Elston, 1998), and direction 

selectivity. The position of recording sites were confirmed post-mortem by histological examination. 
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Electrophysiological data were recorded using a Cereplex system (Blackrock Microsystems) with a 

sampling rate of 30 kHz. For offline analysis of spiking activity, each channel was high-pass filtered at 

750 Hz and spikes were initially identified based on threshold crossings. Units were sorted using 

Offline Sorter (Plexon Inc.). Units were classified as single-units if they showed good separation on 

the (2 component) principal component analysis plot, and were confirmed by inspection of the inter-

spike interval histogram and consistency of waveform over time. Any remaining threshold crossings 

were classified as multi-unit activity. We excluded five single units from adjacent channels since it 

was apparent they were duplicated across two channels, based on their sharp cross correlogram peak 

and high signal correlation (Bair et al., 2001). 

 

Visual stimuli 

Visual stimuli were presented on a VIEWPixx3D monitor (1920 x 1080 pixels; 520 x 295 mm; 120 Hz 

refresh rate, VPixx Technologies) positioned 0.35 to 0.45 m from the animal on an angle to 

accommodate the size and eccentricity of the receptive field(s), typically subtending 70° in azimuth, 

and 40° in elevation. All stimuli were generated with MATLAB using Psychtoolbox-3 (Brainard, 

1997). 

 

The main visual stimulus consisted of random dots presented full screen. White dots (106 cd/m2) of 

0.2° in diameter were displayed on a black (0.25 cd/m2) background (full contrast). The density was 

such that there were on average 0.5 dots per °2; this was chosen because these parameters have been 

shown to elicit good responses from marmoset MT when displayed on LCD monitors (Solomon et al., 

2011; Zavitz et al., 2016). Dot coherence was controlled using the white noise method (i.e. Britten et 

al., 1992, 1996; see Pilly and Seitz 2009) by randomly choosing a subset of “noise” dots on each 

frame, which were displaced to random positions within the stimulus aperture. The remaining “signal” 

dots were moved in the same direction with a fixed displacement.  

 

Determination of receptive fields and basic direction tuning: Visual receptive fields were 

quantitatively mapped using a grid of either static flashed squares or small apertures of briefly 

presented moving dots. Subsequent visual stimuli were presented full screen, so as to cover as many 
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neurons’ receptive fields as possible. We also conducted visual direction tuning tests (12 directions, 

100% coherence), which aided in identifying the location of MT and MST. Direction selectivity was 

determined using a Rayleigh test (p < 0.05) (Berens, 2009). The preferred direction was calculated 

with a vector sum (Ringach et al., 2002), and the strength of the direction selectivity was calculated 

with a direction index DI: 

�� �  1 � 
��	
����  

��	
����
�1� 

Where ratepref and ratenull is the firing rate in response to preferred and null direction of motion 

respectively, at 100% motion coherence. DI values lie between 0 and 1, with 1 indicating a strongly 

direction selective neuron. 

 

Stimulus protocol: We presented visual stimuli moving either leftwards or rightwards at 60°/s at 

different levels of motion coherence: 100, 82, 64, 46, 28, 10 and 0%. All stimuli were presented for 

600 ms with 120 repeats per condition These data were obtained as part of a study to investigate the 

effects of auditory motion in MT and MST. Since we did find any effect of auditory stimuli in the 

responses of single neurons or populations of neurons (Chaplin et al., 2017b), we have grouped the 

two conditions (visual and audio-visual) into one dataset for these analyses. 

 

Data Analysis  

Time windows and inclusion criteria: Firing rates were calculated using a time window starting 10 ms 

after stimulus onset (to avoid a potential noise artifact caused by the speakers in the audio-visual 

condition, Chaplin et al., 2017) and finishing at the stimulus offset (600 ms). Units were deemed 

responsive if they passed a Wilcoxon rank sum test (p < 0.01) against the spontaneous firing rate, and 

if the firing rate in response to the stimulus that elicited the highest spike rate was at least 2 spikes/s 

above the spontaneous rate. Units were considered left-right selective if the firing rate to the best 

direction of motion (left or right) at 100% coherence was significantly greater than that of the other 

direction (Wilcoxon rank sum test, p < 0.05). Penetrations were included for analysis if they contained 
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at least 2 left-right selective units that were separated by at least 100 µm. We characterized the left-

right selectivity of each unit with a left-right index (LRI): 

 

��� �  
��	
� � ��	
	 

max ���	
�, ��	
	�
�2� 

 

Where rateR and rateL is the firing rate in response to rightwards and leftwards motion respectively, at 

100% motion coherence. LRI values lie between -1 and +1, with -1 indicating a strongly leftwards 

preferring neuron, +1 indicating a strongly rightwards preferring neuron, and 0 indicating a neuron 

that is not selective for leftwards or rightwards motion. 

 

Decoding: We used Linear Discriminant Analysis (Pesaran et al., 2002; Averbeck et al., 2003; Law 

and Gold, 2009; Adibi et al., 2014) to decode the direction of motion (leftwards or rightwards) at each 

coherence. Firing rates were first z-scored before being used for decoding. We used random 

subsampling cross validation by training on a randomly selected subset of 80% (96/120) of trials and 

testing on the remainder, and repeating this process 1000 times. For each iteration, we trained and 

tested the decoder at each level of motion coherence. Therefore, we obtained an estimate of the 

decoding accuracy (the mean percent correct across iterations) and the variability (95% interval across 

iterations). We also applied the same method to decode the direction of motion from each individual 

unit in order to compare them to the population performance. For the analysis of neuronal weights (the 

coefficients of the linear combination of neuronal responses, as determined by the decoder training), 

weights were normalized by dividing by the maximum absolute weight in the population. 

 

Neurometric thresholds: To determine neurometric thresholds of single neurons and the population, 

the percent correct values of each cross-validation iteration were fitted using least squares regression 

with two variants of the Weibull function, resulting in a neurometric curve that described the neuron’s 

performance with respect to coherence: 

 

� � 1 � 0.5 exp����/���� (3) 
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� � � � �� �  0.5� exp����/���� (4) 

 

where p was the probability of correctly discriminating the direction of motion at coherence c, α was 

the coherence of threshold performance (p = 82%, convention established by Britten et al., 1992), β 

controlled the slope and δ was the asymptotic level of performance (less than 1). As Equation 4 has an 

extra free parameter, we used an F-test to decide whether to reject the use of Equation 4 over Equation 

3. The α was limited to between 0 and 3, β was limited to lie between 0 and 10, and δ was limited to 

lie between 0 and 1.  In some analyses, we used the “near-threshold” level of coherence, which was 

the coherence that was closest to the exact threshold as determined by the curve fitting procedure. We 

only analyzed penetrations in which the upper bound of the threshold 95% interval was less than 

100% coherence, in order to ensure that threshold estimates were well constrained. Therefore, all 

penetrations had a population threshold less than 100% coherence.  

 

Decoding with and without correlations: To test the effects of correlations on population decoding, we 

trained two types of decoder; the standard decoder, which was trained on the standard dataset (i.e. 

contains correlations), and a “correlation blind” decoder, which was trained on trial shuffled datasets, 

a process which removed all correlations. To test the effect of ignoring correlation structure, we 

compared the performance of the blind decoder to the standard decoder on the standard dataset, i.e. a 

data set that contained real correlations. To test the effect of removing correlations, we compared the 

performance of the blind decoder on trial shuffled dataset to the standard decoder on the standard 

dataset.  

 

Spike count correlation: For each pair of units in each penetration, we calculated the spike count 

correlation (rSC) as the Pearson’s correlation coefficient of the trial by trial spike counts for each level 

of motion coherence. For each iteration of the decoding cross validation procedure, we calculated rSC 

and then averaged across all iterations to obtain the final estimate of rSC. 
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Statistics: Measures of correlations were Spearman’s rho (p), except for spike count correlations (see 

above). Tests between two groups were made with Wilcoxon’s Rank Sign test (paired) or Wilcoxon’s 

Rank Sum test (unpaired), and the α criterion was 0.05 unless otherwise specified. To test for 

differences in spike count correlations at different levels of motion coherences, we used a 2-way 

ANOVA with the Turkey-Cramer method for post hoc multiple comparisons, and we used an 

ANCOVA to account for differences in spike count correlations that might rise from differences in 

firing rate. We deemed differences in decoding thresholds to be statistically significant if the 95% 

interval of differences across cross-validation iterations did not overlap with zero. 

 

Histology 

At the end of the recordings, the animals were given an intravenous overdose of sodium 

pentobarbitone and, following cardiac arrest, were perfused with 0.9% saline, followed by 4% 

paraformaldehyde in 0.1 M phosphate buffer pH, 7.4. The brain was post-fixed for approximately 24 

hours in the same solution, and then cryoprotected with fixative solutions containing 10%, 20%, and 

30% sucrose. The brains were then frozen and sectioned into 40 µm coronal slices. Alternate series 

were stained for Nissl substance and myelin (Gallyas, 1979). The location of recording sites was 

reconstructed by identifying electrode tracks and depth readings recorded during the experiment. 

Additionally, each electrode array was coated in DiI, allowing visualization under fluorescence 

microscopy prior to staining of the sections. In coronal sections, MT is clearly identifiably by heavy 

myelination in the granular and infragranular layers (Rosa and Elston, 1998), whereas MST is more 

lightly myelinated and lacks clear separation between layers (Palmer and Rosa, 2006). The majority of 

neurons reported here were histologically confirmed to be in MT or MST, but for some penetrations in 

which the histology was unclear (12% of units), neurons were included on the basis of their receptive 

field size and progression, and their direction tuning. 
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Results 

Sample size 

We made 27 electrode array penetrations in areas MT and MST, but restricted our analysis to 18 

penetrations (see Methods for inclusion criteria, MT: n = 13; MST: n = 5) that were suitable for 

population decoding. Decoding performance and direction selectivity in MT was similar to that of 

MST, so we analyzed data from both areas together. The number of units per penetration varied from 

6 to 35 (median = 12, 262 in total across all penetrations), comprising of both single (11%) and multi-

units, but no distinctions were made between unit type for population decoding. We performed 

direction tuning tests using 100% coherence motion in 12 equally spaced directions (Figure 1A), and 

found that most units were directional selective (MT 76%, MST 60%, Rayleigh test, p<0.05), in 

agreement with previous reports (Zeki, 1974; Maunsell and Van Essen, 1983; Albright, 1984; 

Celebrini and Newsome, 1994; Born and Bradley, 2005; Lui and Rosa, 2015). For population 

decoding analyses, we presented motion in the left-right axis and at various levels of motion 

coherence (Figure 1B). We observed a range of left-right selectivity across all units, with most 

penetrations showing a mixture of left and right preferring units (Figure 1C). 

 

Population thresholds are always lower than the best unit’s threshold 

We decoded the direction of motion (leftwards or rightwards) by training linear decoders at each level 

of motion coherence and calculating an overall population neurometric threshold for each penetration, 

defined as the level of coherence in which the decoder achieves 82% accuracy. In order to assess the 

improvement in decoding using a population of neurons over an individual neuron, we also decoded 

the direction of motion (and calculated thresholds) for each unit individually. Figure 2A shows the 

decoding performance of a representative penetration with the population decoding performance 

shown in blue and the best individual unit decoding performance in shown in red. In this penetration, 

the population threshold is lower than the best unit’s threshold. In fact, across the full set of 

penetrations, the population threshold was always lower than the threshold of the best unit (Figure 1B, 

all points lying bellow the line of unity, median difference = -17%, p<0.001, Wilcoxon Rank Sign 
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test). Therefore, as expected, the populations as a whole contained more information about the 

direction of motion than any individual unit, and the decoders were able to better discriminate the 

direction of motion at lower levels of motion coherence using population activity. 

 

MT/MST correlations depend on motion strength.  

We measured the spike count correlations (rSC) of all pairs of units (n = 2395) in the 18 penetrations. 

Confirming previous reports, we found that the activity of pairs MT and MST neurons was weakly 

correlated on a trial to trial basis (Zohary et al., 1994; Bair et al., 2001; Cohen and Maunsell, 2009; 

Solomon et al., 2015; Ruff and Cohen, 2016; Zavitz et al., 2016). However, we found that rSC was 

dependent of the level of motion coherence, and increased significantly as motion strength decreased 

for non-zero motion strengths (Figure 3A and Table 1, repeated measures ANOVA F(6, 2394) = 314, 

p < 0.001). Interestingly, 0% coherence motion did not fit this trend, showing significantly lower 

values of rSC compared to coherences from 10% through to 64% coherence, but significantly higher 

values of rSC than 82% and 100% coherence motion (Table 1).  Because motion coherence modulates 

the firing rate of MT/MST cells (e.g. Figure 1B) and firing rate is known to affect rSC measurements 

(de la Rocha et al., 2007; Cohen and Kohn, 2011), we investigated the relationship between coherence 

and spike rate across coherences. We plotted the normalized rSC by dividing by the minimum spike 

count of each pair (the principal firing rate metric that affects correlations: Cohen and Kohn, 2011) 

and found very similar results – the strength of the rSC measurements decreased with coherence except 

for 0% coherence (Table 1, Figure 3B, repeated measures ANOVA F(6, 2394) = 178, p < 0.001). 

 

We also found that the correlation structure was conserved between coherences, in that pairs of 

neurons that were highly correlated with each other at high motion strengths tended to have also high 

correlations at low motion strengths. This was exemplified by the fact that rSC at 10% coherence and 

was highly correlated with rSC at 100% coherence (Spearman’s ρ =0.53, p < 0.001; Fig 3C), even 

though the rSC was significantly higher at 10% coherence (median rSC difference = 0.063, p < 0.001, 

Wilcoxon Rank Sum test). This relationship was significant for all pairs of coherences, with 

correlation coefficients (Spearman’s ρ, all p < 0.001) ranging from 0.46 (0 vs 100% coherence) to 0.78 
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(82 vs 100% coherence). As before (Figure 1B), we tested if differences in rSC for different coherences 

was due to differences in the minimum spike count of the pairs of units, and plotted the rSC against the 

minimum spike count of the pair and fit linear models to the rSC values for both the 10% and 100% 

coherence conditions (Figure 3D, green and cyan lines) and found that the fits were statistically 

significantly different (p < 0.001, ANCOVA). Similar relationships were found when comparing other 

combinations of high and low coherences. 

 

Removing correlations improves decoding performance 

In order to examine how the trial to trial correlations between neurons affect population decoding and 

therefore thresholds, we first tested the effects of removing correlations on population decoding. This 

was done by comparing the performance of the standard decoders to decoders that were trained and 

tested on trial shuffled data (i.e. no correlations present). Figure 4A shows the effect of removing 

correlations on decoding performance of a single example penetration (blue vs yellow lines), in which 

decoding performance was improved by removing correlations. In general, we found that removing 

correlations improved decoding performance across the full dataset, and resulted in a significant 

lowering of thresholds in 4 penetrations, and a significant decrease in median threshold across all 

penetrations (Figure 4B median difference = -2.7%, p=0.025, Wilcoxon Rank Sign test). 

 

Because correlations had a detrimental effect on population decoding, we next asked if learning the 

correlation structure was actually advantageous for population decoding, or if similar performance 

could be achieved by ignoring correlations. To test this, we compared the performance of the standard 

decoders (which learnt correlations) and the decoders that ignored correlations on the standard dataset 

(that contains correlations). The example penetration in Figure 4A show a slight impairment in 

decoding when ignoring the presence of correlations (blue vs red lines). While no individual 

penetration showed a significant increase in threshold when ignoring correlations, there was a 

significant increase in median difference threshold across penetrations (Figure 4C, median difference 

= 1.6%, p = 0.007, Wilcoxon Rank Sign test). Therefore, a decoder which learnt the correlation 

structures usually performed better than one that ignored correlations.  
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Finally, we investigated if there was any relationship in the effect size of removing and ignoring 

correlations when decoding our dataset of neuronal populations. We plotted the effect size of ignoring 

correlations against the effect size of removing correlations for individual penetrations and found there 

was a significant correlation (Figure 4D, Spearman’s ρ = 0.647, p = 0.005). Therefore, the penetrations 

whose decoding performance improved the most by removing correlations, were least affected by 

ignoring correlations. Conversely, penetrations with decoding performance which were minimally 

affected by the removal of correlations, were most affected by ignoring correlations.     

 

Decoders trained at 100% coherence generalize to all coherences 

Because changes in motion coherence modulate spike rates and correlations, it is unclear if the optimal 

decoding weights would be the same across coherences. We therefore tested if the population readout 

method generalized across coherences. To do this, we used the decoders trained at 100% coherence to 

decode the direction of motion at every other level of coherence, and thereby obtained a new set of 

population thresholds. We then compared these thresholds to the thresholds obtained by training at 

each coherence level. We found there was no significant difference in population threshold between 

these two training methods (Figure 5A, median difference = -0.52%, p = 0.879, Wilcoxon Rank Sign 

test), suggesting that the readout method for 100% coherence can generalize to all other levels of 

motion coherence. To directly compare these decoding methods, we compared the weights of the 

decoders trained at 100% coherence with the decoders trained at the near threshold level of coherence 

(the closest level of coherence to the penetrations’ threshold, therefore varying by penetration). We 

examined the normalized weights of these two decoders by plotting one against another and found 

they were highly correlated (Figure 5B, Spearman’s ρ = 0.711, p < 0.001), again, suggesting weights 

are similar across coherences. 

 

To further examine if the decoders that were optimized at 100% coherence is equivalent to the 

decoders optimized on a per coherence basis, we tested if the effect of removing or ignoring trial to 

trial correlations was the same for these two decoder types. We repeated the analysis used in Figure 4 
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to measure the increase in change when ignoring or removing correlations for the 100% coherence 

trained decoder. We found that the magnitude of the change in threshold for the 100% trained 

decoders was highly correlated with per coherence decoders both when correlations are removed 

(Figure 5C, Spearman’s ρ = 0.938, p < 0.001) and when correlations are ignored (Figure 5D, 

Spearman’s ρ = 0.715, p = 0.001), suggesting that the readout of the 100% coherence decoder is 

similar to the per coherence decoders. 
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Discussion 

 

In this paper, we have presented the first population recordings from areas MT and MST for random 

dot motion embedded in noise. We found that spike count correlations between neurons were 

dependent on motion coherence. Decreases in motion coherence generally led to increases in 

correlations in activity between pairs of neurons for non-zero motion strengths, but the correlation 

structures remained largely unchanged. When we decoded the direction of motion, one of two 

opposite directions of motion, we demonstrated the correlations generally impaired decoding 

performance, but this could be partly mitigated if the decoder to took into account the correlation 

structure. The optimal weights learned from high motion strengths can be applied to decoding weaker 

motion strengths without detrimentally affecting the performance of the decoder. Our results provide 

new insights into the information contained in populations of neurons in for opposite directions 

discrimination tasks including perceptual leaning, as discussed below.  

 

Effects of correlations on decoding may be task-dependent 

Recent work has demonstrated that, both theoretically and empirically, the presence of trial-to-trial 

correlations can improve population decoding (Abbott and Dayan, 1999; Sompolinsky et al., 2001; 

Averbeck et al., 2006; Shamir and Sompolinsky, 2006; Graf et al., 2011; Zylberberg et al., 2016). 

However, in our recordings, we found that correlations usually impaired population coding, and 

ignoring the correlation structure only had a relatively small impact on decoding performance. These 

results are in agreement with previous studies suggesting that correlations limit decoding performance 

(Zohary et al., 1994). Whether the correlation structure helps or hinders population decoding appears 

to be dependent on the type of task performed by the decoder (Averbeck et al., 2006; Ecker et al., 

2011; Yarrow and Series, 2015). Studies that have found that population decoding performance was 

improved by the presence of correlations usually decode multiple directions (Zylberberg et al., 2016) 

or orientations (Graf et al., 2011) without stimulus noise. These studies are comparable with a fine 

discrimination task, in which subjects make judgements between small differences in stimulus 

attributes. Therefore, the correlation structure of neurons in MT/MST may be beneficial for other 
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types of stimulus feature decoding (Zavitz et al., 2017), even though they impair population decoding 

for a 2AFC opposite direction task. 

 

Our results are compatible with studies of attention, which show that attention decreases neuronal 

correlations and improves stimulus feature decoding (Cohen and Maunsell, 2009, 2011; Mitchell et al., 

2009). In the context of a 2AFC opposite directions task, the reduction in neuronal correlations caused 

by attention could improve decoding performance, since our study showed that removing correlations 

improved population decoding performance. However, it should be noted though that small decreases 

in correlations due to attention are not equivalent to the artificial removal of correlations in this study, 

and to date, no study has examined the effects of attention on correlations and decoding in MT for a 

2AFC opposite directions task. 

 

Stronger correlations in response to weaker motion signals  

We found that the mean spike count correlation (rSC) in MT and MST in response to random dot 

stimuli ranged from 0.17 (100% coherence) to 0.26 (10% coherence). The strength of the rSC 

measurements at 100% coherence was similar to previous studies that recorded pairs of nearby 

neurons (0.12: Zohary et al., 1994; 0.2: Bair et al., 2001; 0.13: Cohen and Newsome, 2008; 0.1: Huang 

and Lisberger, 2009). In addition, we found that rSC was generally higher in response to weaker motion 

signals compared to stronger motion signals, which had not been reported before. Zohary et al. (1994) 

did measure responses to different levels of motion coherence as part of their rSC measurement, but 

reported that there was no statistically significant difference in rSC between coherence conditions on 

and individual pair basis, and therefore combined their rSC measurements across coherence.  

 

The finding that lower coherence stimuli produced higher values for rSC was somewhat surprising 

given that stronger motion signals elicit high spike rates in the preferred direction of motion (Britten et 

al., 1992, 1993; Chaplin et al., 2017a), which would be expected to increase correlations (de la Rocha 

et al., 2007; Cohen and Kohn, 2011). We demonstrated that correlations were higher at lower levels of 

motion coherence even when taking spike rates into consideration. This is in agreement with the 
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effects of changes in contrast of sinusoidal gratings on rSC measurements in the primary visual cortex 

of macaques (Smith and Kohn, 2008), in which low contrast gratings (which elicit lower spikes rates) 

produced higher correlations. These findings support the notion that correlations are higher when 

sensory signals are weaker.  

 

Correlations in spiking activity are thought to arise from both shared inputs and local horizontal 

connections (Zohary et al., 1994; Bair and Movshon, 2004; Kohn and Smith, 2005; Smith and Kohn, 

2008). Our measurements of rSC suggest that the strength of the inputs that produce correlations in 

activity are reduced as motion strength increases. This could be explained by an inhibitory 

normalization process, in which high motion coherences elicit greater overall spike rates, which in 

turn act to suppress cortical activity, presumably though inhibitory interneurons, and reduce the 

strength of the inputs that cause correlations. An alternative explanation is that since the low 

coherence stimuli also contain motion signals in many different directions (due to the random 

displacement of the noise dots), they may activate many more direction selective neurons at once, both 

within MT/MST, and in their input regions. Therefore, low coherence stimuli could potentially 

activate larger pool of neurons, which could produce more correlated activity between pairs of neurons 

within in MT and MST. 

 

Surprisingly, we also found that the 0% coherence did not fit the general trend of lower coherence 

stimuli producing higher spike count correlations, since it elicited significantly lower spike count 

correlations than stimuli of low motion strength (Table 1, Figure 3A), implying that the effects of the 

0% coherence stimuli on MT/MST neurons is fundamentally different to that of low coherence 

stimuli. It is likely that the 10% coherence stimulus (the lowest non-zero coherence used in this study) 

is near or above the perceptual thresholds of marmosets, since perceptual behavioral thresholds of 

macaques ranges from 5 to 20% coherence (Britten et al., 1992; Roitman and Shadlen, 2002; Law and 

Gold, 2008; Cohen and Newsome, 2009), and therefore the 10% coherence stimulus may be sufficient 

to drive direction selective responses in MT/MST neurons and result in motion percepts. In contrast, 

the 0% coherence stimulus would not produce a reliable percept of motion, presumable because it 

does not produce direction selective responses, but perhaps also because it results in weaker 
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correlations in spiking activity. This could be tested by presenting very weak but non-zero coherences 

(for example 1%) which are well below perceptual thresholds (i.e. the animal cannot perceive the 

direction of motion at all) to see it results in higher correlations than the zero coherence condition. 

 

Generalizability of decoding 

Our earlier work demonstrated that sensitivity of individual neurons to noisy random dot stimuli can 

be reliably predicted from its responses to the 100% coherence stimulus (Chaplin et al., 2017). Here 

we showed that the neurons that contained the most information at 100% coherence will more than 

likely be the neurons carry the most information at lower coherences. These results suggest, in the 

context of population decoding, that weights learnt using the 100% coherence can also be applied to 

lower, and even near threshold, coherences with little loss of information in comparison to weights 

optimized at each individual coherence. The coherence invariant read-out was aided by the relatively 

stability of neural correlations at different coherences (Figure 3). The fact that pairwise neuronal 

correlations were dependent on motion coherence meant that the coherence invariant readout may not 

be possible, however, this did not prove to be the case.  

 

While there is evidence to suggest that perceptual leaning involves an improvement in the sensory 

representation of stimulus features (Schoups et al., 2001; Yang and Maunsell, 2004; Raiguel et al., 

2006), the improvements appear to be minimal, particularly for area MT in a 2AFC opposite directions 

of motion task (Law and Gold, 2008). Improvements can be best accounted for by optimizing weights 

via changing feedforward connectivity (Law and Gold, 2009; Bejjanki et al., 2011). Essentially, the 

process will enable the neurons which carry the most task-relevant information to contribute the most 

to the decision, which is the same process as training the decoder to optimize weights in the present 

study. The results of the present study imply that the system can be trained to perform the task at 

100% coherence, and then apply same decoding strategy at lower coherences, and still perform 

relatively well. This makes perceptual learning a simpler process than if the weights have to be refined 

substantially with respect to changes in coherences.   
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Table 1: Results of post hoc comparisons of differences in spike count correlation (rSC) across 

coherences. 

Coherences (%) Mean rSC difference (CI) p value Mean rSC / spike difference (CI) p value 

0 vs 10 -0.043 (-0.050, -0.036) < 0.001 -0.046 (-0.058, -0.034) < 0.001 

0 vs 28 -0.047 (-0.055, -0.040) < 0.001 -0.041 (-0.053, -0.029) < 0.001 

0 vs 46 -0.025 (-0.032, -0.018) < 0.001 -0.027 (-0.039, -0.014) < 0.001 

0 vs 64 -0.036 (-0.043, -0.029) < 0.001 -0.020 (-0.033, -0.008) < 0.001 

0 vs 82 0.012 (0.005, 0.019) < 0.001 0.037 (0.025, 0.050) < 0.001 

0 vs 100 0.039 (0.032, 0.046) < 0.001 0.057 (0.045, 0.070) < 0.001 

10 vs 28 -0.004 (-0.012, 0.003) 0.548 0.005 (-0.007, 0.017) 0.906 

10 vs 46 0.018 (0.011, 0.025) < 0.001 0.019 (0.007, 0.032) < 0.001 

10 vs 64 0.007 (0.000, 0.014) 0.077 0.026 (0.013, 0.038) < 0.001 

10 vs 82 0.055 (0.048, 0.062) < 0.001 0.083 (0.071, 0.096) < 0.001 

10 vs 100 0.082 (0.075, 0.089) < 0.001 0.103 (0.091, 0.116) < 0.001 

28 vs 46 0.022 (0.015, 0.030) < 0.001 0.014 (0.002, 0.027) 0.011 

28 vs 64 0.011 (0.004, 0.019) < 0.001 0.021 (0.008, 0.033) < 0.001 

28 vs 82 0.059 (0.052, 0.067) < 0.001 0.078 (0.066, 0.091) < 0.001 

28 vs 100 0.086 (0.079, 0.094) < 0.001 0.098 (0.086, 0.111) < 0.001 

46 vs 64 -0.011 (-0.018, -0.004) < 0.001 0.006 (-0.006, 0.019) 0.731 

46 vs 82 0.037 (0.030, 0.044) < 0.001 0.064 (0.052, 0.077 < 0.001 

46 vs 100 0.064 (0.057, 0.071) < 0.001 0.084 (0.072, 0.097) < 0.001 

64 vs 82 0.048 (0.041, 0.055) < 0.001 0.058 (0.045, 0.070) < 0.001 

64 vs 100 0.075 (0.068, 0.082) < 0.001 0.078 (0.065, 0.090) < 0.001 

82 vs 100 0.027 (0.020, 0.034) < 0.001 0.020 (0.008, 0.032) < 0.001 
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Figure 1: Direction preference and left-right selectivity of neural populations. A: Polar plot showing 

the direction tuning of each unit in an example penetration. The direction of each line represents the 

preferred direction, the lengths represent the strength of direction selectivity (direction index, DI) and 

the color shows the position of the unit on the electrode shank. B: The same penetration from panel A, 

showing the responses to motion on the left-right axis of motion at different levels of motion 

coherence, which were used for decoding. Each line shows the coherence response function for a unit 

from the example penetration shown in A, using the same color convention. Leftwards motion is 

represented by negative coherence values, rightwards motion by positive coherence values. C: 

Distribution of left-right selectivity across all penetrations in this study. Each row of dots represents a 

penetration and the position of each dot on the x-axis represents the left-right index (LRI). Dots 

positioned on the left (negative) side of the axis prefer leftwards motion, dots positioned on the right 

(positive) side of the axis prefer rightwards motion. 
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Figure 2: Improvement of population decoding over individual units. A: An example penetration 

showing the decoding performance of the population (blue) and the best individual unit (red) plotted 

against coherence. The two data sets were both fit with a Weibull curve to determine the threshold, 

defined as the level of coherence that achieves 82% correct. B: Population thresholds plotted against 

the threshold of the best unit for all populations. All penetrations had population thresholds lower than 

the threshold of the best individual unit. 
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Figure 3: Spike count correlation (rSC) at different levels of motion coherence. A: The mean rSC plotted 

against each level of coherence, error bars show the standard error of the mean, and rSC varied with 

coherence (repeated measures ANOVA p < 0.001). B: The mean rSC normalized by dividing by the 

minimum spike count of the neuronal pair, plotted against each level of coherence, error bars show the 

standard deviation. As in C, rSC varied with coherence (repeated measures ANOVA p < 0.001). C: rSC 

at 100% coherence plotted against the rSC at 10% coherence. Each point represents the correlation of 

pair of units for a particular direction of motion (left or right), showing a statistically significant 

correlation (Spearman’s ρ = 0.529, p < 0.001). D: rSC values from C plotted against the minimum 

spike count of the two units in the pair. Blue points represent data from 100% coherence, red points 

represent the data from 10% coherence, and the lines of best fit are plotted in cyan and green 

respectively, with the 95% confidence intervals of the fit shown by the light shading. 
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Figure 4: Effects of neuronal correlations on population decoding. A: An example penetration, 

showing the performance of the standard decoding procedure (blue), performance when correlations 

were removed (yellow) and performance when correlations were ignored (red). Each data sets were fit 

with a Weibull curve to determine the threshold, defined as the level of coherence in which the 

decoding accuracy reaches 82% correct. B: Effects of removing correlations. The thresholds from the 

standard decoding procedure are plotted against the thresholds obtained when correlations were 

removed, showing a statistically significant decrease in the median threshold (p = 0.025, Wilcoxon 

Rank Sign test). Star symbols represent penetrations in which the difference is statistically significant. 

C: Effects of ignoring correlations. The thresholds from the standard decoding procedure are plotted 

against the thresholds obtained when correlations were ignored, showing a small but statistically 

significant increase in the median threshold (p = 0.007, Wilcoxon Rank Sign test). D: The change in 

thresholds when correlations were ignored was significantly positively correlated with change in 

thresholds when correlations were removed (Spearman’s ρ = 0.647, p = 0.005). The change in 
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threshold was calculated as the standard threshold minus the remove or ignore correlations threshold. 

Therefore, for the x-axis, positive values represent penetrations which had higher (worse performance) 

thresholds in the standard decoding compared to decoding when correlations where ignored. These 

were the units that were below the line of unity in C, and were the minority of penetrations. For the y-

axis, positive values indicate penetrations that had higher thresholds (worse performance) for the 

standard decoder in comparison to decoding when correlations where removed. These were the units 

above the line of unit in B and were the majority of the penetrations. 
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Figure 5: Generalizability of decoders across motion coherence. A: Population thresholds of the 

standard decoder (trained and tested for each coherence) are plotted against the thresholds of the 

decoders trained only at 100% coherence (and tested at every other coherence). The median threshold 

difference was not statistically significantly different to zero (p = 0.826, Wilcoxon Rank Sign test). B: 

Normalized decoder weights of the per coherence decoders plotted against the 100% coherence 

decoders. Each point represents the weight of an individual unit, filled circles represent weights that 

are statistically different at the 100% and near threshold conditions. The weights of the two decoder 

types were strongly correlated (Spearman’s ρ = 0.711, p < 0.001). C: The changes in thresholds for the 

two types of decoders was very similar when removing correlations (Spearman’s ρ = 0.938, p < 

0.001). As in Figure 4D, the change in threshold was calculated as the standard threshold minus the 

remove correlations threshold. D: The changes in threshold for the two types of decoders was also 
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very similar when ignoring correlations (Spearman’s ρ = 0.715, p = 0.001). Similar to panel C, the 

change in threshold was calculated as the standard threshold minus the ignore correlations threshold. 
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