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2	

Abstract	1	

Animals	 can	 flexibly	 navigate	 in	 their	 environment.	 This	 ability	 is	 thought	 to	 rely	 on	 an	2	

internal	cognitive	map.	An	open	question	concerns	the	influence	of	local	sensory	cues	on	the	3	

cognitive	map	and	notably	their	putative	contribution	to	setting	its	spatial	resolution.	Here	4	

we	 compared	 the	 firing	 of	 hippocampal	 principal	 cells	 in	 mice	 navigating	 virtual	 reality	5	

environments	 in	 the	 presence	 or	 absence	 of	 local	 visual	 cues	 (virtual	 3D	objects).	Objects	6	

improved	 the	 spatial	 representation	 both	 quantitatively	 (higher	 proportion	 of	 place	 cells)	7	

and	 qualitatively	 (smaller	 place	 fields	 with	 increased	 spatial	 selectivity	 and	 stability).	 This	8	

gain	in	spatial	coding	resolution	was	more	pronounced	near	the	objects	and	could	be	rapidly	9	

tuned	 by	 their	 manipulations.	 In	 addition,	 place	 cells	 displayed	 improved	 theta	 phase	10	

precession	 in	 the	 presence	 of	 objects.	 Thus	 the	 hippocampal	 mapping	 system	 can	11	

dynamically	 adjust	 its	 spatial	 coding	 resolution	 to	 local	 sensory	 cues	 available	 in	 the	12	

environment.	 	13	
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Introduction	14	

Animals	 can	 flexibly	 navigate	 in	 their	 environment.	 In	 mammals	 such	 as	 rodents	 and	15	

humans,	 this	 ability	 is	 thought	 to	 rely	 on	 an	 internal	 cognitive	map	 (Epstein	 et	 al.,	 2017;	16	

Tolman,	 1948).	When	 animals	move	 in	 their	 environment,	 hippocampal	 place	 cells	 fire	 in	17	

specific	locations	(their	place	fields)	and	this	spatial	tuning	is	believed	to	provide	a	neuronal	18	

substrate	to	the	cognitive	map	(O’Keefe	and	Dostrovsky,	1971;	O’Keefe	and	Nadel,	1978).	To	19	

be	useful	for	navigation,	such	spatial	representation	should	be	properly	oriented	(Marchette	20	

et	 al.,	 2014)	 and	positioned	 in	 reference	 to	 the	 external	world.	Decades	 of	 research	 have	21	

shown	that	distal	visual	cues	(Muller	and	Kubie,	1987;	O’Keefe,	1976;	Shapiro	et	al.,	1997)	or	22	

intramaze	 objects	 located	 at	 the	 border	 of	 an	 environment	 (Cressant	 et	 al.,	 1997;	23	

Renaudineau	et	al.,	2007)	play	a	predominant	role	 in	map	orientation	while	environmental	24	

boundaries	are	important	for	map	anchoring	(Knierim	and	Hamilton,	2011;	Knierim	and	Rao,	25	

2003;	 O’	 Keefe	 and	 Burgess,	 1996).	 Spatial	 coding	 resolution	 could	 also	 be	 important	 for	26	

spatial	 navigation	 (Geva-Sagiv	 et	 al.,	 2015).	 Wild	 animals,	 including	 rodents,	 often	 travel	27	

kilometers	 away	 from	 their	 home	 through	 empty	 space	 to	 specific	 food	 locations	 (Taylor,	28	

1978).	Mapping	all	traveled	space	at	similar	spatial	resolution	(same	density	and	size	of	place	29	

fields)	 would	 require	 a	 huge	 neuronal	 and	 computational	 investment	 (Geva-Sagiv	 et	 al.,	30	

2015).	 On	 the	 other	 hand,	mapping	 different	 parts	 of	 an	 environment	 at	 different	 spatial	31	

resolutions	 could	be	ethologically	advantageous.	Previous	 studies	have	 reported	 increased	32	

place	 field	 density	 near	 rewarded	 locations	 (Danielson	 et	 al.,	 2016;	 Dupret	 et	 al.,	 2010;	33	

Hollup	et	al.,	2001;	O’Keefe	and	Conway,	1978;	Sato	et	al.,	2018),	salient	cues	(Hetherington	34	

and	 Shapiro,	 1997;	 Sato	 et	 al.,	 2018;	 Wiener	 et	 al.,	 1989)	 or	 connecting	 parts	 in	 multi-35	

compartment	 environments	 (Spiers	 et	 al.,	 2015).	 However,	 whether	 these	36	

overrepresentations	correspond	to	spatial	coding	at	higher	resolution	or	non-spatial	coding	37	

(e.g.,	 emotional	 value	 or	 specific	 sensory	 cues	 associated	 with	 a	 particular	 location)	 is	38	

difficult	to	disentangle.	If	they	would	represent	increased	spatial	resolution,	then	place	fields	39	

should	 not	 only	 be	 quantitatively	 but	 also	 qualitatively	 improved	 (e.g.,	 spatial	 selectivity,	40	

spatial	information	content,	stability,	temporal	coding	accuracy).		41	

Here	we	 took	 advantage	 of	 virtual	 reality	 (Aghajan	 et	 al.,	 2015;	 Aronov	 and	 Tank,	42	

2014;	 Chen	 et	 al.,	 2013;	 Cohen	 et	 al.,	 2017;	 Domnisoru	 et	 al.,	 2013;	 Harvey	 et	 al.,	 2009;	43	

Holscher,	2005;	Ravassard	et	al.,	2013;	Schmidt-Hieber	and	Häusser,	2013;	Youngstrom	and	44	
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Strowbridge,	2012)	to	test	this	hypothesis,	focusing	on	local	visual	cues	(virtual	3D	objects)	45	

with	 higher	 sensory	 resolution	 compared	 to	 distal	 visual	 landmarks.	 These	 could	 play	 an	46	

important	role	in	setting	hippocampal	spatial	resolution,	according	to	sensory	based	models	47	

of	 place	 cell	 activation	 (Barry	 et	 al.,	 2006;	Geva-Sagiv	 et	 al.,	 2015;	Hartley	 et	 al.,	 2000;	O’	48	

Keefe	and	Burgess,	 1996	;	 Sheynikhovich	et	 al.,	 2009;	 Strösslin	et	 al.,	 2005).	Virtual	 reality	49	

allows	 a	 better	 control	 of	 other	 local	 sensory	 cues	 (e.g.,	 tactile,	 olfactory)	 which	 even	 if	50	

present	 are	 useless	 for	 self-location	 in	 the	 virtual	 reality	 environment.	 In	 this	 assay,	 local	51	

sensory	cues	can	also	be	manipulated	quickly	and	reliably	without	overt	changes	in	context	52	

or	 behavior.	We	 show	 that	 sparse	 local	 visual	 cues	 (3D	 objects)	 are	 sufficient	 to	 increase	53	

spatial	 resolution	 through	 a	 higher	 proportion	 of	 place	 cells,	 decreased	 place	 field	 size,	54	

increased	 spatial	 selectivity,	 spatial	 information	 content,	 stability	 and	 temporal	 coding.	55	

Spatial	coding	resolution	was	increased	locally	near	objects	and	could	be	rapidly	tuned	upon	56	

objects	manipulations.	Altogether	our	results	suggest	that	local	visual	cues	could	locally	and	57	

dynamically	tune	hippocampal	spatial	coding	resolution.	 	58	
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	Results	59	

Effects	of	virtual	3D	objects	on	spatial	coding	resolution		60	

Head-fixed	mice	were	trained	to	run	on	a	wheel	and	to	shuttle	back	and	forth	on	a	2	m-long	61	

virtual	linear	track	to	collect	liquid	rewards	at	its	extremities	(Fig.	1A).	The	lateral	walls	of	the	62	

virtual	 track	displayed	distinct	visual	patterns	 to	provide	directional	 information.	However,	63	

these	 patterns	 did	 not	 provide	 any	 information	 relative	 to	 the	 position	 of	 the	 animal	 on	64	

track.	 To	 investigate	 the	 contribution	 of	 local	 cues	 to	 hippocampal	 spatial	 representation,	65	

mice	were	trained	either	in	the	presence	or	absence	of	3D	Objects	(Object	Track,	OT:	n	=	2	66	

mice	vs	No	Object	Track,	ØT:	n	=	3	mice),	which	were	virtually	positioned	on	the	floor	of	the	67	

track	between	 the	animal	 trajectory	and	 the	walls	 (Fig.	1B).	The	 running	wheel	 forced	 the	68	

animals	 to	 run	 in	 a	 unidirectional	 manner	 so	 that	 they	 repetitively	 ran	 along	 the	 objects	69	

without	the	possibility	to	orient	toward	them	or	explore	them	with	any	sensory	modality	but	70	

vision.	Animals	received	a	reward	(sucrose	in	water	5%)	each	time	they	reached	one	of	the	71	

extremities	of	the	linear	track.	After	licking,	the	mice	were	“teleported”	in	the	same	position	72	

but	facing	the	opposite	direction	of	the	track	(Fig.	1C),	allowing	them	to	run	back	and	forth	in	73	

the	 same	 environment.	Once	 animals	 reached	 a	 stable	 and	 proficient	 behavior	 (at	 least	 1	74	

reward/minute	during	a	60	min-long	session),	we	recorded	spiking	activity	in	the	pyramidal	75	

cell	 layer	 of	 the	 CA1	 hippocampal	 region	 using	 either	 4-shanks	 or	 8-shanks	 silicon	 probes	76	

(Fig.	1A)	 in	 the	 right	and/or	 left	hemispheres	over	 the	course	of	2-3	days.	A	 total	of	1124	77	

neurons	were	recorded	in	the	CA1	pyramidal	cell	layer.	Mice	trained	in	ØT	(n	=	9	recording	78	

sessions)	 performed	 the	 task	 with	 similar	 proficiency	 than	 mice	 trained	 in	 OT	 (n	 =	 5	79	

recording	 sessions),	 as	 shown	 by	 similar	 rate	 of	 reward	 collections	 (ØT:	 1.70	 ±	 0.29	80	

rewards/minute,	n	=	9	recording	sessions	in	3	mice;	OT:	1.15	±	0.09	rewards/minute,	n	=	5	81	

recording	sessions	in	2	mice;	P	=	0.19,	Wilcoxon	rank	sum	test;	all	values	expressed	as	mean	82	

±	SEM)	and	average	running	speed	(ØT:	14.1	±	2.12	cm/s,	n	=	9	recording	sessions	in	3	mice;	83	

OT:	16.8	±	1.58	cm/s,	n	=	5	recording	sessions	in	2	mice;	P	=	0.24,	Wilcoxon	rank	sum	test;	84	

Fig.	1C).			85	

To	examine	how	local	objects	impacted	spatial	representation	of	the	linear	track	we	86	

first	 compared	 the	 number	 of	 track-active	 putative	 pyramidal	 cells	 to	 assess	 for	 overall	87	

excitability	and	the	proportion	of	place	cells	among	them	to	assess	for	spatial	resolution.	The	88	

percentage	 of	 track	 active	 cells	 was	 comparable	 in	 between	 the	 track	 without	 and	 with	89	
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objects	(ØT:	66.4	±	5.8%,	n	=	7	sessions	in	3	mice;	OT:	52.8	±	7.8%,	n	=	5	sessions	in	2	mice;	P	90	

=	0.18,	two-tailed	unpaired	t-test;	Fig.	1D).	However,	while	only	19%	of	track	active	cells	had	91	

at	least	one	place	field	(place	cells)	in	the	empty	track	(n	=	48	place	cells),	73%	of	track	active	92	

cells	were	place	cells	when	virtual	3D	objects	were	present	(n	=	103	place	cells;	P	<	10-4,	two-93	

tailed	unpaired	t-test;	Fig.	1E).	In	ØT,	place	fields	were	relatively	sparse	in	the	middle	of	the	94	

track	with	a	 large	proportion	of	 them	aligned	either	 to	 the	beginning	or	 to	 the	end	of	 the	95	

track	 (End-Track	 fields:	 49.3	 ±	 8.99%,	 n	 =	 8	 sessions	 in	 3	mice;	 Fig.	 2A).	 In	 the	maze	with	96	

objects,	however,	 the	majority	of	 fields	were	 located	 in	 the	middle	of	 the	 track	 (On-Track	97	

fields:	84.3	±	1.50%;	n	=	5	sessions	in	2	mice;	P	=	0.015,	two-tailed	unpaired	t-test;	Fig.	2A).	98	

Altogether	 these	 results	 suggest	 that	 3D	 objects	 can	 increase	 spatial	 coding	 resolution	 by	99	

increasing	the	proportion	of	spatially	selective	cells	notably	for	the	central	part	of	the	maze.		100	

Another	 factor	 influencing	 spatial	 resolution	 is	 place	 field	 size.	 There	 was	 a	 tendency	 for	101	

place	 field	width	 (calculated	on	complete	 fields)	 to	be	 lower	 in	 the	track	with	objects	 (ØT:	102	

51.5	 ±	 3.33	 cm,	 n	 =	 15	 place	 fields;	 OT:	 44.6	 ±	 1.60	 cm,	 n	 =	 95	 place	 fields;	 P	 =	 0.056,	103	

Wilcoxon	 rank	 sum	 test;	 Fig.	 1G),	 in	 agreement	 with	 a	 higher	 spatial	 coding	 resolution.	104	

Decreased	place	 field	width	could	be	due	to	spatial	 shrinking	of	place	 fields	detected	on	a	105	

trial-by-trial	basis,	could	result	from	decreased	inter-trial	variability	in	their	position,	or	both.	106	

To	 decipher	 among	 these	 possibilities,	 we	 detected	 place	 fields	 on	 single	 trials	 then	107	

calculated	their	size	and	averaged	them	to	get	a	single	value	for	each	place	field	(Cabral	et	108	

al.,	 2014).	 The	 size	 of	 place	 fields	 based	 on	 single	 trial	 detection	 was	 not	 significantly	109	

different	between	the	two	conditions	(ØT:	34.4	±	1.2	cm,	n	=	15	place	fields;	OT:	33.5	±	0.6	110	

cm,	n	=	94	place	 fields;	P	 =	0.28,	Wilcoxon	 rank	 sum	 test).	On	 the	other	hand,	 the	 spatial	111	

dispersion	of	single-trial	detected	place	fields	was	significantly	reduced	in	the	presence	of	3D	112	

objects	(ØT:	11.9	±	0.90	cm,	n	=	48	place	cells;	OT:	7.58	±	0.55	cm,	n	=	103	place	cells;	P	<	10-113	
4,	Wilcoxon	rank	sum	test;	Fig.	1H).	These	results	suggest	that	the	decreased	place	field	size	114	

resulted	from	decreased	inter-trial	spatial	dispersion.	To	further	assess	inter-trial	place	field	115	

stability,	independently	from	place	field	detection,	we	calculated	a	stability	index	(based	on	116	

spatial	 correlations	 between	 all	 pairs	 of	 firing	 rate	 vectors,	 see	 Material	 and	 Methods	117	

section).	This	stability	index	was	significantly	lower	in	the	track	without	objects	(ØT:	0.12	±	118	

0.01,	n	=	48	place	cells;	OT:	0.34	±	0.02,	n	=	103	place	cells;	P	<	10-4,	Wilcoxon	rank	sum	test;	119	

Fig.	 1I).	 Altogether,	 these	 results	 demonstrate	 that	 the	 presence	 of	 virtual	 objects	 on	 the	120	
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Figure 1: Effects of virtual 3D objects on spatial coding resolution 

A. Schema of the virtual reality set up. The mouse is head-fixed and located on a wheel surrounded by LCD screens 
where a virtual environment is displayed. B. Top and first person views of virtual linear tracks used. Left: track 
without objects (ØT) and right: track with virtual 3D objects (OT). C. Top: Animal’s position in the virtual track as a 
function of time. Green lines indicate times when animal was in a reward zone location. These locations were not 
considered for further analysis. Solid and dotted black lines indicate back and forth trials respectively. Top view of 
animal in the maze is depicted on the right. Arrows indicate teleportation in the same position but facing opposite 
direction after reward consumption. Bottom: Animal’s speed as a function of time. D. E. Box plots of the percentage 
of active cells (D; P = 0.18, two-tailed unpaired t-test) and place cells (E; P < 10-4, two-tailed unpaired t-test) in the 
maze without (blue) and with (orange) objects (same color code throughout the figures). F. Spike raster plots (top) 
and color-coded firing rate map (middle) for successive trials in one direction (arrow) as a function of the position 
in the maze. Bottom: corresponding mean firing rate by positions. Dots indicate positions of the detected place 
field (see Material and Methods). G-K. Box plots of the place field width (G; P = 0.056, Wilcoxon rank sum test), the 
place field dispersion (H; P < 10-4, Wilcoxon rank sum test), the stability index (I; P < 10-4, Wilcoxon rank sum test), the 
out/in field firing rate (J;  P < 10-4, Wilcoxon rank sum test) and the spatial information (K; P < 10-9 , Wilcoxon rank sum 
test). For box plots in this and subsequent figures, box extends from the first (Q1) to the third quartile (Q3) with the 
band inside showing the median and the extremities of the whiskers include values greater than Q1-1.5*(Q3-Q1) 
and smaller than Q3 + 1.5*(Q3-Q1).
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linear	 track	 increases	 spatial	 coding	 resolution	 through	an	 increase	 in	place	 fields	number	121	

and	a	decreased	inter-trial	spatial	dispersion.	122	

To	decipher	whether	objects	could	qualitatively	change	place	cells’	coding	resolution	123	

we	 then	compared	 the	 in-field	 versus	out-of-field	 firing	 rates	 (i.e.,	 signal	 to	noise	 ratio)	of	124	

place	cells	 recorded	 in	OT	and	ØT.	 In	 the	 track	without	objects,	place	cells	 increased	 their	125	

firing	rate	inside	the	place	field	(7.44	±	0.75	Hz,	n	=	48	place	cells)	but	also	discharged	at	high	126	

rate	outside	the	field	(5.23	±	0.62	Hz;	Fig.	1F	and	J;	ratio:	0.65	±	0.02)	indicating	a	low	spatial	127	

resolution.	 In	 comparison,	 place	 cells	 recorded	 in	 the	 track	 with	 objects	 had	 comparable	128	

firing	rates	inside	the	place	field	(6.73	±	0.61	Hz,	n	=	103	place	cells;	P	=	0.09,	Wilcoxon	rank	129	

sum	test)	but	fired	significantly	less	outside	the	field	(3.53	±	0.49	Hz;	Ratio:	0.42	±	0.02;	Fig.	130	

1F	 and	 J;	 P	 <	 10-4,	 Wilcoxon	 rank	 sum	 test)	 indicating	 increased	 spatial	 resolution.	131	

Accordingly,	 spatial	 information	 (in	 bit/spike),	 a	 measure	 independent	 of	 place	 fields’	132	

detection	(Skaggs	et	al.,	1996)	was	very	low	in	the	track	without	object	(0.06	±	0.01	bit/spike,	133	

n	=	48	place	cells)	and	significantly	higher	in	the	presence	of	objects	(0.32	±	0.03	bit/spike,	n	134	

=	103	place	cells;	P	<	10-9	,	Wilcoxon	rank	sum	test;	Fig.	1K).	We	conclude	that	 local	visual	135	

cues	both	quantitatively	and	qualitatively	increase	spatial	coding	resolution.	136	

	137	

Virtual	3D	objects	improve	spatial	resolution	locally	138	

We	then	wondered	whether	3D	objects	could	influence	spatial	representation	locally	139	

around	 the	 objects.	 To	 address	 this	 question	 we	 focused	 our	 analysis	 on	 recordings	140	

performed	in	the	OT.	We	first	noticed	that	the	distribution	of	place	fields	was	non-uniform	141	

on	the	 track	 (P	=	0.001,	 test	of	non-uniformity).	To	quantify	more	precisely	 this	effect,	we	142	

divided	 the	 linear	 track	 in	 Objects	 Zones	 (OZ)	 and	No	Objects	 Zones	 (ØZ),	 depending	 if	 a	143	

given	track	zone	contained	an	object	or	not,	respectively	(Fig.	2A,	right).	The	density	of	place	144	

fields	was	significantly	higher	in	OZ	(OZ:	8.80	±	1.09%	/10	cm,	n	=	12	spatial	bins	of	10	cm,	6	145	

in	each	direction;	ØZ:	3.17	±	0.70%	/10	cm,	n	=	20	spatial	bins	of	10	cm,	10	in	each	direction;	146	

P	 <	10-4	two-tailed	unpaired	 t-test;	 Fig.	 2B	and	D).	 Furthermore,	 in	 the	maze	with	objects,	147	

place	fields	were	significantly	smaller	in	OZ	(OZ:	38.4	±	1.46	cm,	n	=	50	fields;	ØZ:	51.6	±	2.62	148	

cm,	 n	 =	 45	 fields;	 P	 =	 0.00020,	Wilcoxon	 rank	 sum	 test;	 Fig.	 2E).	 Accordingly,	 place	 field	149	

dispersion	was	also	significantly	reduced	in	OZ	(OZ:	7.15	±	0.59	cm,	n	=	87	fields;	ØZ:	10.0	±	150	

0.99	cm,	n	=	49	fields,	P	=	0.011,	Wilcoxon	rank	sum	test).	Finally,	a	local	stability	index	(see	151	

Material	and	Methods	section)	was	significantly	increased	in	OZ	(OZ:	0.56	±	0.02,	n	=	60	bins	152	
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Figure 2: Virtual 3D objects improve spatial resolution locally
 
A. Color-coded mean firing rate maps of all place fields recorded in the maze without objects (left) or with objects 
(right). The color codes for the intensity of the bin’s mean firing rate normalized on the maximal mean firing rate 
(peak rate) in the recording session. The place cells are ordered according to the position of their peak rate in the 
track (reward zones excluded). Bottom: The tracks were divided into Objects Zones (OZ, in red on the x-axis) 
around the objects and No Object Zones (ØZ, in grey on the x-axis) deprived of objects. Red dotted lines depicts 
the boundaries of the OZ in the track with objects. B. Percentage of On-Track place fields at each spatial bin (10 
cm) in the maze with (orange line) and without objects (blue line). C. Mean local stability index (solid lines) ± SEM 
(shaded bands) for place cells with On-Track fields at each spatial bin in the track with (orange) or without (blue) 
objects. D-F. Box plots depicting the mean percentage of place fields per spatial bin (D; P < 10-4, Wilcoxon rank 
sum test), the place field width (E; P = 0.00020, Wilcoxon rank sum test) and the local stability index (F; P < 10-4, 
Wilcoxon rank sum test) in OZ and ØZ in the maze with objects. 
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of	2	cm,	30	in	each	direction;	ØZ:	0.44	±	0.01,	n	=	100	bins	of	2	cm,	50	in	each	direction;	P	<	153	

10-4,	Wilcoxon	rank	sum	test;	Fig.	2C	and	F).	We	conclude	that	3D	objects	can	locally	increase	154	

spatial	resolution	within	the	same	environment.		155	

Finally	we	found	no	significant	difference	in	the	out-of-field	versus	in-field	firing	ratio	156	

between	fields	located	in	OZ	and	ØZ	(OZ:	0.45	±	0.03,	n	=	87	fields;	ØZ:	0.41	±	0.03,	n	=	49	157	

fields;	P	=	0.53,	Wilcoxon	rank	sum	test)	nor	changes	in	spatial	information		(OZ:	0.36	±	0.04	158	

bit/spike;	ØZ:	0.28	±	0.04	bit/spike;	P	=	0.50,	Wilcoxon	rank	sum	test).	We	conclude	that	3D	159	

objects	can	locally	increase	spatial	resolution	by	a	local	increase	in	place	field	number,	a	local	160	

reduction	 in	 place	 field	 size	 and	 an	 increased	 local	 stability	 while	 their	 effect	 on	 spatial	161	

information	content	are	global.		162	

	163	

Virtual	3D	objects	improve	hippocampal	population	coding	accuracy	164	

The	 results	 so	 far	 suggest	 that	 objects	 can	 increase	 the	 resolution	 of	 hippocampal	 spatial	165	

representation.	 To	 verify	 this	we	next	performed	position-decoding	analysis	 (Brown	et	 al.,	166	

1998;	Pfeiffer	and	Foster,	2013;	Zhang	et	al.,	1998)	(Fig.	3A).	We	used	the	spike	trains	from	167	

all	 the	 pyramidal	 cells	 recorded	 on	 the	 track	 (i.e.,	 both	 the	 spatially	modulated	 and	 non-168	

spatially	 modulated	 cells)	 and	 compared	 decoded	 positions	 with	 actual	 positions	 of	 the	169	

animal	 in	 the	 virtual	 linear	 tracks.	 Overall,	 the	 effect	 of	 objects	 on	 hippocampal	 spatial	170	

coding	was	obvious	because	the	decoding	error	across	trials	was	nearly	two	fold	larger	in	the	171	

track	without	objects	compared	to	the	track	with	objects	(ØT:	46.3	±	0.05	cm,	n	=	180	trials;	172	

OT:	 27.6	 ±	 0.12	 cm,	 n	 =	 129	 trials;	 P	 <	 10-23,	 Wilcoxon	 rank	 sum	 test;	 Fig.	 3A	 and	 B).	173	

Accordingly,	 the	decoding	accuracy	(van	der	Meer	et	al.,	2010)	was	three	fold	 lower	 in	the	174	

empty	track	compared	to	the	track	with	objects	(ØT:	0.017	±	2.8	X	10-5,	n	=	180	trials;	OT:	175	

0.053	±	2.06	x	10-4,	n	=	129	trials;	chance	level	0.01;	P	<	10-41,	two-tailed	unpaired	t-test;	Fig.	176	

3A	and	C).	In	both	cases,	downsampling	was	performed	to	equalize	the	number	of	cells	used	177	

for	decoding	between	the	two	conditions	(20	active	cells).	These	effects	were	independent	178	

of	 the	 decoding	 method	 used	 because	 similar	 results	 were	 observed	 using	 a	 Firing	 Rate	179	

Vector	 (FRV)	 method	 (Middleton	 and	 McHugh,	 2016;	 Wilson	 and	 McNaughton,	 1993).	180	

Correlation	values	were	lower	in	the	empty	track	(ØT:	0.63	±	0.008,	n	=	180	trials;	OT:	0.74	±	181	

0.01,	n	=	129	trials;	P	<	10-17,	Wilcoxon	rank	sum	test)	and	decoding	errors	were	higher	(ØT:	182	

48.4	±	0.67	cm,	n	=	180	trials;	OT:	33.0	±	1.81	cm,	n	=	129	trials;	P	<	10-12,	Wilcoxon	rank	sum	183	

test).	 Because	 Bayesian	 decoding	 was	 performed	 using	 a	 drop	 cell	 approach	 we	 could	184	
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Figure 3: Virtual 3D objects improve hippocampal population coding accuracy

A. Left: Color-coded distribution of the animal position’s probability in the virtual track (the reward zones are 
excluded) computed using a Bayesian decoder (see Material and Methods) at each time window (500 ms) 
illustrated during 4 trials in the maze without (top) and with (bottom) objects. Spike trains of active cells were 
used to compute the animal position’s probability. For visualization purpose, position probability is norma-
lized by its maximum at each time bin. The real position is indicated with a solid grey line. Right: Confusion 
matrix between the real (x-axis) and the decoded position (y-axis) for all recording sessions performed on the 
track without objects (top) or with objects (bottom). B. Box plots depicting the Bayesian decoding error (BD 
error) in the maze with and without  objects. The BD error was significantly higher in the maze deprived of 
objects (P < 10-23, Wilcoxon rank sum test). C. Box plots depicting the Bayesian decoding accuracy (BD accura-
cy) in the maze with and without objects. The BD accuracy was significantly higher in the maze with objects (P 
< 10-41, two-tailed unpaired t-test). D. Mean BD accuracy (solid lines) ± SEM (shaded bands) as a function of a 
subset of active cells in the maze with and without objects. E. Mean BD accuracy (solid lines) ± SEM (shaded 
bands) at each position in the maze with and without objects. The track was divided in two zones: Objects 
Zone (OZ, in red on the x axis) around the objects and No Object Zone (ØZ, in grey on the x axis) deprived of 
objects. Note that the decoding accuracy was specifically improved in OZ in comparison to ØZ in the maze 
with objects (P < 10-6, Wilcoxon rank sum test). 
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measure	 decoding	 accuracy	 for	 different	 sample	 sizes	 of	 active	 cells	(van	 der	Meer	 et	 al.,	185	

2010)	 (Fig.	 3D).	Decoding	 accuracy	was	 positively	 correlated	with	 sample	 size	 in	 the	 track	186	

with	objects	but	not	in	the	track	without	objects	(Fig.	3D).	Importantly,	in	the	track	without	187	

objects,	 the	 decoding	 accuracy	 never	 reached	 values	 observed	 for	 the	 track	with	 objects,	188	

even	when	using	a	larger	set	of	cells	(up	to	45).	To	see	if	objects	could	locally	increase	spatial	189	

decoding	 accuracy	we	 compared	 decoding	 accuracy	 between	OZ	 and	ØZ.	While	 decoding	190	

accuracy	was	uniformly	low	in	the	track	without	objects	(OZ:	0.019	±	0.0014,	n	=	30	spatial	191	

bins	of	2	cm;	ØZ:	0.016	±	9.25	x	10-4,	n	=	50	spatial	bins	of	2	cm;	P	=	0.17,	Wilcoxon	rank	sum	192	

test;	Fig.	3E),	it	was	increased	in	every	part	of	the	track	with	objects	but	significantly	more	in	193	

OZ	compared	to	ØZ	(OZ:	0.061	±	0.002,	n	=	30	spatial	bins	of	2	cm;	ØZ:	0.043	±	0.002,	n	=	50	194	

spatial	bins	of	2	cm;	P	<	10-6,	Wilcoxon	rank	sum	test;	Fig.	3E).	We	concluded	that	local	visual	195	

cues	can	globally	and	locally	improve	spatial	coding	accuracy	at	the	population	level.		196	

	197	

Effects	of	online	object	manipulation	198	

Place	 cells	usually	 appear	 instantaneously	upon	exploration	of	 a	new	environment	 in	area	199	

CA1	(Wilson	and	McNaughton,	1993).	To	see	 if	similar	dynamics	could	be	observed	for	the	200	

effects	of	virtual	objects	on	spatial	resolution	we	manipulated	objects	online	while	recording	201	

the	 same	 ensemble	 of	 cells	 in	 area	 CA1.	 For	 mice	 trained	 in	 an	 empty	 track,	 we	202	

instantaneously	added	the	three	objects	(which	were	thus	new	to	the	mice)	after	20	min	of	203	

recordings.	 Conversely,	 for	 mice	 trained	 in	 the	 track	 with	 objects	 we	 instantaneously	204	

removed	the	three	objects.	Objects	manipulation	had	no	effect	on	the	proportion	of	active	205	

cells	(Fig.	4B)	but	a	strong	impact	on	the	proportion	of	place	cells	(Fig.	4A	and	C).	For	mice	206	

trained	in	an	empty	track,	adding	objects	instantaneously	increased	the	proportion	of	place	207	

cells	(from	21.6	±	5.3%	to	75.0	±	4.0%;	n	=	5	sessions	in	3	mice;	P	<	10-5,	two-tailed	paired	t-208	

test;	Fig.	4A	and	C).	Thus,	a	large	proportion	of	cells	initially	silent	or	active	but	non-spatially	209	

modulated	 in	 the	 familiar	 empty	 track	 became	 spatially	 modulated	 (36.3%).	 Some	 cells	210	

initially	 spatially	modulated	 remained	place	cells	 (7.4%)	while	others	became	non-spatially	211	

modulated	or	silent	(2.4%).	Most	of	the	new	place	cells	had	on-track	fields	(81.3%;	Fig.	4H).	212	

Adding	objects	also	increased	place	cells’	spatial	information	(P	=	0.001,	Wilcoxon	rank	sum	213	

test;	Fig.	4E)	and	stability	(P	<	10-5,	Wilcoxon	rank	sum	test;	Fig.	4G).	The	increase	in	stability	214	

was	specifically	observed	in	OZ	(Fig.	4I;	ØTfam	vs	OTnew	for	OZ:		P	<	10-6,	Wilcoxon	rank	sum	215	

test;	 for	 ØZ:	 P	 =	 0.15,	 Wilcoxon	 rank	 sum	 test).	 Place	 fields’	 out/in	 field	 firing	 ratio	 and	216	
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Figure 4: Effects of online object manipulation

A. Mosaic plots representing the cells classified as place cells (darker orange and blue) or non-coding cells (i.e. 
silent or active non-coding, lighter orange and blue) in the familiar and the new mazes. B-G. Box plots comparing 
familiar (empty box) and new mazes (filled box) conditions. Two pairs of box plots are illustrated; Left: comparison 
between the familiar maze without objects (blue, ØTfam) and the new maze with objects (orange, OTnew). Right: 
comparison between the familiar maze with objects (orange, OTfam) and the new maze without objects (blue, 
ØTnew). A gradient color arrow shows the way of the transition. Plots show the percentage of active cells (B; ØTfam 
vs OTnew: P = 0.66; OTfam vs ØTnew: P = 0.14, two-tailed paired t-test), the percentage of place cells (C; P < 10-5 and P 
= 0.04, respectively, two-tailed paired t-test), the Out/In field firing rate (D; P = 0.06 and P = 0.047, respectively, 
Wilcoxon rank sum test), the spatial information (SI; E; P = 0.001 and P = 0.015, respectively, Wilcoxon rank sum 
test), the place field dispersion (F; P < 0.0004 and P = 0.0009, respectively, Wilcoxon rank sum test) and the stabi-
lity index (G; P < 10-5 and P = 0.0002, respectively, Wilcoxon rank sum test). H. Color-coded mean firing rate maps 
of place fields recorded in the familiar and new mazes. The color codes for the intensity of the firing rate norma-
lized by the peak rate. The place fields are ordered according to the position of their peak rate in each track (the 
reward zones are excluded). The tracks were divided into Objects Zones (OZ, in red on the x-axis) around the 
objects and No Object Zones (ØZ, in grey on the x-axis) deprived of objects. Red dotted lines depicts the bounda-
ries of the OZ in the track with objects. I. Mean local stability index (solid orange or blue lines) ± SEM (blue or 
orange shaded areas) at each spatial bin in the familiar and new mazes (top: from ØTfam to OTnew; bottom: from 
OTfam to ØTnew). J. Map similarity (see Material and Methods) for 10 trials before and 10 trials after the experimental 
manipulation (indicated by 0) for ØTfam to OTnew (top) and for OTfam to ØTnew condition (bottom).
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dispersion	were	instantaneously	decreased	(P	<	0.0004	and	P	=	0.06,	respectively,	Wilcoxon	217	

rank	sum	test;	Fig.	4D	and	F).	On	the	other	hand,	removing	objects	decreased	the	proportion	218	

of	place	cells	 (from	73.1	±	6.62%	to	39.4	±	16.4%,	n	=	5	sessions	 in	2	mice;	P	=	0.04,	 two-219	

tailed	paired	t-test;	Fig.	4	A	and	C).	The	spatial	information	and	stability	were	decreased	by	220	

this	manipulation	 (P	 =	0.015	and	P	 =	0.0002,	 respectively,	Wilcoxon	 rank	 sum	test;	 Fig.	4E	221	

and	G)	while	place	 field	out/in	 field	 firing	 ratio	and	dispersion	were	 increased	 (P	 =	0.0009	222	

and	P	=	0.047,	 respectively,	Wilcoxon	rank	sum	test;	Fig.	4D	and	F).	The	effect	on	stability	223	

was	global	rather	than	local	(Fig.	4I;	OZ:	P	<	10-10,	two-tailed	unpaired	t-test;	ØZ:	P	<	10-13,	224	

Wilcoxon	 rank	 sum	test).	We	conclude	 that	 the	effects	of	virtual	3D	objects	on	place	cells	225	

coding	 observed	 between	 familiar	 tracks	 can	 be	 reproduced	 with	 instantaneous	 objects	226	

manipulation.		227	

To	get	 a	better	 idea	of	 the	dynamic	of	 these	 changes	we	 correlated	 the	 firing	 rate	228	

maps	 of	 each	 back	 and	 forth	 trial	 with	 the	 corresponding	 average	 firing	 rate	map	 in	 the	229	

condition	with	objects	 (the	most	 stable	 condition)	 for	10	 trials	before	 (t-1	 to	 t-10)	 and	10	230	

trials	after	(t+1	to	t+10)	the	manipulation	(Fig.	4J).	When	objects	were	added	in	the	empty	231	

track,	map	similarity	was	significantly	higher	for	the	second	trial	in	the	new	condition	(t-1	vs	232	

t+1,	 n	 =	 598	 pyramidal	 cells;	P	 =	 0.058,	 Kruskall-Wallis	 one-way	 test;	 t+1	 vs	 t+2,	 n	 =	 614	233	

pyramidal	 cells;	P	 =	 0.029,	 Kruskall-Wallis	 one-way	 test)	 and	 then	 stayed	 higher	 from	 this	234	

second	trial	on	(t+2	vs	t+3,	n	=	608	pyramidal	cells;	P	=	0.99,	Kruskall-Wallis	one-way	test).	235	

Conversely,	when	objects	were	removed	from	the	familiar	track	with	objects,	map	similarity	236	

dropped	already	for	the	first	trial	in	the	new	condition	(t-1	vs	t+1,	n	=	380	pyramidal	cells;	P	<	237	

10-6,	Kruskall-Wallis	one-way	 test)	and	stayed	 lower	 from	this	 first	 trial	on	 (t+1	vs	 t+2,	n	=	238	

380	pyramidal	cells;	P	=	1,	Kruskall-Wallis	one-way	test).	Thus,	the	hippocampus	can	rapidly	239	

adapt	its	spatial	coding	resolution	to	local	visual	cues	available	in	the	environment.	240	

	241	

Effects	of	virtual	3D	objects	in	a	visually	enriched	environment	242	

We	 next	 wondered	 whether	 the	 hippocampal	 mapping	 resolution	 was	 maximal	 in	 the	243	

presence	 of	 objects	 or	 whether	 it	 could	 be	 further	 increased	 by	 visually	 enriching	 the	244	

environment.	 We	 thus	 analyzed	 hippocampal	 place	 cells’	 coding	 in	 another	 environment	245	

containing	 the	 original	 3D	 objects	 but	 enriched	 in	 visual	 cues	 such	 as	 wall	 patterns	 in	246	

different	positions	along	the	track	and	high	3D	columns	outside	the	track	(EOT,	n	=	3	mice;	247	

Fig.	 5A).	 The	 percentage	 of	 active	 cells	 was	 not	 increased	 by	 visually	 enriching	 the	248	
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Figure 5: Effects of virtual 3D objects in a visually enriched environment

A. Schema (top) and picture (bottom) representing the original maze with objects (left) and a visually enriched 
maze with objects (right). B. Color-coded mean firing rate maps for all place fields recorded in the original maze 
with objects (orange, left) and on the visually rich maze with objects (yellow, right). The color codes for the inten-
sity of the firing rate normalized by the peak rate. The place fields are ordered according to the position of their 
peak rate in each track (the reward zones are excluded). The tracks were divided into Objects Zones (OZ, in red 
on the x-axis) around the objects and No Object Zones (ØZ, in grey on the x-axis) deprived of objects. Red dotted 
lines depicts the boundaries of the OZ. C-H. Box plots representing in the original (orange) and visually rich 
(yellow) maze with objects the percentage of active cells (C; P = 0.77, two-tailed unpaired t-test), the percentage 
of place cells (D; P = 0.20, two-tailed unpaired t-test), the out/in field rate (E; P = 0.57, Wilcoxon rank sum test), 
the spatial information (SI; F; P = 0.67, Wilcoxon rank sum test), the place field dispersion (G; P = 0.06, Wilcoxon 
rank sum test) and the stability index (H; P = 0.95, Wilcoxon rank sum test). I. Mean local stability index (solid 
orange or yellow lines) ± SEM (orange or yellow shaded bands) at each position’s bin in the original (orange) and 
visually rich (yellow) mazes. J. Mean BD accuracy (solid lines) ± SEM (shaded bands) at each spatial bin in the 
original maze with objects (orange) or in the visually rich maze with objects (yellow).
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environment	(OT,	n	=	5	sessions	in	2	mice;	EOT,	n	=	5	sessions	in	3	mice;	P	=	0.77,	two-tailed	249	

unpaired	t-test)	nor	was	the	percentage	of	place	cells	(OT,	n	=	5	sessions	in	2	mice;	EOT,	n	=	250	

5	sessions	 in	3	mice;	P	=	0.20,	 two-tailed	unpaired	 t-test;	Fig.	5B-D).	However,	place	 fields	251	

were	uniformly	distributed	along	 the	 track	 in	 the	visually	 rich	environment	 (n	=	16	 spatial	252	

bins	of	10	cm;	P	=	0.23,	test	for	non-uniformity),	thus	not	clustered	around	objects	as	in	the	253	

visually	poor	environment	(Fig.	5B).	This	suggests	that	local	visual	cues	are	important	to	set	254	

place	field	position	(Renaudineau	et	al.,	2007).	However,	all	other	attributes	of	place	fields	255	

were	not	significantly	different	between	the	two	environments	(OT,	n	=	103	place	cells;	EOT,	256	

n	=	132	place	cells;	Out-field/In-field	firing	rates:	P	=	0.57;	Spatial	info:	P	=	0.67;	Dispersion:	P	257	

=	0.06;	Stability:	P	=	0.95;	Wilcoxon	rank	sum	test	 for	all;	Fig.	5E-H).	When	 looking	at	 local	258	

stability	of	firing	rates,	we	still	observed	a	significant	effect	of	objects	in	the	visually	enriched	259	

environment	in	OZ	versus	ØZ	(OZ,	n	=	60	spatial	bins	of	2	cm;	ØZ:	n	=	100	spatial	bins	of	2	260	

cm;	P	=	0.014,	Wilcoxon	rank	sum	test;	Fig.	5I).	Interestingly,	positions	near	objects	were	also	261	

decoded	with	a	better	accuracy	using	a	Bayesian	decoder	than	positions	further	away	in	the	262	

visually	 enriched	 environment	 (OZ:	 0.08	 ±	 0.007,	 n	 =	 30	 spatial	 bins	 of	 2	 cm;	ØZ:	 0.059	 ±	263	

0.002,	n	=	50	 spatial	 bins	of	 2	 cm;	P	=	0.002,	Wilcoxon	 rank	 sum	 test;	 Fig.	 5J).	Altogether	264	

these	results	suggest	that	in	the	presence	of	local	visual	cues,	hippocampal	spatial	coding	is	265	

not	further	improved	by	visually	enriching	the	environment.	However,	place	fields	locations	266	

are	influenced	by	additional	visual	cues	along	the	track.	Interestingly,	despite	a	homogenous	267	

distribution	 of	 place	 field	 locations,	 3D	 objects	 could	 still	 locally	 influence	 hippocampal	268	

population	decoding	accuracy.	269	

	270	

Virtual	3D	objects	improve	temporal	coding	271	

The	results	so	far	suggest	that	local	3D	objects	can	increase	spatial	coding	resolution	when	272	

considering	the	spatial	firing	rate	code.	Place	cells	however	do	not	only	increase	their	firing	273	

rate	 inside	 the	place	 field	but	also	 tend	 to	 fire	at	progressively	earlier	phases	of	 the	 theta	274	

oscillation	 as	 an	 animal	 moves	 through	 the	 place	 field	 (O’Keefe	 and	 Recce,	 1993).	 This	275	

phenomenon,	 called	 theta	 phase	 precession,	 is	 thought	 to	 further	 increase	 spatial	 coding	276	

resolution	because	different	 locations	within	the	place	 field	that	are	difficult	 to	distinguish	277	

based	on	firing	rate	alone	can	be	accurately	separated	when	phase	is	taken	into	account.	In	278	

the	temporal	domain,	increased	spatial	resolution	would	thus	correspond	to	increased	slope	279	

of	the	phase	versus	position	relationship.	280	
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Figure 6: Virtual 3D objects improve temporal coding

A. Left: Mean firing rate maps of representative CA1 place cells with place fields highlighted by a bold line (left) 
recorded in the maze without objects (top, only spatially stable trials see Material and Methods section) and 
with objects (bottom). Right: spikes phase (radian) versus position in the corresponding place fields. B-C. Distri-
bution of significant phase position correlation (B) and slopes (C) in the condition without objects (top; correla-
tion: P = 0.42; slopes: P = 0.4, one-sample sign-test) and with objects (bottom; correlation: P < 10-11; slopes: P < 
10-11, one-sample sign-test). The median of the distribution is indicated by a bold line and 0 by a dotted line. D. 
Color-coded cross-correlogram between the power spectra of neuronal spikes and LFP for each theta-modu-
lated cell recorded on the maze without (bottom left, blue) and with (bottom right, orange) objects. Black dots 
indicate the maximum of each cross-correlation. Each cross-correlation is normalized by its maximum. Top: 
Distribution of the maximum cross-correlations used to quantify the frequency shift for all the cells. E-F. Instan-
taneous LFP theta frequency (E) and amplitude (F) as a function of the animal’s speed in the track with or 
without objects. Left: Mean theta frequency (E) or amplitude (F) across all recording sessions each 5 cm/s bin.  
Right: Box plots of the correlation between theta frequency (E; P = 0.01, two-tailed unpaired t-test) or ampli-
tude (F; P = 0.9, two-tailed unpaired t-test) vs speed for individual sessions.
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We	 first	 looked	 for	 differences	 in	 the	 theta	 oscillation	 recorded	 in	 the	 Local	 Field	281	

Potential	 (LFP)	 between	 the	 two	 conditions.	 The	 mean	 frequency	 of	 the	 field	 theta	282	

oscillation	 was	 not	 significantly	 different	 when	 mice	 were	 running	 in	 the	 track	 with	 or	283	

without	 objects	 (ØT:	 6.79	 ±	 0.12	 Hz,	 n	 =	 9	 sessions	 in	 3	mice;	 OT:	 6.77	 ±	 0.10	 Hz,	 n	 =	 5	284	

sessions	in	2	mice;	P	=	0.28,	Wilcoxon	rank	sum	test)	but	was	lower	than	that	reported	for	285	

mice	 navigating	 in	 real	 linear	 tracks	 (Middleton	 and	McHugh,	 2016),	 as	 observed	 for	 rats	286	

navigating	virtual	linear	tracks	(Ravassard	et	al.,	2013).	The	power	of	theta	oscillation	(theta	287	

index	see	Material	and	Methods	section)	was	also	not	significantly	different	(ØT:	3.22	±	0.23,	288	

n	=	9	sessions	 in	3	mice;	OT:	3.59	±	0.22	Hz,	n	=	5	sessions	 in	2	mice;	P	=	0.28,	 two-tailed	289	

unpaired	t-test).	Theta	frequency	was	not	modulated	by	running	speed	of	the	animal	in	ØT	(r	290	

=	0.02	±	0.02,	n	=	9	sessions	in	3	mice;	Fig.	6E)	as	previously	observed	in	virtual	linear	tracks	291	

when	 only	 distal	 cues	 are	 present	 (Ravassard	 et	 al.,	 2013).	 This	modulation	was	 however	292	

significant	in	OT	(r	=	0.14	±	0.03,	n	=	5	sessions	in	2	mice;	P	=	0.01,	two-tailed	unpaired	t-test;	293	

Fig.	 6E).	 In	 contrast,	 theta	 amplitude	 was	 similarly	 modulated	 by	 running	 speed	 in	 both	294	

conditions	(ØT:	r	=	0.06	±	0.03,	n	=	9	sessions	in	3	mice;	OT:	r	=	0.1	±	0.04,	n	=	5	sessions	in	2	295	

mice;	P	=	0.9,	two-tailed	unpaired	t-test;	Fig.	6F).	296	

We	then	analyzed	place	cells’	theta	phase	precession.	To	compensate	for	decreased	297	

spatial	stability	 in	the	ØT	conditions	we	took	 into	account	only	trials	with	good	correlation	298	

with	 the	average	place	 fields	 (Spatially	 Stable	Trials	or	 SST)	 for	place	 cells	 recorded	 in	 the	299	

empty	 track	(Schlesiger	 et	 al.,	 2015),	 but	 included	 all	 trials	 for	 place	 cells	 recorded	 in	 the	300	

track	with	objects.	The	stability	index	of	SST	fields	in	ØT	was	not	significantly	different	from	301	

the	 stability	 index	 of	 all	 fields	 in	 OT	 (ØT,	 n	 =	 62	 SST	 fields;	 OT,	 n	 =	 198	 fields;	 P	 =	 0.8,	302	

Wilcoxon	 rank	 sum	 test).	 The	percentage	of	 fields	with	 significant	 (P	 <	 0.05)	 and	negative	303	

correlation	between	phase	 and	position	 (i.e.,	 precessing	 fields)	was	 high	 in	 the	 track	with	304	

objects	 (41.9%),	 comparable	 to	 that	 observed	 in	 real	 linear	 tracks	 in	mice	 but	 low	 in	 the	305	

empty	 track	 (8%;	 P	 <	 10-4	 compared	 to	 OT,	 Chi-Square	 test).	 Accordingly,	 the	 correlation	306	

between	phase	and	position	was	significantly	different	from	zero	for	place	cells	recorded	in	307	

the	track	with	objects	(r	=	-0.18	±	0.018,	n	=	99	fields;	P	<	10-11,	sign-test;	Fig.	6A	and	B)	but	308	

not	for	those	recorded	in	the	track	without	objects	(r	=	0.03	±	0.026,	n	=	14	fields;	P	=	0.42,	309	

sign-test;	Fig.	6A	and	B).	Moreover,	phase	precession	slopes	(calculated	on	normalized	place	310	

field	 sizes)	were	 negative	 and	 significantly	 different	 from	0	 for	 cells	 recorded	 in	 the	 track	311	
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with	objects	(-2.43	±	0.23	rad/U,	n	=	99	fields;	P	<	10-11,	sign-test;	Fig.	6C)	but	not	in	the	track	312	

without	objects	(1.18±	0.50	rad/U,	n	=	14	fields;	P	=	0.4,	sign-test;	Fig.	6C).		313	

In	the	track	without	objects,	the	decrease	 in	phase-position	correlation	could	result	314	

from	 the	 higher	 inter-trial	 spatial	 dispersion	which	 could	 lead	 to	 spikes	 at	 different	 theta	315	

phases	 for	 identical	positions	(Mizuseki	 et	 al.,	 2009;	 Schlesiger	et	 al.,	 2015).	 To	assess	 this	316	

possibility,	 we	 performed	 phase-precession	 analysis	 on	 single-trial-detected	 fields	 and	317	

averaged	 the	slopes	of	 individual	passes	(Schlesiger	et	al.,	2015;	Schmidt	et	al.,	2009).	The	318	

correlation	was	still	negative	and	significantly	different	from	0	in	OT	(r	=	-0.19	±	0.29,	n	=	198	319	

single-trial	fields;	P	<	10-4,	one-sample	t-test)	but	not	in	ØT	(r	=	-0.004	±	0.03,	n	=	62	single-320	

trial	 fields;	 P	 =	 0.92,	 one	 sample	 t-test).	 Similarly,	 the	 slope	 of	 the	 regression	 line	 was	321	

negative	 and	 significantly	 different	 from	 0	 in	 OT	 (-2.27	 ±	 0.56	 rad/U,	 n	 =	 198	 single-trial	322	

fields;	P	=	0.004,	sign-test)	but	not	in	ØT	(0.79	±	0.56,	n	=	62	single-trial	fields;	P	=	0.73,	sign-323	

test).			324	

Because	a	low	percentage	of	active	cells	were	place	cells	in	the	track	without	objects,	325	

we	performed	an	additional	analysis	that	is	independent	of	place	field	detection.	It	exploits	326	

the	fact	that	a	phase	precessing	cells	emit	theta	paced	spikes	at	a	frequency	slightly	faster	327	

than	 the	 concurrent	 LFP	 theta	oscillation	(O’Keefe	and	Recce,	1993).	We	performed	cross-328	

correlation	between	 the	power	 spectra	of	neuronal	 spikes	and	LFP	 for	all	 active	 cells	with	329	

significant	theta	modulation	of	spiking	activity	(ØT:	117/342	cells	=	34.2%;	OT:	78/142	cells	=	330	

54.9%;	P	<10-4,	Chi-square	test)	and	compared	the	frequency	shift	(>0)	between	spiking	and	331	

LFP	 theta	oscillations	between	 the	 two	 conditions	(Geisler	 et	 al.,	 2007)	 (Fig.	 6D).	 The	 shift	332	

was	significantly	higher	in	the	OT	(0.72	±	0.05	Hz,	n	=	78	active	cells.	Fig.	6D)	versus	ØT	(0.26	333	

±	0.01	Hz,	n	=	117	active	cells;	P	<	10-17,	Wilcoxon	rank	sum	test;	Fig.	6D).	Altogether,	these	334	

results	suggest	that	phase	precession	 is	 increased	in	the	presence	of	 intramaze	 local	visual	335	

cues.	 	336	
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Discussion	337	

Spatial	 resolution	 can	 be	 improved	 by	 pooling	 information	 across	 neurons	 (Wilson	 and	338	

McNaughton,	1993).	We	found	that	local	visual	cues	could	dramatically	increase	the	number	339	

of	place	cells	among	active	cells	(by	a	3	fold	factor).	The	mechanisms	of	place	cell	activation	340	

are	not	fully	understood.	Using	sensory-based	models	of	place	cells	activation	(Barry	et	al.,	341	

2006;	Hartley	et	al.,	2000;	Sheynikhovich	et	al.,	2009;	Strösslin	et	al.,	2005)	one	can	predict	342	

that	 increasing	 the	 quantity/quality	 of	 sensory	 cues	 in	 an	 environment	 will	 increase	 the	343	

number	of	place	cells	coding	that	environment	(Geva-Sagiv	et	al.,	2015).	However,	studies	so	344	

far	 have	 revealed	 an	homogeneous	 allocation	of	 place	 fields	 in	 space	(Muller	 et	 al.,	 1987;	345	

Rich	et	al.,	2014)	in	a	given	environment	and	examples	of	over	representations	were	difficult	346	

to	 disentangle	 from	 the	 coding	 of	 non	 spatial	 information	 such	 as	 the	 emotional	 value	347	

(Danielson	et	al.,	2016;	Dupret	et	al.,	2010;	Hollup	et	al.,	2001;	O’Keefe	and	Conway,	1978;	348	

Sato	et	al.,	2018)	or	specific	distal	sensory	cues	(Hetherington	and	Shapiro,	1997;	Sato	et	al.,	349	

2018;	Wiener	et	al.,	1989)	associated	with	a	particular	location.	Previous	studies	using	local	350	

enrichment	with	multimodal	sensory	cues	yield	contrasting	results.	One	study	recording	 in	351	

the	dorsal	hippocampus	in	rats	navigating	between	cue	rich	and	cue	poor	parts	of	the	same	352	

track	 reported	no	effect	on	 the	number	of	place	cells	activated	or	on	 the	density	of	place	353	

fields.	Population	vector	analysis	nevertheless	revealed	increased	disambiguation	of	nearby	354	

locations	 in	 the	cue	rich	condition	suggesting	 increased	spatial	 resolution	(Battaglia,	2004).	355	

Others	 studies	 found	 no	 overall	 increase	 of	 place	 cells	 proportion	 in	 2D	 environment	356	

containing	objects	nor	a	specific	bias	for	place	cells	to	fire	near	the	objects	(Deshmukh	and	357	

Knierim,	2013;	Renaudineau	et	al.,	2007).	One	possibility	to	explain	the	lack	of	recruitment	358	

of	 additional	 cells	 in	 these	 studies	 could	 be	 a	 high	 recruitment	 rate	 of	 the	 dorsal	359	

hippocampus	even	in	the	“cue	poor”	condition	due	to	the	availability	of	distal	visual	cues	or	360	

the	presence	of	uncontrolled	 local	 cues	(Ravassard	et	al.,	 2013).	Another	 study	 tested	 this	361	

hypothesis	by	recording	in	the	intermediate/distal	hippocampus,	which	has	a	 lower	rate	of	362	

spatially	 modulated	 cells	 and	 is	 more	 heavily	 innervated	 by	 the	 lateral	 entorhinal	 cortex	363	

where	 object	 responsive	 cells	 have	 been	 recorded	(Deshmukh	 and	 Knierim,	 2011).	 In	 this	364	

study,	an	increase	number	of	place	cells	were	recorded	when	real	3D	objects	were	present	365	

on	 the	 track	 compared	 to	 an	 empty	 track	 (Burke	 et	 al.,	 2011).	 However,	 the	 effect	 was	366	

smaller	than	the	one	reported	here	and	the	number	of	CA1	pyramidal	cells	activated	at	any	367	
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given	 spatial	 location	was	 not	 significantly	 different	 between	 the	 tracks	with	 and	without	368	

objects.	 In	 our	 study,	 however,	 the	 number	 of	 CA1	 pyramidal	 cells	 activated	 at	 a	 given	369	

location	was	significantly	increased	(see	Fig.	2),	specifically	for	locations	near	objects.	370	

Newly	 activated	 place	 cells	 could	 correspond	 to	 landmark	 vector	 (LV)	 cells,	 which	371	

have	been	recorded	in	the	hippocampus	of	freely	moving	rats	(Deshmukh	and	Knierim,	2013)	372	

and	 head-fixed	 mice	 running	 on	 a	 treadmill	 (Geiller	 et	 al.,	 2017).	 These	 cells	 tend	 to	373	

discharge	 systematically	 near	 objects	 present	 in	 the	 environment	 or	 landmarks	 on	 the	374	

treadmill.	 To	 test	 this	 hypothesis	we	 specifically	 looked	 for	 LV	 cells	 in	 our	 recordings.	 On	375	

individual	 trials	 the	 presence	 of	 LV	 cells	 firing	 near	 a	 specific	 object	 was	 difficult	 to	376	

disentangle	 from	 the	 firing	of	 a	place	 cell	which	happened	 to	have	a	place	 field	near	 that	377	

object.	We	thus	used	back	and	forth	trials	to	dissociate	these	possibilities.	We	defined	object	378	

zones	for	each	individual	object	(IOZ,	which	were	enlarged	on	the	side	from	which	animals	379	

were	approaching	the	object	 to	take	 into	account	the	anticipatory	nature	of	some	LV	cells	380	

(Geiller	et	al.,	2017).	We	classified	place	cells	as	LV	cells	if	they	were	bidirectional	and	had	at	381	

least	one	place	field	in	an	IOZ	corresponding	to	the	same	object	for	back	and	forth	trials.	In	382	

the	 track	 without	 objects	 no	 LV	 cells	 were	 detected.	 In	 the	 track	 with	 objects,	 LV	383	

represented	only	6.79	%	of	all	place	cells.	Thus	a	 large	proportion	of	newly	activated	place	384	

cells	in	the	presence	of	objects	are	not	LV	cells.	The	low	number	of	LV	cells	in	our	recordings	385	

was	 comparable	 to	 that	 of	 a	 previous	 study	 with	 real	 3D	 objects	 in	 a	 2D	 environment	386	

(Deshmukh	and	Knierim,	2013)	but	lower	than	that	observed	in	a	treadmill	with	tactile	cues	387	

(Geiller	et	al.,	2017).	This	could	result	from	the	fact	that	our	 local	visual	stimuli	provided	a	388	

less	overwhelming	sensory	stimulation	than	tactile	cues	used	on	the	treadmill	(Geiller	et	al.,	389	

2017).	Nevertheless,	our	 local	visual	stimuli	could	still	substantially	 increase	the	number	of	390	

place	cells	coding	that	environment.		391	

A	 previous	 study	 specifically	 tested	 the	 role	 of	 distal	 visual	 cues	 in	 place	 cell	392	

activation	using	virtual	reality	environments	in	rats	(Ravassard	et	al.,	2013).	They	reported	a	393	

lower	number	of	active	cells	in	the	virtual	environment	and	concluded	that	distal	visual	cues	394	

alone	 are	 not	 sufficient	 to	 fully	 engage	 the	 hippocampal	 mapping	 system.	 Our	 results	395	

complement	this	study	by	showing	that	local	visual	cues	can	increase	the	number	of	spatially	396	

selective	cells.	Our	results	are	also	consistent	with	local	visual	cues	being	used	by	the	system	397	

to	 increase	qualitatively	spatial	 coding.	Spatial	 selectivity	was	 increased	 in	 the	presence	of	398	

objects	 by	 specifically	 decreasing	 out-of-field	 firing	 rate.	 A	 plausible	 mechanism	 for	 this	399	
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increased	 selectivity	 would	 be	 an	 increase	 in	 interneurons	 activity.	 Interneuron	 inhibition	400	

using	 optogenetic	 tools	 increases	 out-of-field	 firing	 thus	 reducing	 spatial	 selectivity	401	

(Grienberger	et	al.,	2017).	Inter-trial	stability	of	place	fields	was	also	specifically	increased	in	402	

the	maze	with	objects	and	a	Bayesian	decoder	performed	better	in	the	presence	of	objects.	403	

Thus	 the	 hippocampus	 is	 not	 only	 quantitatively	 but	 also	 qualitatively	 more	 engaged	 in	404	

spatial	coding	in	the	presence	of	objects.	Most	studies	in	real	environments	focused	on	the	405	

role	of	visual	cues	in	place	fields	orientation	or	location	(Knierim	and	Hamilton,	2011)	but	did	406	

not	specifically	addressed	the	influence	of	local	cues	on	place	cells’	coding	quality.	Previous	407	

work	comparing	real	and	virtual	environment	failed	to	reveal	an	effect	of	distal	visual	cues	408	

on	spatial	coding	specificity	(Ravassard	et	al.,	2013).	Several	factors	could	explain	the	specific	409	

effects	of	local	visual	cues	on	spatial	selectivity	and	stability.	First,	objects	could	constitute	a	410	

stable	reference	point	in	space	to	refine	estimation	of	the	current	subject’s	position	possibly	411	

through	 anchoring	 of	 the	 path	 integrator	 system	(McNaughton	 et	 al.,	 2006;	 Poucet	 et	 al.,	412	

2015).	Close	 to	 the	objects,	 this	effect	could	be	 further	 increased	 through	motion	parallax	413	

effect.	 Second,	objects	 could	 increase	 the	 resolution	of	visual	 cues	available	 to	 the	animal	414	

notably	compared	to	distal	cues	which.	An	increase	in	sensory	resolution	can	be	converted	415	

to	 increased	 spatial	 coding	 resolution	 according	 to	 sensory	 based	 models	 of	 place	 cell	416	

activation	(Barry	 et	 al.,	 2006;	 Hartley	 et	 al.,	 2000;	 Strösslin	 et	 al.,	 2005).	 Third,	 objects	 as	417	

salient	cues	in	the	environment	could	increase	the	attentional	state	of	the	animal	and	favor	418	

spatial	awareness.	Such	increase	in	attention	has	been	shown	to	increase	spatial	selectivity	419	

in	mice	(Kentros	et	al.,	2004)	as	well	as	sensory	coding	(McGinley	et	al.,	2015).	However,	we	420	

note	that	animals	were	not	required	to	pay	close	attention	to	objects	 locations	to	perform	421	

the	 task	 and	 task	 performance	 was	 not	 different	 between	 the	 ØT	 and	 OT	 conditions.	422	

Alternatively,	 objects	 could	 represent	 a	 source	 of	 additional	 noise	 in	 the	 system	 thus	423	

requiring	a	higher	number	of	 spatially	modulated	cells	and	 increased	spatial	 selectivity	 for	424	

efficient	 position	 coding.	 However,	 position	 decoding	was	 very	 poor	 in	 the	maze	without	425	

objects,	which	argues	against	this	possibility.		426	

The	effects	of	 local	cues	on	spatial	coding	accuracy	were	even	more	pronounced	 in	427	

the	 temporal	 domain.	 Indeed,	 in	 the	 absence	 of	 local	 cues	 theta	 phase	 precession	 was	428	

strongly	reduced	as	observed	in	rat	running	in	place	on	a	wheel	(Hirase	et	al.,	1999)	despite	429	

the	presence	of	place	 fields.	When	 local	 cues	were	 included,	however,	hippocampal	place	430	

cells	precessed	at	a	rate	comparable	to	that	observed	in	real	environments	(Middleton	and	431	
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McHugh,	 2016).	 To	 ascertain	 that	 this	 effect	 did	 not	 result	 from	 changes	 in	 place	 fields’	432	

quality,	additional	analysis	independent	of	place	fields’	detection	were	performed	(Geisler	et	433	

al.,	2007).	These	analysis	also	showed	that	in	the	presence	of	local	cues	individual	cells’	firing	434	

tended	 to	oscillate	 faster	 than	 theta	oscillation	 recorded	 in	 the	 LFP,	 a	 sign	of	 theta	phase	435	

precession	while	this	was	much	less	the	case	in	the	absence	of	local	cues.	Interestingly	theta	436	

frequency	 speed	 modulation	 was	 strongly	 attenuated	 in	 the	 absence	 of	 local	 cues	 but	437	

normal	 in	 the	 presence	 of	 local	 cues	 while	 theta	 amplitude	 vs	 speed	 modulation	 was	438	

equivalent	 in	 both	 conditions.	 A	 similar	 absence	 of	 theta	 frequency	 vs	 speed	modulation	439	

(with	 intact	 theta	 amplitude	 vs	 speed	modulation)	was	 observed	 in	 rats	 navigating	 virtual	440	

reality	environments	in	the	absence	of	local	visual	cues	(Ravassard	et	al.,	2013).	However,	in	441	

that	case	theta	phase	precession	was	unaffected.	The	absence	of	theta	phase	precession	in	442	

mice	in	our	recordings	could	reflect	increased	dependence	on	local	cues	for	temporal	coding	443	

in	mice	compared	to	rats	(Hok	et	al.,	2016;	Kentros	et	al.,	2004).		444	

Altogether,	 our	 results	 show	 that	 coding	 in	 the	 absence	 of	 local	 visual	 cues	445	

corresponds	 to	 coding	at	 low	 spatial	 resolution	with	a	 low	number	of	 spatially	modulated	446	

cells,	 larger	 firing	 fields,	 decreased	 spatial	 selectivity	 and	 stability	 and	 poor	 theta	 phase	447	

precession.	 However,	 local	 visual	 cues	 increase	 spatial	 coding	 resolution	 both	 locally	 and	448	

globally.	 The	use	of	 virtual	 reality	 raises	 a	 growing	 interest	 in	 the	 field	of	neuroscience	 to	449	

study	spatial	cognition	in	rodents	but	also	in	non-human	and	human	primates	(Epstein	et	al.,	450	

2017).	Our	results	suggest	that	enriching	these	environments	with	local	visual	cue	could	help	451	

comparing	 spatial	 coding	 in	 real	 and	 virtual	 environments.	What	would	 be	 the	 benefit	 of	452	

locally	 increasing	 spatial	 resolution?	 In	 the	wild,	 rodents	 can	 travel	 kilometers	 away	 from	453	

their	 home	 to	 food	 locations	 through	 empty	 fields	 (Taylor,	 1978).	 Mapping	 all	 parts	 of	454	

explored	environment	at	high	resolution	would	require	a	very	large	number	of	neurons	and	455	

computational	power	(Geva-Sagiv	et	al.,	2015).	Accordingly,	place	fields	tend	to	be	larger	in	456	

bigger	environments	(Fenton	et	al.,	2008).	Thus	there	might	be	a	computational	benefit	 to	457	

be	able	to	map	at	high	resolution	important	places	like	home	base	or	food	locations	and	to	458	

map	 lower	 resolution	 long	 transition	 routes	 between	 those	 locations	 (Geva-Sagiv	 et	 al.,	459	

2015).	 Such	 resolution	 could	 depend	 on	 the	 number	 of	 local	 sensory	 information	 as	460	

presented	here.	Future	work	should	decipher	whether	increased	spatial	coding	resolution	is	461	

associated	with	better	navigational	accuracy	and	spatial	memory.		 	462	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 2, 2018. ; https://doi.org/10.1101/275420doi: bioRxiv preprint 

https://doi.org/10.1101/275420


	

18	

References	463	

Aghajan,	Z.M.,	Acharya,	L.,	Moore,	J.J.,	Cushman,	J.D.,	Vuong,	C.,	and	Mehta,	M.R.	(2015).	464	
Impaired	spatial	selectivity	and	intact	phase	precession	in	two-dimensional	virtual	reality.	465	
Nat.	Neurosci.	18,	121–128.	466	
	467	
Aronov,	D.,	and	Tank,	D.W.	(2014).	Engagement	of	Neural	Circuits	Underlying	2D	Spatial	468	
Navigation	in	a	Rodent	Virtual	Reality	System.	Neuron	84,	442–456.	469	
	470	
Barry,	C.,	Lever,	C.,	Hayman,	R.,	Hartley,	T.,	Burton,	S.,	O’Keefe,	J.,	Jeffery,	K.,	and	Burgess,	Ν.	471	
(2006).	The	Boundary	Vector	Cell	Model	of	Place	Cell	Firing	and	Spatial	Memory.	Rev.	472	
Neurosci.	17,	71–97.	473	
	474	
Battaglia,	F.P.	(2004).	Local	Sensory	Cues	and	Place	Cell	Directionality:	Additional	Evidence	of	475	
Prospective	Coding	in	the	Hippocampus.	J.	Neurosci.	24,	4541–4550.	476	
	477	
Brown,	E.N.,	Frank,	L.M.,	Tang,	D.,	Quirk,	M.C.,	and	Wilson,	M.	a	(1998).	A	statistical	478	
paradigm	for	neural	spike	train	decoding	applied	to	position	prediction	from	ensemble	firing	479	
patterns	of	rat	hippocampal	place	cells.	J.	Neurosci.	18,	7411–7425.	480	
	481	
Burke,	S.N.,	Maurer,	A.P.,	Nematollahi,	S.,	Uprety,	A.R.,	Wallace,	J.L.,	and	Barnes,	C.A.	(2011).	482	
The	influence	of	objects	on	place	field	expression	and	size	in	distal	hippocampal	CA1.	483	
Hippocampus	21,	783–801.	484	
	485	
Cabral,	H.O.,	Fouquet,	C.,	Rondi-Reig,	L.,	Pennartz,	C.M.A.,	and	Battaglia,	F.P.	(2014).	Single-486	
Trial	Properties	of	Place	Cells	in	Control	and	CA1	NMDA	Receptor	Subunit	1-KO	Mice.	J.	487	
Neurosci.	34,	15861–15869.	488	
	489	
Chen,	G.,	King,	J.A.,	Burgess,	N.,	and	O’Keefe,	J.	(2013).	How	vision	and	movement	combine	490	
in	the	hippocampal	place	code.	Proc.	Natl.	Acad.	Sci.	110,	378–383.	491	
	492	
Cohen,	J.D.,	Bolstad,	M.,	and	Lee,	A.K.	(2017).	Experience-dependent	shaping	of	493	
hippocampal	CA1	intracellular	activity	in	novel	and	familiar	environments.	Elife	6,	1–27.	494	
	495	
Cressant,	A.,	Muller,	R.U.,	and	Poucet,	B.	(1997).	Failure	of	Centrally	Placed	Objects	to	496	
Control	the	Firing	Fields	of	Hippocampal	Place	Cells.	J.	Neurosci.	17,	2531–2542.	497	
	498	
Danielson,	N.B.,	Zaremba,	J.D.,	Kaifosh,	P.,	Bowler,	J.,	Ladow,	M.,	and	Losonczy,	A.	(2016).	499	
Sublayer-Specific	Coding	Dynamics	during	Spatial	Navigation	and	Learning	in	Hippocampal	500	
Area	CA1.	Neuron	91,	652–665.	501	
	502	
Deshmukh,	S.S.,	and	Knierim,	J.J.	(2011).	Representation	of	Non-Spatial	and	Spatial	503	
Information	in	the	Lateral	Entorhinal	Cortex.	Front.	Behav.	Neurosci.	5,	69.	504	
	505	
Deshmukh,	S.S.,	and	Knierim,	J.J.	(2013).	Influence	of	local	objects	on	hippocampal	506	
representations:	Landmark	vectors	and	memory.	Hippocampus	23,	253–267.	507	
	508	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 2, 2018. ; https://doi.org/10.1101/275420doi: bioRxiv preprint 

https://doi.org/10.1101/275420


	

19	

Domnisoru,	C.,	Kinkhabwala,	A.A.,	and	Tank,	D.W.	(2013).	Membrane	potential	dynamics	of	509	
grid	cells.	Nature	495,	199–204.	510	
	511	
Dupret,	D.,	O’Neill,	J.,	Pleydell-Bouverie,	B.,	and	Csicsvari,	J.	(2010).	The	reorganization	and	512	
reactivation	of	hippocampal	maps	predict	spatial	memory	performance.	Nat.	Neurosci.	13,	513	
995–1002.	514	
	515	
Epstein,	R.A.,	Patai,	E.Z.,	Julian,	J.B.,	and	Spiers,	H.J.	(2017).	The	cognitive	map	in	humans:	516	
Spatial	navigation	and	beyond.	Nat.	Neurosci.	20,	1504–1513.	517	
	518	
Fenton,	A.A.,	Kao,	H.-Y.,	Neymotin,	S.A.,	Olypher,	A.,	Vayntrub,	Y.,	Lytton,	W.W.,	and	Ludvig,	519	
N.	(2008).	Unmasking	the	CA1	Ensemble	Place	Code	by	Exposures	to	Small	and	Large	520	
Environments:	More	Place	Cells	and	Multiple,	Irregularly	Arranged,	and	Expanded	Place	521	
Fields	in	the	Larger	Space.	J.	Neurosci.	28,	11250–11262.	522	
	523	
Geiller,	T.,	Fattahi,	M.,	Choi,	J.S.,	and	Royer,	S.	(2017).	Place	cells	are	more	strongly	tied	to	524	
landmarks	in	deep	than	in	superficial	CA1.	Nat.	Commun.	8,	14531.	525	
	526	
Geisler,	C.,	Robbe,	D.,	Zugaro,	M.,	Sirota,	A.,	and	Buzsaki,	G.	(2007).	Hippocampal	place	cell	527	
assemblies	are	speed-controlled	oscillators.	Proc.	Natl.	Acad.	Sci.	U.	S.	A.	104,	8149–8154.	528	
	529	
Geva-Sagiv,	M.,	Las,	L.,	Yovel,	Y.,	and	Ulanovsky,	N.	(2015).	Spatial	cognition	in	bats	and	rats:	530	
From	sensory	acquisition	to	multiscale	maps	and	navigation.	Nat.	Rev.	Neurosci.	16,	94–108.	531	
	532	
Grienberger,	C.,	Milstein,	A.D.,	Bittner,	K.C.,	Romani,	S.,	and	Magee,	J.C.	(2017).	Inhibitory	533	
suppression	of	heterogeneously	tuned	excitation	enhances	spatial	coding	in	CA1	place	cells.	534	
Nat.	Neurosci.	20,	417–426.	535	
	536	
Hartley,	T.,	Burgess,	N.,	Lever,	C.,	Cacucci,	F.,	and	O’Keefe,	J.	(2000).	Modeling	place	fields	in	537	
terms	of	the	cortical	inputs	to	the	hippocampus.	Hippocampus	10,	369–379.	538	
	539	
Harvey,	C.D.,	Collman,	F.,	Dombeck,	D.A.,	and	Tank,	D.W.	(2009).	Intracellular	dynamics	of	540	
hippocampal	place	cells	during	virtual	navigation.	Nature	461,	941–946.	541	
	542	
Hetherington,	P.A.,	and	Shapiro,	M.L.	(1997).	Hippocampal	place	fields	are	altered	by	the	543	
removal	of	single	visual	cues	in	a	distance-dependent	manner.	Behav.	Neurosci.	111,	20–34.	544	
	545	
Hirase,	H.,	Czurkó,	A.,	Csicsvari,	J.,	and	Buzsáki,	G.	(1999).	Firing	rate	and	theta-phase	coding	546	
by	hippocampal	pyramidal	neurons	during	“space	clamping.”	Eur.	J.	Neurosci.	11,	4373–547	
4380.	548	
	549	
Hok,	V.,	Poucet,	B.,	Duvelle,	É.,	Save,	É.,	and	Sargolini,	F.	(2016).	Spatial	cognition	in	mice	and	550	
rats:	similarities	and	differences	in	brain	and	behavior.	Wiley	Interdiscip.	Rev.	Cogn.	Sci.	7,	551	
406–421.	552	
	553	
Hollup,	S.	a,	Molden,	S.,	Donnett,	J.G.,	Moser,	M.B.,	and	Moser,	E.I.	(2001).	Accumulation	of	554	
hippocampal	place	fields	at	the	goal	location	in	an	annular	watermaze	task.	J.	Neurosci.	21,	555	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 2, 2018. ; https://doi.org/10.1101/275420doi: bioRxiv preprint 

https://doi.org/10.1101/275420


	

20	

1635–1644.	556	
	557	
Holscher,	C.	(2005).	Rats	are	able	to	navigate	in	virtual	environments.	J.	Exp.	Biol.	208,	561–558	
569.	559	
	560	
Kentros,	C.G.,	Agnihotri,	N.T.,	Streater,	S.,	Hawkins,	R.D.,	and	Kandel,	E.R.	(2004).	Increased	561	
attention	to	spatial	context	increases	both	place	field	stability	and	spatial	memory.	Neuron	562	
42,	283–295.	563	
	564	
Knierim,	J.J.,	and	Hamilton,	D.A.	(2011).	Framing	spatial	cognition:	neural	representations	of	565	
proximal	and	distal	frames	of	reference	and	their	roles	in	navigation.	Physiol	Rev	91,	1245–566	
1279.	567	
	568	
Knierim,	J.J.,	and	Rao,	G.	(2003).	Distal	landmarks	and	hippocampal	place	cells:	Effects	of	569	
relative	translation	versus	rotation.	Hippocampus	13,	604–617.	570	
	571	
Marchette,	S.A.,	Vass,	L.K.,	Ryan,	J.,	and	Epstein,	R.A.	(2014).	Anchoring	the	neural	compass:	572	
Coding	of	local	spatial	reference	frames	in	human	medial	parietal	lobe.	Nat.	Neurosci.	17,	573	
1598–1606.	574	
	575	
McGinley,	M.J.,	Vinck,	M.,	Reimer,	J.,	Batista-Brito,	R.,	Zagha,	E.,	Cadwell,	C.R.,	Tolias,	A.S.,	576	
Cardin,	J.A.,	and	McCormick,	D.A.	(2015).	Waking	State:	Rapid	Variations	Modulate	Neural	577	
and	Behavioral	Responses.	Neuron	87,	1143–1161.	578	
	579	
McNaughton,	B.L.,	Battaglia,	F.P.,	Jensen,	O.,	Moser,	E.I.,	and	Moser,	M.B.	(2006).	Path	580	
integration	and	the	neural	basis	of	the	“cognitive	map.”	Nat	Rev	Neurosci	7,	663–678.	581	
	582	
van	der	Meer,	M.A.A.,	Johnson,	A.,	Schmitzer-Torbert,	N.C.,	and	Redish,	A.D.	(2010).	Triple	583	
dissociation	of	information	processing	in	dorsal	striatum,	ventral	striatum,	and	hippocampus	584	
on	a	learned	spatial	decision	task.	Neuron	67,	25–32.	585	
	586	
Middleton,	S.J.,	and	McHugh,	T.J.	(2016).	Silencing	CA3	disrupts	temporal	coding	in	the	CA1	587	
ensemble.	Nat.	Neurosci.	19,	945–951.	588	
	589	
Mizuseki,	K.,	Sirota,	A.,	Pastalkova,	E.,	and	Buzsáki,	G.	(2009).	Theta	Oscillations	Provide	590	
Temporal	Windows	for	Local	Circuit	Computation	in	the	Entorhinal-Hippocampal	Loop.	591	
Neuron	64,	267–280.	592	
	593	
Muller,	R.U.,	and	Kubie,	J.L.	(1987).	The	effects	of	changes	in	the	environment	on	the	spatial	594	
firing	of	hippocampal	complex-spike	cells.	J.	Neurosci.	7,	1951–1968.	595	
	596	
Muller,	R.U.,	Kubie,	J.L.,	and	Ranck,	J.B.	(1987).	Spatial	firing	patterns	of	hippocampal	597	
complex-spike	cells	in	a	fixed	environment.	J.	Neurosci.	7,	1935–1950.	598	
	599	
O’	Keefe,	J.,	and	Burgess,	N.	(1996).	Geometric	determinants	of	the	place	fields	of	600	
hippocampal	neurons.	Nature	381,	425–428.	601	
	602	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 2, 2018. ; https://doi.org/10.1101/275420doi: bioRxiv preprint 

https://doi.org/10.1101/275420


	

21	

O’Keefe,	J.	(1976).	Place	units	in	the	hippocampus	of	the	freely	moving	rat.	Exp.	Neurol.	51,	603	
78–109.	604	
	605	
O’Keefe,	J.,	and	Conway,	D.H.	(1978).	Hippocampal	place	units	in	the	freely	moving	rat:	why	606	
they	fire	where	they	fire.	Exp	Brain	Res	31,	573–590.	607	
	608	
O’Keefe,	J.,	and	Dostrovsky,	J.	(1971).	The	hippocampus	as	a	spatial	map.	Preliminary	609	
evidence	from	unit	activity	in	the	freely-moving	rat.	Brain	Res	34,	171–175.	610	
	611	
O’Keefe,	J.,	and	Nadel,	L.	(1978).	The	hippocampus	as	a	cognitive	map.	(Oxford:	Clarendon:	612	
Oxford	University	Press).	613	
	614	
O’Keefe,	J.,	and	Recce,	M.L.	(1993).	Phase	relationship	between	hippocampal	place	units	and	615	
the	EEG	theta	rhythm.	Hippocampus	3,	317–330.	616	
	617	
Pfeiffer,	B.E.,	and	Foster,	D.J.	(2013).	Hippocampal	place-cell	sequences	depict	future	paths	618	
to	remembered	goals.	Nature	497,	74–79.	619	
	620	
Poucet,	B.,	Chaillan,	F.,	Truchet,	B.,	Save,	E.,	Sargolini,	F.,	and	Hok,	V.	(2015).	Is	there	a	pilot	621	
in	the	brain?	Contribution	of	the	self-positioning	system	to	spatial	navigation.	Front.	Behav.	622	
Neurosci.	9,	1–10.	623	
	624	
Ravassard,	P.,	Kees,	A.,	Willers,	B.,	Ho,	D.,	Aharoni,	D.,	Cushman,	J.,	Aghajan,	Z.M.,	and	625	
Mehta,	M.R.	(2013).	Multisensory	control	of	hippocampal	spatiotemporal	selectivity.	Science	626	
340,	1342–1346.	627	
	628	
Renaudineau,	S.,	Poucet,	B.,	and	Save,	E.	(2007).	Flexible	use	of	proximal	objects	and	distal	629	
cues	by	hippocampal	place	cells.	Hippocampus	17,	381–395.	630	
	631	
Rich,	P.D.,	Liaw,	H.P.,	and	Lee,	A.K.	(2014).	Large	environments	reveal	the	statistical	structure	632	
governing	hippocampal	representations.	Science	345,	814–817.	633	
	634	
Sato,	M.,	Mizuta,	K.,	Islam,	T.,	Kawano,	M.,	Gomez-Dominguez,	D.,	Kim,	K.,	Yamakawa,	H.,	635	
Ohkura,	M.,	Fukai,	T.,	Nakai,	J.,	et	al.	(2018).	Dynamic	embedding	of	salience	coding	in	636	
hippocampal	spatial	maps.	bioRxiv.	637	
	638	
Schlesiger,	M.I.,	Cannova,	C.C.,	Boublil,	B.L.,	Hales,	J.B.,	Mankin,	E.A.,	Brandon,	M.P.,	639	
Leutgeb,	J.K.,	Leibold,	C.,	and	Leutgeb,	S.	(2015).	The	medial	entorhinal	cortex	is	necessary	640	
for	temporal	organization	of	hippocampal	neuronal	activity.	Nat.	Neurosci.	18,	1123–1132.	641	
	642	
Schmidt,	R.,	Diba,	K.,	Leibold,	C.,	Schmitz,	D.,	Buzsaki,	G.,	and	Kempter,	R.	(2009).	Single-Trial	643	
Phase	Precession	in	the	Hippocampus.	J.	Neurosci.	29,	13232–13241.	644	
	645	
Schmidt-Hieber,	C.,	and	Häusser,	M.	(2013).	Cellular	mechanisms	of	spatial	navigation	in	the	646	
medial	entorhinal	cortex.	Nat.	Neurosci.	16,	325–331.	647	
	648	
Shapiro,	M.L.,	Tanila,	H.,	and	Eichenbaum,	H.	(1997).	Cues	that	hippocampal	place	cells	649	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 2, 2018. ; https://doi.org/10.1101/275420doi: bioRxiv preprint 

https://doi.org/10.1101/275420


	

22	

encode:	Dynamic	and	hierarchical	representation	of	local	and	distal	stimuli.	Hippocampus	7,	650	
624–642.	651	
	652	
Sheynikhovich,	D.,	Chavarriaga,	R.,	Strösslin,	T.,	Arleo,	A.,	and	Gerstner,	W.	(2009).	Is	There	a	653	
Geometric	Module	for	Spatial	Orientation?	Insights	From	a	Rodent	Navigation	Model.	654	
Psychol.	Rev.	116,	540–566.	655	
	656	
Skaggs,	W.E.,	McNaughton,	B.L.,	Wilson,	M.A.,	and	Barnes,	C.A.	(1996).	Theta	phase	657	
precession	in	hippocampal	neuronal	populations	and	the	compression	of	temporal	658	
sequences.	Hippocampus	6,	149–172.	659	
	660	
Spiers,	H.J.,	Hayman,	R.M.A.,	Jovalekic,	A.,	Marozzi,	E.,	and	Jeffery,	K.J.	(2015).	Place	field	661	
repetition	and	purely	local	remapping	in	a	multicompartment	environment.	Cereb.	Cortex	662	
25,	10–25.	663	
	664	
Strösslin,	T.,	Sheynikhovich,	D.,	Chavarriaga,	R.,	and	Gerstner,	W.	(2005).	Robust	self-665	
localisation	and	navigation	based	on	hippocampal	place	cells.	Neural	Networks	18,	1125–666	
1140.	667	
	668	
Taylor,	K.D.	(1978).	Range	of	Movement	and	Activity	of	Common	Rats	(	Rattus	Norvegicus	)	669	
on	Agricultural.	J.	Appl.	Ecol.	15,	663–677.	670	
	671	
Tolman,	E.C.	(1948).	Cognitive	maps	in	rats	and	men.	Psychol.	Rev.	55,	189–208.	672	
Wiener,	S.I.,	Paul,	C.A.,	and	Eichenbaum,	H.B.	(1989).	Spatial	and	behavioral	correlates	of	673	
hippocampal	neuronal	activity.	J.	Neurosci.	9,	2737–2763.	674	
	675	
Wilson,	M.,	and	McNaughton,	B.	(1993).	Dynamics	of	the	hippocampal	ensemble	code	for	676	
space.	Science	261,	1055–1058.	677	
	678	
Youngstrom,	I.A.,	and	Strowbridge,	B.W.	(2012).	Visual	landmarks	facilitate	rodent	spatial	679	
navigation	in	virtual	reality	environments.	Learn.	Mem.	19,	84–90.	680	
	681	
Zhang,	K.,	Ginzburg,	I.,	McNaughton,	B.L.,	and	Sejnowski,	T.J.	(1998).	Interpreting	neuronal	682	
population	activity	by	reconstruction:	unified	framework	with	application	to	hippocampal	683	
place	cells.	J.	Neurophysiol.	79,	1017–1044.	684	
	 	685	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 2, 2018. ; https://doi.org/10.1101/275420doi: bioRxiv preprint 

https://doi.org/10.1101/275420


	

23	

	Supplementary	Material	and	Methods	686	
	687	

Animals		688	

All	 experiments	 were	 approved	 by	 the	 Institut	 National	 de	 la	 Santé	 et	 de	 la	 Recherche	689	

Médicale	 (INSERM)	 animal	 care	 and	 use	 committee	 and	 authorized	 by	 the	 Ministère	 de	690	

l’Education	Nationale	de	 l’Enseignement	Supérieur	et	de	 la	Recherche	 (agreement	number	691	

02048.02),	in	accordance	with	the	European	community	council	directives	(2010/63/UE).		692	

Data	were	 acquired	 from	8	male	mice	C57BL/6J	 (Janvier/Charles	River)	 between	8	 and	12	693	

weeks	during	the	recording	phase	 (weight:	21	–	23.6	g).	The	mice	were	housed	2	or	3	per	694	

cages	 before	 the	 first	 surgery	 and	 then	 individually	 with	 12	 h	 inverted	 light/dark	 cycles.	695	

Trainings	and	recordings	occurred	during	the	dark	phase.	696	

	697	

Surgical	procedure	to	prepare	head	fixation	698	

A	first	surgery	was	performed	to	implant	a	fixation	bar	later	used	for	head-fixation.	Animals	699	

were	 anesthetized	 with	 isoflurane	 (3%)	 before	 intraperitoneal	 injection	 of	 ketamine	 (100	700	

mg/Kg)	 mixed	 with	 xylazine	 (10	 mg/Kg)	 supplemented	 with	 a	 subcutaneous	 injection	 of	701	

buprenorphine	 (0.06	mg/Kg).	Two	 jeweller’s	 screws	were	 inserted	 into	 the	skull	above	the	702	

cerebellum	 to	 serve	 as	 reference	 and	 ground.	 A	 dental	 cement	 hat	was	 then	 constructed	703	

leaving	the	skull	above	the	hippocampi	free	to	perform	the	craniotomies	later	on.	The	free	704	

skull	 was	 covered	 with	 a	 layer	 of	 agarose	 2%	 (wt/vol)	 and	 sealed	 with	 silicon	 elastomer	705	

(Kwik-Cast,	 World	 Precision	 Instruments).	 A	 small	 titanium	 bar	 (0.65	 g;	 12	 x	 6	 mm)	 was	706	

inserted	in	the	hat	above	the	cerebellum	to	serve	as	a	fixation	point	for	a	larger	head	plate	707	

used	for	head	fixation	only	during	training	and	recordings.		708	

	709	

Virtual	reality	set	up	710	

A	commercially	available	virtual	reality	system	(Phenosys	Jetball-TFT)	was	combined	with	a	711	

custom	designed	3D	printed	concave	plastic	wheel	(center	diameter:	12.5	cm;	side	diameter:	712	

7.5	cm;	width:	14	cm,	covered	with	silicon-based	white	coating)	to	allow	1D	movement	with	713	

a	1/1	coupling	between	movement	of	the	mouse	on	the	wheel	and	movement	of	its	avatar	714	

in	 the	 virtual	 reality	 environment.	 This	 solution	 was	 preferred	 to	 the	 original	 spherical	715	

treadmill	running	in	a	X-only	mode	(which	takes	into	account	only	rotations	of	the	ball	in	the	716	
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X	axis	 to	actualize	 the	position	of	 the	avatar	 in	 the	virtual	 reality	environment)	which	also	717	

allows	1D	movement	but	with	a	more	variable	coupling	between	movement	of	 the	mouse	718	

on	the	treadmill	and	its	avatar	in	the	virtual	reality	environment.	The	wheel	was	surrounded	719	

by	six	19-inches	TFT	monitors,	which	altogether	covered	a	270	degrees	angle.	Monitors	were	720	

elevated	so	that	the	mice’s	eyes	level	corresponded	to	the	lower	third	of	the	screen	height	721	

to	account	for	the	fact	that	rodents	field	of	view	is	biased	upward.	The	head	fixation	system	722	

(Luigs	and	Neumann)	was	located	behind	the	animal	to	not	interfere	with	the	display	of	the	723	

virtual	reality	environment.	The	virtual	reality	environment	was	a	virtual	200	cm	long	and	32	724	

cm	wide	linear	maze	with	different	patterns	on	the	side	and	end	walls	and	virtual	3D	objects	725	

(see	 virtual	 reality	 environment	 section).	Movement	 of	 the	wheel	 actualized	 the	mouse’s	726	

avatar	position.	The	mouse	could	only	perform	forward	or	backward	movements	but	could	727	

not	turn	back	in	the	middle	of	the	track	(see	training	section).	728	

	729	

Virtual	reality	environments	730	

No	Object	Track	(ØT)		731	

Each	side	wall	had	a	unique	pattern	(black	and	orange	stripes	on	one	wall;	green	crosses	on	732	

black	 background	 on	 the	 other	wall).	 End-walls	 had	 grey	 triangular	 or	 round	 shapes	 on	 a	733	

yellow	background	(Fig.	1A).	734	

Object	Track	(OT)	735	

This	 maze	 was	 identical	 to	 the	 ØT	 maze	 concerning	 wall	 patterns	 and	 dimensions	 but	 3	736	

virtual	objects	were	included	on	the	sides	between	the	animal	trajectory	and	the	walls	(Fig.	737	

1A).	The	objects	were	a	yellow	origami	crane	(dimensions:	9	x	9	x	7	cm;	position:	37	cm	from	738	

end	wall),	a	blue	and	grey	cube	(dimensions:	5	x	5	x	5	cm;	position:	64	cm	from	end	wall)	and	739	

a	 tree	 (15	x	15	x	22	cm;	position:	175	cm	 from	end-wall).	The	animal	 could	neither	orient	740	

toward	the	objects	nor	get	any	sensory	feedback	from	them	by	any	other	mean	but	vision.		741	

Enriched	Objects	Track	(EOT)	742	

This	maze	had	the	same	dimensions	as	previous	mazes	and	included	the	same	virtual	reality	743	

objects	(identical	dimensions	and	locations	than	in	the	previous	maze)	but	the	side	walls	had	744	

distinct	symmetrical	patterns	 in	different	 locations	along	the	maze	(50	cm	 long;	black	dots	745	

on	white	background,	black	and	green	squares,	black	and	white	stripes	and	green	crosses	on	746	

black	background).	Outside	the	maze	walls,	two	large	3D	columns	were	positioned	on	each	747	
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side	(dimensions	8	x	8	x	47	cm;	positions	58	and	143	cm	from	end	wall)	to	provide	additional	748	

visual	cues.	749	

	750	

Training	751	

Mice	were	first	habituated	to	the	experimentalist	through	daily	handling	sessions	of	20	min	752	

or	more	 that	 continued	 throughout	 the	 experiment.	 After	 a	 3	 days	 post-surgery	 recovery	753	

period,	mice	were	water-deprived	 (1	ml/day,	 including	 the	quantity	of	water	 taken	during	754	

the	training).	After	2-3	days	of	water	deprivation,	they	were	progressively	trained	to	run	in	755	

the	virtual	reality	set	up.	First,	mice	were	familiarized	with	running	head-fixed	on	the	wheel	756	

for	 water	 rewards	 in	 a	 black	 track	 (screens	 always	 black).	 During	 these	 sessions,	 animals	757	

received	 as	 a	 reward	 sweetened	 water	 (5%	 sucrose)	 for	 each	 50	 centimeters	 ran	 on	 the	758	

wheel.	Once	the	animal	was	comfortable	with	the	setup,	it	was	trained	to	run	in	one	of	three	759	

linear	 virtual	 tracks	 (familiar	 track).	When	 animals	 reached	 the	 end	 of	 the	 track,	 a	 liquid	760	

reward	 delivery	 tube	 extended	 in	 front	 of	 the	 animal	 and	 animal	 had	 to	 lick	 to	 get	 the	761	

reward	 (a	4	µL	drop	of	water	of	5%	sucrose).	Animals	were	then	teleportated	 in	 the	same	762	

position	but	facing	the	opposite	direction	of	the	maze	and	had	to	run	up	to	the	end	of	the	763	

maze	in	the	opposite	direction	to	get	another	reward.		Animals	were	initially	trained	during	764	

15	 minutes	 sessions.	 Session	 time	 was	 progressively	 increased	 to	 reach	 60	 minutes.	 Ad	765	

libidum	water	access	was	restored	if	the	weight	of	the	animal	decreased	beneath	80%	of	the	766	

pre-surgery	weight	at	any	stage	during	training.		767	

	768	

Recording	procedure	769	

When	animals	reached	a	stable	behavioral	performance	(at	least	1	reward/minute	during	60	770	

minutes),	 we	 performed	 acute	 recordings	 using	 silicon	 probes	 (4/8	 shanks;	 A-32/A-64	771	

Buzsaki	 Probe,	 Neuronexus).	 On	 the	 day	 before	 recording,	 animals	 were	 anesthetized	772	

(induction:	 isoflurane	 3%;	 maintenance:	 Xylazine/Ketamine	 10/100	 mg/Kg	 supplemented	773	

with	 Buprenorphine	 0.1	 mg/Kg)	 and	 a	 craniotomy	 was	 drilled	 above	 one	 hippocampus	774	

(centered	on	a	location	-2	mm	posterior	and	±	2.1	mm	lateral	from	bregma).	The	craniotomy	775	

was	 covered	 with	 agarose	 (2%	 in	 physiological	 saline)	 then	 sealed	 with	 silicon	 elastomer	776	

(Kwik-Cast,	World	Precision	 Instruments).	On	 the	day	of	 the	 recording	 the	backside	of	 the	777	

probe’s	shanks	was	covered	with	a	thin	layer	of	a	cell	labeling	red-fluorescent	dye	(DiI,	Life	778	
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Supplementary Figure 1: Histology and spike sorting

A. Representative histology slide showing a silicon probe track ending in CA1 pyramidal layer. Scale bar: 
1mm. B. (Right) Auto-correlograms (red) and cross-correlograms (black) of 20 CA1 units recorded simul-
taneously. (Left) Average units waveforms (for visualization each row is normalized by the unit maximum 
average waveform)

B

A
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technologies)	so	 that	 the	 location	 of	 the	 recording	 sides	 (tips	 of	 the	 shanks)	 could	 be	779	

assessed	post-hoc	histologically.	The	silicon	probe	was	then	lowered	into	the	brain	while	the	780	

animal	 was	 allowed	 to	 walk	 freely	 on	 the	 wheel	 with	 the	 screens	 displaying	 a	 black	781	

background.	The	good	positioning	of	the	probe	with	recording	sites	in	the	CA1	pyramidal	cell	782	

layer	was	verified	by	the	presence	of	multiple	units	showing	complex	spike	bursts	on	several	783	

recordings	 sites	 and	 the	 recording	 of	 sharp-wave	 ripples	 during	 quiet	 behavior.	 After	784	

positioning	of	the	silicon	probe	the	virtual	reality	environment	was	displayed	on	the	screen.	785	

All	mice	(n	=	8)	experienced	first	the	familiar	environment	(either	ØT,	OT	or	EOT)	for	around	786	

20	back	and	 forth	 trials.	For	mice	 trained	 in	ØT	or	OT	 (n	=	3	and	2,	 respectively),	 this	 first	787	

exploration	was	followed,	after	3	minutes	of	free	running	with	the	screens	displaying	a	black	788	

background,	by	exploration	of	a	new	environment,	identical	to	the	previous	one	except	for	789	

the	 presence	 of	 the	 three	 3D	 objects	 (objects	 were	 added	 for	 mice	 trained	 in	 ØT	 and	790	

removed	for	mice	trained	in	OT)	for	another	20	consecutive	back	and	forth	trials.	For	some	791	

of	these	mice	(n	=	2	for	EOT,	n	=	1	for	OT	and	n	=	2	for	ØT)	sessions	in	the	familiar	track	and	792	

novel	track	were	divided	into	two	sub-sessions	interleaved	by	3	min	of	free	running	with	the	793	

screens	black.		The	two	sub-sessions	in	the	familiar	environment	and	the	new	environment	794	

were	 pulled	 together	 for	 analysis.	 Note	 that	 animals	 stayed	 head-fixed	 on	 the	 wheel	795	

surrounded	by	screens	during	the	entire	recoding	session.	796	

	797	

Data	Acquisition	and	Pre-Processing	798	

The	position	of	the	animal	in	the	virtual	maze	was	digitalized	by	the	virtual	reality	controlling	799	

computer	 (Phenosys)	 and	 then	 sent	 to	 a	 digital-analog	 card	 (0-4.5V,	 National	 Instrument	800	

Board	 NI	 USB-6008)	 connected	 to	 the	 external	 board	 (I/O	 Board,	 Open	 Ephys)	 of	 a	 256	801	

channels	 acquisition	 board	 (Open	 Ephys).	 Neurophysiological	 signals	 were	 acquired	802	

continuously	 on	 a	 256-channels	 recording	 system	 (Open	 Ephys,	 Intan	 Technologies,	803	

RHD2132	 amplifier	 board	with	 RHD2000	USB	 interface	 board)	 at	 25,000	Hz.	 Spike	 sorting	804	

was	 performed	 semi-automatically	 using	 KlustaKwik	 (https://github.com/klusta-805	

team/klustakwik).	 Clusters	 were	 then	 manually	 refined	 using	 cluster	 quality	 assessment,	806	

auto-	 and	 cross-correlograms,	 clusters	 waveforms	 and	 similarity	 matrix	 (Klustaviewa,	807	

Rossant	et	al.,	2016).	808	

	809	
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Data	Analysis	810	

All	 subsequent	 analyses	 were	 conducted	 using	 custom-developed	 softwares	 written	 in	811	

MATLAB	(MathWorks).			812	

Reward	&	Object	Zones	Definition	813	

The	reward	zones,	located	between	the	maze	extremities	and	10%	of	the	track	length	(0-20	814	

cm	and	180-200	cm),	were	not	considered	in	the	analysis.	The	object	zone	was	composed	of	815	

two	 zones,	 one	 from	30	 to	70	 cm	 including	both	 the	origami	 crane	and	 the	 cube	and	 the	816	

other	from	160	to	180	cm	including	the	tree.	817	

Firing	Rate	Map	818	

The	maze	was	divided	 into	100	spatial	bins	measuring	2	cm.	For	each	 trial,	 the	number	of	819	

spikes	and	the	occupancy	time	of	the	animal	in	each	spatial	bin	were	calculated	to	obtain	the	820	

spikes	 number	 vector	 and	 the	 occupancy	 time	 vector,	 respectively.	 These	 vectors	 were	821	

smoothed	using	 a	Gaussian	 filter	with	 a	half-width	 set	 to	 10	 spatial	 bins.	 Spikes	occurring	822	

during	 epochs	when	 velocity	was	 lower	 than	 2	 cm/s	were	 removed	 from	all	 analysis.	 The	823	

smoothed	 spikes	 number	 vector	 was	 divided	 by	 the	 smoothed	 occupancy	 time	 vector	 to	824	

obtain	the	firing	rate	vector	for	each	trial.	The	firing	rate	vectors	were	pooled	for	a	specific	825	

condition	(e.g.,	Familiar	Objects	Track)	and	direction	of	the	animal	(e.g.,	back)	to	generate	a	826	

firing	 rate	map.	 These	pooled	 vectors	were	 also	 averaged	 to	provide	 the	mean	 firing	 rate	827	

vector,	corresponding	to	the	mean	firing	rate	for	each	spatial	bin.			828	

Pyramidal	Cell	Classification	829	

Cells	with	a	mean	firing	rate	lower	than	20	Hz	and	either	a	burst	 index	(Royer	et	al.,	2012)	830	

greater	 than	 0	 or	 the	 spike	 duration	 greater	 than	 0.4	 ms	 were	 classified	 as	 putative	831	

pyramidal	neurons.	They	were	classified	as	interneurons	otherwise.	832	

Active	Cells	Classification	833	

A	cell	was	considered	as	active	when	the	mean	firing	rate	was	greater	than	0.5	Hz,	the	peak	834	

firing	rate	was	greater	than	1.5	Hz	and	the	cell	fired	at	 least	one	spike	in	50%	of	the	trials.	835	

These	3	criteria	had	to	be	verified	in	either	the	forth	or	back	direction.	836	

Place	Fields	Detection	837	

To	detect	a	mean	place	 field,	a	bootstrap	procedure	was	performed.	For	each	 trial,	a	new	838	

spikes	train	was	generated	using	a	Poisson	process	with	λ	equal	 to	the	mean	firing	rate	of	839	

the	trial	and	a	1	ms	time	interval.	A	“randomized”	firing	rate	map	was	then	generated	and	840	

the	mean	firing	rate	vector	was	determined	and	compared	with	the	mean	firing	rate	vector	841	
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from	the	 initial	 rate	map.	This	operation	was	 repeated	1000	 times	 to	determine	a	P-value	842	

vector	(P-value	for	each	2	cm	spatial	bin).	 	Place	fields	candidates	were	defined	as	a	set	of	843	

more	 than	 3	 continuous	 spatial	 bins	 associated	with	P-values	 lower	 than	 0.01.	 Two	 place	844	

fields	were	merged	when	the	distance	between	their	closest	edges	was	at	most	equal	to	5	845	

spatial	bins	 (10	cm).	Place	 fields’	edges	were	extended	by	at	most	5	 spatial	bins	 (for	each	846	

edge)	when	 the	P-value	was	below	0.30	 for	 these	bins.	A	 field	with	a	 size	greater	 than	45	847	

spatial	bins	(90	cm)	was	not	considered	as	a	place	field.	To	validate	a	mean	place	field,	the	848	

cell	had	to	verify	a	stability	criterion.	Spatial	correlations	were	calculated	between	the	firing	849	

rate	vector	of	each	trial	and	the	mean	firing	rate	vector.	The	spatial	bins	corresponding	to	850	

other	detected	place	 fields	were	not	considered	 in	 the	spatial	 correlations.	The	place	 field	851	

was	 validated	 if	 the	 spatial	 correlations	were	 greater	 than	 0.60	 for	 at	 least	 40%	 of	 trials.	852	

Unless	specified,	when	several	mean	place	fields	were	detected,	only	the	place	field	with	the	853	

highest	peak	was	conserved.	An	active	cell	with	at	least	one	place	field	in	one	direction	was	854	

considered	as	a	place	cell.	855	

The	same	procedure	was	applied	to	detect	place	fields	per	lap	without	the	stability	criterion,	856	

which	 cannot	 be	 calculated	 on	 single	 trials.	 A	 place	 field	 per	 lap	 was	 conserved	 if	 it	857	

overlapped	at	least	1	spatial	bin	with	the	closest	mean	place	field.		858	

Stability	Index	859	

The	stability	index	of	a	cell	was	computed	as	the	mean	of	the	spatial	correlations	between	all	860	

pairs	of	 firing	 rate	vectors.	This	way,	 the	cell	 stability	 index	 takes	 into	account	 the	activity	861	

patterns	 from	 all	 the	 trials	 and	 provides	 a	 reliable	 quantification	 of	 the	 inter-trial	862	

reproducibility	 of	 the	 cells	 activity.	 Note	 that	 this	 stability	 index	 is	 different	 from	 usual	863	

stability	 indexes	based	on	correlations	of	mean	firing	rates	between	even	and	odd	trials	or	864	

two	halves	of	the	same	recording	session	thus	values	obtained	cannot	be	directly	compared.	865	

Spatial	Information	866	

The	spatial	information	(SI)	was	calculated	according	to	the	following	formula(Skaggs	et	al.,	867	

1996):	868	

!" =  !"!
!" ×

!"!
!"!

×!"#!
!"!
!"

!

!!!
	

where	N	 is	the	number	of	spatial	bins	(N	=	100),	!"! 	is	 the	mean	firing	rate	determined	 in	869	

the	i-th	spatial	bin,	!"	is	the	mean	firing	rate,	!"! 	is	the	mean	occupancy	time	determined	870	
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in	 the	 i-th	spatial	bin,	!"! 	is	 the	 total	occupancy	 time	based	on	the	mean	occupancy	 time	871	

vector.	872	

Out/In	Field	Firing	Rate	873	

The	out/in	field	firing	rate	was	computed	as	the	ratio	between	the	mean	firing	rate	outside	874	

the	mean	place	field	 (excluding	secondary	place	fields)	and	the	mean	firing	rate	 inside	the	875	

mean	place	field.	876	

Place	Field	Dispersion	877	

A	place	field	dispersion	measure	has	been	computed	to	quantify	how	much	each	place	field	878	

per	 lap	 was	 dispersed	 around	 the	mean	 place	 field.	 The	 place	 field	 dispersion	 (PFD)	 was	879	

calculated	according	to	the	following	formula:	880	

!"! = !
!

1
! ! − !! !

!

!!!

!
!
	

Where	C	is	the	center	of	the	mean	place	field,	Ci	is	the	center	of	the	field	in	the	i-th	lap	and	881	

M	is	the	number	of	laps,	L	is	the	total	length	of	the	maze	and	N	is	the	number	of	spatial	bins.	882	

The	center	of	a	place	field	was	defined	as	the	spatial	bin	with	the	highest	firing	rate.	883	

Place	Field’	Width	884	

Place	 field’	 width	was	 computed	 as	 the	 distance	 between	 the	 place	 field	 edges	 and	 only	885	

determined	for	entire	place	fields.	A	place	field	was	considered	as	complete	when	its	firing	886	

rate	increased	above	30%	of	the	difference	between	highest	and	lowest	place	field	activity	887	

and	then	dropped	below	this	threshold.	888	

On-Track	and	End-Track	Fields	889	

A	mean	place	field	was	considered	as	End-Track	field	if	the	peak	of	the	field	was	located	at	890	

the	beginning	of	the	reward	zone	(i.e.,	at	the	11-th	or	the	90-th	spatial	bin).	All	other	fields	891	

were	classified	as	On-Track	fields.	892	

Distribution	of	place	fields’	position	893	

To	statistically	assess	whether	the	place	fields	were	non-uniformly	distributed	in	the	maze,	894	

we	 tested	 the	 null	 hypothesis	 that	 all	 fields	 were	 uniformly	 distributed.	 Based	 on	 this	895	

hypothesis,	the	total	number	of	place	fields	was	redistributed	with	an	equal	probability	to	be	896	

in	 each	 10-cm	 spatial	 bin.	 The	 standard	 deviation	 of	 this	 uniform	 distribution	 was	 then	897	

compared	 to	 the	 initial	 distribution.	 This	 operation	 was	 repeated	 1000	 times	 (bootstrap	898	

procedure)	 to	 obtain	 a	P-value,	 corresponding	 to	 the	 probability	 of	 the	 place	 fields	 to	 be	899	
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uniformly	 distributed.	 When	 this	 P-value	 was	 lower	 than	 0.05,	 the	 null	 hypothesis	 was	900	

rejected	and	the	distribution	was	considered	as	non-uniform.	To	ensure	that	single	values	of	901	

place	 fields’	 percentage	 in	 a	 given	 bin	 did	 not	make	 the	 distribution	 non-uniform,	 values	902	

greater	 than	 the	 93-th	 percentile	 and	 lower	 than	 the	 6-th	 percentile	 have	 been	 excluded	903	

from	the	initial	distribution.	904	

Local	Stability	905	

A	local	stability	index	was	developed	to	assess	how	consistent	a	firing	rate	was	over	the	laps	906	

for	 a	 given	 spatial	 bin.	 To	 this	 end,	 two	mean	 firing	 rate	 vectors	 were	 calculated,	 in	 the	907	

neighborhood	of	each	spatial	bin	(2-spatial	bins	half-window)	for	even	and	odd	trials.	Local	908	

stability	index	was	defined	as	the	spatial	correlation	between	these	two	vectors	for	a	given	909	

spatial	bin.		910	

Position	Decoding		911	

To	address	how	informative	the	firing	rates	of	the	CA1	pyramidal	cells	ensemble	were	about	912	

the	position	of	the	animal	in	the	different	virtual	environments,	we	used	Bayesian	decoding	913	

and	Firing	Rate	Vectors	(FRV)	methods.	For	each	time	window,	the	distribution	of	the	animal	914	

position	 probability	 across	 the	 whole	 maze	 was	 calculated	 using	 the	 firing	 activity	 of	 all	915	

active	 cells	 (place	 cells	 and	 non	 place	 cells).	 The	 mode	 of	 this	 distribution	 (maximum	 of	916	

probability)	 was	 chosen	 as	 the	 decoded	 position	 for	 a	 given	 time	 window.	 We	 used	 a	917	

classical	 “memoryless”	 Bayesian	 decoder	 (Brown	 et	 al.,	 1998;	 Zhang	 et	 al.,	 1998).	 The	918	

decoding	of	the	spikes	data	was	restricted	to	periods	when	the	animal	was	running	(speed	>	919	

2	cm/s)	or	with	good	Theta/Delta	ratio	(Jackson	and	Redish,	2007)	and	cross-validated	using	920	

the	“leave	one	out”	approach.	We	computed	the	animal’s	probability	 to	be	 in	each	spatial	921	

bin	x	(2	cm)	knowing	that	N	cells	fired	n	spikes	in	a	time	window	according	to	the	following	922	

formula:		923	

! ! ! = !(τ,n)P(x) !!(!)!!
!

!!!
exp −τ !!(!)

!

!!!
	

With	P(x)	a	uniform	spatial	prior,	fi(x)	the	average	firing	rate	of	the	neuron	i	over	x	(i.e.,	the	924	

tuning	 curve	 over	 the	 position),	 ni	 the	 number	 of	 spikes	 emitted	 by	 the	 neuron	 i	 in	 the	925	

current	 time	window	and	τ	the	 length	of	 the	 time	window	 (150	ms;	non-overlapping)	 and	926	

C(!,!)	a	normalization	factor	intended	to	set	the	posterior	probability	for	one	time	window	927	

to	1.	 This	 formula	assumes	 that	 the	 spikes	 trains	obey	 to	a	Poisson	process	and	 that	 cells	928	

activity	 is	 independent.	 Position	 decoding	 was	 also	 preformed	 using	 the	 FRV	 method	929	
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(Middleton	and	McHugh,	 2016).	 For	 each	100	ms	 time	bin,	 the	Pearson	 correlations	were	930	

calculated	between	firing	rates	across	all	cells	and	the	mean	firing	rates	from	all	cells	for	a	931	

given	 spatial	 bin.	 	 A	 decoding	 error	 was	 defined	 as	 the	 absolute	 value	 of	 the	 difference	932	

between	 decoded	 and	 real	 position.	 Accuracy	 was	 defined	 as	 the	 probability	 at	 the	 real	933	

position	in	a	particular	time	bin.	To	ensure	that	the	position	decoding	was	not	influenced	by	934	

the	number	of	cells,	a	drop	cell	approach	was	performed	(van	der	Meer	et	al.,	2010).	Briefly,	935	

for	M	recorded	active	cells,	the	position	was	decoded	using	k	different	subsets	of	cells	with	936	

increasing	sizes	5*k	with	k	ranging	from	1	to	the	last	multiple	of	5	<	M.	For	the	k-th	subset,	937	

the	decoding	was	repeated	50	times	using	5*k	randomly	selected	cells	and	the	median	value	938	

of	 probabilities	 for	 a	 given	 time	 and	 spatial	 bin	 was	 chosen	 as	 the	 final	 probability.	 The	939	

presented	results	were	computed	for	a	subset	composed	of	20	cells	(k	=	4).	940	

Map	Similarity	over	Trials	941	

To	analyze	the	dynamic	of	the	changes	of	spatial	representation	between	familiar	and	novel	942	

conditions,	map	similarities	were	performed	for	10	back	and	forth	trials	before	and	after	the	943	

experimental	 manipulation.	 For	 each	 active	 putative	 pyramidal	 cell,	 map	 similarities	944	

consisted	of	the	Pearson	correlation	between	the	firing	rate	map	of	each	back	and	forth	trial	945	

and	a	template	firing	rate	map.	This	template	firing	rate	map	was	calculated	as	the	average	946	

of	the	firing	rate	map	from	all	the	laps	in	the	condition	with	objects	(most	stable	condition).	947	

The	maps	corresponding	to	back	(forth)	trials	were	correlated	to	the	mean	back	(forth)	trial	948	

map	 in	 the	 object	 condition	 and	 the	 correlations	 values	were	 averaged	 to	 obtain	 a	 single	949	

value	 for	 this	 back	 and	 forth	 trial.	When	map	 similarity	 was	 determined	 for	 a	 lap	 in	 the	950	

object	condition,	the	template	firing	rate	map	was	computed	without	it.	951	

Landmark	Vector	cells	detection	952	

For	 this	 analysis,	 we	 defined	 individual	 objects	 zones	 (IOZ)	 for	 each	 object.	 For	 a	 given	953	

object,	IOZ	corresponded	to	all	spatial	bins	occupied	by	the	object	plus	an	additional	margin	954	

of	 7	 spatial	 bins	 (14	 cm),	 which	 was	 always	 located	 before	 the	 object	 in	 the	 animals’	955	

movement	 reference	 frame	 to	 take	 into	 account	 the	 anticipatory	 nature	 of	 some	 LV	956	

cells(Geiller	 et	 al.,	 2017).	 Thus	 IOZ	 for	 each	 object	 were	 different	 for	 back	 and	 forth	957	

directions.	Here	are	the	IOZ	defined	for	each	object	in	both	directions:	origami	crane:	20-42	958	

cm	and	32-56	cm,	cube:	46-68	cm	and	60-82	cm	and	tree	154-180	cm	and	166-180	cm.	Note	959	

that	secondary	mean	place	 fields	were	 included	 in	 this	analysis	 (i.e.	 if	multiple	place	 fields	960	
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were	detected,	if	at	least	one	of	theses	place	fields	was	in	the	same	IOZ	for	both	directions	961	

the	cell	was	classified	as	a	LV	cell).	962	

Phase	precession	Analysis	963	

Phase	 precession	was	 calculated	 on	 all	 spikes	 (above	 speed	 threshold)	 for	 the	 track	 with	964	

objects	but	restrained	to	Spatially	Stable	Trials	 (SST)	 in	the	no	object	condition	to	equalize	965	

stability	 between	 both	 conditions.	 SST	 consisted	 of	 at	 least	 3	 trials	 where	 the	 in-field	966	

correlation	with	 the	mean	place	 field	exceeded	0.6.	To	assess	 theta	phase	precession,	 the	967	

Local	Field	Potential	(LFP)	of	the	channel	with	the	highest	number	of	pyramidal	cells(Skaggs	968	

et	al.,	1996)	was	filtered	(4th	order	Chebyshev	filter	type	II)	in	the	theta	band	(4-12Hz).	The	969	

instantaneous	 theta	 phase	 for	 each	 time	 bin	 (1	 ms)	 was	 determined	 using	 the	 Hilbert	970	

transform	of	 the	 filtered	 LFP	 and	 a	 phase	was	 attributed	 to	 each	 spike.	Only	 theta	 phase	971	

locked	cells	were	considered	 in	 the	 following	analysis	 (non-uniform	phase	distribution,	P	<	972	

0.05,	Rayleigth	test).	Circular	linear	analysis	was	used	to	determine	the	correlation	strength	973	

and	 slope	 value	 of	 the	 relation	 between	 spikes	 phases	 and	 normalized	 positions	 (0-1)	974	

through	the	mean	place	field	(Kempter	et	al.,	2012).	Briefly,	the	phase	precession	slope	was	975	

computed	 with	 a	 linear	 regression	 model	 between	 circular	 (spike	 phases)	 and	 linear	976	

(animal’s	position)	data.	The	slope	of	the	regression	was	used	to	scale	the	animal’s	position	977	

and	 to	 transform	 it	 into	 a	 circular	 variable.	 A	 circular-circular	 correlation	 could	 thus	 be	978	

computed	on	the	data	to	assess	the	strength	of	the	relationship	between	spike	phases	and	979	

animal’s	 position.	 A	 significance	 value	 was	 determined	 by	 re-computing	 the	 correlation	980	

values	for	1000	permutations	of	the	spikes	position.		981	

Analysis	of	phase	precession	on	single-trial	detected	fields	was	also	performed	(Schmidt	et	982	

al.,	 2009).	 Phase	 precession	 slope	 and	 correlation	 values	 were	 computed	 similarly	 to	 the	983	

previously	 described	method.	 	 The	 single	 lap	 slope	 and	 correlation	 values	were	 averaged	984	

only	 for	 sessions	 with	 at	 least	 3	 significantly	 precessing	 trials	 where	 the	 cell	 emitted	 a	985	

minimum	of	4	spikes	inside	the	mean	place	field.		986	

Unit-LFP	shift	and	Spike	Phase	Spectrum	987	

To	quantify	phase	precession	independently	of	the	position	of	the	animal	and	the	place	field	988	

detection,	 Unit-LFP	 shift	 was	 used.	 For	 all	 active	 putative	 pyramidal	 cells,	 a	 discreet	989	

multitaper	 spectrum	 in	 the	 theta	 band	 (4-12Hz)	 of	 the	 cell’s	 spikes	 was	 performed	990	

(mtpointspectrum,	 Chronux)	 as	 well	 as	 the	 continuous	 multitaper	 spectrum	 of	 the	991	

simultaneously	recorded	LFP	(mtspectrumc,	Chronux).	A	theta	modulation	index	(Mizuseki	et	992	
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al.,	 2009)	 was	 defined	 for	 each	 cell	 spike	 spectrum	 as	 the	mean	 power	 around	 the	 peak	993	

theta	 frequency	±	0.5	Hz	divided	by	 the	mean	power	below	5Hz	or	above	9Hz.	A	 cell	was	994	

considered	as	theta	modulated	if	this	index	was	greater	than	1.4.	The	cross	correlogram	was	995	

then	calculated	 for	 theta	modulated	cells	 to	determine	 the	 lag	 in	 the	 theta	band	between	996	

the	LFP	and	the	cells’	spectrum	(Geisler	et	al.,	2007).	A	positive	lag	indicates	that	the	cell	is	997	

firing	faster	than	the	concurrent	LFP.	998	

Speed	modulation	of	theta	frequency	and	Amplitude	999	

The	 instantaneous	 theta	 frequency	 was	 computed	 from	 the	 instantaneous	 theta	 phase	1000	

extracted	from	the	Hilbert	transform	of	the	filtered	LFP	in	the	theta	band.	For	each	time	ti,	1001	

the	instantaneous	theta	frequency	(Fθ(ti))	was	determined	based	on	the	unwrapped	phase:			1002	

!! !! = !ℎ!"# !!!! − !ℎ!"#(!!)
2! ∗ !" 	

where	Fs	is	the	sampling	frequency.	1003	

Instantaneous	theta	amplitude	was	defined	as	the	module	of	the	LFP	Hilbert	transform	and	1004	

normalized	by	the	mean	LFP	theta	amplitude.	The	Pearson	correlation	coefficient	was	then	1005	

calculated	between	the	speed	of	the	animal	and	theta	frequency/amplitude.		1006	

A	 theta	 peak	 detection	 method	 was	 also	 used	 to	 calculate	 the	 instantaneous	 theta	1007	

frequency.	 Theta	 peaks	were	 detected	with	 zero	 crossing	 of	 the	 instantaneous	 LFP	 phase	1008	

and	frequency	was	deduced	from	the	time	between	two	successive	theta	peaks.	This	value	1009	

was	affected	to	all	the	time	stamp	of	the	corresponding	cycle.		1010	

Statistics	1011	

All	 statistical	 analyses	 were	 conducted	 using	 Matlab	 codes	 (MathWorks).	 For	 each	1012	

distribution,	 a	 Lilliefors	 goodness-of-fit	 test	 was	 used	 to	 verify	 if	 the	 data	 were	 normally	1013	

distributed	and	a	 Levene	 test	was	used	 to	assess	 for	 equal	 variance.	 If	 normality	or	 equal	1014	

variance	were	not	verified,	we	used	 the	Wilcoxon	 rank	 sum	test	or	 the	Kruskal-Wallis	 test	1015	

otherwise	the	Student	t-test	was	used.	Spatial	correlations	were	computed	using	Pearson’s	1016	

correlation	coefficient.	Chi-square	test	was	used	to	compare	percentages.	1017	

	 	1018	
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