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Abstract 16 

The locus coeruleus (LC) in the pons is the major source of noradrenaline (NA) in the brain. Two modes 17 

of LC firing have been associated with distinct cognitive states: changes in tonic rates of firing are 18 

correlated with global levels of arousal and behavioural flexibility, whilst phasic LC responses are 19 

evoked by salient stimuli. Here, we unify these two modes of firing by modelling the response of the LC 20 

as a correlate of a prediction error when inferring states for action planning under Active Inference 21 

(AI).   22 
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We simulate a classic Go/No-go reward learning task and a three-arm foraging task and show that, if 23 

LC activity is considered to reflect the magnitude of high level ‘state-action’ prediction errors, then both 24 

tonic and phasic modes of firing are emergent features of belief updating. We also demonstrate that 25 

when contingencies change, AI agents can update their internal models more quickly by feeding back 26 

this state-action prediction error – reflected in LC firing and noradrenaline release – to optimise 27 

learning rate, enabling large adjustments over short timescales. We propose that such prediction 28 

errors are mediated by cortico-LC connections, whilst ascending input from LC to cortex modulates 29 

belief updating in anterior cingulate cortex (ACC).  30 

In short, we characterise the LC/ NA system within a general theory of brain function. In doing so, we 31 

show that contrasting, behaviour-dependent firing patterns are an emergent property of the LC’s 32 

crucial role in translating prediction errors into an optimal mediation between plasticity and stability. 33 

 34 

Author Summary 35 

The brain uses sensory information to build internal models and make predictions about the world. 36 

When errors of prediction occur, models must be updated to ensure desired outcomes are still 37 

achieved. Neuromodulator chemicals provide a possible pathway for triggering such changes in brain 38 

state. One such neuromodulator, noradrenaline, originates predominantly from a cluster of neurons 39 

in the brainstem - the locus coeruleus (LC) -  and plays a key role in behaviour, for instance, in 40 

determining the balance between exploiting or exploring the environment. 41 

Here we use Active Inference (AI), a mathematical model of perception and action, to formally 42 

describe LC function. We propose that LC activity is triggered by errors in prediction and that the 43 

subsequent release of noradrenaline alters the rate of learning about the environment. Biologically, 44 

this describes an LC-cortex feedback loop promoting behavioural flexibility in times of uncertainty. 45 

We model LC output as a simulated animal performs two tasks known to elicit archetypal 46 
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responses.  We find that experimentally observed ‘phasic’ and ‘tonic’ patterns of LC activity emerge 47 

naturally, and that modulation of learning rates improves task performance.  This provides a simple, 48 

unified computational account of noradrenergic computational function within a general model of 49 

behaviour. 50 

 51 

Introduction 52 

The locus coeruleus (LC) is the major source of noradrenaline (NA) in the brain, projecting to most 53 

territories from the frontal cortex to the distal spinal cord. Changes in LC firing have been associated 54 

with behavioural changes, most notably the switch from ‘exploiting’ to ‘exploring’ the environment, 55 

and the facilitation of appropriate responses to salient stimuli (1,2).  56 

Tonic LC activity is correlated with global levels of arousal and behavioural flexibility, where firing rates 57 

increase with rising levels of alertness (1).  At the extreme, high rates of tonic firing have been causally 58 

related to behavioural variability and stochastic decision making (3). This ‘tonic mode’ has previously 59 

been modelled as a response to factors such as declining utility in a task (4) or ‘unexpected 60 

uncertainties’ (5), triggering behavioural variability and a switch from ‘exploiting’ a known resource to 61 

‘exploring’ for a new resource.  62 

The LC also fires in short, high frequency bursts. Such phasic activity occurs in animals in response to 63 

behaviourally relevant salient stimuli (1,6–8) . This phasic response has been described as a ‘network 64 

interrupt’ or ‘reset’, which facilitates a shift to shorter-term behavioural planning (9,10). Activating 65 

stimuli are those which have an established behavioural significance; for instance, signalling the 66 

location of food or the presence of a predator. They may also include stimuli that are highly 67 

unexpected (1,11) – although the phasic response will habituate rapidly to novelty alone in the 68 

absence of behavioural salience (12).  69 
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A series of studies has provided evidence of further nuance to phasic LC responses. Similar to the well-70 

known dopaminergic response, as an animal learns a cue-reward relationship, phasic LC responses will 71 

transfer from temporal alignment with an unconditioned stimuli (US) to a predictive, conditioned 72 

stimuli (CS+)(1,13). Additionally, rarer stimuli, or those predicting a large reward, elicit a stronger LC 73 

response (6,8). In contrast if predictive cues are delivered consecutively, the size of the response 74 

appears to decrease (6). The rich array of factors affecting the nature of the phasic response suggests 75 

that LC activation is linked to both facilitation of behavioural response and to internal representations 76 

of uncertainties and probabilities.   77 

Despite the increasing body of knowledge about the impact of the LC on behaviour, a comprehensive 78 

computational account remains elusive – in contrast to the more developed account of other 79 

neuromodulators; most notably dopamine, which has been interpreted as a signal of reward 80 

prediction error. In particular, existing modelling approaches have generally tackled the tonic and 81 

phasic firing responses of the LC as separate modes with distinct functional significance, triggered by 82 

different circumstances (4,5,9,10). 83 

Here, we propose that a critical computational role of the LC-NA system is to react to high level ‘state-84 

action’ prediction errors upstream of the LC and cause appropriate flexibility in belief updating via 85 

feedback projections to cortex. In brief, our account of noradrenergic activity is based on the fact that 86 

the degree of belief updating reflects volatility in the environment and can therefore inform the 87 

optimal rate of evidence accumulation and plasticity. The ‘state-action’ prediction error considered in 88 

this work is the ‘Bayesian surprise’ or change in probabilistic beliefs before and after observing some 89 

outcome. We develop these ideas as neural correlates of discrete updates and action planning under 90 

the formalism of Active Inference (AI). AI offers an effective mathematical framework for such 91 

modelling, unifying inferences on states and action planning and providing a detailed description of 92 

beliefs at each step of a behavioural task (14–17). In taking this formal approach, our description of 93 

the LC is integrated into a general theory of the brain function and uses constructs that underwrite 94 
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the normal cycle of perceptual inference and action selection. This contrasts with previous LC 95 

modelling approaches, which have invoked the monitoring of statistical quantities (such as 96 

unexpected uncertainty) per se. 97 

In the following we apply AI to simulate the updating of beliefs about states of the world – and actions 98 

– as a synthetic agent engages with two scenarios (a Go/No-go task with reversal and a foraging task) 99 

that elicit archetypal LC responses. Using this approach, we show that the ‘state-action prediction 100 

error’ offers an effective predictor of LC firing over both long (tonic) and short (phasic) timescales, 101 

without the need to invoke switches between distinct modes. Furthermore, we described how the 102 

signal may be broadcast back to cortex to affect appropriate updates to internal models of the 103 

environment. This links the error via the LC to model flexibility – bringing two key concepts of the LC 104 

together: ‘explore-exploit’ and ‘network reset’. It also produces behavioural changes that agree with 105 

experimental knowledge of animal behaviours under noradrenergic manipulation. Finally, the 106 

simulations produce realistic LC firing patterns that could, in principle, be used to model empirical 107 

responses.  108 

 109 

Methods and Modelling 110 

Brief overview of Active Inference 111 

Active Inference is a theory of behaviour that has previously been mapped to putative neural 112 

implementations (14). The basic premise of AI is that to stay in states compatible with survival, an 113 

agent must create and update a generative model of the world (14,18,19). To do this effectively the 114 

agent represents the true structure of the world with an internal model that is a good approximation 115 

of how its sensations are generated. (Note that in this paper, we often use the term ‘model’ to refer 116 

to the agent’s beliefs about states and actions in the world. Technically, these beliefs are posterior 117 

probability distributions, which require a generative model to exist.) 118 
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The generative model encompasses a set of discrete states and transition patterns that 119 

probabilistically capture all the agent’s beliefs about the world and likely outcomes under different 120 

actions. The model is formulated as a Partially Observable Markov Decision Process (POMDP), under 121 

which the agent must infer its current state, make predictions about the outcome of actions in the 122 

future and make postdictions about the landscape it has just traversed. In this context the word ‘state’ 123 

refers to a combination of features relevant to the agent, including its location and the cognitive 124 

context of that location; i.e., states of the world that matter for its behaviour. 125 

To optimise this model, the agent constantly seeks to minimise variational free energy. This free 126 

energy is a mathematical proxy for the difference between the agent’s generative model and a 127 

‘perfect’ or ‘true’ model of the world, and thus must be continually updated for the agent to survive. 128 

Estimates of the free energy can be obtained over time by comparing predictions from the generative 129 

model with the results of actions in the real world, for instance, by checking whether an action 130 

produces the expected sensory feedback. Using this information from the real world, the agent can 131 

minimise free energy by moving to expected states or by adjusting the parameters of the generative 132 

model itself. The latter allows the agent to optimise the model and/or change its current action plans. 133 

Updating proceeds in cycles, with each round of model updates accompanied by predictions that are 134 

then checked by selecting and executing an action – in turn allowing a new round of updates (Box 1). 135 

 136 

Box 1. A quasi-mathematical description of the framework of Active Inference (based on (14)) 137 

 138 

This framework means that each round of updates combines perceptual inference with action 139 

selection. Mathematically, updates take the form of a series of iterative updates to parameters that 140 

are repeated until convergence (Box 2). It is this machinery that we will map to LC/NA firing and 141 

function. 142 
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 143 

Box 2. Five step mathematical outline of the framework of Active Inference 144 

 145 

There are two more subtleties that should be noted in this brief description. Firstly, action selection is 146 

driven by twin goals – the future attainment of states that the agent holds valuable (utility), as well as 147 

the attainment of information when performing an action (epistemic value).  Formally, these describe 148 

the path integral of free energy expected under competing policies. Thus, agents that act to minimise 149 

free energy will end up where they hoped to, while resolving uncertainty about their environment.  If 150 

policies do not differ in their ability to resolve uncertainty (i.e. no policy will harvest more information) 151 

then utility will drive policy selection.  It has already been established that this particular cost function 152 

explores and exploits in a predictable and mathematically well-defined manner, depending on the 153 

relative utility of outcomes and on the uncertainty with which the agent views its environment (15–154 

17,20).  155 

The second important component is the timespan covered by inferences. The agent continually 156 

updates its understanding of the past, the present and the future. This means that observations in the 157 

present can be used to update inferences on states that occurred in the past – in this way, past events 158 

continue to be useful for belief updating long after they occurred. This is just a formalisation of our 159 

ability to postdict (e.g., “I started in this context, even if I didn't know at the time”). Equally, the agent’s 160 

knowledge of the world is used to form predictions at future times (e.g., “These are the outcomes I 161 

expect under this policy”). The agent not only attempts to use events that have already happened to 162 

minimise free energy, but also tries to select actions and inferences which it believes will minimise 163 

free energy of future observations. 164 

  165 

A Bayesian Model Average drives action selection 166 
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As outlined in Boxes 1 and 2, the generative model comprises probability distributions over states, 167 

sequences of actions, precision (confidence in predictions) and observations. The agent also holds 168 

prior beliefs about the way these variables interact, for instance, the probability that a particular state 169 

will result in a specific observable outcome.  At each time step, the agent updates its beliefs about 170 

these probability distributions over states, actions and precision by minimising free energy. 171 

Once all updates have been completed the agent combines all of its inferences to produce a Bayesian 172 

Model Average (BMA) of states under possible actions. This can be considered as a summary of 173 

everything the agent knows about its place in the world – an overall ‘map’ of the states it believes it 174 

occupied in the past, the state it occupies now and the states it believes it will occupy in the future. 175 

The distribution implicitly includes action planning that is informed by inferences about events in the 176 

past. These probabilities can be represented as a ‘state-action heatmap’ showing how the likelihood 177 

of different states evolves over time as evidence accumulates and beliefs are updated (see Figure 1).  178 

The Bayesian Model Average is then used by the agent to select an action, generating an observation 179 

which forms the basis of the next cycle of updates.  180 

 181 

State-action Prediction Errors as a driver of LC activity  182 

Any large change in the state-action heatmap between time steps represents a state-action prediction 183 

error. These errors indicate that the agent’s beliefs about its past and future states have changed 184 

substantially after receiving a fresh observation. Such prediction errors indicate that the agent’s model 185 

of the world – including its plan for actions – must change. This may either be because an unexpected 186 

stimulus has occurred, requiring an abrupt change in behaviour, or because observations over longer 187 

timescales are consistently demonstrating that key components of the model (for example, the 188 

observation likelihood (A) and state transition (B) matrices) are no longer fit for purpose. Crucially, 189 

errors originating from both situations are reflected in the state-action prediction error.  We propose 190 

that they are a driver of LC activity. 191 
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The BMA is estimated for each time point and takes the form of a weighted sum over state 192 

probabilities (states are weighted by the probability of each policy predicting that state at the given 193 

time). To estimate the state-action prediction error during a task, we take the Kullback-Leibler 194 

divergence between Bayesian Model Average (BMA) distributions at successive time steps. 195 

Mathematically, this reflects the degree of belief updating induced by each new observation. It is often 196 

known as a relative entropy, information gain or Bayesian surprise.  The following expressions describe 197 

the BMA (upper equation) and the state-action prediction error (lower): 198 

𝑺𝒕 = ∑ 𝝅𝒏. 𝒔𝒕
𝒏

𝑛

 199 

𝑃𝐸𝑇 = 𝐷𝐾𝐿[𝑄(𝑆𝑇)||𝑄(𝑆𝑇−1)] = 𝑺𝑻  ∙ (log 𝑺𝑻 − 𝑙𝑜𝑔 𝑺𝑻−𝟏) 200 

Here, 𝒔𝒕
𝒏 refers to the vector of probabilities of states at time t under policy 𝝅𝒏 , whilst Q refers to the 201 

agent’s current set of beliefs (i.e. 𝑄(𝑠𝑇) indicates the probability distribution for 𝑠𝑇 expected under 202 

current beliefs). 203 

Prediction errors over shorter timescales (i.e. between actions, during the iterative cycle of belief 204 

updating) are an integral feature of AI. The state action prediction error, in contrast, represents a 205 

global error: it is expressed over the timescale of a behavioural epoch as a response to the outcome 206 

of belief updating that precedes action selection. 207 

 208 

LC feedback: flexible model learning promoted by prediction errors 209 

Why might it be useful for the LC to respond to state-action prediction errors? We suggest that one 210 

important function is that such errors require a specific modulation of distributed cortical activity 211 

encoding representations of the structure of the environment, particularly in frontal cortex. This 212 

modulation would boost the flexibility of internal representations (where our matrices would be 213 

formed by particularly connected cell assemblies in frontal cortex) and increase their responsiveness 214 
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to recent observations. In vivo, this may be mediated by the release of noradrenaline from LC 215 

projections to the frontal cortex occurring in response to prediction errors.  216 

The need for flexible model updating is directly relevant to a related challenge for Active Inference 217 

models; namely, the rate at which the agent’s experience is assimilated into its model. Addressing this 218 

issue provides a pathway for modelling the effect of LC activation and closes the feedback loop 219 

between brainstem and cortex. So what computational role does NA have in facilitating adaptive 220 

flexibility? 221 

Under AI, the agent’s model of the world is encoded by a set of probability distributions that keep 222 

track of the mappings between states and outcomes, and between states occupied at sequential time 223 

points. These mappings are encoded by Dirichlet distributions, the parameters of which are 224 

incremented with each instance of a particular mapping the agent experiences (illustrated in Figure 5) 225 

(14,20).  However, difficulties arise when environmental contingencies change, because the gradual 226 

accumulation of concentration parameters is essentially unlimited.  Accumulated experience can 227 

come to dominate the agent’s model, with new information having little effect on the agent’s 228 

decisions. This occurs because the generative model does not allow for fluctuations in probability 229 

transitions, i.e. environmental volatility. This issue can be finessed by adding a volatility or decay factor 230 

(𝛼), which effectively endows the generative model with the capacity to ‘forget’ experiences in the  231 

past that are not relevant if environmental contingencies change (as per code available from 232 

http://www.fil.ion.ucl.ac.uk/spm/ (14)).  233 

In the context of reversal learning, this is not a trivial adjustment but a crucial addition to the 234 

generative model which enables AI agents to adapt flexibly. However, the level at which to set the 235 

decay term poses a further challenge: if the decay is too big, the model is too flexible and will be 236 

dominated by its most recent experiences (as all the other terms will have decayed). If the decay is 237 

too small concentration parameters may accumulate too slowly, rendering the model too stable.  238 
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There are several ways one can optimise this ‘forgetting’ in volatility models. One could equip the 239 

Markov decision process with a further hierarchical level modelling fluctuations from trial to trial – as 240 

in the hierarchical Gaussian filter (21). A simpler (and biologically plausible) solution is to link the decay 241 

factor to recent values of state-action prediction error via the LC. In other words, equip the agent with 242 

the prior belief that if belief updating is greater than expected, environmental contingencies have 243 

become more volatile. 244 

This produces flexibility in model learning when prediction error is high (low α) but maintains model 245 

stability when prediction error is low (high α). We have modelled this feedback using a simple logistic 246 

function to convert prediction error into a value for 𝛼: 247 

𝛼 = 𝛼𝑚𝑖𝑛 +
𝛼𝑚𝑎𝑥

1 + 𝑒𝑘(𝑃𝐸−𝑚)
 248 

where PE is the prediction error seen during the trial (in tasks with more than one prediction error 249 

per trial, the maximum error is used), k is a gradient and m is a mean (i.e., expected) value. In all 250 

simulations presented below, ∝𝑚𝑖𝑛=2, ∝𝑚𝑎𝑥=32, k=8, and m is set as a proportion of the maximum 251 

prediction error possible in each task. 252 

Under this scheme, a brief but large prediction error ‘boosts’ the impact of a recent experience upon 253 

the agent’s model of the world. This occurs by temporarily increasing the attrition of existing, 254 

experience dependent parameters encoding environmental contingencies. Crucially, this causes 255 

recent actions and observations to have a greater effect on the Dirichlet distributions than they would 256 

otherwise. If prediction errors then decrease, the model stabilises again. However, if actions 257 

consistently produce large prediction errors then the underlying model parameters will gradually lose 258 

their structure – equivalent to the flattening of probability distributions that form the agent’s model - 259 

leading to greater variability in action selection.   260 

 261 

Results 262 
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The simulations reported in this paper suggest that behavioural contexts that produce large state-263 

action prediction errors are also those that produce archetypal LC responses in experimental 264 

environments. Below, we describe the emergence of phasic and tonic activity in two tasks, as a 265 

response to changes in prediction error. We initially present results without the LC feedback in place 266 

before showing how both simulations are improved by modelling the LC as a link between prediction 267 

errors and model decay / volatility. 268 

 269 

Go/No-go task 270 

A simple ‘Go-No-Go’ game modelled under AI is shown in Figure 1 (using MATLAB code based on  (14)). 271 

In this game, the agent (depicted as a rat) starts in a ‘ready’ state - location 1 - and must move to 272 

location 2 to receive a cue. When the cue is received the agent may either move back to location 1 or 273 

seek a reward at location 3.  The agent has a strong preference for receiving the reward but an 274 

aversion to moving to location 3 and remaining unrewarded. This is represented in the game by a 275 

notional ramp which forces the agent to expend physical effort in seeking the reward. There are six 276 

available states, which between them describe the different combinations of features relevant to the 277 

agent during the game. Learning is mediated through updates to the A and D matrices, which encode 278 

likelihood mappings between hidden states of the world and outcomes – and prior beliefs about initial 279 

states. 280 

 281 

Figure 1. Simple 'Go-No-Go' game modelled under AI.  282 

(a) Structure of the task (see main text) (b)-(d) The state-action heatmap showing inferences on the 283 

agent’s state over a rare ‘Go!’ trial. Large updates are required at t=2, after the animal receives the 284 

‘Go’ cue which forces it to update its action plans and state inferences. This update is proposed to 285 

cause a large, time specific input into LC (e), which causes a sudden phasic burst of LC activity. The 286 
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lower part of the figure shows the full modelling of the Go-No-Go task, with components as described 287 

in Box 1. 288 

 289 

 290 

At each time point, the agent’s beliefs are summarised in the Bayesian Model Average, represented 291 

graphically as a state-action heatmap. Figure 1(b) shows a representation of the agent’s beliefs about 292 

states at the beginning of a new trial in which the ‘Go’ cue is heard. The agent is ‘well trained’; that is, 293 

it has an accurate understanding of the relationship between the cue and the availability of the 294 

reward, and of the fact that the ‘Go’ cue is rare (here, the cue probability is 10%). In our modelling, 295 

we trained the synthetic rat by running the simulation for 750 trials. We then used the learnt priors as 296 

the starting point for the ‘well trained’ case.  297 

Given its knowledge of the game, the agent begins with a strong belief that it is beginning the trial in 298 

state 2 (in which a reward will not be available). It also makes predictions for the states it believes it 299 

will occupy later in the trial: at t=2, it believes it is likely to occupy state 4 – corresponding to the 300 

occurrence of the ‘No-go’ cue, but also entertains a slight possibility that the ‘Go’ cue might still 301 

appear. The agent is much less certain in its predictions for t=3, but still holds a higher probability that 302 

it will end up in one of the unrewarded end states.  303 

At the next time point (at t=2, Fig. 1(c)), the agent updates its state-action heatmap, making new 304 

inferences on the probabilities of different states in the past, present and future, based on its most 305 

recent observations. If it has received the rare ‘Go’ cue, it will have to update its predictions for its 306 

state at the end of the game, in addition to altering its inferences about the state in which it started 307 

at t=1 (a process of postdiction about past states based on new information). The agent therefore has 308 

to make a large, sudden update to its BMA heatmap at t=2. By t=3 (Fig. 1(d)), the agent has received 309 
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the reward as predicted, and knows with certainty where it is and where it has been. Only small 310 

updates are required to its estimates at this point. 311 

Simulated prediction errors during this task are shown in Figure 2, in which LC firing is modelled by 312 

converting the prediction error to a firing probability via a sigmoid activation function. In this 313 

simulation the prediction error does not modulate learning and the decay parameter α has been set 314 

to a fixed value. During the task, an agent who is well trained shows large peaks of state-action 315 

prediction error when the reward-predicting cue is presented, resulting in phasic activity in the LC as 316 

seen experimentally (6,22). The underlying reason for this error is a large, quick shift in action planning, 317 

from the (more likely) ‘No-go’ outcome to the rare ‘Go’ situation.  318 

 319 

 320 

Figure 2 Plot of prediction error (a), simulated LC spiking (b) and behaviour (c) during 100 trials of 321 

the Go/No-Go task described in main text.  322 

In (a) the raw prediction error is extracted for t=2, when the animal receives a cue (this is the error 323 

between t=1 and t=2) and t=3 when the animal receives feedback on its response to the cue (the error 324 

between t=2 and t=3). Because the prediction error explicitly evaluates differences between update 325 

cycles, there is no error available for the first time point. Each trial has therefore been collapsed to 326 

two time points, each lasting 1 second. In (a) the occurrence of the ‘Go’ cue causes strong peaks in 327 

prediction error. This is converted into a simulated LC firing rate in (b), showing phasic LC activation 328 

when the ‘go’ cue is heard. Plot (c) is a graphical representation of behaviour during the task at times 329 

t=2 and t=3. 330 

 331 

 332 

Foraging  333 
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To supplement the above go no-go task we modelled a foraging task, depicted in Figure 3. On every 334 

trial in this task the agent searches for a reward in one of three arms. In one arm, the probability of 335 

finding a reward is high (90%), whilst in the others the probability is low (10%). The probabilities are 336 

held constant for a set number of trials, during which time the agent accumulates beliefs about the 337 

likelihood of finding a reward in each location. Typically, once the agent has been rewarded in one 338 

location numerous times it will build a strong prior probability on the availability of a reward in that 339 

location (reflected in updates to elements of the B matrix). In the example shown in Figure 3 the agent 340 

begins by exploring the arms until it has seen a reward in arm 1, after which it continues to visit this 341 

location. After a set number of trials, the location of the high probability arm is shifted. When this 342 

happens, the agent’s established model of the world no longer provides an accurate explanation of its 343 

experiences. As expected rewards fail to materialise, state-action prediction errors arise. Under our 344 

model, this causes an increasing tonic rate of LC activity whilst new priors are learnt and behaviour 345 

changes.  346 

 347 

 348 

Figure 3. Modelling of a 3-arm foraging task under Active Inference.  349 

Upper plot: the mathematical structure of the task. There are seven states, including one neutral 350 

starting point and 3 arm locations which can be combined with either a reward / no reward. There are 351 

7 observations; here these have a 1-to-1 mapping to states (A matrix). Actions 1-4 simply move the 352 

agent to locations 1-4 respectively. The probability of obtaining a reward in a given arm (p2 for action 353 

2, above) is held static for a fixed number of trials, with one arm granting a reward with a 90% 354 

probability and the others with 10% probability. This is then switched, so that the agent must adjust 355 

its priors and its behaviour. Lower plot: State action prediction errors and LC responses over a typical 356 

run of 100 trials. 357 
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 358 

 359 

Flexibility in model learning: closing the loop 360 

When the full feedback loop between prediction error and model decay is introduced, there are 361 

improvements in performance in the simulations of both the Go/No-go and Foraging tasks (Figure 4).  362 

One consequence during the Go/No-go game is that multiple consecutive ‘go’ trials produce clearly 363 

reduced peak heights (as has been recorded in terms of LC activation in the same context (6)). This is 364 

due to the continual modulation of the agent’s prior beliefs about whether each trial will be a Go or 365 

No-Go context (encoded by d parameters that accumulate experience about initial states). With a brief 366 

high prediction error, the update prioritises the recent experiences of the agent: after a few 367 

consecutive ‘Go’ trials this creates a distribution with a higher probability of the ‘Go’ context than 368 

would be suggested by the statistics of the rat’s entire experience in the game. 369 

In the foraging task, the dynamic modulation of model building allows prediction errors to reduce 370 

more quickly when the rat is settled into the ‘exploit’ mode of harvesting a reward in a reliable 371 

location, promoting model stability (Figure 4b). When the reward is no longer available, errors mount 372 

and the increase in model decay causes the agent to make more explorative choices. This contrasts 373 

with the same task simulated with fixed values of α (Figure 5): when the model is hyper-flexible, the 374 

agent often switches behavioural strategy after a single failed trial; when the model is inflexible, the 375 

agent takes a large number of trials to visit a new location. Over multiple trials, the agent with a 376 

dynamically varying α consistently secures more rewards than agents with fixed α values taken from 377 

the same range (Figure 5c).  378 

Finally, the application of this scheme to a reversal learning scenario under the Go/No-Go game is 379 

described in Figure 6. As expected, the well-trained agent begins the session by showing a phasic 380 

response in prediction error / LC firing in response to the ‘Go’ cue (cue 1).  At trial 35, the meaning of 381 
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the two cues switches so that the ‘Go’ context is predicted by cue 2. At the reversal, state-action 382 

prediction errors cannot be resolved and LC firing switches to a higher tonic level. During this period, 383 

model updating – and behaviour - becomes more flexible and the new rules of the task are learnt. 384 

Eventually the high levels of tonic activity fall away and phasic responses to the new ‘Go’ cue re-385 

emerge; coupled with a lower level of tonic activity. This mirrors the pattern of LC firing recorded in 386 

monkeys during the same task (22). 387 

 388 

 389 

Figure 4. Application of the feedback loop between state-action prediction error and parameter 390 

decay to the Go/No-go (a) and Foraging tasks (b).  391 

See main text for description. 392 

 393 

Figure 5. Details of update rules and comparison between flexible and fixed parameter decay. 394 

Upper panel: rules for updating Dirichlet parameters. Each parameter is incremented every time a 395 

certain mapping is observed. Lower panel (a), (b): examples of agents in the foraging task with 396 

values of the decay parameter set high or low. When α is too high, the agent is inflexible and fails to 397 

respond to the altered reward probability distributions despite consistently failing to obtain a 398 

reward. When α is low, the agent is hyperflexible and often visits a new location after a single 399 

unrewarded choice. (c) Mean overall rewards and mean ratio of rewards to changes of location 400 

when the same task (with a rule change every 40 trials) is played 100 times. The ‘flexible’ agent’ is 401 

endowed with a variable α ranging from 2 to 32 along a sigmoid curve. This agent receives more 402 

rewards overall and still has the highest ratio of rewards to changes of location when compared with 403 

agents given fixed values of α in the same range. 404 

 405 
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 406 

 407 

Figure 6. Reversal learning during the Go-No-Go game. 408 

The agent begins with a well-trained understanding (via 750 trials of training) that cue 2 indicates that 409 

a reward is available. At trial 35 (t=70) the cue/context relationship is reversed, and the agent must 410 

now learn that cue 1 indicates the ‘Go’ context. This initially causes numerous unsuccessful trials, 411 

violating the learnt model and producing high prediction errors (a). Note that prediction errors are 412 

initially elevated at both timepoints in each trial because both the previously rare cue and the 413 

subsequent lack of reward are unexpected. These prediction errors result in a lowering in the 414 

parameter decay factor (b), which in turn flattens the agent’s priors causing more variability in 415 

behaviour. Eventually the agent learns the new contingencies and the model stabilises, with the re-416 

emergence of phasic bursts of LC activity on ‘Go’ trials (a, c). From trial 125 onwards, the peak of phasic 417 

activity begins to transition towards the presentation of the cue rather than the reward. This is also 418 

seen during the training period of the well-trained agent shown in Figure 2 and 4(a). 419 

 420 

 421 

 422 

Discussion 423 

We propose that the LC fulfils a crucial role, linking prediction errors (or Bayesian surprise) during the 424 

planning of actions to model decay – a form of learning rate. Using this approach, we have reproduced 425 

the following experimentally observed LC characteristics:  426 

- Phasic responses during a Go/No-Go paradigm such as the one described in (6,22). Here, cues 427 

predicting a reward (for which the animal must perform an action) elicit clear phasic LC responses, 428 

which stand out against a background of lower overall tonic activity. 429 

- Consecutive rare stimuli (‘Go’ trials) result in progressive reductions in LC phasic response  430 
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- Responses during a reversal of contingencies in the Go / No-go task as described in (22), during 431 

which phasic responses are lost in favour of higher tonic activity during the reversal. This is 432 

thought to allow behavioural flexibility, which in turn allows the learning of new contingencies 433 

(reviewed in (4)) As new rules are learnt, phasic responses eventually re-emerge on the 434 

presentation of the new reward-predicting cue.  435 

- A more general link between the ‘exploration’ mode of behaviour and higher tonic levels of 436 

activity.  Whilst direct measurements of LC activity during explore-exploit paradigms are lacking, 437 

the link is strongly suggested by indirect experimental evidence. For instance, Tervo et al (3) 438 

demonstrated highly variable behavioural choices in rats when the activity of LC units projecting 439 

to ACC was held artificially high via optogenetic manipulation. Other studies have also 440 

demonstrated  (23,24) that an increase in pupil size  (a correlate of LC activity) occurs in parallel 441 

with behavioural flexibility and task disengagement.  442 

 443 

Neurobiology  444 

In previous Active Inference literature the calculation of Bayesian Model Averages has been mapped 445 

to the dorsal prefrontal cortex (14). This is one of the frontal regions known to send projections to LC 446 

(25,26) and is a candidate for the calculation of state-action prediction error (although we accept that 447 

without further experimental work such anatomical attributions are largely speculative).  448 

Experimental evidence for a neural representation of a distinct prediction error based on states, 449 

rather than rewards, has also been found in dorsal regions of the frontal cortex in a human MRI study 450 

(27). 451 

Turning to the LC-prefrontal connections and the modulation of model updating, converging 452 

experimental evidence suggests that working models of the environment are reflected by ACC 453 

activity. Activity in the ACC has been shown to correlate to many factors relevant to the maintenance 454 

of a generative model, including reward magnitude and probability (for review see (28)), estimation 455 
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of the value of action sequences and subsequent prediction errors (29,30) and the value of switching 456 

behavioural strategies (31). Marked changes in activity in ACC have been observed at times thought 457 

to coincide with significant model updating and occur in parallel with explorative behaviour – an event 458 

that has been directly linked to increased input from locus coeruleus (3,32). Similarly, a direct ACC/ 459 

LC connection has also been found in response to task conflicts (33). ACC activity is also correlated 460 

with learning rate during times of volatility, such that when the statistics of the environment change, 461 

more recent observations are weighted more heavily in preference to historical information (34).  This 462 

evidence provides a solid foundation for the hypothesis that the LC modulates learning rate by 463 

governing model updating via ACC. Specifically, we propose that the release of noradrenaline would 464 

cause a temporary increase in the susceptibility of model-holding networks to new information. At a 465 

cellular level, this would lead to NA effectively breaking and reshaping connections amongst cell 466 

assemblies. 467 

In vitro investigation of the cellular effects of noradrenaline provides support for this idea, indicating 468 

that noradrenaline may suppress intrinsic connectivity of cortical neurons, causing a relative 469 

enhancement of afferent input (1,35,36). Sara (37) and Harley (38) also suggest that LC spiking 470 

synchronises oscillations at theta and gamma frequencies, allowing effective transfer of information 471 

between brain regions during periods of LC activity. This may allow enhanced updating of existing 472 

models with more recent observations. A role for the LC in prioritising recent observations during 473 

times of environmental volatility has been explicitly suggested experimentally (39) and is supported 474 

by evidence regarding the critical role of LC activation in reversal learning, e.g. (40). 475 

We note that if the LC is indeed responding to prediction errors, model updating is likely not the only 476 

functionality it has. For instance, LC activation has been experimentally linked to the potentiation of 477 

memory formation (37,41,42), analgesic effects (43,44) and changes to sensory perception for stimuli 478 

occurring at the time of LC activation (1,45,46). These are all reasonable responses to a large 479 

prediction error: the increase in gain on sensory input may ensure that salient stimuli are more easily 480 
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detectable in the future, whilst enhanced formation of memory might ensure that mappings between 481 

salient stimuli and states are remembered over longer timeframes. Similarly, the temporary 482 

suppression of pain may facilitate urgent physical responses to important stimuli (for instance, 483 

allowing action in response to a stimulus indicating the presence of a predator). The possibility that 484 

the LC has the capacity to provide a differentiated response to prediction error is supported by recent 485 

work indicating that existence of distinct subunits with preferred targets producing different 486 

functional effects (44,47–49). 487 

 488 

Relationship to existing models of LC function 489 

The ideas described above are not a radical departure from existing models of LC function – but use 490 

the theory of active inference to integrate similar concepts into a general theory of brain function, 491 

without invoking the need for monitoring of ad-hoc statistical quantities. 492 

The adaptive gain theory proposed by Aston Jones and Cohen (4) proposes that the LC responds to 493 

ongoing assessments of utility in OFC and ACC by altering the global ‘gain’ of the brain (the responsivity 494 

of individual units). Phasic activation produces a widespread increase in gain which enables a more 495 

efficient behavioural response following a task-related decision; however, when the utility of a task 496 

decreases, the LC switches to a tonic mode which favours task disengagement and a switch from 497 

‘exploit’ to ‘explore’.   498 

The mechanism we have described reproduces many elements of the adaptive gain theory, with the 499 

important exception that different LC firing patterns promoting explorative or exploitative behaviour 500 

are an emergent property of the model rather than a dichotomy imposed by design. Since the 501 

probability assigned to individual policies is explicitly dependent on their utility (in combination with 502 

their epistemic value) a large state-action prediction error will ultimately reflect changes in the 503 

availability of policies which lead to high utility outcomes. This may be a positive change, as is the case 504 
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when a cue indicates that a ‘Go’ policy will secure a reward, or a negative change, when rewards are 505 

no longer available in the foraging task. This link is demonstrated in Figure 4 for the foraging task, 506 

where increases in prediction error / LC firing occur in tandom with abrupt changes in the agent's 507 

assessment of a given policy's utility. Both the LC response, and the underlying cause (prediction 508 

error), show a shift between ‘phasic’ and ‘tonic’ modes  (although it is entirely possible that coupling 509 

mechanisms within the LC also act to exaggerate the shift and cause the LC to fire in a more starkly bi-510 

modal fashion, as suggested by computational modelling of the LC (4,50)).  As described above, a short 511 

prediction error will act to heighten the response to a salient cue over the short term, whilst a large, 512 

sustained prediction error – occurring in parallel with declining utility in a task – will act to make 513 

behaviour more exploratory.  514 

Yu and Dayan have proposed an alternative model where tonic noradrenaline is a signal of 515 

‘unexpected uncertainty’, when large changes in environment produce observations which strongly 516 

violate expectations (5). This is described as a ‘global model failure signal’ and leads to enhancement 517 

of bottom-up sensory information. We have focused on a similar ‘model failure’ signal which allows 518 

larger changes to learning about the structure of the model itself – but using the inferences of states 519 

within AI as our driver, avoiding explicit tracking of the statistics of ‘unexpected uncertainty’. Rather, 520 

we compute model failure in terms of ‘everyday’ errors in predicted actions and sensations. Our model 521 

is also in line with the ‘network reset’ theory proposed by Bouret et al, in which LC phasic activation 522 

promotes rapid re-organisation of neural networks to accomplish shifts in behavioural mode (10), see 523 

also (9). Large changes in configuration of the state-action heatmap alongside the updates to internal 524 

models above would similarly constitute network re-organisations with the result of changing 525 

behaviour. Importantly, state-action updates precede action selection, placing LC activation after 526 

decision making / classification of stimuli, but before the behavioural response. This order of events 527 

is in keeping with experimental evidence showing that LC responses do indeed consistently precede 528 

behavioural responses (51,52).  This also parallels the ‘neural interrupt’ model of phasic noradrenaline 529 
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proposed by Dayan and Yu (53), in which uncertainties over states within a task are signalled by phasic 530 

bursts of noradrenaline, causing an interrupt signal during which new states can be adopted. 531 

More recently Parr et al have described an alternative active inference-based model of noradrenaline 532 

in decision making (54). Under this model, noradrenaline and acetylcholine are related to the precision 533 

assigned to beliefs about outcomes and beliefs about state transitions. That is, the agent assigns a 534 

different weight to any inferences made using the A matrix (modulated by release of acetylcholine) or 535 

the B matrix (modulated by noradrenaline) in its updates. This approach captures some of the 536 

interplay between environmental uncertainty and release of noradrenaline. Our formulation also 537 

speaks to these uncertainties – without the need to introduce new volatility parameters, or to 538 

segregate cholinergic / noradrenergic response into separate modulators of likelihood and transition 539 

(i.e., A and B matrices). Both approaches target the coding of contingencies in terms of connectivity 540 

(i.e., probability matrices). Parr et al consider the optimisation of the precision of contingencies. 541 

Conversely, we consider the optimisation of precision from the point of view of optimal learning rates. 542 

In other words, the confidence or precision of beliefs about outcomes likelihoods and state transitions 543 

can itself be optimised based on inference (about states) or learning (about parameters) in the 544 

generative model. 545 

The key contribution of the current work is to link inference to the precision of beliefs about 546 

parameters via learning. This addresses the issue of how model parameters are learned and updated 547 

and allows an AI agent to make substantial changes to the architecture of its model in times when 548 

environmental rules have shifted. The ensuing behaviour produces the archetypal phasic-tonic shifts 549 

in LC dynamics, and links LC responses to the outcome of decision on stimuli, as suggested by in-vivo 550 

recordings; summaries of which can be found in (4,11). 551 

The difference between these two applications of Active Inference illustrates a broader point about 552 

the way in which the theory is used to describe neuromodulation. Current versions of Active Inference 553 

have conceived of neuromodulatory systems as reflections of precision, altering the weights assigned 554 
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to components of the agent’s model during a continuous cycle of updates. This underlying modulation 555 

is capable of drastically altering the inferences the agent makes about likely states and actions. Here 556 

we have offered a different view, in which noradrenaline is proposed to respond to the outcome of an 557 

update cycle. This enables us to endow an active inference agent with a noradrenergic response which 558 

relates activity in the locus coeruleus to the outcome of decisions and to subsequent changes to action 559 

planning. These responses are then linked back to changes in the underlying structure of the agent’s 560 

model – again outside of the cycle of inferences.  Placing such responses above the update cycle moves 561 

them closer to the level of action selection and allows us to reproduce many aspects of LC dynamics 562 

observed empirically.  563 

 564 

Future work 565 

Once validated through experimental work, models of this type can provide insight into symptoms of 566 

disorders which have been linked to LC dysfunction. For example, attention deficit hyperactivity 567 

disorder (ADHD), which is characterised by inattention and hyperactivity, has been associated with 568 

elevated tonic LC activity (1). Under our model, high tonic firing rates would cause a persistently high 569 

‘model decay’. This would cause similar outcomes to those demonstrated for the hyper-flexible 570 

foraging agent (Figure 5), which cannot build a stable structured model of the environment and reacts 571 

to even minor violations of predictions by changing its behavioural strategy. Pharmacological 572 

interventions which lower tonic LC firing rates may ameliorate symptoms by allowing structured 573 

models to emerge, guiding appropriate phasic responses and producing more focused behavioural 574 

strategies.  575 

Several lines of future work are available to test components of the prediction error / LC theory.  576 

Firstly, a clearer understanding of the drivers of LC responses could be pursued through in-vivo 577 

recordings in PFC, ACC and LC. This would help to confirm if calculations of prediction error (or 578 

utility/estimation uncertainty, under other theories) originate in frontal cortex, rather than being 579 
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calculated in the LC itself or elsewhere. Simultaneous recordings with high temporal resolution in-vivo 580 

will also help to delineate cause and effect in frontal cortex/LC interactions and will complement the 581 

accumulating data from human fMRI / pupillometry. Specific details of the above theory could then 582 

be tested; for example, in comparing the predictions for an LC driven purely by consideration of utility 583 

or estimation uncertainty, rather than by a state-prediction error as prescribed by Free Energy-based 584 

estimates. In-vivo recordings during the two tasks described here could also be examined for the 585 

characteristic patterns. For instance, in the pattern of LC firing predicted for the foraging task, the 586 

above modelling shows a sudden transition to a higher tonic level of activity during a change in the 587 

environmental statistics, and a much slower decay of activity occurring as rules stabilise. Triggering or 588 

blocking such patterns of firing during task performance would be particularly revealing regarding the 589 

proposed role of the LC.  590 

Finally, we have not addressed the role of other neuromodulators that have related effects on 591 

behaviour. Whilst dopamine is explicitly included in Active Inference models as a precision parameter, 592 

other neuromodulators (e.g. serotonin) do not yet have a clear place within the model. Understanding 593 

the interplay between these systems will be crucial for placing LC activity in context - and will enable 594 

the explanatory power of Active Inference to be fully harnessed.   595 
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