
A neural basis of probabilistic computation in visual1

cortex2

Edgar Y. Walker1,2†, R. James Cotton1,2,3†, Wei Ji Ma4‡, Andreas S. Tolias1,2,5∗‡
3

1Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, TX, USA4

2Department of Neuroscience, Baylor College of Medicine, TX, USA5

3Now at: Shirley Ryan AbilityLab, IL, USA6

4Center for Neural Science and Department of Psychology, New York University, NY, USA.7

5Department of Electrical and Computer Engineering, Rice University, TX, USA.8

†‡ These authors contributed equally to this work9

∗ Corresponding author10

11

For more than a century, Bayesian-inspired models have been used to explain human and an-12

imal behavior, suggesting that organisms represent the uncertainty associated with sensory13

variables. Nevertheless, the neural code of uncertainty remains elusive. A central hypoth-14

esis is that uncertainty is encoded in the population activity of cortical neurons in the form15

of likelihood functions. Here, we studied the neural code of uncertainty by simultaneously16

recording population activity in the visual cortex in primates during a visual categorization17

task for which trial-to-trial uncertainty about stimulus orientation was relevant for the ani-18

mal’s decision. We decoded the likelihood function from the trial-to-trial population activity19

and found that it predicted the monkey’s decisions better than using only a decoded point20
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estimate of the orientation. Critically, this remained true even when we conditioned on the21

stimulus including its contrast, suggesting that random fluctuations in neural activity firing22

rates drive behaviorally meaningful variations in the likelihood function. Our results es-23

tablish the role of population-encoded likelihood functions in mediating behavior and offer24

potential neural underpinnings for Bayesian models of perception.25

When making perceptual decisions, organisms often benefit from representing uncertainty about26

sensory variables. More specifically, the theory that the brain performs Bayesian inference—which27

has roots in the work of Laplace1 and von Helmholtz2—has been widely used to explain human and28

animal perception3–6. At its center lies the assumption that the brain maintains a statistical model29

of the world and when confronted with incomplete and imperfect information, makes inferences30

by computing probability distributions over task-relevant variables. In spite of the prevalence31

of Bayesian theories in neuroscience, evidence to support them stems primarily from behavioral32

studies (e.g.7, 8), and how probability distributions or uncertainty are encoded in the brain remains33

unclear.34

According to the probabilistic population coding (PPC) hypothesis9, 10, inference in the brain is35

performed by inverting a generative model of neural population activity. Specifically, according36

to PPC, a neural population encodes sensory uncertainty in the form of the sensory likelihood37

function—the probability of observing a given pattern of neural activity across hypothesized stim-38

ulus values9, 11, 12. The form of the likelihood function is inherited from the probability distribution39

describing neural variability (“noise”) for a given stimulus. A sensory likelihood function is typi-40
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cally unimodal13, 14, and its width could in principle serve as a measure of the sensory uncertainty41

about the stimulus. Whether the brain uses this particular uncertainty quantity in its decisions is42

unknown.43

Testing this hypothesis thoroughly is not straightforward. Experiments to test for any population-44

level neural code for trial-by-trial uncertainty must: (1) Use a behavioral task in which uncertainty45

information, and not just a point estimate, is relevant for the perceptual decision, (2) Record simul-46

taneously from a population of neurons, and (3) Show that the stimulus-conditioned fluctuations in47

uncertainty decoded from population responses—for us, the sensory likelihood function—mediate48

the behavioral outcomes (perceptual decisions). Despite previous efforts10, 15, 16, these three criteria49

have not yet been met simultaneously, and therefore, the population neural code of uncertainty still50

remains unknown.51

To illustrate the importance of the third criterion, consider a typical perceptual decision-making52

task (Fig. 1a) where the subject views a stimulus s, which elicits a cortical population response r,53

for example in V1. Here by a stimulus, we refer collectively to all aspects of a visual stimulus such54

as its contrast and orientation. Stimulus information is eventually relayed to decision-making areas55

(e.g. prefrontal cortex), leading the animal to make a classification decision Ĉ. The likelihood56

function L is decoded from the recorded population activities r. Because variation in the stimulus57

(e.g. orientation or contrast) across trials can drive variation both in the decoded likelihood function58

and in the animal’s decision, one may find a significant correlation between L and Ĉ, even if the59

likelihood estimated from the recorded population r does not mediate the decision (Fig. 1c). When60
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the stimulus is fixed, random fluctuations in the population response r can still result in variations61

inL. If the likelihood truly mediates the decision, we expect that such variation inLwould account62

for variation in Ĉ. Therefore, to demonstrate that the likelihood L mediates decision Ĉ (Fig. 1d),63

it is imperative to show a correlation between L and Ĉ conditioned on the stimulus s (Fig. 1d,e).64

In this work, we meet these requirements and provide the first evidence that in perceptual decision-65

making, cortical populations encode and utilize trial-by-trial sensory uncertainty information in66

the form of likelihood functions. We performed simultaneous V1 cortical population recordings as67

monkeys performed a visual classification task in which the trial-by-trial uncertainty information68

is beneficial to the animal17. To decode the trial-by-trial likelihood functions from the V1 popula-69

tion responses, we developed a novel technique based on deep learning18, 19. This method extends70

beyond previous approaches that used strong parametric assumptions about the probability dis-71

tribution of population activity10, 14, 16. These assumptions were theoretically convenient9, 20–23 but72

limited the generality of those approaches in decoding the likelihood functions. Finally, we per-73

formed all analyses conditioned on the contrast—an overt driver of uncertainty—and performed74

further orientation-conditioned analyses to isolate the effect of random fluctuations in the decoded75

likelihood function on behavior.76

Results77

Behavioral task Two Rhesus macaques (Macacca mulatta) were trained on an orientation classifi-78

cation task designed such that the optimal performance required the use of trial-by-trial uncertainty.79
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Figure 1: Conceptual overview of the decoding model. a, Information flow between stimulus s, recorded cortical

population response r, responses of all recorded and unrecorded neurons rall, decoded likelihood function L, and

subject’s decision Ĉ, as the subject performs a visual classification task. b-e, Possible relationship between variables

in the model indicated by black arrows. We consider two scenarios: b, d the likelihood function mediates the decision,

c, e the likelihood function does not mediate the decision. The gray arrow represents the trial-by-trial fluctuations in

the subject’s decisions Ĉ as predicted by the variable. b, c, When not conditioning on the stimulus, the stimulus can

drive correlation among all variables, making it difficult to distinguish the two scenarios. d, e, When conditioning on

the stimulus, we expect correlation between Ĉ and L only when L mediates the decision, allowing us to distinguish

the two scenarios.
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On each trial, one of two stimulus classes (C = 1 or C = 2) was chosen at random with equal80

probability. Each class was defined by a Gaussian probability distribution over the orientation.81

The two distributions shared the same mean but had different standard deviations (Fig. 2a). An82

orientation was drawn from the distribution belonging to the selected class, and a drifting grating83

stimulus with that orientation was then presented to the animal (Fig. 2b). In a given recording84

session, at least three distinct contrasts were selected at the beginning of the session, and on each85

trial, one of these values was randomly selected.86

In our previous study17, we designed this task so that an optimal Bayesian observer would in-87

corporate the trial-by-trial sensory uncertainty about stimulus orientation in making classification88

decisions. Indeed, both humans and monkeys decisions seemed to utilize trial-by-trial uncertainty89

about the stimulus orientation. In the current study, one of the two monkeys (Monkey L) was the90

same monkey that participated in the previous study and thus has been shown to have learned the91

task well. The second monkey (Monkey T) was naı̈ve to the task, but learned to perform equally92

well, closely matching the performance of Monkey L (Fig. 2c), with psychometric curves display-93

ing a strong dependence on both contrast and orientation (Fig. 2d,e).94

In our analyses, we grouped the trials with the same contrast within the same session and refer to95

such a group as a “contrast-session”.96

Decoding a cortical population representation of uncertainty Each monkey was implanted97

with a chronic multi-electrode (Utah) array in the parafoveal primary visual cortex (V1) to record98

the simultaneous cortical population activity as they performed the orientation classification task99
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Figure 2: Behavioral task. a, The stimulus orientation distributions for the two classes. The two distributions shared

the same mean (µ = 0◦) but differed in their standard deviations (σ1 = 3◦ and σ2 = 15◦). b, Time course of a

single trial. The subject fixated onto the fixation target for 300 ms before a drifting grating stimulus was shown. After

500 ms of stimulus presentation, the subject broke fixation and saccaded to one of the two colored targets to indicate

their class decision (color matches class color in a). The left-right configuration of the colored targets were chosen at

random for each trial. c, Performance of the two monkeys on the task across stimulus contrast. “Theoretical limit”

corresponds to the performance of an ideal observer with no observation noise. d, Psychometric curves. Each curve

shows the proportion of trials on which the monkey reported C = 1 as a function of stimulus orientation, computed

from all trials within a single contrast bin. All data points are means and error bars indicate standard error of the

means. e, Class-conditioned responses. For each subject, the proportions of C = 1 reports is shown across contrasts,

conditioned on the ground-truth class: C = 1 (red) and C = 2 (blue). The symbols have the same meaning as in c.
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(Fig. 3a). A total of 61 and 71 sessions were analyzed from Monkey L and Monkey T for a to-100

tal of 110,695 and 192,631 trials, respectively. In each recording session, up to 96 channels were101

recorded. On each trial and for each channel, we computed the total number of spikes that occurred102

during the 500 ms of stimulus presentation preceding the decision-making cue (Fig. 3a), yielding103

a vector of population responses r used in the subsequent analyses (Fig. 3b).104

Existing computational methods for decoding the trial-by-trial likelihood function from the cor-105

tical population activities are typically based on making strong parametric assumptions about the106

stimulus conditioned distribution of the population response (i.e. generative model of the pop-107

ulation response). For example, population responses to a stimulus can be modeled as an inde-108

pendent Poisson distribution, allowing each recorded unit to be characterized by a simple tuning109

curve (which may be further parameterized)14, 16, 20–23. While this simplifying assumption allows110

the trial-by-trial likelihood function to be computed straightforwardly, it disregards any potential111

correlations among the units in population responses (i.e. noise correlations and internal brain state112

fluctuations24–29), and can lead to biased estimates of the likelihood encoded by the cortical popu-113

lation. While more generic parametric models—such as Poisson-like distributions—of population114

distribution have been proposed9, 10, 17, 30, 31, they still impose restrictive assumptions.115

We devised a technique based on deep learning to decode the trial-by-trial likelihood function from116

the V1 population response. We trained a fully connected deep neural network (DNN)19 to predict117

the per-trial likelihood function L(θ) ≡ p(r|θ) over stimulus orientation θ from the vectorized118

population response r (Fig. 3c; for details on the network architecture and training objective, refer119
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Figure 3: Encoding and decoding of the stimulus orientation. a, An example of 96 channels spike traces from a

single trial from Monkey T. The vector of spike counts, r, was accumulated over the pre-saccade stimulus presentation

period (time 0-500 ms, green shade). b, The population response for the selected trials from a single contrast-session

(Monkey T, 64% contrast). Each column is a population response r on a trial randomly drawn from the trials falling

into a specific orientation bin. Each row is a response from a single channel. For visibility, the channel’s responses

are normalized to the maximum response across all trials. The channels were sorted by the preferred orientation of

the channel. The subject’s class decision Ĉ for each trial is depicted by the colored patch: red and blue for Ĉ = 1 and

Ĉ = 2, respectively. c, A schematic of a deep neural network trained to decode the vectorized likelihood function L

from r. All likelihood functions are area-normalized. d, Two decision models M . In the Full-Likelihood Model, the

decoded likelihood function L was used without modification to predict the probability that the monkey will report

Ĉ = 1. In the Fixed-Uncertainty Model, the likelihood function was approximated by a fixed width Gaussian centered

at the mean of the normalized likelihood (dashed line), where the fixed width was fitted separately for each contrast-

session. For both models, their likelihood functions were fed into a parameterized Bayesian decision maker to yield

the decision prediction p(Ĉ = 1|r), where parameters of the decision maker were fitted to the subject’s classification

decisions, separately for each contrast-session.
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to Methods). A separate network was trained for each contrast-session and no behavioral data was120

utilized in training the DNN. By using a DNN to directly learn the likelihood decoder, we avoid121

making any parametric assumption on the population response distribution. DNNs can also learn to122

decode likelihood functions for neural populations with known parametric generative models such123

as Poisson-like distributions, and therefore constitute a strictly more flexible likelihood decoding124

method. On simulated population responses, trained DNNs could well recover the ground-truth125

likelihood functions (Extended Data Fig. 1; refer to Methods for the simulation details).126

The likelihood functions decoded by the DNNs exhibit the expected dependencies on the overt127

drivers of uncertainty, contrast (Fig. 4a-c): the width of the likelihood function is higher at lower128

contrast (Fig. 4d).129

Decision-making model As we varied the stimulus contrast from trial to trial, the expected un-130

certainty about the stimulus orientation varied, and one would expect the monkeys to represent131

and make use of their trial-by-trial sensory uncertainty in making decisions. However, we make a132

much stronger claim here: even at a fixed contrast, because of random fluctuations in the popula-133

tion response32, 33, we predict (1) the uncertainty encoded in the population, that is, the likelihood134

function, to still fluctuate from trial to trial, and (2) the effect of such fluctuations to manifest in the135

monkey’s decisions (Fig. 1d) on a trial-by-trial basis. We tested this prediction by fitting, separately136

for each contrast-session, the following two models and comparing their performance in predicting137

the monkey’s decision (Fig. 3d): (1) a Full-Likelihood Model, which utilizes the trial-by-trial un-138

certainty information decoded from the population response in the form of the likelihood function,139
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Figure 4: Likelihood functions decoded by the trained neural networks. a-c, Example decoded likelihood functions

from three contrast-sessions from Monkey T. Each row represents the decoded likelihood function over the hypoth-

esized orientation for a randomly selected trial within the specific orientation bin. All likelihood functions are area-

normalized. Brighter colors correspond to higher values of the likelihood function. d, Average likelihood function by

contrast. On each trial, the likelihood function was shifted such that the mean orientation of the normalized likelihood

function occured at 0◦. The centered likelihood functions were then averaged across all trials within the same contrast

bin.
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and (2) a Fixed-Uncertainty Model, which approximates the trial-by-trial likelihood function by a140

Gaussian function centered at the mean of the normalized likelihood function, with a fixed width141

that is fitted separately for each contrast-session.142

In both models, the (original or Gaussian approximated) likelihood functions were fed into the143

Bayesian decision maker to yield trial-by-trial prediction of the subject’s decision in the form of144

p(Ĉ|r,M), or the likelihood of subject’s decisions Ĉ conditioned on the population response r145

and the model M . The Bayesian decision maker computed the posterior probability of each class146

and used these to produce a stochastic decision. The means of the class distributions assumed by147

the observer, the class priors, the lapse rate, and a parameter to adjust the exact decision-making148

strategy were used as free parameters (refer to Methods for details). The model parameters were149

fitted by maximizing the total log likelihood over all trials in a contrast-session
∑

i log p(Ĉi|ri,M).150

The fitness of the models was assessed through cross-validation, and we reported mean and total151

log likelihood of the models across all trials in the test set.152

Both models incorporated a trial-by-trial point estimate of the stimulus orientation (the mean of the153

normalized likelihood function) and only differed in whether they contain additional uncertainty154

information about the stimulus orientation carried by the trial-by-trial fluctuations in the shape of155

the likelihood function. We use the term “shape” to refer to all aspects of the likelihood function156

besides its mean, including its width. If the fluctuations in the shape of the likelihood function truly157

captured the fluctuations in the sensory uncertainty as represented and utilized by the animal, one158

would expect the Full-Likelihood Model to yield better trial-by-trial predictions of the monkey’s159
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decisions than the Fixed-Uncertainty Model.160

We observed that the Full-Likelihood Model performed well above chance in predicting the mon-161

key’s behavior across all contrasts (Extended Data Fig. 2), reaching up to 90% accuracy. In mean162

log likelihood, the Full-Likelihood Model consistently outperformed the Fixed-Uncertainty Model163

across contrasts and for both monkeys (Fig. 5a,b; trial log likelihood differences between the Full-164

Likelihood and Fixed-Uncertainty Model: Monkey L: paired t-test, t(110694) = 25.32, p < 0.001,165

δtotal = 1975.90 and Monkey T: t(192610) = 19.23, p < 0.001, δtotal = 1611.50; δtotal is the total166

log likelihood difference across all trials). This shows that the trial-by-trial fluctuations in the shape167

of the likelihood function are informative about the monkey’s trial-by-trial decisions, demonstrat-168

ing that decision-relevant sensory uncertainty information is contained in population responses169

that can be captured in the shape of the likelihood function. This in turn strongly supports the170

hypothesis that visual cortex encodes stimulus uncertainty in the form of a likelihood function on171

the trial-by-trial basis.172

We next asked how meaningful our effect sizes (model performance differences) are. To answer173

this question, we simulated the monkey’s responses across all trials and contrast-sessions taking174

the trained Full-Likelihood Model to be the ground truth, and then retrained the Full-Likelihood175

Model and the Fixed Uncertainty Model from scratch on the simulated data. This approach yields a176

theoretical upper bound on the observable difference between the two models if the Full-Likelihood177

Model was the true model of the monkeys’ decision-making process. The model performance178

differences between the Full-Likelihood Model and the Fixed-Uncertainty Model (1975.90 and179
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1611.50 total log likelihood differences across all trials for Monkey L and T, respectively) were180

very close in magnitude to the expected total upper bound log likelihood differences of 2368.25±181

131.45 and 2355.22 ± 144.48 based on the simulations (representing mean ± standard deviation182

across 5 repetitions of simulation for Monkey L and T, respectively) (Extended Data Fig. 3). This183

suggests that our effect sizes are meaningful and that the Full-Likelihood Model is a reasonable184

approximate description of the monkey’s true decision-making process.185

We next isolated the contribution to the perceptual decision of trial-by-trial fluctuations in the186

shape of the likelihood function from the contribution of the stimulus orientation, by condition-187

ing the analysis on the stimulus orientation (Fig. 1d). Specifically, we shuffled the shapes of the188

decoded likelihood functions across trials within the same orientation bin, separately for each189

contrast-session. This shuffling preserved the expected uncertainty at each stimulus orientation—190

the dependence of the likelihood shape on the stimulus orientation—and the trial-by-trial correla-191

tion between the mean of the likelihood function and the subject’s perceptual decision (Fig. 5c),192

while removing the trial-by-trial correlation between the shape of the likelihood function and the193

behavioral decision conditioned on the stimulus orientation.194

By design, the Fixed-Uncertainty Model should perform identically on the original and the shuffled195

data. If the Full-Likelihood Model outperformed the Fixed-Uncertainty Model simply because it196

captured spurious correlations between the stimulus orientation and the shape (including the width)197

of the likelihood function, the performance difference between the two models should remain the198

same when trained and tested on the shuffled data. However, if the difference in performance199
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Figure 5: Model performance. a, Average trial-by-trial performance of the Full-Likelihood Model relative to the

Fixed-Uncertainty Model across contrasts, measured as the average trial difference in the log likelihood. The results

for the original (unshuffled) and the shuffled data are shown in solid and dashed lines, respectively. The squares

and triangles mark Monkey L and T, respectively. b, Relative model performance summarized across all contrasts.

Results are shown for each monkey and for original (solid) and shuffled (hatched) data. The difference between the

Full-Likelihood and Fixed-Uncertainty Models was significant with p < 0.005 (***) for both monkeys, and on both

the original and the shuffled data. Furthermore, the difference between the Full-Likelihood Model on the original and

the shuffled data was significant (p < 0.005 for both monkeys). For a and b, all data points are means, and error

bar/shaded area indicate standard error of the means. c, Shuffling scheme for three example trials drawn from the

same stimulus orientation bin. Shuffling maintains the means but swaps the shapes of the likelihood functions.
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existed because the trial-by-trial fluctuations in the likelihood shape captured the fluctuations in200

the decision-relevant sensory uncertainty as we hypothesized, one would expect this difference to201

disappear on the shuffled data.202

Indeed, the shuffling of the likelihood function shapes abolished the improvement in prediction203

performance that the Full-Likelihood Model had over the Fixed-Uncertainty Model. In fact, the204

Full-Likelihood Model consistently underperformed the Fixed-Uncertainty Model on the shuffled205

data (Fig. 5a,b; trial log likelihood difference between the Full-Likelihood Model and the Fixed-206

Uncertainty Model on the shuffled data: Monkey L: paired t-test t(110694) = −13.33, p < 0.001,207

δtotal = −11667.74 and Monkey T: t(192610) = −21.19, p < 0.001, δtotal = −2097.06; δtotal is208

the total log likelihood difference across all trials). Therefore, there were significant performance209

differences in Full-Likelihood Model between the unshuffled and shuffled data (trial log likelihood210

difference: Monkey L: paired t-test t(110694) = 32.68, p < 0.001, δtotal = 3142.64 and Monkey211

T: t(192610) = 34.81, p < 0.001, δtotal = 3708.56).212

To confirm our effect sizes were appropriate, we again compared these values to those obtained213

from simulations in which we took the Full-Likelihood Model to be the ground truth (Extended214

Data Fig. 3). The simulations yielded total log likelihood differences of the Full-Likelihood Model215

between the unshuffled and shuffled data of 3675.30± 248.42 (Monkey L) and 4068.98± 173.71216

(Monkey T) (mean± standard deviation across 5 repetitions), similar in magnitude to the observed217

values.218

Taken together, the shuffling analyses show that the better prediction performance of the Full-219
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Likelihood Model is not due to the confound between the stimulus and the likelihood shape. We220

conclude that the trial-by-trial likelihood function decoded from the population represents behav-221

iorally relevant stimulus uncertainty information, even when conditioned on the stimulus.222

Discussion223

Given the stochastic nature of the brain, repeated presentations of even identical stimuli elicit224

variable responses. This noise creates an implicit code where multiple hypothetical stimuli are225

consistent with a given response but with differing likelihoods. Here, we decoded trial-to-trial226

likelihood functions from the population activity in visual cortex, and found that a model utilizing227

the full likelihood function predicted the monkeys’ choices better than alternative models that228

ignore variations in the shape of the likelihood function. Our results provide the first population-229

level evidence in support of the theoretical framework of probabilistic population coding, i.e. that230

the brain performs Bayesian inference under a generative model of the neural activity.231

Our findings were made possible by recording from a large population simultaneously and by232

using a task in which uncertainty is relevant to the animal. In addition, we developed a novel233

method to decode the likelihood functions, which is based on a deep neural network and does not234

rely on the strong parametric assumptions that have dominated previous work. Importantly, we235

conditioned our analyses on the stimulus to rule out a confounding effect of the stimulus on the236

observed relationship between the decoded likelihood function and the subject’s decision. This237

is critical because previous behavioral studies on cue combination and Bayesian integration, for238
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instance, always relied on varying stimulus features (e.g. contrast, blur, motion coherence) to ma-239

nipulate uncertainty7, 8, 16, 34. As a result, these studies cannot rule out that correlation between a240

proposed encoding of uncertainty and the behavior may be confounded by the stimulus (Fig. 1b,c),241

and therefore fail to provide rigorous assessment on the representation of uncertainty. Carefully242

controlling for the effect of stimulus fluctuations allowed us to present rigorous evidence that the243

trial-by-trial fluctuations in the likelihood functions carry behaviorally relevant stimulus uncer-244

tainty information.245

While the sensory likelihood function is a crucial building block for probabilistic computation in246

the brain, fundamental questions remain regarding the nature of such computation. First, how do247

downstream areas process the information contained in sensory likelihood functions to make better248

decisions? Previous work has manually constructed neural networks for downstream computation249

that relied heavily on the assumption of Poisson-like variability9, 10, 17, 35–37. However, more recent250

work has demonstrated that training generic shallow networks accomplishes the same goal without251

the need for task-specific manual construction38. Second, does each area in a feedforward chain of252

computation encode a likelihood function over its own variable, with the computation propagating253

the uncertainty information from one variable to the next? For example, in our task, it is conceiv-254

able that prefrontal cortex encodes a likelihood function over class that is derived from a likelihood255

function over orientation coming in from V1. While answering these questions will require major256

efforts, we expect that our findings regarding the neural basis of sensory uncertainty will help put257

those efforts on a more solid footing.258
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Extended Data Figure 1: Performance of the likelihood functions decoded by DNN-based decoders. a-b, Results

on independent Poisson population responses. a, KL divergence between the ground truth likelihood function and

likelihood function decoded with: a trained DNN DDNN vs. independent Poisson distribution assumption DPoiss. Each

point is a single trial in the test set. The distributions of DDNN and DPoiss are shown at the top and right margins,

respectively. The distribution of pair-wise difference between DDNN and DPoiss is shown on the diagonal. b, Example

likelihood functions. The ground truth (solid blue), independent-Poisson based (dotted orange), and DNN-based

(dashed green) likelihood functions are shown for selected trials from the test set. Four random samples (columns)

were drawn from the top, middle and bottom 1/3 of trials sorted by the DDNN (rows). c-d, Same as in a-b but for

simulated population responses with correlated Gaussian distribution where variance is scaled by the mean.
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Extended Data Figure 2: Full-Likelihood Model performance. a, Model performance measured in proportions of

trials correctly predicted by the model as a function of contrast for two monkeys (squares and triangles marks for

Monkey L and T, respectively). On each trial, the class decision that would maximize the posterior p(Ĉ|r) was chosen

to yield a concrete classification prediction. b, Same as in a but with performance measured as the trial-averaged log

likelihood of the model. For a and b, dashed lines indicate the performance at chance (50% and ln(0.5), respectively).

Extended Data Figure 3: Expected model performance on simulated data using the trained Full-Likelihood Model as

the ground truth. a, Average trial-by-trial performance of the Full-Likelihood Model relative to the Fixed-Uncertainty

Model across contrasts on the simulated data, measured as the trial-averaged difference in the log likelihood. The

results for the unshuffled and the shuffled simulated data are shown in solid and dashed lines, respectively. The

squares and triangles mark Monkey L and T, respectively. b, Relative model performance summarized across all

contrasts. Results are shown for each monkey and for unshuffled (solid) and shuffled (hatched) simulated data. For a

and b, all data points are the means and error bar/shaded area indicate the standard deviation across the 5 simulation

repetitions.
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Methods259

Experimental model and subject details All behavioral and electrophysiological data were ob-260

tained from two healthy, male rhesus macaque (Macaca mulatta) monkeys (L and T) aged 10 and261

7 years and weighting 9.5 and 15.1 kg, respectively. All experimental procedures complied with262

guidelines of the NIH and were approved by the Baylor College of Medicine Institutional Ani-263

mal Care and Use Committee (permit number: AN-4367). Animals were housed individually in a264

room located adjacent to the training facility on a 12h light/dark cycle, along with around ten other265

monkeys permitting rich visual, olfactory, and auditory social interactions. Regular veterinary care266

and monitoring, balanced nutrition and environmental enrichment were provided by the Center267

for Comparative Medicine of Baylor College of Medicine. Surgical procedures on monkeys were268

conducted under general anesthesia following standard aseptic techniques.269

Stimulus presentation Each visual stimulus was a single drifting oriented sinusoidal grating (spa-270

tial frequency: 2.79 cycles/degree visual angle, drifting speed: 0.028 cycles/s) presented through a271

circular aperture situated at the center of the screen. The size of the aperture was adjusted to cover272

receptive fields of the recorded populations, extending 2.14◦ and 2.86◦ of visual angle for Monkey273

L and Monkey T, respectively. The orientation and contrast of the stimulus were adjusted on a274

trial-by-trial basis as will be described later. The stimulus was presented on a CRT monitor (at a275

distance of 100 cm; resolution: 1600 × 1200 pixels; refresh rate: 100 Hz) using Psychophysics276

Toolbox39. The monitor was gamma-corrected to have a linear luminance response profile. Video277

cameras (DALSA genie HM640; frame rate 200Hz) with custom video eye tracking software de-278

veloped in LabVIEW were used to monitor eye movements.279
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Behavioral paradigm On a given trial, the monkey viewed a drifting oriented grating with ori-280

entation θ, drawn from one of two classes, each defined by a Gaussian probability distribution.281

Both distributions have a mean of 0◦ (grating drifting horizontally rightward, positive orientation282

corresponding to counter-clockwise rotation), but their standard deviations differed: σ1 = 3◦ for283

class 1 (C = 1) and σ2 = 15◦ for class 2 (C = 2). On each trial, the class was chosen randomly284

with equal probability, with the orientation of the stimulus then drawn from the corresponding285

distribution, p(θ|C). At the beginning of each recording session, at least three distinct values of286

contrasts were selected, and one of these values was chosen at random on each trial. Unlike more287

typical two-category tasks using distributions with identical variances but different means, optimal288

decision-making in our task requires the use of sensory uncertainty on a trial-by-trial basis17.289

Each trial proceeded as follows. A trial was initiated by a beeping sound and the appearance of a290

fixation target (0.15◦ visual angle) in the center of the screen. The monkey fixated on the fixation291

target for 300 ms within 0.5◦–1◦ visual angle. The stimulus then appeared at the center of the292

screen. After 500 ms, two colored targets (red and green) appeared to the left and the right of293

the grating stimulus (horizontal offset of 4.29◦ from the center with the target diameter of 0.71◦294

visual angle), at which point the monkey saccaded to one of the targets to indicate their choice295

of class. For Monkey L, the grating stimulus was removed from the screen when the saccade296

target appeared, while for Monkey T, the grating stimulus remained on the screen until the subject297

completed the task by saccading to the target. The left-right configuration of the colored targets298

were varied randomly for each trial. Through training, the monkey learned to associate the red and299

the green targets with the narrow (C = 1) and the wide (C = 2) class distributions, respectively.300
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For illustrative clarity, we used blue to indicate C = 2 throughout this document. The monkey301

received a juice reward for each correct response (0.10–0.15 mL).302

During the training, the monkeys were first trained to perform the colored version of the task,303

where the grating stimulus was colored to match the correct class C for that trial (red for C = 1304

and green for C = 2). Under this arrangement, the monkey simply learned to saccade to the target305

matching the color of the grating stimulus, although the grating stimulus orientation information306

was always present. As the training proceeded, we gradually removed the color from the stimulus,307

encouraging the monkey to make use of the orientation information in the stimulus to perform the308

task. Eventually, the color was completely removed, and at that point the monkey was performing309

the full version of the task.310

Surgical Methods Our surgical procedures followed a previously established approach29, 40, 41.311

Briefly, a custom-built titanium cranial headpost was first implanted for head stabilization under312

general anesthesia using aseptic conditions in a dedicated operating room. After premedication313

with Dexamethasone (0.25-0.5 mg/kg; 48 h, 24 h and on the day of the procedure) and atropine314

(0.05 mg/kg prior to sedation), animals were sedated with a mixture of ketamine (10 mg/kg) and315

xylazine (0.5 mg/kg). During the surgery, anesthesia was maintained using isoflurane (0.5-2%).316

After the monkey was fully trained, we implanted a 96-electrode microelectrode array (Utah array,317

Blackrock Microsystems, Salt Lake City, UT, USA) with a shaft length of 1 mm over parafoveal318

area V1 on the right hemisphere. This surgery was performed under identical conditions as de-319

scribed for headpost implantation. To ameliorate pain, analgesics were given for 7 days following320

a surgery.321
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Electrophysiological recording and data processing The neural signals were pre-amplified at322

the head stage by unity gain preamplifiers (HS-27, Neuralynx, Bozeman MT, USA). These sig-323

nals were then digitized by 24-bit analog data acquisition cards with 30 dB onboard gain (PXI-324

4498, National Instruments, Austin, TX) and sampled at 32 kHz. Broadband signals (0.5 Hz325

to 16 kHz) were continuously recorded using custom-built LabVIEW software for the duration326

of the experiment. Eye positions were tracked at 200 Hz using video cameras (DALSA genie327

HM640) with custom video eye tracking software developed in LabVIEW. The spike detection328

was performed offline according to a previously described method27, 29, 40. Briefly, a spike was329

detected when the signal on a given electrode crossed a threshold of five times the standard de-330

viation of the corresponding electrode. To avoid artificial inflation of the threshold in the pres-331

ence of a large number of high-amplitude spikes, we used a robust estimator of the standard332

deviation42, given by median(|x|)/0.6745. Spikes were aligned to the center of mass of the con-333

tinuous waveform segment above half the peak amplitude. Code for spike detection is available334

online at https://github.com/atlab/spikedetection. In this study, the term “mul-335

tiunit” refers to the set of all spikes detected from a single channel (i.e. electrode) of the Utah336

array, and all analyses in the main text were performed on multiunits. For each multiunit, the total337

number of spikes during the 500 ms of pre-target stimulus presentation, ri for the ith unit, was used338

as the measure of the multiunit’s response for a single trial. The population response r is the vector339

of spike counts for all 96 multiunits.340

Dataset and inclusion criteria. We recorded a total of 61 and 71 sessions from Monkey L and341

T, for a total of 112,072 and 193,629 trials, respectively. We removed any trials with electrophys-342
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iology recordings contaminated by noise in the recording devices (e.g. poor grounding connector343

resulting in movement noise) or equipment failures. To do so, we established the following trial344

inclusion criteria:345

1. The total spike counts rt =
∑

i ri across all channels should fall within the ±4σadj from the346

median total spike counts across all trials from a single session. σadj is the standard deviation347

of the total spike count distribution robustly approximated using the interquartile range IQR348

as follows: σadj = IQR
1.35

.349

2. For at least 50% of all units, the observed ith unit spike count ri for the trial should fall350

within a range defined as: |ri − MEDi| ≤ 1.5 · IQRi, where MEDi and IQRi are the me-351

dian and interquartile ranges of the ith unit spike counts distribution throughout the session,352

respectively.353

We only included trials that satisfied both of the above criteria in our analysis. Empirically, we354

found the above criteria to be effective in catching obvious anomalies in the spike data while355

introducing minimal bias into the data. After the application of the criteria, we were left with356

110,695 and 192,631 trials for Monkey L and T, thus retaining 98.77% and 99.48% of the total357

trials, respectively. While this selection criteria allowed us to remove apparent anomaly in the358

data, we found that the main findings described in this paper were not sensitive to the precise359

definition of the inclusion criteria.360

During each recording session, stimuli were presented under three or more contrast values. In all361

analyses to follow, we studied the trials from distinct contrast separately for each recording session,362
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and we refer to this grouping as a “contrast-session”.363

Receptive field mapping On the first recording session for each monkey, the receptive field was364

mapped using spike-triggered averaging of the multiunit responses to a white noise random dot365

stimulus. The white noise stimulus consisted of square dots of size 0.29◦ of visual angle presented366

on a uniform gray background, with randomly varying location and color (black or white) every367

30 ms for 1 second. We adjusted the size of the grating stimulus as necessary to ensure that the368

stimulus covers the population receptive field entirely.369

Likelihood decoding Given the population activity r in response to an orientation θ, we aimed370

to decode uncertainty information in the form of a likelihood function L(θ) ≡ p(r|θ), as a func-371

tion of θ. This may be computed through the knowledge of the generative relation leading from θ372

to r—that is, by describing the underlying orientation conditioned probability distribution over r,373

p(r|θ). This procedure is typically approximated by making rather strong assumptions about the374

form of the density function, for example by assuming that neurons fire independently and each375

neuron fires according to the Poisson distribution21. Under this approach, the expected firing rates376

(i.e. tuning curves) of the ith neuron E[ri|θ] = fi(θ) must be approximated as well, for example377

by fitting a parametric function (e.g. von Mises tuning curves43) or employing kernel regression21.378

While these approaches have proven useful, the effect of the strong and likely inaccurate assump-379

tions on the decoded likelihood function remains unclear. Ideally, we can more directly estimate380

the likelihood function L(θ) without having to make strong assumptions about the underlying con-381

ditional probability distribution over r.382
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To this end, we employed a deep neural network (DNN)18 to directly approximate the likelihood383

function over the stimulus orientation, θ, from the recorded population response r. Here we present384

a brief derivation that serves as the basis of the network design and training objective. Let us385

assume that m multiunits were recorded simultaneously in a single recording session, so that r ∈386

Rm. To make the problem tractable, we bin the stimulus orientation θ into n distinct values, θ1387

to θn (the derivation holds in general for arbitrarily fine binning of the orientation). With this, the388

likelihood function can be captured by a vector L ∈ Rn where Li = L(θi). Let us assume that389

we can train some DNN to learn a mapping f from the population response r to the log of the390

likelihood function L up to a constant offset b. That is, f : Rm 7→ Rn,391

r 7→ f(r) = logL + b(r) = log p(r|θ) + b(r) (1)

for some scalar function b ∈ R. As the experimenter, we know the distribution of the stimulus392

orientation, pθ ∈ Rn, where pθ,i = p(θi). We combine f(r) and pθ to compute the log posterior393

over stimulus orientation θ up to some scalar value b′(r),394

z(r) ≡ logpθ + f(r) = log p(θ|r) + b′(r) (2)

We finally take the softmax of z(r), and recover the normalized posterior function q(r) ≡ softmax(z(r))395

where,396
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qi(r) =
ezi(r)∑
j e

zj(r)
(3)

=
eb
′(r)p(θ = θi|r)

eb′(r)
∑

j p(θ = θj|r)
(4)

= p(θ = θi|r) (5)

Overall, q(r) = softmax(logp + f(r)).397

The goal then is to train the DNN f(r) such that the overall function q(r) matches the posterior398

over the stimulus, p(r) where pi(r) = p(θ = θi|r) based on the available data. This in turn399

allows the network output f(r) to approach the log of the likelihood function L, up to a constant400

b(r). For 1-out-of-n classification problems, minimizing the cross-entropy between q(r) and the401

stimulus orientation θ for a given r lets the overall function q(r) approach the true posterior p(r),402

as desired44, 45. To show this, let us start by minimizing the difference between the model estimated403

posterior q(r) and the true posterior p(r) over the distribution of r. We do this by minimizing404

the loss L defined as the expected value of the Kullback-Leibler divergence46 between the two405

posteriors:406
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L(W ) = Er [DKL(p||q)] (6)

= Er

[
Eθ|r

[
log

p(θ|r)
q(θ|r,W )

]]
(7)

= Er,θ

[
log

p(θ|r)
q(θ|r,W )

]
(8)

= −Er,θ [log q(θ|r,W )]−H(θ|r) (9)

where p(θ = θi|r) ≡ pi(r), q(θ = θi|r,W ) ≡ qi(r,W ), W is a collection of all trainable407

parameters in the network, and H(θ|r) is the conditional entropy of θ conditioned on r, which408

is an unknown but a fixed quantity with respect to W and the data distribution. Here we used409

the notation q(r,W ) to highlight the dependence of the network estimated posterior q(r) on the410

network parameters W . We can redefine the loss, L∗, only leaving the terms that depends on the411

trainable parameters W , and then apply a Monte Carlo method47 to approximate the loss from412

samples:413

L∗(W ) = −Er,θ [log q(θ|r,W )] (10)

≈ − 1

N

∑
i

log q(θ(i)|r(i),W ) (11)

where
(
θ(i), r(i)

)
are samples drawn from a training set for the network. Eq. 11 is precisely the414

definition of the cross-entropy as we set out to show.415

Therefore, by optimizing the overall function q(r) to match the posterior distribution through416
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the use of cross-entropy loss, the network output f(r) can approximate the log of the likelihood417

function L(θ) for each r up to an unknown constant b(r). Because we do not know the value of418

b(r), the network will not learn to recover the underlying generative function linking from θ to r,419

p(r|θ).420

As an example, consider a neural population with responses that follows a Poisson-like distri-421

bution (i.e. a version of the exponential distribution with linear sufficient statistics9, 10). Learn-422

ing a decoder for such population responses occurs as a special case of training a DNN-based423

likelihood decoder. For Poisson-like variability, the stimulus-conditioned distribution over r is424

p(r|θ) = φ(r)eh
>(θ)r. The log likelihood function is then logL = log φ(r) + H>r, where H is a425

matrix whose ith column is h(θi). If we let f(r) = H>r, then f(r) = logL + b(r) as desired, for426

b(r) = − log φ(r). Hence, if we used a simple fully connected network, training the network is427

equivalent to fitting the kernel function h(θ) of the Poisson-like distribution.428

In this work, we modeled the mapping f(r) as a DNN with two hidden layers19, consisting of429

two repeating blocks of a fully connected layer followed by a rectified linear unit (ReLU)18 and430

a drop-out layer48, and a fully connected readout layer with no output nonlinearity (Figure 3c).431

To encourage smoother likelihood functions, we added an L2 regularizer on logL filtered with432

a Laplacian filter of the form h = [−0.25, 0.5,−0.25]. Therefore, the training loss included the433

term:434

R = γ
∑
i

u2
i (12)
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for u = (logL) ∗ h, where ∗ denotes convolution operation, ui is the ith element of the filtered log435

likelihood function u, and γ is the weight on the smoothness regularizer.436

We trained a separate instance of the network for each contrast-session. During the training, each437

contrast-session was randomly split in proportions of 80% / 20% to yield the training set and438

the validation set, respectively. The stimulus orientation θ was binned into integers in the range439

[−45◦, 45◦], and we excluded trials with orientations outside this range. This led to the exclusion of440

157 out of 110,695 trials (0.14%) and 254 out of 192,631 trials (0.13%) for Monkey L and T data,441

respectively. The network was trained on the training set, and its performance on the validation442

set was monitored to perform early stopping49, and subsequently hyperparameter selection. For443

early stopping, we computed the mean squared error (MSE) between the maximum-a-posteriori444

(MAP) readout of the network output posterior q and the stimulus orientation θ on the validation445

set, and the training was terminated (early-stopped) if MSE failed to improve over 400 consecutive446

epochs, where each epoch is defined as one full pass through the training set. Upon early stopping,447

the parameter set that yielded the best validation set MSE during the course of the training was448

restored. Once the training was complete, the trained network was evaluated on the validation449

set to yield the final score, which served as the basis for our hyperparameter selections. The450

values of hyperparameters for the networks, including the size of hidden layers, the weight on the451

likelihood function smoothness regularizer γ, and drop-out rates during the training were selected452

by performing a grid search over candidate values to find the combination that yielded the best453

validation set score for each contrast-session instance of the network.454
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Decoding likelihood functions from known response distributions To assess the effectiveness455

of the DNN-based likelihood decoding method described above, we simulated neural population456

responses with known noise distributions, trained DNN decoders on the simulated population re-457

sponses, and compared the decoded likelihood functions to the ground-truth likelihood functions458

obtained by inverting the known generative model for the responses. We also compared the qual-459

ity of the DNN-decoded likelihood functions to those decoded by assuming independent Poisson460

distribution on the population responses, as done in previous work14, 16, 20, 21, 23.461

We simulated the activities of a population of 96 multiunits rsim responding to the stimulus orien-462

tation θ drawn from the the distribution defined for our task such that:463

p(θ) =
1

2
N (θ; 0, σ2

1) +
1

2
N (θ; 0, σ2

2) (13)

where σ1 = 3◦ and σ2 = 15◦.464

We modeled the expected response of ith unit to θ—that is, the tuning function fi(θ)—with a465

Gaussian function:466

fi(θ) = Ae
−

(θ−µsim,i)
2

2σ2sim (14)

For the simulation, we have set A = 6 and σsim = 21◦. We let the mean of the Gaussian tuning467

curves for the 96 units to uniformly tile the stimulus orientation between −40◦ and 40◦. In other468

words,469
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µsim,i = −40 +
16

19
(i− 1) (15)

for i ∈ [1, 96].470

For any given trial with a drawn orientation θ, the population response rsim was then generated471

under two distinct models of distributions. In the first case, the population responses were drawn472

from an independent Poisson distribution as is commonly assumed in many works:473

p(rsim|θ) =
∏
i

Poiss(rsim,i; fi(θ)) (16)

=
∏
i

fi(θ)
rsim,ie−fi(θ)

rsim,i!
(17)

In the second case, the population responses were drawn from a multivariate Gaussian distribution474

with covariance matrix Σ ∈ R96×96 that scales with the mean response of the population. That is:475

p(rsim|θ) = N (rsim; f(θ),Σ(θ)) (18)

for476

Σ(θ) = (f1/2(θ))>C(f1/2(θ)) (19)
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where f1/2(θ) ∈ R96 such that f1/2
i (θ) =

√
fi(θ), and C ∈ R96×96 is a correlation matrix. Under477

this distribution, the variance of any unit’s response scales linearly with its mean just as in the case478

of the Poisson distribution, but the population responses can be highly correlated depending on the479

choice of the correlation matrix C. For the simulation, we randomly generated a correlation matrix480

with the average units correlation of 0.227.481

For each case of the distribution, we simulated population responses for the total of 1200 trials.482

Among these, 200 trials were set aside as the test set. We trained the DNN-based likelihood483

decoder on the remaining 1000 trials, splitting them further into 800 and 200 trials as the training484

and validation set, respectively. We followed the exact DNN training and hyperparameter selection485

procedure as described earlier.486

For comparison, we also decoded the likelihood function from the population response rsim under487

the assumption of independent Poisson variability, regardless of the “true” distribution. Each unit’s488

responses over the 1000 trials were fitted separately with a Gaussian tuning curve (Eq. 14). The489

parameters of the tuning curve Ai, µi and σsim, i were obtained by minimizing the least square490

difference between the Gaussian tuning curve and the observed ith unit’s responses (θ, rsim,i) using491

least squares function from Python SciPy optimization library.492

The ground-truth likelihood function p(rsim|θ) was computed for each simulated trial according493

to the definition of the distribution as found in Eq. 16 for the independent Poisson population or494

Eq. 18 for the mean scaled correlated Gaussian population.495

We then assessed the quality of the decoded likelihood functions under the independent Pois-496
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son model LPoiss(θ) and under the DNN model LDNN by computing their Kullback-Leibler (KL)497

divergence46 from the ground-truth likelihood function Lgt(θ), giving rise to DPoiss and DDNN, re-498

spectively. All continuous likelihood functions (Lgt andLPoiss) were sampled at orientation θ where499

θ ∈ Z and θ ∈ [−45◦, 45◦], giving rise to discretized likelihood functions Lgt and LPoiss matching500

the dimensionality of the discretized likelihood function LDNN computed by the DNN. We then501

computed the KL divergence as:502

DPoiss =
∑
i

log
Lgt,i

LPoiss,i
Lgt,i (20)

and503

DDNN =
∑
i

log
Lgt,i

LDNN,i
Lgt,i (21)

We computed the KL divergence for both models across all 200 trials in the test set for both simu-504

lated population distributions (Extended Data Fig. 1a,c). When the simulated population distribu-505

tion was independent Poisson, then DPoiss < DDNN for all test set trials (Extended Data Fig. 1a),506

indicating that LPoiss better approximated Lgt overall than LDNN. However, LDNN still closely ap-507

proximated Lgt (Extended Data Fig. 1b).508

When the simulated population distribution was mean scaled correlated Gaussian, LDNN better509

approximated Lgt than LPoiss on the majority of the trials (Extended Data Fig. 1c). Furthermore,510

LPoiss provided qualitatively worse fit to the Lgt for the simulated correlated Gaussian distribution511
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compared to the fit of LDNN to Lgt for the simulated independent Poisson distribution (Extended512

Data Fig. 1b,d).513

Overall, the simulation results suggest that (1) when the form of the underlying population dis-514

tribution is known (such as in the case of independent Poisson population), more accurate like-515

lihood functions can be decoded by directly using the knowledge of the population distribution516

than through the DNN-based likelihood decoder, but (2) when the form of the underlying distri-517

bution is unknown (such as in the case of the mean scaled correlated Gaussian distribution), then518

a DNN-based likelihood decoder can yield much more accurate likelihood functions than if one519

was to employ a wrong assumption about the underlying distribution in decoding likelihood func-520

tions, and (3) a DNN-based likelihood decoder can provide reasonable estimate of the likelihood521

function across wide range of underlying distributions. Because the true underlying population522

distribution is hardly ever known to the experimenter, we believe that our DNN-based likelihood523

decoder stands as the most flexible method in decoding likelihood functions from the population524

responses to stimuli.525

Mean and standard deviation of likelihood function For uses in the subsequent analyses, we526

computed the mean and the standard deviation of the likelihood function by treating the likelihood527

function as an unnormalized probability distribution:528

µL =

∫
θL(θ) dθ∫
L(θ) dθ

(22)
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σL =

√∫
(θ − µL)2L(θ) dθ∫

L(θ) dθ
(23)

We took the µL and σL to be the point estimate of the stimulus orientation and the measure of529

the spread of the likelihood function, respectively, used in all subsequent analyses. Although not530

presented here, we performed the following analyses with other point estimates of the stimulus531

orientation such as the orientation at the maximum of the likelihood function and the median of532

the likelihood functions, and observed that models with mean of the likelihood function as the533

point estimate performed the best.534

Decision-making models Given the hypothesized representation of the stimulus and its uncer-535

tainty in the form of the likelihood function L(θ) ≡ p(r|θ), the monkey’s trial-by-trial decisions536

were modeled based on the assumption that the monkey computes the posterior probability over537

the two classes C = 1 and C = 2, and utilizes this information in making decisions—that is,538

in accordance to a model of a Bayesian decision maker. The orientation distributions for the two539

classes are p(θ|C = 1) = N (θ;µ, σ2
1) and p(θ|C = 2) = N (θ;µ, σ2

2) with µ = 0 and σ1 = 3◦ and540

σ2 = 15◦ where N (θ;µ, σ2) denotes a Gaussian distribution over θ with mean µ and variance σ2.541

The posterior ratio ρ for the two classes is:542
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ρ =
p(C = 2|r)
p(C = 1|r)

(24)

=
p(C = 2)

∫
p(r|θ)p(θ|C = 2) dθ

p(C = 1)
∫
p(r|θ)p(θ|C = 1) dθ

(25)

=
p(C = 2)

∫
L(θ)N (θ;µ, σ2

2) dθ

p(C = 1)
∫
L(θ)N (θ;µ, σ2

1) dθ
(26)

A Bayes-optimal observer should select the class with the higher probability—a strategy known as543

maximum-a-posteriori (MAP) decision-making:544

Ĉ = argmax
C

p(C|r) (27)

where Ĉ is the subject’s decision. However, according to the posterior probability matching545

strategy50, 51, the decision of subjects on certain tasks are better modeled as sampling from the546

posterior probability:547

p(Ĉ) = p(C = Ĉ|r) (28)

To capture either decision-making strategy, we modeled the subject’s classification decision prob-548

ability ratio as follows:549

p(Ĉ = 2)

p(Ĉ = 1)
=

(
p(C = 2|r)
p(C = 1|r)

)α
= ρα (29)
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where α ∈ R+. When α = 1, the decision-making strategy corresponds to the posterior probability550

matching while α = ∞ corresponds to the MAP strategy51. We fitted the value of α for each551

contrast-session during the model fitting to capture any variation of the strategy. Furthermore, we552

incorporated a lapse rate λ, a fraction of trials on which the subject does not pay attention and553

makes a random decision. Hence, the final probability that the subject selects the class C = 1 was554

modeled as:555

p(Ĉ = 1) = (1− λ)
1

1 + ρα
+ 0.5λ (30)

= (1− λ)

[
1 +

(
p(C = 2)

∫
L(θ)N (θ;µ, σ2

2) dθ

p(C = 1)
∫
L(θ)N (θ;µ, σ2

1) dθ

)α]−1

+ 0.5λ (31)

= (1− λ)

[
1 +

(
(1− p(C = 1))

∫
L(θ)N (θ;µ, σ2

2) dθ

p(C = 1)
∫
L(θ)N (θ;µ, σ2

1) dθ

)α]−1

+ 0.5λ (32)

For each contrast-session, we fitted the above Bayesian decision model to the monkey’s decisions556

by fitting the four parameters: µ, p(C = 1), α, and λ. Fitting µ (the center of stimulus orientation557

distributions) and p(C = 1) (prior over class) allowed us to capture the bias in the stimulation558

distribution that the subject may have acquired errorneously during the training, and fitting α and559

λ allowed for the model to match the decision-making strategy employed by the subject.560

Utilizing the likelihood function L(θ) decoded from the V1 population response via the DNN in561

Eq. 32 gave rise to the Full-Likelihood Model that made use of all information including the trial-562

by-trial uncertainty information as captured by the shape of the likelihood function. Alternatively,563

we approximated the trial-by-trial decoded likelihood function for a contrast-session with a (fitted)564
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fixed width Gaussian function whose mean matched that of the normalized decoded likelihood565

function. This Fixed-Uncertainty Model effectively discarded all trial-by-trial fluctuations in the566

uncertainty as captured by the shape of the likelihood function but preserved the point estimate of567

the stimulus orientation θ̂ (i.e. mean of the likelihood function). That is:568

L̂(θ) = N (θ; θ̂, σ2
c ) (33)

where θ̂ = µL (Eq. 22). For each contrast-session, different values were fitted for the width of the569

Gaussian likelihood function, σc. Therefore, the Fixed-Uncertainty Model had 5 parameters to be570

fitted in total: µ, p(C = 1), α, λ, and σc.571

Model fitting and model comparison We used 10-fold cross-validation to fit and evaluate both572

decision models, separately for each contrast-session. We divided all trials from a given contrast-573

session randomly into 10 equally sized subsets, B1, B2, . . . , Bi, . . . , B10 where Bi is the ith subset.574

We then held out a single subset Bi as the test set, and trained the decision-making model on575

the remaining 9 subsets combined together, serving as the training set. The predictions and the576

performance of the trained model on the held out test set Bi was then reported. We repeated this577

10 times, iterating through each subset as the test set, training on the remaining subsets.578

The decision models were trained to minimize the negative log likelihood on the subject’s decision579

across all trials in the training set:580
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Θ̂ = argmin
Θ

(
− log

∏
i

p(Ĉ = Ĉi|M,Θ)

)
(34)

= argmin
Θ

(
−
∑
i

log p(Ĉ = Ĉi|M,Θ)

)
(35)

where Θ is the collection of the parameters for the decision-making modelM and Ĉi is the subject’s581

decision on the ith trial in the training set. The term p(Ĉ|M,Θ) is given by the Eq. 32 with either582

the unmodified L(θ) in the Full-Likelihood Model or a Gaussian approximation to L(θ) in the583

Fixed-Uncertainty Model.584

The optimizations were performed using three algorithms: fmincon and ga from MATLAB’s585

optimization toolbox and Bayesian Adaptive Direct Search (BADS)52. When applicable, the opti-586

mization was repeated with 50 or more random parameter initializations. For each cross-validation587

fold, we retained the parameter combination Θ̂ that yielded the best training set score (i.e. low-588

est negative log likelihood) among all optimization runs across different algorithms and parameter589

initializations. We subsequently tested the model M with the best training set parameter Θ̂ and590

reported the score on the test set. For each contrast-session, all analyses on the trained model591

presented in the main text were performed on the aggregated test sets scores.592

Likelihood shuffling analysis To assess the contribution of the trial-by-trial fluctuations in the de-593

coded likelihood functions in predicting the animal’s decisions under the Full-Likelihood Model,594

for each contrast-session we shuffled the likelihood functions among trials in the same stimulus595

orientation bin, while maintaining the trial to trial relationship between the point estimate of the596

stimulus orientation (i.e. mean of the normalized likelihood) and the perceptual decision. Specif-597

41

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2018. ; https://doi.org/10.1101/365973doi: bioRxiv preprint 

https://doi.org/10.1101/365973
http://creativecommons.org/licenses/by-nc-nd/4.0/


ically, we binned trials to the nearest orientation degree such that each bin was centered at an598

integer degree (i.e. bin center ∈ Z) with the bin width of 1◦. We then shuffled the likelihood func-599

tions among trials in the same orientation bin. This effectively removed the stimulus orientation600

conditioned correlation between the likelihood function and the subject’s classification Ĉ, while601

preserving the expected likelihood function for each stimulus orientation.602

However, we were specifically interested in decoupling the uncertainty information contained in603

the shape of the likelihood function from the decision while minimally disrupting the trial-by-trial604

correlation between the point estimate of the stimulus orientation and the subject’s classification605

decision. To achieve this, for each trial, the newly assigned likelihood function was shifted such606

that the mean of the normalized likelihood function, µL (Eq. 22), remained the same for each607

trial before and after the likelihood shuffling (Fig. 5c). This allowed us to specifically assess the608

effect of distorting the shape of the likelihood function conditioned on both the (binned) stimulus609

orientation and the point estimate of the stimulus orientation (i.e. µL) (Fig. 5c). We then trained610

both the Full-Likelihood Model and the Fixed-Uncertainty Model on the shuffled data, following611

the exact procedure used when training on the original (unshuffled) data.612

Classification simulation We computed the expected effect size of the model fit difference be-613

tween the Full-Likelihood Model and the Fixed-Uncertainty Model by generating simulated data614

using the trained Full-Likelihood Model as the ground truth. Specifically, for each trial for each615

contrast-session, we computed the probability of responding Ĉ = 1 from Eq. 32, utilizing the616

full decoded likelihood function L(θ) for the given trial, and sampled a classification decision617

from that probability. This procedure yielded simulated data where all monkeys’ decisions were618
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replaced by decisions made by the trained Full-Likelihood Models. We repeated this procedure619

5 times, thereby producing 5 sets of simulated data. For each set of simulated data, we trained620

the two decision-making models (Full-Likelihood Model and Fixed-Uncertainty Model) on each621

contrast-session with 10-fold cross-validation, and reported the aggregated test set scores as was622

done for the original data.623

Data availability All figures except for Figure 1 were generated from raw data or processed data.624

The data generated and/or analyzed during the current study are available from the corresponding625

author upon reasonable request. No publicly available data was used in this study.626

Code availability Code used for modeling and training the deep neural networks as well as for627

figure generation can be viewed and downloaded from https://github.com/eywalker/628

v1_likelihood. All other code used for analysis including data selection and decision model629

fitting can be found at https://github.com/eywalker/v1_project. Finally, code630

used for elecrophysiology data processing can be found in the Tolias lab GitHub organization631

https://github.com/atlab.632

Statistics Throughout the paper, the level of significance is indicated as * for p <0.05, ** for633

p <0.01 and *** for p <0.005. Exact p values less than 0.001 were reported as p <0.001. All634

statistical tests used were two-tailed paired two-sample t-test, unless specified otherwise. Wherever635

reported, data are means and error bars indicate standard error of the means computed as σ√
n

636

where σ is the standard deviation and n is the size of the sample within the bin, unless specified637

otherwise.638
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