
 1

Title: Hypothesis testing in the presence of noisy experimental replications   

 

Authors: Diego Vidaurre1*, Mark W. Woolrich1, Theodoros Karapanagiotidis2, 

Jonathan Smallwood2, Thomas E. Nichols3 

 
1 Wellcome Trust Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity, 

University of Oxford, UK.  
2 Department of Psychology, University of York, UK. 
3 Big Data Institute, University of Oxford, UK 

* email: diego.vidaurre@ohba.ox.ac.uk 

 

Abstract: We propose a simple procedure based on permutation testing that 

provides a way of combining the results from many individual tests that refer to 

the same hypothesis. This is needed when testing a measure whose value is 

obtained from a noisy process, which can be repeated multiple times, referred to 

as replications. Examples of a noisy process can be: (i) computational, e.g. when 

using an approximate inference algorithm (e.g. ICA) for which different runs can 

produce different results or (ii) observational, if we have the capacity to acquire 

data multiple times, and the different acquired data sets can be considered noisy 

examples of the underlying data that we are attempting to estimate; that is, we 

are not interested in the individual replications but on the unobserved process 

behind. This method can also be used when we intend to test multiple 

hypotheses, each with access to various replications, while correcting for the 

familywise error rate. Using both simulations and real data, we show that the 

proposed approach compares favourably to more standard approaches to this 

problem.  

 

 

Introduction 

 

Let us suppose that we are interested in testing hypotheses about variables, or 

set of variables, that we can observe on multiple occasions such that we end up 

having a number of noisy measures of the same underlying (unobserved) feature 

or process. This can happen when we replicate a measurement on multiple 

occasions for each subject, or if the design of the experiment is such that the 

repetitions are independent from each other (which would not be the case, for 

example, if there is a strong effect of learning or habituation across runs). This 

can also happen when we are modelling data using an approach that is complex 

enough that inferences about the model parameters can be slightly different 

every time we estimate the model, e.g. with different arbitrary initialisations. 

This is the case, for example, for independent component analysis (ICA, 

Hyvärinen & Oja, 2000; Beckmann et al., 2005) and Hidden Markov models 

(HMM, Rabiner, 1989; Vidaurre et al., 2016).  

 

In non-deterministic approaches such as ICA and HMM, the degree to which 

different initialisations will lead to different estimations (i.e. different local 

minima) of the model parameters depends on elements such as the signal-to-

noise ratio, training parameters, and amount of available data (Himberg et al., 

2004). Many of the local minima may be equally good, or the inference may not 
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always perform well, for example getting stuck in suboptimal local minima. 

Either way, in order to assess how accurately the model estimates features of the 

data that cannot be observed directly (e.g. how much time a participant spends 

in a particular covert state during a period at rest), we can run the inference 

several times and, separately, perform permutation testing to assess the 

statistical features for each run. However, the goal of our analysis is not to 

identify features of a specific run (or specific experiment replications) but to 

approximate the ‘true’ underlying value that is (noisily) measured by the chosen 

approach, e.g. the HMM or ICA. To effectively estimate this underlying value, it is 

necessary to be able to combine the tests performed on multiple inference runs 

into a single global test. 

 

Leaning on previous work (Winkler et al., 2016), this paper presents a simple 

approach to the problem of combining results from multiple runs using the 

principles of permutation testing, regardless of whether the replications are at 

the level of data acquisition, or model inference. This approach is useful in 

estimating effects that explain the underlying data that is the focus of the 

analysis. We demonstrate the validity of this method on the HMM, using 

simulations and data from the Human Connectome Project (Smith et al., 2013), 

where we test a measure of (resting state fMRI) dynamic functional connectivity 

over one hundred different HMM runs against a number of behavioural variables 

measured across hundreds of subjects.   

 

Methods  

 

Background 

 

We refer to the noisy samples or parameter inference runs as R replications, to 

be distinguished from the P observed variables against which we aim to test. 

(Replications are not to be confused with realisations, which will use to refer to 

the multiple instances of the synthetic experimental scenario carried out below.) 

That is, we have one hypothesis per observed variable, and wish to combine the 

tests across multiple replications, with no particular interest in assessing each 

replication in isolation. For N subjects, let us denote replications as X (N by R), 

and observed variables as Y (N by P). For reference, we will consider each 

column of X (referred to as xi) as a noisy sample of certain unobservable variable 

of interest x.  

 

For each column of X and each column of Y (referred to as yi), we can use 

permutation testing (Nichols and Holmes, 2002) to test the null hypothesis that 

xi and yj are independent (i.e. that there is no relationship between the estimated 

model and observed data). From this procedure we obtain a (1 by R) vector of p-

values per observed variable, say pj. A naive approach could combine these R 

values with a simple statistic such as the mean or the median of pj to assess the 

significance: if the mean p-value is small (e.g. below 0.01), this would suggest 

that there is a significant relationship between x and yj. In what follows, we will 

refer to this summarised p-value as pmean. Alternatively to the mean, we can use 

the geometric mean, equivalent to exponentiating the average of the log p-

values; this is related to Fisher’s p-value combining method amplifies the 
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importance of values near zero. Denoting the individual p-values for a given 

observed variable of interest as pi, we have  

 

 (1) pgmean = exp ( Σi log(pi) / R  ). 

 

Again, if pgmean is below 0.01, we can state there is a significant relationship 

between the replications and the examined observed variable. Note that, 

although both pmean or pgmean are reasonable ways to combine tests, neither are 

rightful p-values, as they do not distribute uniformly in [0,1] under the null. 

These approaches, therefore, will work effectively as long as there is a consistent 

effect in all or most replications, but will fail if the models produce noisy 

estimates of the the data, or when only a subset of the models are able to capture 

any relationship with yj at all. 

 

Example case for a single pair of variables 

 

Before coming to the description of the proposed approach, let us consider an 

example, where we wish to assess if there is a linear relationship between two 

variables, a and b. The first one, a, with values at, is Gaussian distributed (mean 

0, standard deviation 1); the second one, b, has elements 

 

bt = κ at + εt,  for t = 1…T, 

 

where εt is Gaussian distributed (mean 0, standard deviation 1), and κ > 0 is 

randomly sampled from a uniform distribution between 0 and some pre-defined 

value c; here, c is manually chosen to define the expected strength of the 

relationship between a and b. We sample from this distribution a number of 

times (or replications), each with a different value of κ that defines how strong 

the relation is between a and b for a given replication. We then run permutation 

testing on each sample data set. If c is higher than zero, then permutation testing 

analysis will be able to detect a significant relationship for at least some of the 

realisations (when κ is large); however, as long as c is not too large, it will not 

detect a significant relationship for some other realisations, i.e. those where κ is 

too small and the relationship between a and b is too weak to yield a significant 

p-value. 

 

For the purpose of illustration we generated 1000 data sets using T=100, each 

with a different value of κ sampled from a uniform distribution, and performed 

permutation testing for each of them. We repeat this for three different values of 

c: 0.0, 0.1 and 0.2. Figure 1 shows histograms of correlation coefficients between 

a and b across data sets (top), and histograms of p-values (bottom). If the 

empirical distribution of p-values is basically flat, as is the case when c=0.0, then 

there no evidence of a relationship between between a and b. However, when 

c=0.1 or c=0.2, then the distribution of p-values gets increasingly skewed toward 

zero. Therefore, if a and b were experimental replications of some pair of 

unobserved processes, we could intuitively say that there are signs of correlation 

between these processes in the c=0.1 and c=0.2 cases. However, neither pmean or 

pgmean is below 0.05 (they are all higher than 0.2 in all cases). 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2018. ; https://doi.org/10.1101/268151doi: bioRxiv preprint 

https://doi.org/10.1101/268151
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4

 
Figure 1: Simulated examples where we generated 1000 data sets, each consisting of 

two variables whose true correlation, c, is systematically varied. When c>0.0, the 

mean correlation across data sets is higher than zero (top), and the distribution of p-

values is skewed toward 0.0 (bottom). The mean p-value (either in linear or 

logarithmic space) is higher than 0.05 in all cases.  

 

Nested permutation testing 

 

In the prior scenario, we are not interested in individual replications but on the 

relationship between the underlying variables (of which the replications are 

noisy observations). In this situation, it is clear that using the mean and median 

as a way to summarise the distribution of p-values can lead to Type II errors.  In 

what follows, we propose a nested permutation testing procedure to overcome 

this limitation. This procedure follows from the principles presented by Winkler 

et al. (2016).   

 

In the case when there is only one observed variable (P=1), referred to as y, we 

propose the following algorithm: 

 

Algorithm 1 

 

I. At the first level, we perform permutation testing under the null hypothesis 

of independence between each replication xi and y to obtain an empirical 

distribution of p-values, represented by the (R by 1) vector of p-values p0  

(e.g. Figure 1-middle). We can implement this by randomly permuting xi a 

number of times, and comparing the surrogate correlations with that of the 

unpermuted data.  

 

II. We summarise p0 using the geometric mean, which, using Equation (1), 

yields pgmean. This corresponds to the first-level permutation testing. 

 

III. For k = 1… K (where K is some large number), we apply some valid 

permutation on y to create a null hypothesis surrogate yk (under the same 

null hypothesis of independence than step I). For each k, then, we repeat 

steps I and II, now using yk instead of y, such that we get vectors of p-values 

pk and combined p-values pk
gmean.  
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IV. At the second level, we obtain a final p-value as  

 

(2) pnested = (#k{pgmean  ≥ pk
gmean} + 1) / (K+1). 

 

We can easily extend this procedure for the P > 1 case (when there are more than 

one observed variable of interest) by using Equation (1) on each observed 

variable yj separately while using the same permutation scheme for all observed 

variables, such that the dependence between the tests is implicitly accounted for 

(Winkler et al., 2016). This will yield a final p-value per observed variable, say 

pnested,j. We can obtain a summary, family-wise error corrected p-value (Nichols 

and Hayasaka, 2003) for each variable of interest j by computing  

 

 (3) pFWE
nested,j = (#k{pgmean,j ≥ minj(pk

gmean,j)} + 1) / (K+1),  

 

where pk
gmean,j is the null surrogate p-value obtained with Equation (1) for the jth 

variable of interest and kth realisation. Alternatively, we can use false-discovery 

rate (FDR; Benjamini and Hochberg, 1995; Nichols and Hayasaka, 2003) on the 

uncorrected p-values pnested,j to obtain FDR-corrected p-values pFDR
nested,j. 

 

Therefore, if there is any relationship between x and yj, the empirical 

distribution of p-values represented by p0 will be, at least to some extent, 

skewed to the left (as in Figure 1, bottom row, centre and right columns) even if 

the mean, or the geometric mean, are not under the area of statistical 

significance; in contrast, the empirical null distribution for the permutations will 

be largely flat (as in Figure 1, bottom left).  

 

If computational cost is a concern, an alternative is to use some form of (fast) 

parametric testing at the first level instead of permutation testing. As shown 

empirically below, the use of second-level permutation reduces the consequence 

of violations of the assumption of normality.  

 

In summary, this procedure draws statistical power from both working in 

logarithmic space (i.e. promoting the importance of p-values closer to zero, 

Winkler et al., 2016), while simultaneously relaxing the alternative hypothesis 

from a highly conservative assumption – that “most of the replications bear a 

relationship with the corresponding observed variable” to a less conservative 

assumption that “at least some of the replications bear a relationship with the 

corresponding observed variable”. In the above example, for instance, nested 

permutation testing produced a p-value higher than 0.5 when c=0.0, and p-

values lower than 0.001 for both the c=0.1 and c=0.2 cases, exhibiting both 

robustness and sensitivity.  

 

Simulations 

 

To illustrate this method, we simulated synthetic data sets emulating a scenario 

in which we are interested in testing whether functional connectivity (FC) 

between a pair of brain regions holds a relation to certain behavioural trait in a 

set of N subjects. In this situation, we have the following variables: 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2018. ; https://doi.org/10.1101/268151doi: bioRxiv preprint 

https://doi.org/10.1101/268151
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6

 

- A subject-specific FC coefficient β, which we cannot observe directly. 

- A behavioural variable, hypothesised to be related to FC and encoded by a 

(N by 1) vector y, that can be observed directly. 

- Some neural process modulated by β, denoted as S, which we cannot 

observe directly. We can consider S to be some archetypical, noiseless 

brain activity controlled by β.  

- The observed (e.g. neuroimaging) data sets D, which are noisy 

measurements of S and have dimension (T by 2). This measurement can 

be repeated up to R times per subject.  

- An (N by R) matrix X, such that Xni contains the estimated FC value for the 

nth subject and ith experimental replication (i.e. the correlation coefficient 

between the channels of the corresponding measured data D). 

 

In this context, the noise in the observations (or replications) stems from the 

imperfect measurement of S, which we can measure multiple times (R). 

Therefore, there is a relation between FC (β, which we cannot observe but we 

can estimate) and behaviour (y), but this relationship is noisy and weak for some 

replications. The objective of this simulation is then to assess whether the 

proposed approach can uncover such relationship. In detail, we generate data 

from this setting as follows: 

 

We have N=200 subjects. We uniformly sample a value βn between -0.2 and +0.2 

for each subject n. For each subject, also, we sample two vectors with 10000 

values each: the first, s1, is Gaussian distributed (mean 0, standard deviation 1), 

whereas the second is set as  

 

s2 = βn s1 + ε, 

 

where ε is also Gaussian-distributed. The vectors s1 and s2 constitute the 

unobserved neural process S. The correlation between s1 and s2 can be 

analytically computed from βn as  

 

 cn = βn / (βn
2 + 1)1/2 

 

We set the value of the observed behavioural variable for each subject to be 

 

 yn = cn + 0.5 ηn, 

 

where η is Gaussian distributed (mean 0, standard deviation 1). Now, in order to 

sample the observed data sets D for each subject, we randomly sample 100 time 

points from S (whose columns are s1 and s2) and add some Gaussian noise with 

mean 0 and standard deviation σ. We do this R times per subject, obtaining one 

(100 by 2) noisy data set D =[d1, d2] each time. We then set the observed 

replication values to  

 

 Xni = corr(d1, d2) 
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With both X and y in hand, we run the proposed nested permutation testing 

algorithm on the noisily estimated FC matrix X and the behavioural variable y: 

that is, as described in Methods, in the first level (I) we permute the rows of X, 

and in the second-level (III) we permute the elements of y. By controlling σ 

(which defines how noisy are individual time series samples d1 and d2), we can 

make the problem more or less difficult. We use a range of 30 values for σ 

between 0.25 and 1.5, and repeat data generation and testing 100 times per 

value of σ. For each repetition of the experiment, standard permutation testing 

results on R=100 p-values (one per replication). Note that, since P=1, there is no 

need to control for familywise error rate across observed variables (Equation 

(3)). 

 

On top, Figure 2 shows pmean / pgmean / pnested (respectively from left to right) 

averaged across the 100 realisations of the experiment as a function of σ, 

together with 95% confidence intervals (minus/plus twice the standard error). 

Thanks to the effect of the logarithm, the pgmean values are lower than pmean 

values, but neither of them ever reach significance provided the weak and 

volatile relationship between X and y. The individual, per replication p-values 

(shown underneath for one example repetition, per value of σ) illustrate this 

point: although there are some significant p-values, the average is condemned to 

fail due to the frequent bad p-values associated to some too noisy replications. 

However, most of the p-values from the nested permutation approach turned out 

to be significant despite the difficulty of the problem, with the average of pnested 

across realisations leaving the zone of significance only for the highest values of 

σ (i.e. for the hardest instantiations of the problem). 

 

                   
Figure 2. Results from the simulated data, where there is a relationship between the 

tested variables: FC and behaviour. (a) p-values obtained from combining tests by 

using the mean (pmean and pgmean), and p-values from the proposed nested permutation 

testing approach (pnested), as a function of σ, which controls the noise in the 

replications (i.e. higher values of σ produce more difficult instantiations of the 

problem); intervals of confidence are computed across realisations of the experiment. 

(b) p-values before test combination for a given repetition (per value of σ).  
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Next, we repeat the same analysis but forcing a fixed value of βn for all subjects 

(in particular, we set βn = 0). In this case, there is relationship between behaviour 

and FC. Figure 3 shows that nested permutation testing, as well as the other 

methods, are robust and do not yield Type I errors in this scenario.   
   

                
Figure 3. Results from the simulated data, where there is not a relationship between 

FC and behaviour. The description of the panels is equivalent to Figure 2. In this case, 

however, no relation was found between FC and behaviour, i.e. there are no Type I 

errors.   

 

Dynamic functional connectivity in real data 

 

Having demonstrated the utility of the nested permutation approach using 

synthetic data, we next evaluate it using real data by applying the Hidden 

Markov model (HMM) to resting state fMRI data from the Human Connectome 

Project (HCP). The HMM assumes that the data can be described using a finite 

number of states. Each state is represented using a probability distribution, 

which in this case is chosen to be a Gaussian distribution (Vidaurre et al, 2017a); 

that is, each state is described by a characteristic pattern of BOLD activation and 

certain functional connectivity profile (we use the same configuration as in 

Vidaurre et al (2017a), to which we refer for further details). As the HMM is 

applied at the group level, the estimated states are shared across subjects; 

however, the state time courses that indicate the moments in time when each 

state is active are unique to a given individual. For the purposes of this analyses 

we set the HMM to have 12 states. Using the inferred state time courses, the 

amount of state-switching for each subject is calculated (Cabral et al, 2017), 

which corresponds to a metric of how frequently subjects transition between 

different brain states (more specifically, given that the state time courses are 

probabilistic assignments, we compute the mean derivative of the state time 

courses for each subject). We use state switching as a summary metric of 

dynamic functional connectivity (DFC). 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2018. ; https://doi.org/10.1101/268151doi: bioRxiv preprint 

https://doi.org/10.1101/268151
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9

In order to infer the HMM at reasonable cost in spite of the large amount of data 

(820 subjects by 4 sessions by 15min, TR=0.75s), we use a stochastic learning 

procedure (Vidaurre et al, 2017b), which involves performing noisy, yet 

economical, updates during the inference. Since stochastic inference brings an 

additional layer of randomness into the HMM estimation but is not costly to run, 

we repeated the HMM inference 100 times and computed state-switching for 

each run. In this context, each HMM estimation constitutes a replication.  

 

Furthermore, each subject has a number of behavioural measures, including 

psychological and sociological factors and several health-related markers.  We 

used a total of 228 behavioural variables, after discarding those with more than 

25% of missing values, in order to test against DFC as measure by state-

switching. We included age, sex, motion and body-mass-index (the latter two 

usually considered as confounds). We also discarded those subjects without 

family information (important for creating the permutations; Winkler et al, 

2015), and those with a missing value in any of the behavioural variables.  

 

Although stochastic inference adds additional randomness to the estimation, the 

HMM has have previously been reported to perform very robustly in this data set 

(Vidaurre et al. 2017a), possibly as a consequence of the large number of 

subjects (N=820), the length of the scanning sessions, and the general high 

quality of the data. For this reason, the different HMM runs are quite consistent, 

which in turn means that the tests produce relatively similar results across 

replications (as shown below). To illustrate the effect of greater noise, we 

created a second set of replications where we permuted the state-switching 

measure between subjects randomly for half of the HMM runs (that is, half of the 

HMM runs, or replications, are potentially related to behaviour whereas the 

other half are noise, and all of them are included in the analysis). We refer to this 

as the perturbed data, as opposed to the original data where the HMM 

estimations are left intact.  

 

Figure 4 compares the results of applying the nested permutation testing 

approach with the mean p-value either in logarithmic or linear space. We used 

10000 permutations in the outer loop, and 1000 permutation in the nested loop 

to obtain each pk
gmean p-value. Figure 4a shows the mean p-value (averaged 

across replications) reflecting the subject-wise correlation of state-switching (as 

measured by the HMM) with the different behavioural variables, with the 

behavioural variables being ordered from more to less significant; dots 

represent individual p-values for some randomly chosen replications. On the left, 

the p-values obtained from standard permutation testing on the original HMM 

runs are quite consistent across replications; on the right, for the perturbed set 

of HMM runs, given that half were randomly ordered over subjects, the mean p-

value is hardly significant for any of the variables.  

 

We next compute the cumulative distribution of p-values for the 62 variables 

that reached significance using all methods, used as a summary of performance. 

Figure 4b demonstrates the advantage of using nested permutation testing. On 

the left, where all the HMM runs were used normally, this difference is subtle; on 

the right, however, the difference is substantial. The difference between pmean 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2018. ; https://doi.org/10.1101/268151doi: bioRxiv preprint 

https://doi.org/10.1101/268151
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10

and pgmean conveys the benefits of working on logarithm space, whereas the 

difference between pgmean and pnested reflects the increased sensitivity brought 

about by testing the “right” hypothesis (“most replications” vs “at least some 

replications” relate to behaviour). Figure 4c shows, for each of the methods, the 

(combined across replications) p-values for the original data versus the 

perturbed data, reflecting that only the nested permutation testing approach is 

robust to having corrupted replications (i.e. the p-values are almost identical 

between the original and the perturbed data set).  
 

 

 
 

 

Figure 4. Analysis of the relation between behaviour and DFC (state switching) as 

measured by the HMM, where replications correspond to HMM runs. (a) Mean p-

values (averaged over replications, with dots representing p-values for some 

individual replications), reflecting the subject-wise correlation of DFC with the 

different behavioural variables. On the X-axis, behavioural variables are ordered from 

more to less correlated. On the left, this is shown for the original data set; on the right, 

this is shown for the perturbed data set (a noisier version of the original data set). (b) 

Nested permutation testing outperforms pmean and pgmean, as reflected when we 

examine the cumulative distribution of p-values. (c) The p-values are robust to 

perturbation only for the nested approach, where correlation between perturbed and 

original p-values is close to 1.0.  

 

Figure 5 presents the behavioural variables for which we found significance 

using the nested permutation testing procedure. Interestingly, although motion 

is a significant predictor it does not explain the greatest variance in this analysis, 

suggesting that DFC on resting state fMRI, as estimated by HMM, can be 

meaningfully related to behaviour beyond the influence of motion. Due to the 

relatively large number of observed variables, FWE correction is fairly 

conservative and few observed variables turn out to be significant (that is, in 

Equation (3), the minimum of the surrogate p-values across observed variables 

can be small if there are many observed variables to choose from). In contrast, 

FDR, being a less conservative approach that FEW correction (Nichols & 

Hayasaka, 2003), preserves statistical significance for up to 26 variables. 

Importantly, if we randomly corrupt the entire data set (instead of half of the 

subjects as in the perturbed data set), all methods, including nested permutation 

testing, are able to avoid Type I errors by marking all behavioural variables as 

not significantly related to DFC (not shown).  
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Figure 5. For the observed variables considered to be significant (out of 228), (a) p-

values using the nested permutation testing approach (pnested), with FWE significance 

indicated on the top left; and (b) FDR-corrected p-values (pFDRnested).  

 

Finally, to assess the impact of using parametric testing instead of permutation 

testing at the first level, we repeated the analysis using t-testing in step I of 

Algorithm 1. The results, shown in Figure 6, are comparable, suggesting that 

parametric testing can be reasonably used as a replacement of permutation 

testing at the first level when computations are too costly. 
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Figure 6. Similarly as shown in Figure 4 but using parametric instead of permutation 

testing in the first level (step I in the nested permutation testing procedure), (a) p-

values using the nested permutation testing approach (pnested), with FWE significance 

indicated on the top left; and (b) FDR-corrected p-values (pFDR
nested).  

 

 

Discussion 

 
Based on previous work (Winkler et al., 2016), we propose in this paper an 

approach for testing for the relationship between a set of observed variables and 

an unobserved variable for which we have a number of noisy measurements. In 

this case, we are not interested in estimating the relationships as described by a 

particular measurement or replication, but instead would like to understand the 

relationship of the true unobserved variable with the observed variables. We 

took as a concrete example the relationship between covert patterns of intrinsic 

brain connectivity, as they occur at rest, and patterns of cognitive and 

demographic variables measured outside of the scanner, using data from the 

HCP data. In this example, the patterns of intrinsic connectivity reflect the noisy 

unobserved data, whereas the measures of cognitive functioning reflect 

measureable observed variables. We demonstrated, using both synthetic and 

real data, that nested permutation testing is able to identify real relationships in 

a manner that is less likely to make a Type II error than would be possible using 

other alternatives.  
 

Although we focused on univariate observed variables and replications, the 

proposed method can straightforwardly be extended in a number of ways. First, 

although we focused on linear relationships between variables, it can easily be 

extended to multivariate statistics, such as multivariate linear regression, or 
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canonical correlation analysis. This will be important because it will allow the 

exploration of situations in which the mapping between cognitive function and 

the data is not univariate in nature. It can also be extended to situations when we 

have replications on both sides of the correlation, such as when both the 

observed and non-observed behaviours are measured on multiple occasions. In 

this case, each pair of replications could be tested individually (for each element 

of the corresponding Cartesian product), and we would proceed in a similar 

fashion. 

 

Moving forward, our use of nested permutation testing is likely to be particularly 

important in the domain of neuroscience given recent shifts towards the use of 

intrinsic connectivity at rest as a method of evaluating structural features of 

cognition. Intrinsic connectivity, as measured at rest, is a powerful tool for 

exploring the structure of neural organisation since it is able to reveal similar 

patterns of neural organisation as emerge during tasks (Smith et al., 2009). In 

addition, the simple non-invasive nature of the use of resting state as a method 

for assessing neural function means that it can be applied to multiple different 

populations, even those for whom task based measures of neural function, or 

psychological measurements may be problematic (such as children or 

populations with cognitive problems). Measuring neural organisation at rest is 

also easy to implement across centres making it amenable to the creation of 

large multicentre data sets, a shift that is likely to be increasingly important as 

neuroscience faces up to the challenges of reproducible science.  

 

Despite the promise that assessing neural function at rest holds, many of the 

same features that make it an appealing tool for the cognitive neuroscience 

community are also at the heart of its significant limitations. For example, the 

power that is gained by the unobtrusive nature of the measure of neural function 

at rest also leads to concerns regarding what the measures actually reflect: it is 

unclear which aspects of the neural signal reflect the intrinsic organisation of 

neural function, which reflect artefacts that emerge from physiological noise or 

motion (Power et al., 2013), and which reflect the patterns of ongoing experience 

that frequently emerge when individuals are not occupied by a demanding 

external task (Gorgolewski et al., 2014, Vatansever et al., 2017). In this context, 

because the underlying ground truth is unknown, nested permutation will help 

the researcher to identify which aspects of a given neural pattern are expressed 

in a robust way in relation to neurocognitive function.  

 

Similarly, given its lack of constraints, it remains unclear whether the resting-

state should be treated as a single continuous state, as it is frequently assumed 

when simple measures of functional connectivity are used, or whether it should 

instead be treated as a sequence of dynamic states (Chang and Glover, 2010; 

Vidaurre et al., 2017a). Although dynamic approaches to understanding 

functional connectivity space are growing in popularity, different approaches 

have specific limitations. For example, sliding window approaches depend upon 

an apriori selection of the window length, which limits the granularity of 

neurocognitive states that can be identified. While approaches such as HMM 

circumvent this problem by allowing the data to determine the temporal 

duration of the underlying states, these analyses are inherently probabilistic and 
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parameter inference can introduce noise into the analysis. In this context, nested 

permutation testing allows dynamic approaches to cognition to be compared to 

observed data in a systematic manner. This could help paving the way to 

formally evaluate how different descriptions of the underlying dynamics at rest 

best predict variables with well-described links to cognitive function. This way, 

nested permutation testing can become a useful tool in resolving the state-trait 

dichotomy that currently hinders the development of the science of how neural 

function evolves at rest.      
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