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Upon encountering a novel environment, an animal must
construct a consistent environmental map, as well as an
internal estimate of its position within that map, by com-
bining information from two distinct sources: self-motion
cues and sensory landmark cues. How do known aspects
of neural circuit dynamics and synaptic plasticity conspire
to accomplish this feat? Here we show analytically how a
neural attractor model that combines path integration of
self-motion cues with Hebbian plasticity in synaptic weights
from landmark cells can self-organize a consistent map of
space as the animal explores an environment. Intriguingly,
the emergence of this map can be understood as an elastic
relaxation process between landmark cells mediated by the
attractor network. Moreover, our model makes several ex-
perimentally testable predictions, including: (1) systematic
path-dependent shifts in the firing field of grid cells towards
the most recently encountered landmark, even in a fully
learned environment, (2) systematic deformations in the fir-
ing fields of grid cells in irregular environments, akin to
elastic deformations of solids forced into irregular contain-
ers, and (3) the creation of topological defects in grid cell fir-
ing patterns through specific environmental manipulations.
Taken together, our results conceptually link known aspects
of neurons and synapses to an emergent solution of a fun-
damental computational problem in navigation, while pro-
viding a unified account of disparate experimental observa-
tions.
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How might neural circuits learn to create a long term
map of a novel environment and use this map to infer
where one is within the environment? This pair of prob-
lems are challenging because of their nested, chicken and
egg nature. To localize where one is in an environment,
one first needs a map of the environment. However, in
a novel environment, no such map is yet available, so
localization is not possible. Instead, neural circuits must
create a map over time, through exploration in a novel
environment, without initially having access to any global
estimate of position within the environment. This chicken
and egg problem is known in the robotics literature as
Simultaneous Localization and Mapping (SLAM) (1).
Here we explore how known aspects of neural circuit

dynamics and synaptic plasticity can conspire to self-
organize, through exploration, a neural circuit solution
to the problem of creating a global, consistent map of a
novel environment. In particular, neural circuits receive
two fundamentally distinct sources of information about
position: (1) signals indicating the speed and direction
of the animal, which can be path-integrated over time to
update the animal’s internal estimate of position, and (2)
sensory cues from salient, fixed landmarks in the environ-
ment. To create a map of the environment, neural circuits
must combine these two distinct information sources in
a self-consistent fashion so that sensory cues and self-
motion cues are always in co-register.
For example, consider the act of walking from landmark
A to landmark B. Sensory perception of landmark A trig-
gers a pattern of neural activity, and subsequent walking
from A to B evolves this activity pattern, through path
integration, to a final pattern. Conversely, sensory per-
ception of landmark B itself triggers a neural activity
pattern. Any circuit that maps space must obey a fun-
damental self-consistency condition: the neural activity
pattern generated by perception of A, followed by path
integration from A to B, must match the neural activ-
ity pattern triggered by perception of B alone. Only in
this manner can neural activity patterns be in one to one
correspondence with physical positions in space, and be-
come independent of the past trajectory used to reach any
physical location.
In the following, we develop an analytic theory for how
neuronal dynamics and synaptic plasticity can conspire to
self-organize such a self-consistent neural map of space
upon exploration through a novel environment. More-
over, our analytic theory makes experimentally testable
predictions about neural correlates of space. Indeed,
many decades of recordings in multiple brain regions
have revealed diverse neural correlates of spatial maps
in the brain. In particular, the medial entorhinal cortex
(MEC) contains neurons encoding for direction, velocity,
landmarks, as well as grid cells exhibiting striking fir-
ing patterns reflecting an animal’s spatial location (2–6).
Moreover, the geometry of these firing patterns depends
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on the shape of the environment being explored (7–10).
In particular, these grid firing patterns can be deformed
in irregular environments (11, 12), in a manner evocative
of deformations of solids forced into into an irregular
container, suggesting a mechanical model for these de-
formations (13–15). Also, these firing patterns are not
simply driven by current sensory cues; there is evidence
for path integration (16–18) in that firing patterns appear
almost immediately (2), phase differences are preserved
across environments (19), firing patterns become nois-
ier the longer an animal has spent away from a landmark
(20, 21), and can be shifted depending on which landmark
the animal has most recently encountered (22, 23).
Despite this wealth of experimental observations, no
mechanistic circuit model currently explains how known
aspects of neuronal dynamics and synaptic plasticity can
conspire to learn, through exploration, a self-consistent
internal map of a novel environment that both behaves
like a deformable medium, and also retains, at higher-
order, some knowledge of recently encountered land-
marks. Here, we show how an attractor network that
combines path integration of velocity with Hebbian learn-
ing (22, 24, 25) of synaptic weights from landmark cells,
can self-organize to generate all of these outcomes. In-
triguingly, a low dimensional reduced model of the com-
bined neuronal and synaptic dynamics provides analytical
insight into how self-consistent maps of the environment
can arise through an emergent, elastic relaxation process
involving the synaptic weights of landmark cells.

Model reduction of an attractor network
coupled to sensorimotor inputs

Our theoretical framework assumes the existence of three
interacting neural components: (1) an attractor network
capable of realizing a manifold of stable neural activity
patterns, (2) a population of velocity-tuned cells that carry
information about the animal’s motion, and (3) a popula-
tion of sensory driven landmark cells that fire if and only
if the animal is in a particular region of space. Our goal
will be to understand how the three populations can inter-
act together and self-organize through synaptic plasticity,
sculpted by experience, to create a self-consistent internal
map of the environment. Here, we describe the neuronal
and synaptic dynamics of each component in turn, as
well as describe a model reduction approach to obtain a
low dimensional reduced description of the entire plastic
circuit dynamics. Our low dimensional description pro-
vides insight into how self-consistency of the neural map
emerges naturally through an elastic relaxation process
between landmarks.
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integration (14, 15) in that the firing patterns become nois-
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an e�ective mechanical relaxation process involving the
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Our theoretical framework assumes the existence of three
interacting components: (1) an attractor network capable
of realizing a D dimensional manifold of stable neural
activity patterns, (2) a population of velocity-tuned cells
that carry information about the animal’s motion, and
(3) a population of sensory driven landmark cells that fire
if and only if the animal is in a particular region of space.
Our goal will be to understand how the three populations
can interact together and self-organize through synaptic
plasticity, sculpted by experience, to create a consistent
internal map of the environment. Here, we describe the
neuronal and synaptic dynamics of each component in
turn, as well as describe a model reduction approach to
obtain a low dimensional reduced description of the entire
plastic circuit dynamics.
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dynamics . We first consider a D = 1 dimensional attrac-
tor network (20, 21) consisting of a large population of
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Fig. 1. Schematic of a one-dimensional periodic neural sheet with short-
range excitation (solid gray arrows) and longer range inhibition (dotted black
arrows). This yields a 1D family of bump-attractor states sSS (u ≠ „A), which
are mapped onto a single periodic variable „A representing the translation of
the bump pattern.
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external inputs from both the velocity cells and landmark
cells in a consistent manner. We first derive a general
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Fig. 1. Schematic of a
ring attractor with short-
range excitation (red ar-
rows) and longer range
inhibition (blue arrows).
This yields a 1D family
of bump-attractor states
sSS (u−φA), which are
mapped onto a single pe-
riodic variable φA repre-
senting the peak of the
bump pattern.

A manifold of stable states from attractor network dy-
namics We first consider a one-dimensional attrac-
tor network consisting of a large population of neurons
whose connectivity is determined by their position on an
abstract ring, as in Fig. 1. For analytical simplicity, we
take a neural field approach (26), so that position on the
ring of neurons is described by a continuous coordinate
u, with the firing rate of a neuron at position u given by
s(u). Each neuron interacts with neighboring neurons
through a translation invariant connectivity, yielding the
dynamics

ds(u)
dt

=−s(u) +F
[∫

u′
J(u−u′)s(u′)

]
. (1)

Here J(u−u′) defines the synaptic weight from a cell at
position u′ to a cell at u, and F is a nonlinearity. We will
refer to these dynamics as ds/dt= Dyn[s]. Many appro-
priate choices of J and F , corresponding for example to
short range excitation and long range inhibition, will yield
a family of stable, or steady state, localized bump activity
patterns sSS (u−φA), parameterized by the position of
their peak φA (27, 28). This one-dimensional family of
stable bump activity patterns can itself be thought of as
ring of stable firing patterns in the space of all possible
firing patterns. Just as u indexes a family of neurons on
the neural sheet, the coordinate φA indexes the different
stable neural activity patterns, with a particular value of
φA corresponding to a stable bump on the neural ring cen-
tered at coordinate u = φA. For simplicity we set units
such that the coordinate u along the neural ring, and the
coordinate φA along the ring of stable attractor patterns
are both periodic variables defined modulo 2π. Thus u
and φA are phase variables denoting position along the
neural ring and ring of bump attractor patterns respec-
tively.

Motions along the attractor manifold due to external in-
puts So far, the attractor network described above has
a ring of stable bump activity patterns parameterized by
the periodic coordinate φA, but these neural activity pat-
terns are as yet unanchored to physical space. We will
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eventually show how to anchor the coordinate φA along
the attractor manifold to the actual position of the animal
in physical space. However, in order to appropriately
form such an internal map of position, and thereby map
the environment, the attractor state must be influenced by
external inputs from both velocity and landmark sensitive
cells in a self-consistent manner. We first derive a reduced
description for how a general external feedforward input
to the attractor network modifies its dynamics.
Suppose the attractor network is at one of its steady state
bump patterns sSS (u−φA) centered at u = φA. Fur-
ther suppose that each neuron at position u on the neu-
ral ring experiences an external additive input current
εPert(u−φp) that is centered, or localized on the neu-
ral ring around some other location u= φp. The neural
dynamics of the attractor in Eq. 1, in response to this
additive external input is then modified to:

ds/dt= Dyn[s(u)] + εPert(u−φp) .

When ε is small, the external inputs are weak relative to
the recurrent inputs that determine the shape of the bump
pattern. In this situation, the evolving firing rates will be
confined to the 1D manifold of steady states sSS (u−φA).
In essence, a small excitatory perturbation Pert(u−φp)
centered at position u= φp on the neural ring, will trans-
late the stable bump pattern towards the perturbation,
without changing its shape. Therefore, to track the en-
tire dynamics of the network, we do not need to track
the firing rate of every neuron; we need only track the
time dependent position of the peak of the activity bump,
φA(t). Thus we can reduce the entire high dimensional
neural dynamics to a low dimensional effective scalar
dynamics:

dφA/dt= εForceA(φp−φA). (2)

In App. A, we show how to analytically compute the force
law ForceA(φp−φA) governing the velocity of the bump
peak, in terms of the shape of the bump sSS (u−φA) and
the shape of the additive input perturbation Pert(u−φp).
However, for the particular external inputs we consider
below, the qualitative structure of the force law as a func-
tion of the input perturbation will be highly intuitive.

Path integration through conjunctive position velocity
inputs Following (27, 28), we achieve path integration
by coupling the attractor network to conjunctive position
and velocity-tuned cells such that east (west) movement-
selective cells form feedforward synapses into the attrac-
tor network that are shifted in the positive (negative) u
direction (Fig. 2A, B). We can use our model reduction
framework via Eq. 2 to show analytically (App. B) that

this choice of connectivity leads to path integration:

dφA/dt= vx ·kx. (3)

Here, kx is a constant of proportionality that relates ani-
mal velocity to the rate of phase advance in the attractor
network(kx = 2π/Field Spacing). Solving Eq. 3 allows us
to recover path integration where the resulting integrated
attractor phase is only a function of current position r(t):

φA(t) = φA(r(t)) = φA(0) + kx · [rx(t)− rx(0)].

Thus the connectivity of the conjunctive position veloc-
ity cells in Fig. 2A, B ensure that as the mouse moves
east (west) along a 1D track, the attractor phase moves
clockwise (counterclockwise), at a speed proportional to
velocity. The collection of neurons in the attractor then
trace out periodic firing patterns as a function of spatial
position, all with the same period but different phases.K
" K"
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Fig. 2. A) When the animal moves east, east-conjunctive cells with biased
outgoing connections move the attractor pattern in the positive u direction. B)
When the animal moves west, the attractor pattern is moved in the negative u
direction. C) Schematic of a landmark cell correcting the the attractor bump
(Eq. 4). A single landmark cell will pull the peak of the bump pattern towards
the peak of its efferent synaptic strength profile.

However, even though these 1D grid cell firing patterns
are now a function of physical space, they still are not yet
anchored to the environment. There is as yet no mecha-
nism to set the phase of each cell relative to landmarks,
and indeed these grid patterns rapidly decohere without
anchoring to landmarks, as demonstrated experimentally
(20, 29). Coupling the attractor network to landmark-
sensitive cells can solve this problem.

Landmark Cells We model each landmark cell i as
purely sensory driven cell with a firing rate that depends
on location through Firingi(t) = Hi(r(t)). Here Hi(r) is
the firing field of the landmark cell. An example of a land-
mark cell could, for example, be an entorhinal border cell
(4). Every landmark cell forms feed-forward connections
onto each cell in the attractor network at ring position u
with a synaptic strength Wi(u).
Consider for example a single landmark cell whose synap-
tic strength W(u) as a function of position u on the neural
ring consists of a single bump centered at a particular lo-
cation u = φL (Fig. 2C). Through our model reduction
framework of Eq. 2, if this landmark cell fires, then it
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will exert a force on any other attractor bump pattern
sSS(u−φA) centered at u= φA, through:

dφA
dt

= ωForceA
(
φL−φA

)
. (4)

Here we have introduced ω as a parameter that controls
how strongly landmark cells influence the attractor phase.
In essence, when each landmark cell fires, it forces the
the attractor state φA to flow towards the phase φL corre-
sponding to the location of its maximal outgoing synaptic
strength. An attractor phase φA that is smaller (larger)
than the landmark cell synapses’ peak location φL will in-
crease (decrease) and settle down at φL (Fig. 2C). Indeed
for general synaptic strength patterns peaked at u= φL,
the force law will have the same qualitative features as
ForceA

(
φL−φA

)
= sin(φL−φA) (App. B.1).

However there is, as of yet, no mechanism to enforce
consistency between the path integration dynamics of the
attractor network in the absence of landmarks in Eq. 3,
with the driving force exerted by a landmark cell to a
particular phase φL through Eq. 4. We next introduce
Hebbian plasticity of efferent landmark cell synapses dur-
ing exploration while both path integration and landmark
cells are active. We then show how such plasticity yields
a precise mechanism for the self-consistency required of
any spatial map forming circuit.

Hebbian Learning Between Landmark Cells and Attrac-
tor Networks. We assume that each synapse Wi(u)
from a landmark cell i to an attractor cell at position
u undergoes Hebbian plasticity with some weight decay,
thereby learning to reinforce attractor patterns that are
active when the landmark cell fires. Moreover, we assume
the dynamics of plasticity varies slowly, over a timescale
T that is much longer than the timescale t over which ex-
plorations occur. Then Hebbian learning drives synaptic
strengths towards the long-time average of attractor states
that occur during landmark cell firing through

dWi(u)/dT = 〈s(u)|i Firing〉−Wi(u). (5)

Assuming the effect of landmark cells on the attractor net-
work is strong enough to affect the position of the bump
patterns, but not strong enough to change their shape, then
the long term average 〈s(u)|i Firing〉 of attractor patterns
s(u) occurring whenever the landmark cell i fires can be
written as

〈s(u)|i Firing〉=
∫

φL
sSS(u−φL)Pr(φA(t) = φL|i Firing).

Thus all that matters for determining synaptic strength is
the distribution of attractor phases that occur when the

landmark cell fires.
Now, because the learning rule is linear and the landmark
cell synapses only observe attractor steady states, the
Hebbian weights Wi(u) can be written as a weighted su-
perposition of the attractor bump patterns with weighting
coefficients W̃i(φL):

Wi(u) =
∫

φL
W̃i(φL)sSS(u−φL). (6)

Furthermore, inserting Eq. (6) into Eq. (5) yields the
learning dynamics of the synaptic weighting coefficients
(see App. A for a proof):

dW̃i(φL)/dT = Pr(φA(t) = φL|i Firing)−W̃i(φL). (7)

Combined neural and synaptic dynamics during explo-
ration. By combining the effect of path integration on
the attractor phase φA described in Eq. (3) with the effect
of multiple landmark cells with arbitrary learned weights
W̃i

(
φL
)
, each acting on the phase through Eq. (4), we

obtain the full dynamics of attractor phase driven by both
animal velocity and landmark encounters:

d

dt
φA = vx ·kx

+
∑

i

ωiHi(r(t))
∫

φL
W̃i

(
φL) ForceA

(
φL−φA

)
.

(8)

Together, Eq. 7 and Eq. 8 reflect a complex coupled dy-
namics between neurons and synapses. In Eq. 7 the dis-
tribution of attractor network activity patterns, or phases,
drives plasticity in synapses from landmark cells to the
attractor network. In turn, these synaptic weights modify
the evolution of the attractor network phase via Eq. 8.

Coupled landmark and attractor phase dynamics in the
linearized model. The learned weights of a landmark
cell are composed of a distribution of attractor network
states. Linearizing ForceA(φL−φA) ≈

(
φL−φA

)
, we

can simplify this representation to a single variable: the
weighted average of the distribution θ =

∫
φL W̃i(φL)φL,

yielding a simplified equation for describing the neuronal
and synaptic outcome of navigation and learning (see
App. B):

dφA/dt= kx ·vx+
∑

i

ωiHi(r(t))(θi−φA), (9)

dθi/dT = 〈φA(t)|Cell i Firing〉−θi. (10)

In essence Eq. 9 and Eq. 10 constitute a significant model
reduction of Eq. 1 and Eq. 5. In this reduction, the en-
tire pattern of neural activity of the attractor network is
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summarized by a single number φA, denoting a point, or
phase, on the ring manifold of stable attractor states. Sim-
ilarly, the entire pattern of synaptic weights Wi(u) from
landmark cell i into the attractor network is summarized
by a single number θi, denoting the learned attractor net-
work phase associated with the landmark cell’s synapses.
Intuitively, the reduced Eq. 9 describes both path inte-
gration and a dynamics whereby each landmark cell i
attempts to pin the attractor phase φA to the landmark
cell’s learned phase θi, each time the physical position
r(t) of the animal is within the landmark’s firing field Hi.
In turn, synaptic plasticity described in Eq. 10 aligns the
learned pinning phase θi of each landmark cell i to the
average of the ensemble of attractor phases φA that occur
when the animal is in the firing field of the landmark.
As we will see below, as an animal explores its envi-
ronment, this coupled dynamics between attractor phase
φA and landmark pinning phases θi settle into a self-
consistent steady state such that the attractor phase yields
an internal estimate of the animal’s current position that
is, to first order, largely independent of the history of the
animal’s previous trajectory. Moreover, each landmark
cell learns a pinning phase θi, consistent with the location
of its firing field in physical space.

Learning a simple environmental geome-
try
We now examine solutions to these equations to under-
stand how neuronal dynamics and synaptic plasticity con-
spire to yield a consistent map of the environment. To
build intuition, first consider the linearized dynamics of
Eqs. 9, 10 for the simple case of an animal moving back
and forth between the walls of a 1D box of length L, at
a constant speed v = L/τ , yielding a total time of 2τ to
complete a full cycle (Fig. 3A). In this environment we as-
sume two landmark cells corresponding to the east (west)
walls, with firing fields extending a distance LWall into the
environment leaving an empty space LInt = L− 2LWall
between. Their pinning phases θEast (θWest) encode the
peak position of their outgoing synaptic weights. How
does circuit plasticity yield a consistent environmental
representation through exploration?
We will build intuition in the limit where LWall→ 0, ω→
∞; in this regime, landmark cells only act at the very
edge, yet fully anchor the attractor state when the animal
touches the edge. At t= 0, the animal starts at the west
wall at physical position r(0) = −L/2. Through Eq. 9,
the west border cell pins the initial attractor phase so that
φA(0) = θWest. At t= τ , the animal travels to the east wall
at physical position r(τ) = +L/2, and the attractor phase
advances due to path integration to become to become
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Fig. 3. A) An animal moving between two landmarks at the edges of a 1D
track. B) A single cycle of exploration as the animal moves from the west to
east wall and back. When the animal encounters the west (east) wall, the
attractor phase (black arrow) is pinned to the associated landmark pinning
phase (blue/red arrow for west/east wall). As the animal moves from one
wall to the other, the attractor phase advances from this pinned phase due
to path integration. During learning, the pinning phase from any one wall,
plus the phase advance due to path integration, will not equal the pinning
phase of the other wall. However, plasticity will adjust the pinning phase of
each wall to reduce this discrepancy (motion of red and blue arrows). During
this inconsistent pre-learned state, the attractor phase at any interior posi-
tion will depend on path history. C) After learning, the pinning phase from
any one wall, plus the phase advance due to path integration, equals the pin-
ning phase of the other wall, yielding a consistent internal representation of
space in which the attractor phase assigned to any interior point becomes
independent of path history. D) We can “unroll” the attractor and landmark
phases into linear position variables. Thus landmark cell synapses can be
thought of as points in physical space (blue and red circles). If the phase ad-
vance due to path integration exceeds phase difference between the pinning
phases of the landmarks, then the distance between the landmark cells in
unrolled phase is closer than the physical distance between the firing fields of
the landmarks (top). Plasticity then exerts an outward force pushing the two
landmark cells further apart until their separation in unrolled phase equals
the physical distance between between their firing fields (bottom). E) In gen-
eral, the changing positions in unrolled phase associated with landmark cell
synapses due to synaptic plasticity can be described by a damped spring-
like interaction as in Eq. 11 and Eq. 12. If the separation between the two
landmark cell synapses in unrolled phase is smaller (larger) than the physi-
cal separation between their firing fields, then the spring will be compressed
(extended), yielding an outward (inward) force. This force will move the posi-
tions associated with landmark cell synapses until their separation in unrolled
phase equals the rest length of the spring, which in turn equals the physical
separation between landmark firing fields.
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φA(τ−) = θWest + kxL. However, upon encountering the
east wall, the east border cell pins the attractor phase to
θEast.

Before any learning, there is no guarantee that the east
border cell pinning phase θEast equals the attractor phase
θWest + kxL, obtained by starting at the west wall and
moving to the east wall; sensation and path integration
might disagree (Fig. 3B). However, plasticity described
in Eq. 10 will act so as to move θEast closer to θWest +kxL.
Then as the animal returns to the left wall at time t= 2τ ,
path integration will retard the attractor phase φA(2τ) =
θEast−kxL, and an encounter with the west wall leads the
west border cell to pin the attractor phase to θWest. Again,
there is no guarantee that the west border cell pinning
phase θWest agrees with the attractor phase θEast− kxL
obtained by starting at the east wall and traveling to the
west wall, but circuit plasticity will change θWest to reduce
this discrepancy. Overall, plasticity over multiple cycles
of exploration yields the iterative dynamics

θEast→ θWest + kxL, θWest→ θEast−kxL.

Thus the phase difference θEast− θWest between the pin-
ning phases of the two landmark cells will approach
the phase advance kxL incurred by path integration be-
tween the two landmarks. Thus learning can precisely
co-register sensation and path integration so that these
two information sources yield a consistent map of space
(Fig. 3C). In particular, the attractor phase assigned by
the composite circuit to any point in the interior of the
environment now becomes independent of which direc-
tion the animal is traveling, in contrast to the case before
learning (compare the assigned interior phases in Fig. 3B
versus C).

Learning as an elastic relaxation between landmarks.
To gain further insight into the learning dynamics, it is
useful to interpret the periodic attractor phase φA(t) as
an internal estimate of position through the “unrolled”
coordinate variable RS = φA/kx. Likewise, we can re-
place the landmark phase θi with another linear vari-
ableRL

i = θi/kx, denoting the internal representation of
the position of landmark i (Fig. 3D). This enables us to
associate physical positions to landmark cells, or more
precisely their pinning phases, although these assigned
positions are defined only up to shifts of the grid period.
Plasticity over the long timescale T of exploration then
yields the following learning dynamics for the physical

positions in unrolled phase for the landmark cells:

dRL
East/dT =−MWE

[
RL

East−
(
RL

West + ∆RS
W→E

)]
(11)

dRL
West/dT =−MWE

[
RL

West−
(
RL

East + ∆RS
E→W

)]
, (12)

where ∆RS
W→E =−∆RS

W→E = L.
This dynamics for the two landmark cell synapses in
unrolled phase is equivalent to that of two particles at
physical positions RL

West and RL
East, connected by an

overdamped spring with rest length L, and spring con-
stant MWE which sets the learning rate (Fig. 3E). If the
separation RL

East −RL
West between the particles is less

(greater) than L, then the spring is compressed (extended)
yielding a repulsive (attractive) force between the two
particles. Learning stabilizes the two particle positions
when their separation equals the spring rest length, so
thatRL

East−RL
West = L. This condition in unrolled phase

is equivalent to the fundamental consistency condition
for a well defined spatial map, namely that the phase ad-
vance due to path integration equals the phase difference
between the pinning phases of landmark cells (Fig. 3C).
However the utility of the unrolled phase representation
lies in revealing a compelling picture for how a spatially
consistent map arises from the combined neuronal and
synaptic dynamics, through a simple, emergent first order
relaxational dynamics of landmark particles connected
by damped springs. As we see below, this simple effec-
tive particle-spring description of synaptic plasticity in
response to spatial exploration generalizes to arbitrary
landmarks in arbitrary two dimensional environments.
We note that if the environment has not been fully learned
or has been recently deformed, the internal representation
of landmarks in unrolled phase will lag behind the true
geometry for a time, leading to “boundary-tethered” firing
fields seen in (22, 30). Additionally, we have solved the
dynamics when the firing fields of the border cells have
a finite extent LWall and the landmark cells have a finite
strength ω, and we find the dynamics obeys that of Eq.
11 and Eq. 12, with a different rest length ∆RS

W→E =
LInt + 2vtanh(ωLWall/2v)/ω (See App. D).

Generalization to 2D Grid Cells
In order to make contact with experiments, we generalize
all of the above to two dimensional space. Now grid cells
live on a periodic two-dimensional neural sheet, where
each neuron has position u = (u1,u2). The dynamics,
analogous to Eq. 1 are:

ds(u)
dt

=−s(u) +F
[∫∫

u′
J(
∣∣u−u′

∣∣)s(u′)
]
. (13)
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Therefore, the coordinate „̨ specifying a point on the
manifold of stable attractor patterns is a periodic variable
defined modulo the periodicity of the steady state pattern:

(„u,„v) © („u,„v) + (2fi, 0) © („u,„v) + (fi,
Ô

3fi)

Applying the same machinery developed for the 1D case,

Fig. 6. a) A 2D neural sheet with short-range excitation and long-range inhi-
bition, analogous to Fig. 1. Each neuron on the continuous sheet now has
coordinates (u, v). b) A 2D analogue of the reduced dimension attractor state
representation of Fig. 1. Now, instead of an angle, w is a position on the
periodic rhombus(periodicity shown through equivalent states). Lines drawn on
top represent the “unit cell” to guide the eye. c) A 2D analogue of the landmark
cell representation of Fig. 5, where the learned state W̃i(wÕ) is a distribution
over that rhombus. c) A 2D analogue of the force law. The state of an attractor
network w will be pulled towards the distribution W̃i(„̨L).

we may arrive at the master equations for short-term
orientation of the attractor state „̨A(t):

d

dt
„̨A(t) =

¡
K · d

dt
r

¸ ˚˙ ˝
Path Integration

+ [17]

ÿ

i

Hi(r(t))
⁄

„̨L
W̃i

!
„̨L"

ForceA
!
„̨A ≠ „̨L"

¸ ˚˙ ˝
Landmark Cells

, [18]

Where we have replaced k with
¡
K, a matrix that translates

animal movement into path integration in the attractor
network, encoding both grid spacing and orientation. The
analogous equations for learning are:

dW̃i(„̨L)
dT = Pr(„̨A(t) = „̨L|Firing)¸ ˚˙ ˝

Hebbian

≠W̃i(„̨L)¸ ˚˙ ˝
Forgetting

. [19]

In an analogous manner to 2 to map two dimensional
space, we replace the attractor phase „A(t) with a 2D
attractor coordinate variable RS, reflecting an internal
estimate of instantaneous position in physical space, and
we replace the landmark phase W̃i

!
„̨L"

with another 2D
attractor coordinate variable RL

i reflecting the internal
estimate of landmark position, yielding D = 2 dimen-
sional dynamics for position self-estimates and landmark
position estimates.

Fig. 7. Schematic an animal moving between two landmark fields with position
self-estimate at every part of the cycle.

4. Learning a simple environmental geometry
We now examine solutions to these equations to under-
stand how neuronal dynamics and synaptic plasticity
conspire to yield a consistent map of the environment. To
build intuition, we consider the simple case of an animal
moving back and forth between the walls of a 1D box of
length L, at a constant speed v = L/2· , yielding a total
time of 4· to complete a full cycle (Fig. 7). What inter-
nal environmental representation will the animal learn
through this exploration process? We define four key
events underlying this exploration: at t = 0, the animal
starts at the left wall at physical position r(0) = ≠L

2 ,
but with an internal position estimate RS(0) © RS

0 . At
t = · , the animal travels through the center of the box
at physical position r(·) = 0, but with internal estimate
RS(·) © RS

1 . At t = 2· , the animal touches the right
wall at physical position r(2·) = +L

2 with internal esti-
mate RS

2 . And at t = 3· , the animal travels back to the
center of the box at physical position r(3·) = 0, with
internal estimate RS

3 . The animal then runs back to the
starting point at 4· . In addition to these internal esti-
mates, corresponding to the time-dependent phase of the
attractor network, we imagine two landmark cells A (B)
corresponding to the right (left) walls, with phases RL

East
(RL

West) encoding their out-going synaptic weights. The
firing fields of these cells extend a distance LWall into the
environment leaving an empty space LInt = L ≠ 2LWall
between.

After several exploration cycles, under the learning
dynamics in Eq. 12, the internal position estimates
RS

0 , . . . ,RS
3 and learned landmark position estimates

RL
East and RL

West will reach steady state values reflecting
the environmental and exploratory parameters. Indeed,
we find, after the learning process is completed, the ani-
mal will learn the self-consistent constraints (Proof:App.
??):

RL
East = ≠RL

West = [[LInt/2] + tanh (ÊLWall/2v) v/Ê.]

In the limit of Ê æ 0, we have RL
East ≠ RL

West =
LInt + LWall. Thus the di�erence in the learned internal
positions of the two landmarks is simply the physical dis-
tance between the center of mass of their firing fields. For
larger Ê, this di�erence is smaller due to pinning e�ects
which we discuss in the next section. Nevertheless, for
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Fig. 4. A) A 2D neural sheet with short-range excitation and long-range inhibition, analogous to Fig. 1. Each neuron on the continuous sheet now has coordinates
u = (u1,u2). B) A 2D analogue of a single attractor pattern on the neural sheet, with high firing rates in red (compare to Fig. 1). The set all unique stable
attractor patterns is now indexed not by a single phase variable as in 1D, but a 2D phase variable ~φA ranging over a rhombus, or unit cell. Copies of the unit cell
are shown via white lines. C) The landmark cell hebbian weights will be a combination of 2D attractor states (Eq. 15). As the animal travels along the south wall,
the average firing rates will form a “streak” across the neural sheet. This leads the hebbian weights on the neural sheet to form the same streak; this learned state
can be represented as a distribution over the periodic rhombus. Analogously, there is a force law, where the state of an attractor network ~φA will be pulled towards
this distribution W̃i(~φL) (Eq. 14). D) Similarly to Fig. 3D, we can unroll the two-dimensional attractor phase into a two-dimensional position variable, thereby
associating landmark pinning phases to points in physical space. Given landmarks in all four corners, the landmark pinning phases correspond to different points
on the phase rhombus, but through unrolling this rhombus, each can be associated to a physical corner of the environment.

Where J includes short-range excitation and long-
range inhibition(Fig. 4A). Attractor dynamics on a
two-dimensional neural sheet can now yield a two-
dimensional family of stable, or steady state, localized
bump activity patterns sSS(u− ~φA) with hexagonal sym-
metry (App. E). The attractor state is now a 2D phase ~φA
on the periodic rhombus (Fig. 4B).
Applying the same techniques used to derive Eq. 8, we
obtain a 2D analogue to dynamics of the attractor state:

d

dt
~φA(t) =

↔
K · d

dt
r+

∑

i

ωiHi(r(t))
∫

~φL
W̃i

(
~φL
)

ForceA

(
~φL− ~φA

)
.

(14)

Here we replaced kx in 1D with
↔
K, a matrix that translates

2D animal velocity into phase advance in the 2D attractor

network;
↔
K determines both grid spacing and orientation.

The analog of learning dynamics in (Eq. 7) is:

dW̃i(~φL)
dT

= Pr(~φA(t) = ~φL|i Firing)−W̃i(~φL), (15)

where W̃i(~φL) is now a distribution over the periodic
rhombus (Fig. 4C).
In an analogous manner, we may make a small-angle
approximation to replace the attractor phase φA(t) with
a two-dimensional attractor coordinate variable RS(t),
reflecting an internal estimate of instantaneous position
in physical space, and we replace the landmark phase
W̃i(~φL) with another 2D attractor coordinate variableRL

i

reflecting the internal estimate of landmark position(Fig.
4D). This yields two-dimensional dynamics for position
self-estimates and landmark position, given in analogy to
Eqs. 9, 10 by:

dRS/dt= dr/dt+
∑

ωi Hi(r(t)) ·
(
RL
i −RS

)
, (16)

dRL
i /dT =

〈
RS(t)|Cell i Firing

〉
−RL

i . (17)

Spatial consistency through emergent
elasticity
We showed in Eq. 11 and Eq. 12, and in Fig. 3DE that the
emergence of spatial consistency between path integra-
tion and landmarks through Hebbian learning dynamics,
during exploration of a simple 1D environment, could
be understood as the outcome of an elastic relaxation
process between landmark cell synapses, viewed as par-
ticles in physical space connected by damped springs.
Remarkably, this result generalizes far beyond this sim-
ple environment. As long as the exploration dynamics
are time-reversible1, the learning dynamics of any set of
landmark cells in any geometry yields this particle-spring
interpretation:

dRL
i /dT =−

∑

j

Mij

(
RL
i −

[
RL
j + ∆RS

j→i
])
. (18)

The spring constant Mij is related to the frequency with
which the animal moves between each pair of landmark

1Time-reversible means that for any r(t), the reverse path r(−t) is
equally likely

Samuel Ocko et al. | bioRχiv | Saturday 19th May, 2018 | 7–27

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 21, 2018. ; https://doi.org/10.1101/326793doi: bioRxiv preprint 

https://doi.org/10.1101/326793
http://creativecommons.org/licenses/by-nd/4.0/


DRAFT

firing fields i, j, while the rest displacement ∆RS
j→i is

the average change in unrolled attractor phase as the ani-
mal moves from firing field j to field i, roughly related to
the distance between the landmark firing fields. Precise
expressions for the spring constants and rest lengths are
derived from the statistics of exploration in (App. F).
Overall, this elastic relaxation process converges towards
an internal map where all pairs of landmark cell synapses,
viewed as particles in unrolled phase, or physical space,
become separated by the physical distance between their
firing fields. This convergence ensures a consistent in-
ternal environmental map of external space in which ve-
locity based path integration of attractor phase starting
at the pinning phase of landmark i and ending at land-
mark j will yield an integrated phase consistent with the
pinning phase of landmark j itself. This relaxation dy-
namics explains path-dependent shifts in firing patterns
observed in recently deformed environments (22). Also,
the experimental observation that in multi-compartment
environments, consistent maps within compartments form
before consistent maps between compartments are also
explained (10) by this relaxation dynamics. In essence,
the longest-lived learning mode of the relaxation dynam-
ics corresponds to differences in maps between compart-
ments.
Furthermore, as we explain in the next three sections,
these relaxation dynamics yields several novel experi-
mental predictions: (1) systematic path-dependent shifts
in fully learned 2D environments, (2) mechanical defor-
mations in complex environments, and (3) the novel pre-
diction of creation of topological defects in grid cell firing
patterns through specific environmental manipulations.

Path-dependence in 2D environments
We saw above that exploration in a simple 1D geometry
lead to a consistent internal map in which the attractor
network phase was mapped onto the current physical po-
sition alone, independent of path history (Fig. 3C). This
consistency arises through the elastic relaxation process
in Eq. 11 and Eq. 12, which makes the distance between
the landmark cells in unrolled phaseRL

East−RL
West equal

to the physical distance between their firing fields L, just
like two particles connected by a spring with rest length
L (Fig. 3E). This situation will generalize to two dimen-
sions if there are only two landmarks, namely a west and
east border cell (Fig. 5A1). However, it becomes more
complex with the addition of a third landmark cell, for
example a south border cell (Fig. 5A2).
In this case, east and west landmark particles will be
connected by a spring of rest length ∆RS

E→W = L, as
before, but they will each also be connected to the south

landmark particle with springs. Intuitively, as the mouse
travels from the east or west walls to the south walls, the
landmark pinning phases of each of these three border
cells will be attracted towards each other2. The combined
three particle elastic system will settle into an equilib-
rium configuration in which the difference in unrolled
phase between east and west landmarks will be less than
the physical separation L, or equivalently the rest length
∆RS

E→W of the spring connecting them. This in turn
implies that the attractor phase assigned to any physical
position in the interior will be relatively phase advanced
(retarded) if the mouse is on a trajectory leaving the west
(east) wall. This path dependence in the attractor phase
is entirely analogous to that seen in Fig. 3B. However,
the reason is completely different. In Fig. 3B, the land-
mark particles are not separated by the rest length of the
spring connecting them because the environment is not
fully learned and so the particles are out of equilibrium,
whereas in Fig. 5A2, the particles are not separated by the
rest length, even in a fully learned environment, because
additional springs from the south landmark create excess
compression.
This theory makes a striking experimentally testable pre-
diction, namely that even in a fully learned 2D environ-
ment, grid cell firing fields, when computed on subsets
of mouse trajectories conditioned on leaving a particu-
lar border, will be shifted towards that border (Fig. 5B).
This shift occurs because at any given position, the at-
tractor phase depends on the most recently encountered
landmark. In particular, on a west to east (east to west)
trajectory, the attractor phase will be advanced (retarded)
relative to a east to west (west to east) trajectory. Thus on
a west to east trajectory, the advanced phase will cause
grid cells to fire earlier, yielding west shifted grid cell
firing fields as a function of position. Similarly on an
east to west trajectory, grid fields will be east shifted.
In summary, the theory predicts grid cell firing patterns
conditioned on trajectories leaving the west (east) border
will be shifted west (east). While we have derived this
prediction qualitatively using the conceptual mass-spring
picture in Fig. 5A2, we confirm this intuition through
direct numerical simulations of the full circuit dynamics
in Eq. 14 and Eq. 15 (Fig. 5C2). Under reasonable pa-
rameters, our simulations can yield path-dependent shifts
of up to ∼2 cm towards whichever wall the animal last
touched (App. G).
We searched for such subtle shifts in a population of 143
grid cells from 14 different mice that had been exploring a
familiar, well-learned, 1-meter open field (App. H), using

2More complex, non-overlapping distributions yield the same defor-
mations.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 21, 2018. ; https://doi.org/10.1101/326793doi: bioRxiv preprint 

https://doi.org/10.1101/326793
http://creativecommons.org/licenses/by-nd/4.0/


DRAFT
KK K) cuteinductoramericaninductor

1

cuteinductoramericaninductor

1

cuteinductoramericaninductor

1

cuteinductoramericaninductor

1

cuteinductoramericaninductor

1

cuteinductoramericaninductor

1

cuteinductoramericaninductor

1

cuteinductoramericaninductor

1

RL
EastRL

West

A1

RL
West

) c
u

t
e

in
d

u
c

t
o

r

a
m

e
r
ic

a
n

in
d

u
c

t
o

r

1

c
u

t
e

in
d

u
c

t
o

r

a
m

e
r
ic

a
n

in
d

u
c

t
o

r

1

c
u

t
e

in
d

u
c

t
o

r

a
m

e
r
ic

a
n

in
d

u
c

t
o

r

1

c
u

t
e

in
d

u
c

t
o

r

a
m

e
r
ic

a
n

in
d

u
c

t
o

r

1

cuteinductoramericaninductor

1

cuteinductoramericaninductor

1

cuteinductoramericaninductor

1

cuteinductoramericaninductor

1

cuteinductoramericaninductor

1

cuteinductoramericaninductor

1

cuteinductoramericaninductor

1

cuteinductoramericaninductor

1

RL
South

c
u

t
e

in
d

u
c

t
o

r

a
m

e
r
ic

a
n

in
d

u
c

t
o

r

1

c
u

t
e

in
d

u
c

t
o

r

a
m

e
r
ic

a
n

in
d

u
c

t
o

r

1

c
u

t
e

in
d

u
c

t
o

r

a
m

e
r
ic

a
n

in
d

u
c

t
o

r

1

c
u

t
e

in
d

u
c

t
o

r

a
m

e
r
ic

a
n

in
d

u
c

t
o

r

1

 !
! 

! 
RL

East

A2

(RL
East�RL

West)Eq = �RW!E�RS
W!E

�R S
W!

S ⇡
0

�
R
S
S!

E
⇡ 0

(RL
East�RL

West)Eq < �RW!E�RS
W!E

RL
East��RW!E

RL
West+�RW!E

S

S

RL
SouthRL

South

RL
West

RL
East

RL
East��RW!E

S

Simulation Data

C1

C2

B

D

C

RL
EastRL

West

�RS
W!E

��RS
E!W�RS
W!E

Path Conditioned �A

Path Conditioned Firing Rate

RL
West+�RW!E

S

Fig. 5. A1) For two landmark cells, the rest length ∆RS
W→E of the spring connecting them equals the physical width L of the environment, and so the two

landmark particles learn unrolled pinning phasesRL
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West obeying the spatial consistency condition (RL
East−RL

West)Eq = ∆RS
W→E = L as in Fig. 3C.

A2) The addition of a southern landmark cell will cause a pinning effect which pullsRL
West,RL

East closer together. The animal can travel from the east and west
landmark field to the southern landmark field with little path integration at all, yielding ∆RS

W→S ≈ 0, ∆RS
S→E ≈ 0. B) If the attractor phase is advanced on

a west to east trajectory (blue) relative to an east to west trajectory (red), then any particular grid cell (in this case the shaded grey cell) will fire earlier (later)
on west-to-east (east-to-west) trajectory. Thus grid fields computed from trajectories leaving the west (east) border will shifted west (east). C1) When landmark
pinning phases are pulled together closer than the path integration distance between them, then the attractor phase will shift away from whichever wall the animal
last encountered. Therefore it will phase advance on west-to-east trajectories relative to east-to-west trajectories, as in Fig. 3B and Fig. 5B. C2) Thus simulations
of Eq. 14 and Eq. 15 lead to grid cell firing patterns shifted towards whichever wall the animal last encountered.
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are symmetric with respect to the swapping of rB, rA.

This proof assumes uniform density of animal positions with uniform areas and strengths of each landmark cell.
The proof can be generalized beyond these constraints by making e�ective particles corresponding to certain landmarks
more “massive”, but here we present the simpler proof in the interest of clarity.

G. Simulations

In our simulations, we discretize space onto a grid. For simplicity, we have the animal follow di�usive dynamics,
implemented through a random walk; at every time step, the animal moves to one of four neighboring cell; any
move which would take the animal outside the box is prohibited. The animal has a position self-estimate RS

t , which
undergoes discrete path-integration at every time step:

RS
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Afterwards, the position self-estimate is pulled towards the position estimates of any landmark cells which are firing:
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At every learning epoch T, the simulated animal is placed in the box with an initial position and position self-estimate
and explores to get good statistics. R̄S(r) is logged, and at the end of each learning epoch, the position estimate of
each landmark cell i is updated to be the average position self-estimate when the landmark cell is firing.

RL
i,T+1 æ R̄S

i,T

RL
i,T will converge after a handful of learning epochs. The learned states are initialized to their firing field center of

masses.
The Grid Cell pattern is visualized by using a truncated parabolic firing rate max(1 ≠

1
„̨A≠„̨0

D

22
, 0), where the field

width D is chosen to be 2fi/5.

H. Shear

One geometric e�ect observed is the shearing grid cell firing fields due to landmark cells. Starting o� with a gain
matrix

¡
K with a rotation component leads to shearing by the walls (Fig. 14). Because the periodicity of the attractor

pattern along the East-West walls is
Ô

3/2 longer than the periodicity along the North-South walls, the shearing is
dominated by that of the North-South walls. This leads to a Y-Sheared Rotated pattern; this correlation between
rotation and shear is the opposite of what is observed in (7), raising more questions about the underlying mechanisms
behind the shearing of these patterns.
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Fig. 6. A) Our theory predicts that grid cell firing patterns will be shifted
towards whichever wall the animal last encountered, even in a fully learned
environment. B) On the left (right) this shift is detected by computing the
cross correlation between west (south) conditioned firing fields, shifted by a
spatial offset ∆r, and the unshifted east (north) conditioned firing field. The
cross correlation peaks when the spatial shift is positive in the x-direction
(positive in the y-direction), as predicted by theory. C) This effect can also be
seen by comparing histograms of spike positions around firing field centers
for different path conditions.

two separate analyses, based on cross-correlations and
spike shifts with respect to field centers.

Cross-Correlations One method for detecting a sys-
tematic firing field shift across many grid fields is to
cross-correlate firing rate maps conditioned on trajecto-
ries leaving two different borders (App. A.1). For ex-

ample, for each cell, we can ask how much and in what
direction we must shift its west border conditioned firing
field to match, or correlate as much as possible with, the
same cell’s east conditioned firing field. In particular,
for each cell, we can compute the correlation coefficient
between a spatially shifted west conditioned field and
an unshifted east conditioned field, and plot the average
correlation coefficient as a function of this spatial shift.
The theory predicts that we will have to shift the west
conditioned firing field eastwards to match the east condi-
tioned firing field (Fig. 6A). This prediction is confirmed
by a peak in the cross-correlation as a function of spatial
shift when the spatial shift is positive, or directed east
(Fig. 6B).
A similar logic holds for north and south; in order to max-
imally correlate the south conditioned field to the north
conditioned field, the theory predicts we will need to shift
the south conditioned map north. This requisite shift is
seen in the data in Fig. 6B, which reflects the cross corre-
lation between a shifted south field and an unshifted north
field, averaged across all cells. The maximal correlation is
achieved when the south fields are shifted north. Overall,
this analysis shows that grid patterns are shifted towards
the most recently encountered wall, both for the NS walls
(3 cm, P = 1.5 · 10−5, Binomial Test, P = 1.5 · 10−5,
Sign-Flip Test) and the EW Walls (1.5 cm, P = 10−7,
Binomial Test, P = 10−7, Sign-Flip Test), matching the
sign and magnitude seen in simulations.

Firing Field Centers These results can be corroborated
by computing shifts in spikes relative to firing field cen-
ters, when conditioning spikes on the path history (App.
A.2). For each firing field center, we calculate the average
spike position within that firing field conditioned on the
animal having last touched a particular wall. For each
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cell, we calculate the average shift across all firing fields,
and examine how the shifts depend on which wall the an-
imal last touched. Again, the patterns are shifted towards
whichever wall the animal last touched(Fig. 6C) for both
the NS walls (.5 cm, P = 10−5 Binomial Test, P = 10−5

Sign-Flip Test) and the EW Walls (.5 cm, P = 3 ·10−4

Binomial Test, P = 2 · 10−2 Sign-Flip Test). The dis-
crepancy in the estimated magnitude of the shift between
the methods of analysis is likely due to poorly defined
firing fields; a method based on firing field centers will
give a lower signal-to-noise ratio, and thus a lower shift
magnitude, than the cross-correlogram method.

Mechanical deformations in complex envi-
ronments
Another experimental observation that can be reproduced
by our theory is the distortion (11) of grid cell patterns
seen in an irregular environment(Fig. 7A). Landmark
cells with firing fields distributed across an entire wall
will pull the attractor phase to its associated landmark
pinning phase regardless of where along the wall the ani-
mal is. The presence of a diagonal wall then causes the
average attractor phase as a function of position to curve
towards the wall, yielding spatial grid cell patterns that
curve away from the wall (Fig. 7B, C). Previous theoreti-
cal accounts of this grid cell deformation have relied on
purely phenomenological models that treated individual
grid cell firing fields as particles with mostly repulsive
interactions (15), without a clear mechanistic basis under-
lying this interaction. Here we provide, to our knowledge
for the first time, a model with a clear mechanistic basis
for such deformations, grounded in the interaction be-
tween attractor based path integration and landmark cells
with plastic synapses. Such dynamics yields an emergent
elasticity where the particles are landmark cell synapses
rather than individual firing field centers. -14.25
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latter, we divided the trapezoid and square into two equal parts (Fig. 4a;
area of half-trapezoid 0.51 m2, half-square 0.41 m2) and compared firing
on either side. Figure 4b, c shows that the local spatial structure (defined
by the spatial autocorrelogram) differs more strongly between the two
sides of the trapezoid than between the sides of the square (r 5 0.11 6
0.07 versus 0.50 6 0.06, trapezoid and square, respectively, P , 0.001,
t 5 24.0, df 5 18, two-sample t-test, 10 grid modules, 32 grid cells).
Moreover, gridness was lower in the left of the trapezoid than the right
(Fig. 4d, 20.35 6 0.07 and 0.23 6 0.17, respectively, P 5 0.006, t 5
23.11, df 5 18, two-sample t-test) but not in the square (0.71 6 0.09
and 0.68 6 0.11, P 5 0.87, t 5 0.17, df 5 18, two-sample t-test). Grid-
ness was lower on the right of the trapezoid compared to both parts of
the square even though they are of comparable shape and area (P 5
0.009; F 5 6.18; two-way ANOVA), suggesting an influence from the
left side of the trapezoid. Additionally, the diameters of the individual
fields were larger on the left of the trapezoid than the right (Fig. 4e,
P , 0.001, t 5 4.1, df 5 18, two-sample t-test) but not in the square
(P 5 0.39, t 5 0.88, df 5 18, two-sample t-test). Notably, the field sizes
on the right of the trapezoid were not different from those on either side
of the square (P 5 0.15; F 5 2.07; two-way ANOVA).

We also examined how the orientations and wavelengths of the three
grid components computed from the spatial autocorrelogram differed
between sides of the two environments (Fig. 4f, g). The orientation of
the first component (closest to the horizontal axis; Extended Data Fig. 6)
was no more variable between the sides of the trapezoid than the sides
of the square (mean orientation change of 11.6u6 2.5u and 8.0u6 0.8u,
trapezoid and square, respectively, P 5 0.19, t 5 21.36, df 5 16, two-
sample t-test). However, the other two components differed more in
the trapezoid than in the square (second: 19.2u6 4.9u and 4.7u6 0.3u
P 5 0.004, t 5 23.41, df 5 14; third: 21.4u6 4.6u and 7.9u6 0.8u, P 5
0.005, t 5 -3.3, df 5 14, two-sample t-test). Similarly, the first wavelength
was no more variable in the trapezoid than the square (mean wavelength
change: 4.4 6 1.2 versus 2.3 6 0.4 cm, trapezoid and square, respect-
ively, P 5 0.12, t 5 21.6, df 5 16, two-sample t-test), while the differ-
ences for the second (6.1 6 1.0 versus 1.9 6 0.5 cm, P 5 0.001, t 5 24.1,
df 5 14) and third wavelengths (10.1 6 2.8 cm versus 3.8 6 0.7 cm,

P 5 0.02, t 5 22.7, df 5 14) were more pronounced in the trapezoid.
These localized changes in grid components manifest as a rotation and
stretching of the grid pattern across the trapezoid (Fig. 4h–k). Indeed
the spatial correlation between the two halves of the trapezoid at the
optimal rotation angle (that is, the one maximising the correlation be-
tween left and right sides) was still lower compared to the square (Fig. 4h, j;
r 5 0.30 6 0.05 trapezoid and 0.63 6 0.05 square, P 5 0.0002, t 5 24.6,
df 5 18, two-sample t-test), indicating rescaling as well as rotation
(Fig. 4k).

To eliminate the possibility that these observations arose from under-
sampling of the grid pattern in the trapezoid, we generated idealized
grid firing (scale and orientation matched to the data) for a square and
trapezoid environment (Extended Data Fig. 7). This control data exhib-
ited neither an increase in ellipticity nor in inhomogeneity. Further-
more, although the animals’ behaviour was polarized between the two
halves of the trapezoid (Extended Data Fig. 4), there was no correlation
between the extent of polarization and differences in grid properties be-
tween the sides, ruling out a behavioural explanation. Indeed it is known
that stereotypical behaviour in the open field does not significantly de-
grade the hexagonal grid structure21.

Our results show that most assumptions about the invariant nature
of grid cell firing are invalid. In particular the role of environmental
boundaries has been underestimated. Our findings reveal that grid pat-
terns are permanently shaped by environmental geometry as well as by
internal network processes (Extended Data Figs 8 and 9). Notably, we
have shown that grid patterns can be inhomogeneous even within a con-
tinuous two-dimensional space, due to the influence of non-parallel
boundaries (probably signalled by boundary cells). A differential influ-
ence from the boundaries probably also accounts for the ellipticity of
different grid modules10, as well as the non-hexagonal symmetry of spa-
tially periodic non-grid cells8. The results challenge the idea that the grid
cell system can act as a universal spatial metric for the cognitive map as
grid patterns change markedly between enclosures and even within the
same enclosure. An intriguing alternative is that grid cells provide a spa-
tial metric but that the asymmetries induced by highly polarized envir-
onments such as trapezoids produce distortions in the perception of space.
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Figure 4 | Grid pattern is inhomogeneous in
trapezoids. a, Grid cell rate maps for the same cell
in trapezoid and square. Dashed line divides
enclosures into equal areas. b, c, Autocorrelograms
for each side of the trapezoid (tr) and square (sq)
are significantly more similar in the square than
the trapezoid (c). d, Gridness on two sides of the
trapezoid and square. Dashed line represents
gridness threshold9. e, Field diameter is larger on
the left than the right of the trapezoid (P , 0.001,
t 5 4.1, df 5 18, two-sample t-test) but not
different in the square (P 5 0.39, t 5 0.88, df 5 18,
two-sample t-test). f, g, Change in orientations (f)
and wavelengths (g) of left/right parts of
trapezoid (black) and square (blue). h, j, Rotation
of right part of autocorrelogram relative to left
optimizes correlation in trapezoid but not
square (h) but still leaves a lower similarity (j)
(P 5 0.0002, t 5 24.6, df 5 18, two-sample t-test,
32 grid cells, 8 rats, 10 different grid modules).
i, Average grid rotation between two sides of
trapezoid (solid line) and square (dashed line).
k, Another example of right-to-left grid expansion
and rotation in trapezoid. All means 6 s.e.m.,
except for f, g, which shows means 6 s.d.
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Figure 8: a) Simple example of systematic errors in the position-self estimate as a function of
ground-truth postiion R̄(r). Cues near the wall “pull” the position self-estimate towards the learned
state R regardless of the location of the animal within the cue field, resulting in an inwards pull of the
spatial representation. This predicts path-dependent shifts in the center of the arena, which depend
on which wall the animal last touched. b) A east-shift in position self-estimate yields a west-shift
in the observed firing rate, and vice versa. The shift predicted in the model is thus consistent with
the experimentally observed shifts. c) A distorted box with one cue for each wall. The position self-
estimate will be pulled up to the diagonal wall, which only encodes for a single position. Therefore,
the observed firing pattern is shifted downwards from the wall, as we see in c2. This is qualitatively
consistent with experimental data (c3).
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Figure 9: Roadmap of Sec. 5. The learned state of landmark cells give rise to a position self-estimate
as a function of path-history. This changes the average position self-estiamate assiciated with each
landmark cell, which then feedback to the learning dynamics. . Below: Schematic of how exploration
dynamics reduce to particles on springs.

Where !(r) is the combined strength of all landmark cells that fire at r, and R(r) is the average186

position estimate being reinforced at position r.187

!(r) =
X

Hi (r), R(r) =
X

[Hi (r) Ri]/!(r). (13)

As the mouse moves around the environment, the phase of the attractor network will get pushed to188

the learned phases of landmarks the mouse visits, path integrated as the mouse moves, and eventually189

forgotten as the mouse orients itself to new landmarks. We can take this basic intuition and turn it into190

a closed-form equation(Verified in App. ??); given any path r(t) that the mouse takes, the solution191
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Fig. 7. A) Experimental data of grid cell firing patterns deformed, curving
away from a wall in an irregular geometry. B1) A full simulation of Eq. 14, Eq.
15 also yields grid firing patterns bent away from the wall. B2) Visualization
of the average attractor state as a function of position ~φA(r)(periodicity re-
moved for visualization purposes). The reversal between the bending of the
internal attractor phase and the bending of firing rate maps is similar to the
reversal seen in Fig. 5B. C1), C2) Same as B1), B2), but for a slightly different
geometry.
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Fig. 8. A) Two steady state grid cell patterns emerging from the same cue-rich
environment. In the first firing pattern, the combination of landmark pinning
and path integration yields a phase advance of four firing fields in traveling
from west to east along either corridor. The second pattern has a topolog-
ical defect; traveling from the west to east through the north corridor yields
a phase increase of ∼ 1.5 firing fields; traveling east to west through the
south corridor yields a phase decrease of ∼ 2.5 firing fields. This second
pattern is stable nonetheless. B) Schematic of 1D underlying attractor state
as a function of space. The two patterns in (A) correspond to two different
landmark pinning phase patterns learned by the many landmarks. Both land-
mark pinning patterns are stable under Eq. 14, Eq. 15. In the first pattern, the
combination of landmark pinning and path integration yields the same phase
advance in both the north and south corridors. The second pattern has a
topological defect; the phase advance in the north corridor one full rotation
less than the phase advance through the south corridor. This is possible be-
cause many landmark cues (colored arrows) can yield many landmark cells
with multiple stable synaptic configurations, or pinning phases under Eq. 14,
Eq. 15. C) Schematic of proposed “deformation schedule” that could yield
a topological defect in grid cell firing patterns. By separating/truncating the
northern corridor, stretching it (along with spatial cues, denoted by colored
arrows), than reconnecting it, it may be possible introduce one of these de-
fects. Even though the initial geometry is identical to the final geometry, the
deformation schedule has lead to a firing pattern which is three fields wide in
the north and four fields wide in the south.

Topological defects in grid cells: a predic-
tion
While the dynamics of the linearized Eq. 17 will always
flow to the same relative landmark representations RL

i ,
this is not the case for the full dynamics of Eq. 14, Eq.
15, which can learn multiple different stable landmark
cell synaptic configurations. One striking example of
this is the ability of the learning dynamics to generate
“topological defects”, where the number of firing fields
traversed is not the same for two different paths (Fig. 8A,
B and App. G). An environmental geometry capable of
supporting these defects will yield a set of firing patterns
that depends not only on the final geometry, but also on
the history of how this geometry was created (Fig. 8C).

Discussion
Overall, we have provided a theoretical framework for
exploring how sensory cues and path integration may
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work together to create a consistent internal representa-
tion of space. Our framework is grounded in biologically
plausible mechanisms involving attractor based path in-
tegration of velocity and Hebbian plasticity of landmark
cells. Moreover, systematic model reduction of this com-
bined neural and synaptic dynamics yields a simple and
intuitive emergent elasticity model in which landmark cell
synapses act like particles sitting in physical space con-
nected by damped springs whose rest length is equal to
the physical distance between landmark firing fields. This
simple emergent elasticity model not only provides a con-
ceptual explanation of how neuronal dynamics and synap-
tic plasticity can conspire to self-organize a consistent
map of space in which sensory cues and path-integration
are in register, but also provides novel predictions in-
volving small shifts in firing fields even in fully learned
environments, the possibility of topological defects in
grid cells, and the mechanical deformation of grid cells
in response to irregular borders.
This work opens up many interesting avenues for future
research. For example, further explorations of the nonlin-
ear regime of our combined circuit dynamics may yield
interesting experimental signatures that distinguish dif-
ferent modes of interactions between attractor networks,
path integrators and landmark cells. Incorporating hetero-
geneity of neural representations observed in MEC (31)
into our framework is another intriguing avenue. Also,
as the reliability of sensory and velocity cues change, it
is interesting to ask what higher order mechanisms may
exist to differentially regulate the effect of landmarks and
velocity on the internal representation of space. More
generally, our theory provides a unified framework for
understanding how systematic variations in environmen-
tal geometry and the statistics of environmental explo-
ration interact to precisely sculpt neural representations
of space.
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Supplementary Note A: Reducing perturbation to an effective force law in the one-
variable “ring” representation

Consider a steady-state firing rate pattern sSS(u−φA) under some translation-invariant neural dynamics function Dyn
that is given some perturbation centered at φp having the same periodicity as sSS:

ds(u)
dt

= Dyn[s(u)] + εPert(u−φp) .

In order to understand the effect of this perturbation, we need to understand the Jacobian matrix around the point
sSS (u−φA):

dDyn
ds

∣∣∣∣
s=sSS(u−φA)+∆s

≈ JacφA ·∆s

A. Modes of the Jacobian. Because sSS (u−φA) is a stable one-dimensional family of solutions of Dyn, JacφA

must be a negative semidefinite matrix. Because

Dyn[sSS (u−φA)] = 0 For all φA.

there is a single-zero eigenvector3, the sliding mode dsSS(u−φA)
du :

dDyn[sSS (u−φA)]
dφA

= dDyn[s(u)]
d
[
dsSS(u−φA)

du

]

∣∣∣∣∣∣
s=sSS(u−φA)

= JacφA ·
[
dsSS (u−φA)

du

]
= 0.

B. Effect of small perturbations. When an external perturbation is small and JacφA is symmetric, e.g. dDyn[s](u′)
ds(u) =

dDyn[s](u)
ds(u′) , the effective perturbation will the the projection of the actual perturbation onto the sliding mode.

ds

dt
≈ ε
[∫

dsSS (u−φA)
du

Pert(u−φp)
]

︸ ︷︷ ︸
Projection onto Sliding Mode

· dsSS (u−φA)
du︸ ︷︷ ︸

Sliding Mode

= ε

[∫
dsSS(u)
du

Pert(u− [φp−φA])
]

︸ ︷︷ ︸
−ForceA(φp−φA) (Definition)

dsSS(u−φA)
du︸ ︷︷ ︸

Sliding mode

=−εForceA(φp−φA)dsSS(u−φA)
du

.

We can translate these dynamics into the reduced φ representation:

dφA
dt

= εForceA(φp−φA), (19)

Eq. 19 can be verified:

dsSS (u−φA)
dt

= dsSS (u−φA)
dφA

dφA
dt

=−dsSS (u−φA)
du

dφA
dt

=−εForceA(φp−φA)︸ ︷︷ ︸
dφA/dt

dsSS(u−φA)
du

(20)

3We can show this by contradiction; if JacφA had any other non-negative modes, the family of steady states would be larger
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B.1. Form of the landmark cell force function . When the perturbation takes the form of input from Hebbian landmark
cells, the perturbation function is simply the attractor bump pattern sSS(u−φL). Therefore, defining ∆φ= φL−φA,

ForceA (∆φ) =−
∫

u

dsSS(u)
du

sSS(u−∆φ) =− d

d∆φ

[∫

u
sSS(u)sSS(u−∆φ)

]

Therefore, the force function is simply the negative derivative of the spatial autocorrelation function of the bump
pattern. Because the spatial autocorrelation is even and maximized at ∆φ= 0, minimized at ∆φ= π, the force function
will be odd, with positive(negative) values for positive(negative) ∆φ. As long as the bump size is not much smaller
than the bump spacing, the autocorrelation will decrease gradually between ∆φ= 0,∆φ= π, leading to a long range
force function which only approaches zero at, and far from, the origin. This behavior is qualitatively matched by
ForceA (∆φ) = sin(∆φ). For simplicity, we define the magnitude of ForceA(∆φ) to give it a slope of 1 at ∆φ= 0; all
strength information can be contained in ω.

B.2. Dynamics with non-symmetric Jacobians. When JacφA is non-symmetric, we may use the same techniques as
before, except now we must use a non-orthogonal projection onto the sliding mode:

ds

dt
≈ ε

[∫

u
vproj (u−φA)Pert(u−φp)

]

︸ ︷︷ ︸
Non-orthogonal projection onto sliding mode

· dsSS (u−φA)
du︸ ︷︷ ︸

Sliding Mode

,

where vproj(u−φA) can, in principle, be solved through diagonalization of the Jacobian JacφA .

Supplementary Note B: Proof of recovery of exact path integration

By coupling the attractor network to conjunctive position and velocity-tuned cells that east (west) movement-selective
cells form feedforward synapses into the attractor network that are shifted in the positive (negative) u (28)direction, we
impose a velocity-dependent perturbation on the network. This yields,

ds/dt= Dyn[s(u)] + vEastε Pert(u− [φA + ∆φPI])
+vWestε Pert(u− [φA−∆φPI]) ,

where vEast,vWest are the east and west velocities of the animal. Then model reduction via Eq. 2 yields

dφA/dt= vEastεForceA (∆φPI) + vWestεForceA (−∆φPI) =
[vEast−vWest]︸ ︷︷ ︸

vx=drx/dt

εForceA (∆φPI)︸ ︷︷ ︸
kx(Definition)

= vx ·kx.

Here kx is a constant of proportionality that relates animal velocity to the rate of phase advance in the attractor network.

Supplementary Note C: Lemmas about Landmark Cells

A. Verifying the Hebbian learning rule in the attractor basis . We can verify that in the attractor basis,

Wi(u) =
∫

φL
W̃i(φL)sSS(u−φL) (21)

the learning rule:

dW̃i(φL)
dT

= Pr(φL|i Firing)−W̃i(φL) (22)
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gives us the learning rule in the neural basis:

dWi(u)
dT

= 〈s(u)|i Firing〉−Wi(u) =
∫

φ
sSS(u−φL)Pr(φL|i Firing)−Wi(u) (23)

by inspection:

dWi(u)
dT

=︸︷︷︸
Basis Switch

d

dT

[∫

φ
W̃i(φL)sSS(u−φ)

]
=
∫

φL

dW̃i(φL)
dT

sSS(u−φL)

=︸︷︷︸
Eq.22

∫

φL

[
Pr(φL|i Firing)−W̃i(φL)

]
sSS(u−φL) =

∫

φL
Pr(φL|i Firing)sSS(u−φ)−

∫

φ
W̃i(φL)sSS(u−φL)

︸ ︷︷ ︸
W(u)

=
∫

φ
sSS(u−φL)Pr(φL|i Firing)−Wi(u)

︸ ︷︷ ︸
Eq.23

B. Lemmas about linear approximations .

B.1. Linear Approximation of Forcing Rule . We can show how linearizing the force law into a simple “spring constant”
allows us to represent the landmark state with a single number θ =

∫
φL W̃i(φL)φL:

∫

φL
W̃i

(
φL) ForceA

[
φL−φA

]
≈
∫

φL
W̃i

(
φL) ·

[
φL−φA

][ d
dφ

ForceA(φ)|φ=0

]

︸ ︷︷ ︸
(Definition of )

=




∫

φL
W̃i(φL)φL

︸ ︷︷ ︸
θi

−
∫

φL
W̃i(φL)φA

︸ ︷︷ ︸
φA


= ·(θi−φA) .

B.2. Proof of single-variable representation of landmarks . Combining the attractor-basis dynamics for hebbian learn-
ing and the linear approximation:

dW̃i(φL)
dT

= Pr(φL|i Firing)−W̃i(φL), θ =
∫

φL
W̃i(φL)φL,

we get:

dθi
dT

=
∫

φL

dW̃i(φL)
dT

φL =
∫

φL

[
Pr(φL|i Firing)−W̃i(φL)φL]

=
∫

φL
Pr(φL|i Firing)φL

︸ ︷︷ ︸
〈φ|i Firing〉

−
∫

φL
W̃i(φL)φL

︸ ︷︷ ︸
θi

=
〈
φL|i Firing

〉
−θi.

Supplementary Note D: Proof of simplest case

The position self-estimate will reach a steady cycle, so we start with a animal at r(t= 0) =−L2 , having position self-
estimateRS

0. The position self-estimate will follow the linearized dynamics, which include terms for path integration as
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well as the east and west landmarks.

dRS

dt
= dr
dt

+ωHEast(r)
(
RL

East−RS
)

+ωHWest(r)
(
RL

West−RS
)

HEast(r) = [r− (L/2−LWall)]+, HWest(r) = [(−L/2 + LWall)− r]+

We can assume the position self-estimate will reach a steady cycle such that RS(t = 2τ) = RS(t = 0). Defining
RS

1 =RS(τ/2),RS
2 =RS(τ),RS

3 =RS(3τ/2), we can solve for the the position self-estimate as a piecewise function:

RS(t) =





RS
1 + vt τw < t < τ − τw(
RS

1 + [LInt/2]
)
e−ω(t−τw) +

[
RL

East + v
ω

](
1−e−ωt

)
τ − τw ≤ t≤ τ

RS
2e
−ω(t−τw) +

[
RL

East− v
ω

](
1−e−ωt

)
τ < t≤ τ + τw

. . .

(24)

Where τw = LWall/v. This yields a set of linear equations:

RS
1 = e−ωτwRS

0 +
(
1−e−ωτw

)[
RL

West + v
ω

]
+ [LInt/2]

RS
2 = e−ωτw

(
RS

1 + [LInt/2]
)

+
(
1−e−ωτw

)[
RL

East + v
ω

]

RS
3 = e−ωτwRS

2 +
(
1−e−ωτw

)[
RL

East−
v
ω

]
− [LInt/2]

RS
4 =RS

0 = e−ωτw
(
RS

3− [LInt/2]
)

+
(
1−e−ωτw

)[
RL

West−
v
ω

]

The average position self-estimate seen by the east landmark comes from two components of piecewise functionRS(t).
The first is τ − τw < t < τ , the second is τ < t < τ + τw:

R̄S
East =

〈
RS(t)|Landmark Cell A Firing

〉
=
∫ 2τ

0 HEast(r(t))RS(t)
∫ 2τ

0 HEast(r(t))
= 1

2τw

∫ τ+τw

τ−τw

RS(t) =

R̄S
East = 1

2τw
·






∫ τw

0

(
RS

1 + [LInt/2]
)
e−ωt+

[
RL

East + v
](

1−e−ωt
)

︸ ︷︷ ︸
τ−τw<t<τ


+



∫ τw

0
RS

2e
−ωt+

[
RL

East−v
](

1−e−ωt
)

︸ ︷︷ ︸
τ<t<τ+τw





=

1
2τw
·



(
RS

1 + [LInt/2]
)(1−e−ωτw

ω

)
+


RL

East +
Cancels︷︸︸︷
�v



(
τw− 1−e−ωτw

ω

)
+RS

2

(
1−e−ωτw

ω

)
+


RL

East−
Cancels︷︸︸︷
�v



(
τw−

(
1−e−ωτw

ω

))


= 1
2τw
·
[(
RS

1 + [LInt/2]
)(1−e−ωτw

ω

)
+RL

East

(
τw−

1−e−ωτw

ω

)
+RS

2

(
1−e−ωτw

ω

)
+RL

East

[
τw−

1−e−ωτw

ω

]]

=RL
East +

(
1−e−ωτw

)

2ωτw

[(
RS

1 + [LInt/2]−RL
East

)
+
(
RS

2−RL
East

)]

Therefore, at equilibrium:

RL
East = R̄S

East =
(
RS

1 + [LInt/2]
)

+RS
2

2

There is a translational symmetry to this problem, such that any shifted version of a solution is also a solution. We center
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around zero for simplicity, such thatRS
1 =−RS

3,RS
2 =−RS

4, andRL
East =−RL

West. Combining the above equations
and this symmetry gives the steady state solution:

RS
1 =RS

3 = 0,

RS
2 =

(
[LInt/2] +

2
[
1−e−ωτw

]

1 +e−ωτw

( v
ω

))
=
(

[LInt/2] + 2tanh(ωτw/2)
( v
ω

))
=−RS

0

RL
East =

(
[LInt/2] +

[
1−e−ωτw

]

1 +e−ωτw

( v
ω

))
=
(

[LInt/2] + tanh(ωτw/2)
( v
ω

))
=−RL

West.

A. Out of Equilibrium Path-Dependent Shifts and Learning Dynamics . When the system is out of equilibrium
it is convenient to refer to the landmark representations in terms of their deviation from the equilibrium state.

RL
East = ∆RL

East +
(
RL

East

)
Eq
, RL

West = ∆RL
West +

(
RL

West

)
Eq

We have the set of linear equations for how much the position self-estimates vary with the landmark position estimates,
where we use the shorthandRS

i = ∆RS
i +
(
RS
i

)
Eq.:

∆RS
1 = e−ωτw∆RS

0 +
(
1−e−ωτw

)
∆RL

West

∆RS
2 = e−ωτw∆RS

1 +
(
1−e−ωτw

)
∆RL

East

∆RS
3 = e−ωτw∆RS

2 +
(
1−e−ωτw

)
∆RL

East

∆RS
4 = ∆RS

0 = e−ωτw∆RS
3 +
(
1−e−ωτw

)
∆RL

West

We can combine the equations for ∆RS
3,∆RS

2 to get:

∆RS
3 = e−ωτw∆RS

2 +
(
1−e−ωτw

)
∆RL

East

= e−ωτw
[
e−ωτw∆RS

1 +
(
1−e−ωτw

)
∆RL

East

]
+
(
1−e−ωτw

)
∆RL

East

= e−2ωτw∆RS
1 + ∆RL

East
(
1−e−2ωτw

)

We can express throughRS
1 in terms ofRS

3 through symmetry:

∆RS
3 = e−2ωτw∆RS

1 + ∆RL
East
(
1−e−2ωτw

)

∆RS
1 = e−2ωτw∆RS

3 + ∆RL
West

(
1−e−2ωτw

)

Plugging one into the other:

∆RS
1 = e−2ωτw

[
e−2ωτw∆RS

1 + ∆RL
East
(
1−e−2ωτw

)]
+ ∆RL

West
(
1−e−2ωτw

)
⇒

∆RS
1 =

(
e−4ωτw

)
∆RS

1 +e−2ωτw
(
1−e−2ωτw

)
∆RL

East + ∆RL
West

(
1−e−2ωτw

)
⇒

(
1−e−4ωτw

)
∆RS

1 = e−2ωτw
(
1−e−2ωτw

)
∆RL

East + ∆RL
West

(
1−e−2ωτw

)
⇒

(
1−e−4ωτw

)
∆RS

1 =
(
1−e−2ωτw

)[
e−2ωτw∆RL

East + ∆RL
West

]

This yields the change in position self-estimate:

∆RS
1 =

[
e−2ωτw∆RL

East + ∆RL
West
]

1 +e−2ωτw
= ∆RL

East +
(
∆RL

West−∆RL
East
)

1 +e−2ωτw
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This allows us to recover the first coefficient related to path-dependent shift. When ∆RL
East =−∆RL

West,

∆RS
1 = ∆RL

East + (∆RL
West−∆RL

East)
1+e−2ωτw = ∆RL

East

[
1+e−2ωτw−2

1+e−2ωτw

]
=−∆RL

East

[
1−e−2ωτw

1+e−2ωτw

]
=−∆RL

East tanh(ωτw) .(25)

We note that when ωτw→∞, the path-dependent shift is exactly the shift in the estimated position of the landmark last
touchedRL

West. When ωτw→ 0, the shift goes to 0, as the memory ofRL
East is nearly the same as that ofRL

West.

A.1. Learning Timescale Coeffient. In order to understand the learning dynamics, we must calculate the effect of the
estimated landmark position on the estimated position self-estimate that becomes associated with each landmark:

∆R̄S
East =RL

East +
[

∆RS
1 + ∆RS

2
2 −RL

East

]
·
(
1−e−ωτw

)

ωτw

Plugging in:

∆RS
2 = ∆RL

East +
(

∆RS
1−RL

East

)
e−ωτw

Gives things in terms ofRS
1:

∆R̄S
East =RL

East +
(
RS

1−RL
East

)[1 +e−ωτw

2

][(1−e−ωτw
)

ωτw

]
=RL

East +
(
RS

1−RL
East

)[1−e−2ωτw

2ωτw

]

Plugging in the value ofRS
1:

∆RL
East +

(
∆RL

West−∆RL
East
)

1 +e−2ωτw

Gives:

∆R̄S
East =RL

East +
(
RL

West−RL
East

)[ 1−e−ωτw

2ωτw (1 +e−2ωτw)

]

Yielding a learning time of:

TLearning =
2ωτw

(
1 +e−2ωτw

)

1−e−ωτw
(26)

From Eq. 25, we can see that as the landmark cells become stronger, the shifts become stronger, as the animals position
self-estimate becomes more heavily weighted toward whichever landmark it most recently saw. From Eq. 26 we see that,
as landmark cells become stronger, the learning rate slows down, as landmark cells mostly see their own self-estimates;
the contribution to position self-estimate from spatially disjoint landmarks decays quickly after the animal moves into
the landmark firing field.

Supplementary Note E: Periodicity of 2D representation

When 2D attractor dynamics yield a family of steady hexagonal bump patterns, this periodicity can be represented
mathematically on the neural sheet as:

sSS (u1,u2) = sSS(u1 + 2π,u2) = sSS(u1 +π,u2 +
√

3π)
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Where we have defined units on the neural sheet in terms of this periodicity. Therefore, the coordinate ~φ specifying a
point on the manifold of stable attractor patterns is a periodic variable defined modulo the periodicity of the steady state
pattern:

~φA ≡ ~φA + (2π,0)≡ ~φA + (π,
√

3π)

Supplementary Note F: Proof that Learning Dynamics Reduce to a Mechanical Frame-
work

We show how these dynamics can be reduced to a low-dimensional model where the exploration behavior gives an
emergent interaction between the learned states of landmark cells, even those with non-overlapping firing patterns. We
first need to solve for an animals position self-estimate as a function of its path history. To do so we first make the
bookkeeping substitution:

dRS/dt= dr/dt︸ ︷︷ ︸
Path Integration

+ω(r)
[
RL(r)−RS

]

︸ ︷︷ ︸
Landmark Cells

(27)

Where ω(r) =
∑
ωHi (r) is the combined strength of all landmark cells that fire at r, andRL(r) =

∑[
Hi (r)RL

i

]
/ω(r)

is the average position estimate being reinforced at position r. As the animal moves around the environment, the
position self-estimate will get pushed to the learned positions of landmarks the animal visits, path integrated as the
animal moves, and eventually forgotten as the animal orients itself to new landmarks. We can take this basic intuition
and turn it into a closed-form equation(Verified in App. A); given any path history r(t) the solution for Eq. 27 is:

RS(r(t), t) =
∫ t

−∞

[
RL (r(t′)

)
+
(
r(t)− r(t′)

)]

︸ ︷︷ ︸
Landmark Position Estimate + Path Integration from t’

·ω(r(t′)) ·
[
e
−
∫ t
t′ ω(r(t′′))dt′′

]

︸ ︷︷ ︸
Memory of time t′

dt′ (28)

Solving for learned position estimates as a function of current landmark position estimates We now need to com-
pute the mean position-self estimate seen by each landmark cell. We note that for any individual path,RS(r(t), t) is
linear with respect toRL(r′). Therefore, averaging over all pathsRS(r(t), t) that end at r, the average R̄S(r) is also
linear withRL(r′). Therefore, we can construct a matrix equation:

R̄S(r) =
∫

S(r,r′)
(
ω(r′)

[
RL(r′) +

(
r− r′

)])
dr′,

where our matrix entries S(r,r′) represent all possible ways the landmark position-estimates at position r′ contribute to
the mean position self-estimate at r . As long as the exploration dynamics are reversible, i.e., for any r(t), the reverse
path r(−t) is equally likely, S is symmetric (S(r,r′) = S(r′,r)) (Proof in App. B).

To solve for the learning dynamics, we expand ω(r),RL(r) to understand the average position self-estimate as a
function of position:

R̄S(r) =
∑

j

∫
S(r,r′)Hj

(
r′
)(
RL
j +

(
r− r′

))
dr′.

The mean position self-estimate seen by each landmark cell is then:

R̄S
i =

∑

j

∫∫

r,r′
Hi(r)S(r,r′)Hj

(
r′
)(
RL
j +

(
r− r′

))
.
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Combining this with the angle learning rule gives:

dRL
i

dT
= R̄S

i −RL
i =

∑

j

∫∫

r,r′
Hi(r)S(r,r′)Hj

(
r′
)[
RL
j +

(
r− r′

)]
−RL

i .

=
∑

j

[∫∫

r,r′
Hi(r)S(r,r′)Hj

(
r′
)]

︸ ︷︷ ︸
Mij (Definition)

RL
j +

∑

j

[∫∫

r,r′
Hi(r)S(r,r′)Hj

(
r′
)[

r− r′
]]

︸ ︷︷ ︸
∆RS

j→i · Mij (Definition)

−RL
i

We note that
∑
j Mij = 1 For all i 4; therefore, we can rewrite the above equation as:

dRL
i /dT =

∑

j

Mij

([
RL
j + ∆RS

j→i
]
−RL

i

)
.

Due to the symmetry of S, Mij = Mji, ∆RS
j→i = −∆RS

i→j . Therefore, the long term dynamics of mapping are
equivalent to the first-order dynamics of a set of particles i, attached by springs of strength Mij , having a rest
displacement of ∆RS

j→i. The spring constant is related to the frequency with which the animal moves between each
landmark field, while the rest displacement is related to the distance between the landmark field.

A. Proof of convolutional integral . We can check that the solution for the position self-estimate Eq. 28:

RS(r(t), t) =
∫ t

−∞

[
RL (r(t′)

)
+
(
r(t)− r(t′)

)]
·ω(r(t′))

[
e
−
∫ t
t′ ω(r(t′′))dt′′

]
dt′

Satisfies the dynamics of Eq. 27 :

dRS(t)
dt

= dr(t)
dt

+ω(r)
[
RL(r(t))−RS

]

by inspection. We plug Eq. 28 into Eq. 27 to get:

dRS

dt
=
[
RL (r(t)) + (r(t)− r(t))

][
ω(r(t))e−

∫ t
t
ω(r(t′′))dt′′

]

︸ ︷︷ ︸
=RL · ω

+
∫ t

−∞

dr(t)
dt

ω(r(t′))e−
∫ t
t′ ω(r(t′′))dt′′

dt′

︸ ︷︷ ︸
= d
dt r

+
∫ t

−∞

[
RL (r(t′)

)
+
(
r(t)− r(t′)

)]
·
[
−ω(r(t′)) ·ω(r(t))e−

∫ t
t′ ω(r(t′′))dt′′

]
dt′

︸ ︷︷ ︸
=−ωRS

The underbraced identities are more easily seen by simplifying terms:

d

dt
RS =


RL (r(t))

0︷ ︸︸ ︷
(((

((((+(r(t)− r(t))





ω(r(t))

1︷ ︸︸ ︷

���
���

�

e
−
∫ t
t
ω(r(t′′))dt′′




︸ ︷︷ ︸
RL · ω

+ dr
dt

(t)

1︷ ︸︸ ︷

(((
((((

(((
((((

∫ t

−∞
ω(r(t′))e−

∫ t
t′ ω(r(t′′))dt′′

dt′

︸ ︷︷ ︸
dr
dt

−ω(r(t)) ·
∫ t

−∞

[
RL (r(t′)

)
+
(
r(t)− r(t′)

)]
·
[
ω(r(t′)) ·e−

∫ t
t′ ω(r(t′′))dt′′

]
dt′

︸ ︷︷ ︸
RS

4This is due to the fact that shifting all position estimates will not change the dynamics.
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Fig. 9. Sketch of proof in App. B that S is symmetric for time-symmetric path distributions.

B. Proof that S is symmetric for time-symmetric path distributions . The mean position self-estimate of the
animal at position rB is the average self-estimate of all paths that pass rB at time t= 0. (We pick t = 0 for mathematical
convenience).

R̄S(rB) =
∫
Dr(t)Pr(r(t)) δ(r(0)− rB)RS(r(0), t= 0),

To avoid clutter, use the shorthand:

F(r, t, t′) =
[
θ
(
r(t′)

)
+
(
r(t)− r(t′)

)]
·ω(r(t′)), Mem(r, t, t′) = e

−
∫ t
t′ ω(r(t′′))dt′′

,

And decompose this into contributions from different past times t′.

R̄S(rB) =
∫
Dr(t)Pr(r(t)) δ(r(0)− rB)

[∫ 0

−∞
F(r, t= 0, t′)Mem(r, t= 0, t′)dt′

]

Reshuffling the order of integration and breaking things down further into contributions of rA = r(t′)

R̄S(rB) =
∫ 0

−∞
dt′
∫
drA

∫
Dr(t)Pr(r(t)) δ(r(0)− rB)δ(r(t′)− rA)

[
F(r, t= 0, t′)Mem(r, t= 0, t′)

]

Because we have assumed the statistics of the animal trajectories r(t) will be time-reversal symmetric, the reverse, time
shifted path r̃rev(t) = r(t′− t) is equally likely. We therefore apply the symmetrization procedure:

2 · R̄S(rB) =
∫ 0

−∞
dt′
∫
drA

∫
Dr(t)Pr(r(t)) · (29)

[
δ(r(0)− rB)δ(r(t′)− rA)F(r,0, t′)Mem(r,0, t′)

]
+
[
δ(r̃rev(0)− rB)δ(r̃rev(t′)− rA)F(r̃rev,0, t′)Mem(r̃rev,0, t′)

]
(30)
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We note that Mem(r̃rev,0, t′) = Mem(r,0, t′), and that:

δ(r̃rev(0)− rB)δ(r̃rev(t′)− rA)F(r̃rev,0, t′) = δ(r(t′)− rB)δ(r(0)− rA)F(r,0, t′)

Therefore, we can simplify Eq. 30 to:

2 · R̄S(rB) =
∫
drA

∫ 0

−∞
dt′
∫
Dr(t)Pr(r(t)) · (31)

Mem(r,0, t′)[θ(rA) + k · (rB− rA)] ·ω(rA)
[
δ(r(0)− rB)δ(r(t′)− rA) + δ(r(0)− rA)δ(r(t′)− rB)

]
= (32)

2
∫
drAS(rA,rB)[θ(rA) + k · (rB− rA)] ·ω(rA) (33)

Where our matrix entries:

2S(rA,rB) =
∫ 0

−∞
dt′
∫
Dr(t)Pr(r(t)) Mem(r,0, t′)

[
δ(r(0)− rB)δ(r(t′)− rA) + δ(r(0)− rA)δ(r(t′)− rB)

]

are symmetric with respect to the swapping of rB,rA.

This proof assumes uniform density of animal positions with uniform areas and strengths of each landmark cell. The
proof can be generalized beyond these constraints by making effective particles corresponding to certain landmarks
more “massive”, but here we present the simpler proof in the interest of clarity.

Supplementary Note G: Simulations

A. Exploration. In our simulations, we discretize space onto a grid. For simplicity, we have the animal follow diffusive
dynamics, implemented through a random walk; at every time step, the animal moves to one of four neighboring cells;
any move which would take the animal outside the box is prohibited. The animal has a position self-estimateRS(t) as
well as an attractor state ~φA(t), which undergoes discrete path-integration at every time step:

RS(t+ ∆t)→RS(t) + ∆r(t),

~φA(t+ ∆t)→ ~φA(t) +
↔
K∆r(t)

Afterwards, the position self-estimate is pulled towards the position estimates of any landmark cells which are firing:

RS(t+ ∆t)→RS(t+ ∆t) +
(
ω(r)∆t

[
RL(r)−RS(t+ ∆t)

])
·∆t

~φA(t+ ∆t)→ ~φA(t+ ∆t) +


∑

i

Hi(r(t))
∑

~φL

W̃i

(
~φL
)

ForceA

(
~φA− ~φL

)

 ·∆t,

Where ~φL is discretized into a 15×15 grid so that W̃i

(
~φL
)

can be represented as an array.
We set the timescale of animal motion to be l

∆t= |∆r|2 ·D

Which removes dependence on the discretization size.

B. Learning. The learned states are initialized to their firing field center of masses. At every learning epoch T, the
simulated animal is placed in the box with an initial position and position self-estimate and explores to get good
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statistics. R̄S(r), is logged, and at the end of each learning epoch, the position estimate of each landmark cell i is
updated to be the average position self-estimate when the landmark cell is firing.

RL
i,T+1→ R̄S

i,T,

W̃i

(
~φL
)
→ Pr(~φA(t) = ~φL|i Firing)

Each of these will converge after a handful of learning epochs; in practice, we use twenty.

C. Simulation of Square and Bent Environments. Landmark cell firing fields are heterogeneous; while some are
distributed across an entire border; two replicate this distribution we have two types of landmark cells in our model. 1)

Landmark cells having uniform wall-length firing field, with a width of 10cm, for example H(x,y) = e
−
(x−xwall

5cm

)2

for
a landmark cell on the west wall. 2) More localized, overlapping, firing fields along each wall. Each firing field is a 5

cm × 10 cm half-ellipse of along a particular wall; i.e. H(x,y) = e
−
(
y−y0
10cm

)2−
(x−xwall

5cm

)2

for a landmark field along the
EW wall with center y0. Each type of landmark cell is evenly distributed along each wall, with the total strength and
number set such that total firing strength of localized and non-localized cells is the same, and their combined strength
leads to a forgetting time of ω = 8Hz along each wall.

Grid spacing is chosen to be 30 cm for square environments(1 × 1 meter); We set the diffusive constant D to be (10
cm)2/s such that it takes an animal ∼100 seconds to traverse the width of the environment.

Grid spacing is 50 cm with a 7◦ offset for the first trapezoidal environment (1.9 × .8 meters, same geometry as (11));
We set the diffusive constant D to be (20 cm)2/s such that it takes an animal ∼100 seconds to traverse the length of the
environment.

Grid spacing is 50 cm with a 7◦ offset for the second trapezoidal environment (1.9 meters long. Two straight walls with
lengths of .12 meters, .6 meters, with diagonal walls starting 1 meter from the smaller straight wall (14◦ angle); We set the
diffusive constant D to be (20 cm)2/s such that it takes an animal∼100 seconds to traverse the length of the environment.

The angular offset breaks the symmetry of the trapezoidal environments, yielding bending, but is not required to yield
path-dependent shifts.

D. Simulation of Topological Environments. In order to support topological defects, the environment must
be filled with rich, localized landmark cues. In order for the environment to support topological defects, cues
must be rich and localized, leading to uniformly distributed landmark firing fields. To model this, we have

uniformly localized landmark fields, with H(x,y) = e
−
(
y−y0
10cm

)2−
(x−x0

10cm

)2

, arranged at a density such that their
combined strength leads to a forgetting time of 1Hz throughout the environment. The environment was 1.8 me-

ters× 1 meter, with a center rectangular section of 1.3× .8 meters removed.
↔
K is chosen to yield a grid spacing of 60cm.

Essential ingredients to achieve topological defects are:

• A “donut-shaped” environment, which can support the topological defect.

• An environment rich in localized, strong landmark cues.

• The larger the environment is, the less deformation it has to support per unit distance, i.e. if an environment is 3
firing fields wide, a topological defect must modify the grid spacing by 33%; if the environment was 5 firing
fields wide, the grid spacing would only need to be modified by 20%.

• During the “winding” procedure, the animal cannot acclimate to the intermediate environment for too long; if it
fully learns the intermediate environment, the winding procedure will not work (Fig. 11).
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Fig. 10. Schematic of the distribution of landmark cells for simulations of square and trapezoidal environments. To model a heterogeneous distribution of landmark
cell degrees of localization, we include both landmark cells which fire uniformly along a boundary, as well as semi-elliptical landmark cells which are localized to
a section of a boundary.
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Fig. 11. Example of topological defect failing to form due to learning. If the winding procedure is done too slowly, the animal will learn the deformed geometry(Third
box→ Fourth Box), removing the topological effect.

E. Force law and visualization. The Grid Cell pattern is visualized by using a truncated parabolic firing rate

max
[
1−
(
~φA−~φ0

D

)2
,0
]

, where the field width D is chosen to be 2π/5.

The force law chosen is a truncated sin function:

ForceA(~φL− ~φA) =




−sin

(∣∣∣~φL− ~φA

∣∣∣
)
· ~φ

L−~φA
|~φL−~φA|

∣∣∣
(
~φL− ~φA

)∣∣∣< π

0
∣∣∣
(
~φL− ~φA

)∣∣∣≥ π
(34)

We choose this function because it has the correct qualitative features. In addition, in experimental data, the with of a
firing rate peak is on the order of the spacing between two firing peaks; this prohibits a force law which is much more
short-ranged than this (App. A).

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 21, 2018. ; https://doi.org/10.1101/326793doi: bioRxiv preprint 

https://doi.org/10.1101/326793
http://creativecommons.org/licenses/by-nd/4.0/


DRAFTW
al

l-
le

n
gt

h
  

Fi
ri

n
g 

Fi
el

d
s

Lo
ca

li
ze

d
 

Fi
ri

n
g 

Fi
el

d
s

Square  

Environment
Trapezoidal 

Environment

f

f

f

f

Topological Environment 

(Rich Localized Cues)

Fig. 12. Schematic of the distribution of landmark cells for simulations the topological environment; cues are densely and uniformly localized throughout the
arena.
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Supplementary Note H: Experimental Methods

Data included a subset of published neural recordings previously presented in Hardcastle et al., 2017, Hardcastle et al.,
2015. Briefly, mice explored a square box while foraging for chocolate cheerios sprinkled on the floor. During each
recording, neural signals from medial entorhinal cortex were recorded and subsequently clustered into distinct neurons.
A grid score was computed for each cell following Langston et al., 2010. Cells above a threshold of .4 were considered
grid cells. Each grid cell in the dataset was recorded after an average of 28 (data selected from Hardcastle et al., 2015)
or 20 (data selected from Hardcastle et al., 2017) exposures to the recording environment.

A. Estimation of path-dependent shifts. We examined how grid firing patterns change depending on which land-
mark (one of four borders in an open 1 meter box) an animal most recently encountered. To control for the effect of
head direction and running speed, we preprocessed the data by translating

r(t)→ r(t) + 1cm × ĤD(t),

where ĤD(t) is a unit vector representing the animal’s head direction. This is to avoid artifacts related to tracking; a
purely position-dependent firing rate model depends on some part of the animal’s body, which unlikely to be exactly the
position of the tracking diode.

A.1. Path conditioned rate maps: . We constructed maps of firing rate as a function of spatial position conditioned
on the animal having last touched the North wall more recently than it touched the South Wall, etc. An animal was
defined to have “touched” a wall when the head-tracking diodes came within 10cm of the wall. Varying this distance
did not significantly effect our results. We avoid any sort of smoothing to prevent artifacts which might show up an
experimental signature; as such, the bin size of the computed sCGC(r) is 5cm× 5cm, and each individual trial leaves
many bins for which sCGC(r) is not defined. We can create finer-grained cross-correlelograms by choosing bin sizes of
5
3 cm, and smoothing in the manner of (7), but these maps are not used for showing statistical significance. A sort of
cross-correlation was taken, using the “angle” between two path-conditioned rate maps.

CC1C2GC (∆r) =
∣∣∣∣sC1GC(r + ∆r)sC2GC(r)

∣∣∣∣
∣∣sC1GC(r + ∆r)

∣∣ ∣∣sC2GC(r)
∣∣

Where the mean firing rate is subtracted, and the inner product is only calculated using bins where there is data.
To show significance, we calculate

CEW
GC (5cmx̂)−CEW

GC (−5cmx̂), CNS
GC(5cmŷ)−CNS

GC(−5cmŷ)

And show that the patterns are shifted towards whichever wall the animal last touched for both the EW Walls
(CEW

GC (5cmx̂)−CEW
GC (−5cmx̂)> 0, P = 1.5 ·10−5, Binomial Test, P = 1.5 ·10−5, Sign-Flip Test), and the NS walls

(CNS
GC(5cmŷ)−CNS

GC(−5cmŷ), P = 10−7, Binomial Test, P = 10−7, Sign-Flip Test).

A.2. Spike Displacement: . Starting from an adaptively smoothed firing rate map, we calculate firing field centers. For
each firing field center, we gather positions of spikes recorded in that neighborhood, comparing the average spike
position in that neighborhood with the firing center.

ShiftC,GC,ff =
〈
rSpike− rff|C,rSpike ∈ ff

〉

−〈r(t)− rff|C,r(t) ∈ ff 〉

For each path condition C, and each firing field center rff, we calculate the average spike position rSpike within that
firing field, and subtract the average mouse position r(t) within that firing field. The animal’s position within the firing
field is subtracted to eliminate any systematic biases that might come from the animal trajectory rather than the actual
neural activity (Fig. 14).
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2 · R̄S(rB) =
⁄

drA

⁄ 0

≠Œ
dtÕ

⁄
Dr(t)Pr(r(t)) · [32]

Mem(r, 0, tÕ)[◊(rA) + k · (rB ≠ rA)] · Ê(rA)
#
”(r(0) ≠ rB)”(r(tÕ) ≠ rA) + ”(r(0) ≠ rA)”(r(tÕ) ≠ rB)

$
= [33]

2
⁄

drAS(rA, rB)[◊(rA) + k · (rB ≠ rA)] · Ê(rA) [34]

Where our matrix entries:

2S(rA, rB) =
⁄ 0

≠Œ
dtÕ

⁄
Dr(t)Pr(r(t)) Mem(r, 0, tÕ)

#
”(r(0) ≠ rB)”(r(tÕ) ≠ rA) + ”(r(0) ≠ rA)”(r(tÕ) ≠ rB)

$

are symmetric with respect to the swapping of rB, rA.

This proof assumes uniform density of animal positions with uniform areas and strengths of each landmark cell.
The proof can be generalized beyond these constraints by making e�ective particles corresponding to certain landmarks
more “massive”, but here we present the simpler proof in the interest of clarity.

G. Simulations

In our simulations, we discretize space onto a grid. For simplicity, we have the animal follow di�usive dynamics,
implemented through a random walk; at every time step, the animal moves to one of four neighboring cell; any
move which would take the animal outside the box is prohibited. The animal has a position self-estimate RS

t , which
undergoes discrete path-integration at every time step:

RS
t+1 æ RS

t + �rt.

Afterwards, the position self-estimate is pulled towards the position estimates of any landmark cells which are firing:

RS
t+1 æ e≠Ê(r)�tRS

t+1 +
!
1 ≠ e≠Ê(r)�t

"
RL(r).

At every learning epoch T, the simulated animal is placed in the box with an initial position and position self-estimate
and explores to get good statistics. R̄S(r) is logged, and at the end of each learning epoch, the position estimate of
each landmark cell i is updated to be the average position self-estimate when the landmark cell is firing.

RL
i,T+1 æ R̄S

i,T

RL
i,T will converge after a handful of learning epochs. The learned states are initialized to their firing field center of

masses.
The Grid Cell pattern is visualized by using a truncated parabolic firing rate max(1 ≠

1
„̨A≠„̨0

D

22
, 0), where the field

width D is chosen to be 2fi/5.

H. Shear

One geometric e�ect observed is the shearing grid cell firing fields due to landmark cells. Starting o� with a gain
matrix

¡
K with a rotation component leads to shearing by the walls (Fig. 14). Because the periodicity of the attractor

pattern along the East-West walls is
Ô

3/2 longer than the periodicity along the North-South walls, the shearing is
dominated by that of the North-South walls. This leads to a Y-Sheared Rotated pattern; this correlation between
rotation and shear is the opposite of what is observed in (7), raising more questions about the underlying mechanisms
behind the shearing of these patterns.

I. Stuff For Figures
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Fig. 14. a) Setting the gain matrix
¡
K to have a rotation component will lead to a rotated grid pattern. b)The south wall will give a positive „v force on the attractor

network when the animal is in the southwest corner and a negative „v force when the animal is in the south-east corner. The west will give a negative „u force on
the attractor network when the animal is in the southwest corner and a positive „u force when the animal is in the northwest corner. Due to the periodicity, the
distribution W̃South(„̨L) repeats itself more times, is more concentrated, and has a stronger effect than W̃West(„̨L). c)The NS walls give the pattern a Y-Shear, and
the EW walls give the pattern an X-shear, but the effect from the NS walls is stronger. This leads to a Y-sheared rotated pattern.

ShiftE,GC · x̂, ShiftW,GC · x̂ ShiftN,GC · ŷ ShiftS,GC · ŷ
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ŷ
)

22

DRAFT

Pr(rSpike ≠ r̄(t)|�)

To show significance, we calculate

CEW
GC (5cmx̂) ≠ CEW

GC (≠5cmx̂), CNS
GC(5cmŷ) ≠ CNS
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Fig. 13. A) Path-dependent shifts demonstrated by Cross-Correlograms of individual grid cells. Most cells fall on the upper left of the plots, showing that the
patterns tend to be shifted towards whichever wall the animal last touched for both the the EW Walls (P = 1.5 ·10−5, Binomial Test, P = 1.5 ·10−5, Sign-Flip
Test), and the NS walls (P = 10−7, Binomial Test, P = 10−7, Sign-Flip Test). B) The path-dependent shifts is best visualized through the Cross-Correlogram
averaged over all grid cells. C) Path-dependent shifts demonstrated by Cross-Correlograms of individual grid cells. Most cells fall on the upper left of the plots,
showing that the patterns are shifted towards whichever wall the animal last touched for both the EW Walls (P = 3 ·10−4 Binomial Test, P = 2 ·10−2 Sign-Flip
Test), and the NS walls (P = 10−5 Binomial Test, P = 10−5 Sign-Flip Test). D) The path-dependent shifts is best visualized through a histogram of individual
spike displacements.

We calculate the path-dependent shift of an individual grid cell as the average shift of all firing fields in the center:

ShiftC,GC =
∑

ff

ShiftC,GC,ff
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Fig. 14. Schematic of the motivation for subtracting mouse position. An animal is most likely to be closes to the last wall it touched; if the mean animal position
was not subtracted from the mean spike position, this would yield a path-dependent shift in spike positions purely dependent on animal trajectory rather than
neural activity.

To show significance, for each cell, we calculate
(
ShiftE,GC−ShiftW,GC

)
· x̂,
(
ShiftN,GC−ShiftS,GC

)
· ŷ

showing that the patterns are shifted towards whichever wall the animal last touched for both the EW Walls
(
[
ShiftE,GC−ShiftW,GC

]
· x̂ > 0, P = 3 · 10−4 Binomial Test, P = 2 · 10−2 Sign-Flip Test), and the NS walls

(
[
ShiftN,GC−ShiftS,GC

]
· ŷ > 0, P = 10−5 Binomial Test, P = 10−5 Sign-Flip Test). We perform both binomial

tests, which only depend on the sign of
(
ShiftE,GC−ShiftW,GC

)
, and magnitude-weighted sign-flip tests, for complete-

ness.
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