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Abstract The dimensionality of a network’s collective activity is of increasing interest
in neuroscience. This is because dimensionality provides a compact measure of how
coordinated network-wide activity is, in terms of the number of modes (or degrees of
freedom) that it can independently explore. A low number of modes suggests a
compressed low dimensional neural code and reveals interpretable dynamics [1], while
findings of high dimension may suggest flexible computations [2, 3]. Here, we address
the fundamental question of how dimensionality is related to connectivity, in both
autonomous and stimulus-driven networks. Working with a simple spiking network
model, we derive three main findings. First, the dimensionality of global activity
patterns can be strongly, and systematically, regulated by local connectivity structures.
Second, the dimensionality is a better indicator than average correlations in determining
how constrained neural activity is. Third, stimulus evoked neural activity interacts
systematically with neural connectivity patterns, leading to network responses of either
greater or lesser dimensionality than the stimulus.

Author summary New recording technologies are producing an amazing explosion
of data on neural activity. These data reveal the simultaneous activity of hundreds or
even thousands of neurons. In principle, the activity of these neurons could explore a
vast space of possible patterns. This is what is meant by high-dimensional activity: the
number of degrees of freedom (or “modes”) of multineuron activity is large, perhaps as
large as the number of neurons themselves. In practice, estimates of dimensionality
differ strongly from case to case, and do so in interesting ways across experiments,
species, and brain areas. The outcome is important for much more than just accurately
describing neural activity: findings of low dimension have been proposed to allow data
compression, denoising, and easily readable neural codes, while findings of high
dimension have been proposed as signatures of powerful and general computations. So
what is it about a neural circuit that leads to one case or the other? Here, we derive a
set of principles that inform how the connectivity of a spiking neural network
determines the dimensionality of the activity that it produces. These show that, in
some cases, highly localized features of connectivity have strong control over a network’s
global dimensionality—an interesting finding in the context of, e.g., learning rules that
occur locally. We also show how dimension can be much different than first meets the
eye with typical “pairwise” measurements, and how stimuli and intrinsic connectivity
interact in shaping the overall dimension of a network’s response.
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1 Introduction 1

A fundamental step toward understanding neural circuits is relating the structure of 2

their dynamics to the structure of their connectivity [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. 3

However, the underlying networks are typically so complex that it is apriori unclear 4

what features of the connectivity will matter most (and least) in driving network 5

activity, and how the impacts of different connectivity features interact. Recent 6

theoretical work has made progress in identifying rich and distinct roles for several 7

different features of network connectivity: local connection structures 8

[15, 16, 17, 18, 19, 20], spatial profiles of coupling [21], low-rank connection structures 9

[22] and subnetwork statistics [23, 24]. 10

Here we focus on linking network connectivity to collective activity as quantified by 11

the dimensionality of the neural response. This dimensionality summarizes the number 12

of collective modes, or degrees of freedom, that the network’s activity explores. We use 13

the “participation ratio” dimension, which is directly computable from the pairwise 14

covariances among all cells in a population [25, 3, 2, 26, 27]. This connection is useful 15

because the structure of pairwise covariance has been linked, in turn, to the fidelity of 16

the neural code, both at the single neuron [28], and at the population levels 17

[29, 30, 31, 32, 33]. Overall, the participation ratio has proven useful in interpreting 18

properties of multi-units neuronal recordings [26], and has yielded a remarkable 19

perspective on neural plasticity and how high dimensional responses can be optimal for 20

general computations [3, 2]. 21

Two factors arise in our efforts to understand what it is about a network’s 22

connectivity that determines the dimensionality of its activity. First, this process 23

requires untangling two leading contributions to collective spiking: the reverberation of 24

internal activity within the circuit, and its modulation by external inputs [34, 35, 36]. 25

Experiments point out that both have strong effects [37, 38, 21, 39], and they interact 26

in rich ways that our analysis will begin to dissect. 27

Second, beyond providing general formulas, the understanding we seek demands that 28

we identify relatively simple “observables” of complex network connectivity that 29

systematically determine the dimensionality they produce. A natural approach is based 30

on connection paths through networks, and how these can in turn be decomposed into 31

local circuit micro-circuits, or “motifs” [17, 18, 19, 20, 40, 41, 23, 16]. This is attractive 32

because such local connectivity structures can be measured in tractable “multi-patch” 33

type experiments, are limited in their complexity, and are controlled by local plasticity 34

mechanisms. The prevalence of motifs, characterized in terms of connection 35

probabilities and strengths, has achieved success in predicting the average levels of 36

pairwise correlation among spiking cells – a measure of coordinated activity related to 37

dimensionality in interesting ways that we will further explore below ([20, 17, 18]; see 38

also [42]). Here we deploy this framework to compute the dimensionality of spontaneous 39

and stimulus-driven neural activity. We find that expressions based on just the details 40

of small (and hence local) connection motifs give correct qualitative, and in some (but 41

not other) cases quantitative, predictions of trends in dimensionality of global activity 42

patterns. This underlines the utility of local network motifs as building blocks in 43

bridging from network connectomics to network dynamics. 44

Our main findings are threefold: First, the dimensionality of global activity patterns 45

can be strongly, and systematically, regulated by local connectivity structures. Second, 46

for a wide range of networks this dimensionality can be surprisingly low (indicating 47

strongly coordinated activity) even when the average correlations among pairs of 48

neurons are very weak, cfr.[43]. Third, the dimensionality of stimulus evoked neural 49

activity is controlled systematically by neural connectivity, leading to network responses 50

that have either expanded or reduced the dimension of the original stimulus. 51

In what follows we will start by introducing the underlying theoretical framework 52
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(Sec. 2.1). We describe the mathematical model, a spiking network of linearly 53

interacting point process cells (a “Poisson linear network”, linearized GLM, or Hawkes 54

process), together with the measure of dimensionality we use (Sec. 2.2). In Sec. 2.3, we 55

show how this dimensionality can be expressed in terms of connectivity motifs. We 56

continue by analyzing the dimensionality of the spontaneous (internally generated) 57

activity of an excitatory randomly connected network (Sec. 2.4), and move to 58

stimulus-driven networks of this type (Sec. 2.5). Finally, we generalize our results to 59

consider different connectivity topologies as well as excitatory-inhibitory balanced 60

networks (Sec. 2.6). We hinge the discussion around the question of how a network can 61

modulate the dimensionality of its response to external stimuli by leveraging its local 62

connectivity (Sec. 3). 63

2 Results 64

In recent years, neuroscientists have developed a flexible framework for predicting how 65

spike train correlations are guided by the structure of recurrent connections 66

[19, 17, 18, 42, 44]. Here we present and extend this framework to compute the 67

dimensionality of spontaneous and stimulus-driven activity. The expert reader, who 68

may be well acquainted with all this material, may be able to start reading from 69

Sec. 2.3 or Sec. 2.4. In the same spirit we encourage the reader for whom the idea of 70

network motifs is novel, to follow the more detailed presentation found in the Suppl. 71

Mat. up to the result expressed in Eq. 11. 72

Throughout the paper bold lower-case letters will identify vectors, while bold upper 73

case letters identify matrices. Non-bold letters identify scalar numbers. 74

2.1 The theoretical framework 75

Consider a recurrent neural network of N neurons where the activity yi(t) of neuron i 76

at time t occurs around a baseline rate of irregular firing, which is set by the internal 77

connectivity of the network W and an external input ξ(t). The spike train of neuron i 78

is given by si(t) =
∑
j δ(t− tij) where each spike is sampled from a Poisson distribution 79

with instantaneous mean rate (intensity) yi(t). The response of the whole network y(t) 80

can then be captured by linearizing its dynamics around the baseline rates, giving the 81

equation: 82

y(t) = y0 +

∫ ∞
−∞
A(t′) (Ws(t− t′) + ξ(t− t′)) dt′ = y0 + (A ∗ (Ws+ ξ))(t) , (1)

where each entry of the vector y(t) is the instantaneous firing rate of neuron i at time t 83

with baseline firing rate y0. Here Wij is the synaptic strength between neuron i and 84

neuron j, and A is a diagonal matrix where Aii is the postsynaptic filter which 85

encapsulates the timecourse of the postsynaptic response. Thus, Gij = Aii ·Wij defines 86

an effective connectivity matrix. Finally, ξ is the external input to the network. This 87

model is pictured in Fig. 1a, where the input ξ contributes to the baseline activity of 88

each neuron, and the recurrent feedback is linearized. 89

The stochastic spiking dynamics induced by Eq. 1 leads (cfr. Supp. Mat.) to an 90

equation for the covariance matrix C of the network response. For simplicity we present 91

the result as a matrix of spike train auto- and cross-spectra at frequency ω, C(ω). This 92

is the matrix of the Fourier transforms of the familiar auto- and cross-covariance 93

functions; its zero mode C(0) is the the usual covariance matrix on which we will focus 94

for the rest of this work [47, 48]. Very usefully, this mode has been shown to yield an 95

accurate approximation of correlations over any time window that is long enough to 96
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Fig 1. Dimensionality of the activity of a generalized linear recurrent network (a
“linearized inhomogeneous Poisson GLM.” [45, 46]) a) Schematic of a generalized linear
recurrent neural network. b) Spike train generated by the model, showing activity of
the neurons in the model and binning procedure over time windows of length τ . c)
Point cloud representation of the binned spike train in, neural space with coordinates as
activity of single neurons. d) Example of a symmetric distribution of activities for three
neurons, while the rest are silent. e) Example of an asymmetric distribution of the
activities. f) Dimensionality of the neural activities as a function of average connectivity
in SONET networks, with varied average connectivity and motif statistics.

encompass the structure of neural correlograms [49]. The linearized dynamics, Eq. 1 97

give rise to the covariance matrix as: 98

C(ω) = 〈y(ω)y(ω)∗〉 =

= ∆(ω)〈y0(ω)y0(ω)T 〉∆(ω)∗ + ∆(ω)
(
A(ω)〈ξ(ω)ξ(ω)T 〉A(ω)∗

)
∆(ω)∗

= ∆(ω)C0(ω)∆(ω)∗︸ ︷︷ ︸
internally generated

+ ∆(ω) (A(ω)Cinp(ω)A(ω)∗) ∆(ω)∗︸ ︷︷ ︸
externally induced

= Cint +Cext .
(2)

The first term of Eq. 2 expresses how the variability in the activity of single neurons 99

(the baseline covariance C0) propagates through the network to induce 100

internally-generated covariability. Similarly, external inputs with covariance Cinp give 101

rise to covariances ((A(ω)Cinp(ω)A(ω)∗) in the externally induced term), which then 102

propagate through the network. (External inputs with low-rank correlations could reflect 103

global fluctuations due to shifts in attention, vigilance state, or motor activity [50, 38].) 104

Above we also introduced ∆(ω) = (I −G(ω))−1, where ∆ij is called a propagator as 105

it reflects how a spike in neuron j propagates through the network to affect the activity 106

of neuron i. Eq. 2 has been extensively studied in a number of frameworks 107

[51, 52, 53, 54, 44, 55]. 108
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2.2 Measuring dimensionality 109

We aim to characterize the dimensionality of the distribution of population vector 110

responses. Across many trials, these population vectors populate a cloud of points. The 111

dimensionality is a weighted measure of the number of axes explored by that cloud: 112

Dim(C) =
(Tr C)2

Tr C2 =
(
∑
i λi)

2∑
i λ

2
i

. (3)

where λi is the ith eigenvalue of the covariance matrix C. The eigenvectors of the 113

covariance matrix C are the axes of such cloud of points as in Fig. 1c. If the components 114

of y are independent and have equal variance, all the eigenvalues of the covariance 115

matrix have the same value and Dim(C) = N . Alternatively, if the components are 116

correlated so that the variance is evenly spread across M dimensions, only M eigenvalues 117

would be nonzero and Dim(C) = M (Fig. 1d). For other correlation structures, this 118

measure interpolates between these two regimes (Fig. 1e) and, as a rule of thumb, the 119

dimensionality can be thought as corresponding to the number of dimensions required 120

to explain about 80% of the total population variance in many settings [26, 3, 25]. 121

Previous works have shown that the average correlation between neurons depends 122

strongly on the motif structure of their connectivity [17, 18, 20]. We began by asking 123

whether the same is true for the dimensionality. To do this, we generated random 124

networks with a range of connection probabilities and, for each connection probability, a 125

wide range of two-synapse motif frequencies (SONETs; Methods c and e, and [40, 56]). 126

In Fig. 1d we plot the dimensionality of the network’s activity against the average 127

probability of connection p (0 ≤ p ≤ 1) for an ensemble of SONET networks (cfr. 128

Methods e for network details). The first notable observation from Fig. 1f is that the 129

dimensionality for such networks is strongly influenced by p: as p increases, the 130

dimensionality decreases towards 1. Importantly, Fig. 1f also shows a high range of 131

variability in the dimension produced by networks with the same value of average 132

connectivity p, indicating that the way that a given number of connections is arranged 133

across the network also plays a strong role in determining the dimension of its activity 134

Fig. 1f. Our next major goal is to describe how the statistics of connectivity motifs 135

gives rise to this variability. 136

2.3 Expressing the covariance in terms of network motifs 137

We review the main ideas of the theoretical framework that allows for an expansion of 138

Eq. 2 in terms of connectivity motifs. For a more comprehensive description see Suppl. 139

Mat. and [17, 18]. This framework aims to model the complexity of connectivity 140

structures in real world networks, like the one represented in Fig. 2a, in terms of motif 141

statistics.There are three main conceptual steps to highlight. We will introduce them in 142

the case where the network does not receive any external input so that 143

C(ω) = ∆(ω)C0(ω)∆(ω)∗ but they can be extended (cfr. Sec. 2.5 and Suppl. Mat. 144

Sec. 2 to the more general case where such an input is present. 145

The first step is to expand the propagator: 146

∆ = (I −G)−1 =
∞∑
m=0

Gm . (4)

By expressing ∆ in this form we can then write C (dropping the dependency on w) via 147

an expansion: 148

Cij =
∞∑
m=0

∞∑
n=0

N∑
k=1

(Gm)ik(C0)kk(G∗n)kj , (5)
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Schematic decomposition of motifs into ordered cumulants

Examples of motifs and cumulants

Fig 2. Description of connectivity motifs and cumulants. a) Example of brain cortical
connectivity [57]. b) Motifs in the model of a recurrent neural network. In red is
highlighted an example of a divergent motif. c) Example of the decomposition of a
divergent motif into cumulants. d) Categorization of connectivity motifs into orders,
with several example of the cumulants decomposition. Notably we highlight a novel
motif: the trace motif µTr, as an example of a 3rd order motif.

where from now on we will consider the case where C0 is diagonal C0 = c0I – as for 149

the standard assumption and model of initially independent Poisson neurons that are 150

then coupled together into a network. Then Eq. 5 provides an intuitive description of 151

the spike train cross-spectra in terms of paths through the network. This captures 152

contributions to the cross-spectrum for paths that fork out of neuron k and end on one 153

side in neuron i after m connections, and on the other side in neuron j after n 154

connections. An example of such a path for m = 2 and n = 1 is shown in red in fig. 2b. 155

The expression in eq. 5 has been studied extensively in previous works 156

[58, 52, 53, 54, 20]. 157

The framework in which we cast our theory relies on a second conceptual step, based 158

on rewriting a function of the covariance C, Eq. 5, in terms of motifs. In the case of the 159

where this function is the average covariance 〈C〉, this takes the form [17]: 160

〈C〉
c0

=
1

N3

∞∑
m,n=0

(N)m+nµm,n,

µm,n =
N∑

k,i,j=1

Gmik(GTkj)
n/Nm+n−1 = 〈Gm(GT )n〉/Nm+n−3.

(6)

Here, we assumed that cellular response properties are homogeneous A = gI, and 161

C0 = c0I. The motif moment µm,n measures the average strength of a (m,n)-motif 162

composed of two paths (respectively of length m and n) connecting any neuron k with 163

neuron i and j. Examples of a (1, 1)-, and (2, 1)-motif are shown in Figs. 2c and 2d. 164

Motifs of this kind, where paths originate from a common neuron, are called divergent 165

motifs. We consider five kinds of motifs: convergent, divergent, chain, reciprocal and 166

trace, depending on the direction of edges to the common node as illustrated in Fig. 2d. 167

These motifs correspond to similar definitions to the one for µm,n in Eq. 6 (cfr. Suppl. 168

Mat. sec. 2.1 for additional details) . In networks where all synaptic weights have the 169
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same value, then µm,n is proportional to the frequency of the motif. 170

We can also define weighted motif statistics. For example: 171

µum,n =
N∑

k,i,j=1

uiG
m
ik(GTkj)

nuj/N
m+n−1 = uTGm(GT )nu/Nm+n−3 , (7)

where u is a vector of norm 1 (||u|| = 1). For example, u could contain neuron’s firing 172

rates, or be the eigenvectors of W . The case of Eq. 6 corresponds to choosing the unit 173

norm vector of constant entries, u = (1, 1, 1...1)T /
√
N . Ultimately the choice of u 174

depends on the desired function of the covariance to compute (e.g. 175

〈C〉,Tr(C), Dim(C)...), on the structure of G, and on the presence or absence of 176

inputs. In what follows this choice will be motivated in each case. 177

The last and crucial conceptual step of the theoretical framework is to re-sum the 178

motif moments by rewriting them in terms of cumulants. The idea is to approximate 179

the probability of finding a specific motif µn,m by iterative approximations built 180

through the probabilities of finding the building blocks of that motif. For example, in 181

Fig. 2c we see how the probability of motif µ1,2 to occur in the network can be 182

subdivided in the probabilities of finding its building blocks: three synapses κ31, one 183

synapse and one chain of length two κ1κ2 and so on. The general relationship between 184

moments and cumulants is [18]: 185

µm,n =
∑

{n1,...,nt}∈C(n)
{m1,...,ms}∈C(m)

(
t∏
i=2

κni

)
(κn1,m1 + κn1κm1)

 s∏
j=2

κmj

 . (8)

where each κn, κn,m is a cumulant (respectively for chains and divergent motifs) and 186

C(n) is the collection of ordered sets whose elements sum up to n. This step removes 187

redundancies and improves the rate of convergence of the expansion, so that only 188

relatively smaller motifs need to be measured and included. This is accomplished by 189

“resumming,” via the identity: 190

∞∑
n,m=1

∑
{n1,...,nt}∈C(n)
{m1,...,ms}∈C(m)

[(
t∏

p=1

xnp

)
znpmq

(
s∏
q=1

ymq

)]

=

 ∞∑
i=0

( ∞∑
n=1

xn

)i( ∞∑
n,m=1

znm

) ∞∑
j=0

( ∞∑
m=1

ym

)j
(9)

that allows one to resum the contribution of each cumulant to any order in the 191

expansion of Eq. 5. In this way the expression for a function of the covariance matrix 192

assumes a closed form as a function of the cumulants (e.g. Eq. 6 for the mean 193

covariance). 194

Through the resumming procedure we are computing the contribution of any 195

cumulant κ not to a specific term Gm(GT )n but to the full sum
∑∞
m,n=0G

m(GT )n. In 196

summary, this approach allows us to remove redundancies in motif statistics, and to 197

isolate the impact solely due to higher order motif structures [17, 18]. 198

The framework outlined above results in the ability to write any function of the 199

covariance in terms of motif cumulants. Specifically, according to our interest here, the 200

expressions for 〈C〉 and Dim(C) can be written in terms of a small subset of cumulants. 201

In the following (cfr. Suppl. Mat. sec. 2.4) we will explain how this framework can be 202

deployed in computing Dim(C) for different networks, first in the absence of inputs, 203

and then in their presence. 204
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Fig 3. Theory of dimensionality in random excitatory recurrent networks through
connectivity motifs. a) Dimensionality as a function of average connectivity in an
Erdos-Renyi network. The full theory is in green while the theoretical approximation via
the cumulant framework is shown in red. This color code is consistently used throughout
the figure and paper. b) Dimensionality as a function of average connectivity in SONET
networks. Highlighted in green (orange) is a point corresponding to a weakly (strongly)
connected network. The inset shows the exact value of the dimensionality versus the
approximated one. The gray line follows the ER case of panel a). c) Average correlation
vs. average connectivity in SONET networks. d) Dimensionality vs. average
connectivity in the ensemble of SONET networks used for the regression. Highlighted in
orange is the point corresponding to the Erdos-Renyi network where the Taylor
expansion is centered. e) Comparison between regression and Taylor coefficients. In
green are the regressors of the multilinear regression of the dimensionality regressed
against the cumulants, while in red are the Taylor coefficients of the expansion around
the Erdos-Renyi network highlighted in panel e. f) Relation between trace cumulants for
the ensemble of networks used in the regression. g) Relation between the trace
cumulant and the reciprocal motifs in the ensemble of networks used in the regression.
h) Dimensionality versus average correlation for the ensemble of networks used for
panels b and c. The blue point highlights a point with relatively low dimensionality for
a relatively low (and commonly observed) value of the average correlation.
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2.4 Dimensionality of internally generated network activity 205

In our results we will include cumulants up to second order, although the expansion and 206

theory can be taken to higher order. Second order cumulants correspond to chains κchn , 207

convergent paths κconvn,m , divergent paths κdivn,m, reciprocal paths κrecipn,m and trace motifs 208

κtrn,m as shown in Fig. 2d. Mathematical definitions and more detailed explanations of 209

the meaning of these cumulants can be found in the Suppl.Mat. sec. 2.1-2.4. 210

The expansion in terms of cumulants leads to the expression for the average 211

covariance 〈C〉 ([18]): 212

〈C〉 =
c0
N

(
1−

∞∑
n=1

(N)nκn

)−2(
1 +

∞∑
n,m=1

(N)n+mκdivn,m

)
. (10)

Notably, the contributions of chains and divergent motifs factor out in Eq. 10. 213

The expression for the dimensionality Dim(C) is the ratio between Tr(C)2 and 214

Tr(C2), and these two quantities are general functions of the cumulants so that 215

Dim(C) = F
(
N, kchn , κ

div
n,m, κ

conv
n,m , κTrn,m, κ

Tr
n,m,p,q

)
(11)

where F is a function whose full expression is shown in Methods a, in terms of its 216

numerator Tr(C)2 and denominator Tr(C2). This full expression also shows that the 217

dimensionality is directly related to the average covariance 〈C〉. Specifically, it turns 218

out that the dependency of Dim(C) on kchn , κ
div
n,m is the same as that of 〈C〉, so that we 219

can rewrite Eq. 11 as: 220

Dim(C) = F̂
(
N, 〈C〉, κconvn,m , κTrn,m, κ

Tr
n,m,p,q

)
(12)

highlighting the role of convergent and trace motifs in regulating the relation between 221

the average covariance and the dimensionality (a detailed expression of Eq. 12 can be 222

found in Suppl. Mat. sec. 2.3). The trace cumulants κTrn,m, κ
Tr
n,m,p,q in Eq. 11 represent 223

the statistics of motifs corresponding to patterns of connectivity that originate in one 224

neuron and converge to a second neuron (Fig. 2d). We will show later how these 225

statistics are highly correlated with reciprocal connections. 226

We next interpret and apply the formulas just described, which predict the 227

dimension of network-wide activity in terms of localized connectivity motifs. We first 228

use two classes of networks as examples: “purely random” Erdos-Reyni networks, and 229

an exponential family of random graphs parameterized by second order motif statistics. 230

While these are quite natural (but by no means automatic) cases for our theory, which 231

is based on localized connectivity statistics, to succeed, we later apply it to different 232

types of complex networks. 233

We begin by analyzing an interesting limit of Eq. 11: an Erdos-Reyni network. For a 234

Erdos Reyni network all cumulants except for kch1 = p (where p is the probability for 235

each edge to be present in the graph) and the trace cumulants 236

kTr0,0,0,0 = kTr0,0 = (1− 1/N) are zero. In this limit Eq. 3 becomes: 237

Dim(C) =

(
(1−Np)−2 + (N − 1)

)2
(1−Np)−4 + (N − 1)

. (13)

From this expression we see that when p→ 1
N we obtain Dim(C)→ N − 1. 238

This behavior can be interpreted in the following way: for p small enough that the 239

structure of C is fully diagonal and all the elements are equal to c0; in this regime all 240

the neurons in the network act independently and contribute equally to Dim(C). As p 241

increases more and more neurons start interacting and the dimensionality decreases 242
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until we obtain Dim(C) = 1. In Fig. 3a we see how Eq. 13 (red dashed line) is in 243

agreement with the full expression for Dim(C) (green line) where Eq. 2 has been used 244

for the internally generated covariance in spite of the cumulant approximation. 245

To show the efficacy of Eq. 11 in capturing the dimensionality of network responses, 246

we use this expression to compute Dim(C) in an ensemble of SONET networks [40]. 247

These (cfr. Methods f) are random networks where the probability of having a second 248

order motif can be arbitrarily modified; such networks can therefore assume a wide 249

range of values for second order motifs and cumulants. In Figs. 3b and 3c we show the 250

dimensionality and average correlation values (given by 〈C〉/c0) for a wide range of 251

SONET networks, with a network’s dimensionality plotted against its connection 252

probability p. Here, for each network we plot both the dimension computed via the full 253

covariance formula Eq. 3, as well as via the cumulant truncation via Eq. 11 (red dots). 254

Although the dimensionality varies strongly across networks with different motif 255

statistics even at a fixed value of p (as was already pointed out in Fig. 1f), the cumulant 256

theory matches this variability closely across the range of SONET networks. This is 257

shown in Fig. 3b in two ways: for each network (every green dot) the corresponding 258

theoretical approximation (corresponding red dot) lies right on top or closeby; the inset 259

in Fig. 3b confirms this by plotting dimension calculated via the cumulant 260

approximation against the true values from the full covariance expression. 261

Together Fig. 3b shows that second order motifs contribute to the dimensionality of 262

the response according to Eq. 11. However, from Fig. 3b it is not possible to single out 263

the contribution of each motif. To address this question we consider an ensemble of 264

SONET networks centered in their statistics around an Erdos-Renyi network with 265

p = 0.08, corresponding to the orange dot in Figs. 3b and 3d (see Methods f for details). 266

The dimensionality for the response of each network in this ensemble is plotted against 267

p in Fig. 3d. Then we carry out a multilinear regression (see Methods f) of the 268

dimensionality of this ensemble of networks against the values of each cumulant. The 269

regression coefficients express how each cumulant influences the dimensionality (r2 = 270

0.994) (Fig. 3e) so that: 271

Dim(C) = Dim(C
∣∣∣
ER

) + αpk
p + αchk

ch+ αconk
con+

+ αdivk
div + αTr(C)k

Tr(C) + αTr(C2)k
Tr(C2)

(14)

where the α′s are the regression coefficients for each cumulant (green bars in Fig. 3d). 272

An increase of most cumulant, but not all, types of cumulants appears to lead to a 273

decrease in dimensionality as most coefficients in Fig. 3e are negative. This is important 274

as it suggests that adding most types of connectivity structure to a circuit generally 275

lowers the dimensionality of the response. 276

In more detail, this analysis shows that, while increasing the average connectivity, 277

chains, and diverging and converging motifs leads to a decrease in dimensionality, terms 278

contributing to the trace motifs may play a role in expanding the dimensionality. 279

Complicating matters is that κTrn,m and κTrn,m,p,q are, in general, highly correlated in 280

their values. This correlation is shown in Fig. 3f and it limits the applicability of the 281

regression to the ensemble with respect to the trace cumulants, as can be seen in Fig. 3e. 282

To get a theoretical handle on this, we analytically compute the Taylor coefficients of 283

the expansion of the dimensionality formula Eq. 11 in terms of motifs, expanded around 284

the Erdos-Renyi case (orange point in Fig. 3d). The Taylor coefficients are the α′s in 285

the first order theoretical expansion of Eq. 14 of the dimensionality formula. To ease 286
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reading of the resulting formulas we first define: 287

r =

(
1−

∞∑
n=1

Nnkchn

)−1
. (15)

The expressions for Tr(C) and Tr(C2) in the Erdos-Renyi case have then the form: 288

(Tr C)
∣∣∣
ER

= c0(r2 +N − 1) ∼ c0(r2 +N)(
Tr C2

)∣∣∣
ER

= c20(r4 +N − 1) ∼ c20(r4 +N).
(16)

The expressions for the Taylor coefficients of second order motifs are: 289

αch = ∂kch
∣∣∣
ER
Dim(y) =

4r3(r2 +N)

r4 +N
− (r2 +N)2(4r5)

(r4 +N)2

αdiv = ∂kdiv
∣∣∣
ER
Dim(y) =

2r2(r2 +N)

r4 +N
− (r2 +N)2(2r4)

(r4 +N)2

αcon = ∂kcon
∣∣∣
ER
Dim(y) =

2r2(r2 +N)

r4 +N
− (r2 +N)2(2r4)

(r4 +N)2

αTr(C) = ∂kTr(C)

∣∣∣
ER
Dim(y) =

2N(r2 +N)

r4 +N

αTr(C2) = ∂kTr(C2)

∣∣∣
ER
Dim(y) = − (r2 +N)2N

(r4 +N)2
.

(17)

A derivation with more details is available in the Suppl. Mat. 2.5 . These expressions 290

represent the corresponding theoretical quantities for the regression coefficients of 291

Fig. 3e and are shown as red dots. As we see the Taylor coefficients provide a direct 292

understanding of the effect of increasing different cumulants on the dimensionality. 293

Moreover, as we show analytically in the Supplemental material, αch < 0, and 294

αdiv = αconv < 0; thus, the effects of adding chain, diverging, or converging motifs to a 295

given network is to drive down the dimension of the activity that it produces. 296

Although the regression fails to capture the right quantitative expressions for the 297

trace motifs (see Fig. 3e), it does suggest that these terms play a key role in regulating 298

the dimensionality. Trace cumulants are mainly influenced by reciprocal motifs as they 299

directly enter the computation for the trace cumulants. This can be observed in Fig. 3g 300

where the high correlation between the two is highlighted. Altogether these results point 301

to reciprocal connections as major players in balancing the overall behavior of the 302

dimensionality. 303

Dimensionality versus average covariance Finally, in Fig. 3h, we show how the 304

dimensionality is related to the average pairwise spike count correlation across the range 305

of SONET networks. Importantly, we see that dimensionality attains very low values, 306

even when the average correlation values are very weak. For example, when average 307

correlations 〈C〉/c0 = 0.025, we see that Dim(C) = 0.5 (blue point in Fig. 3h). In other 308

words, when cells appear almost uncorrelated on average (≈ 2− 3%), the overall 309

dimensionality of spiking activity can be cut by half compared with the uncoupled case. 310

While this phenomenon could be foreseen by looking closely at Figs. 3b and 3c we 311

highlight it here as it helps to reconcile two observations often seen in the literature: 312

relatively weak activity correlations [59, 34, 43] yet relatively low activity dimension [1]. 313

We note that [43] has made closely related findings about highly restricted sets of firing 314

patterns that can be implied by weak pairwise correlations. In our framework, the 315
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dimensionality can be tightly linked to the average covariance, see Eq. 12, but we also 316

show that converging and trace motif cumulants influences the dimensionality but not 317

the average covariance (see Eq. 12 and Eq. 22 in Methods a). This points to 318

dimensionality not only as a comprehensive measure of how coordinated network 319

activity is, but also also as a more sensitive means to assess how coupling is 320

coordinating that network activity (cfr.[43]). We will further expand on this important 321

point in the Discussion. 322

2.5 Dimensionality of stimulus-driven responses 323

In Eq. 2 we highlighted two contributions to the total covariance of the network activity. 324

The first is due to the internally generated activity (the reverberation of the stochastic 325

Poissonian spiking through the network), and the second is due to the inputs to the 326

network. While in the previous sections we have analyzed the dimensionality of the 327

network response in the absence of inputs, here we generalize the results to include their 328

contribution. The interplay between the connectivity of the network and the inputs can 329

be captured by Eq. 3 where we expressed C as C = Cint +Cext: 330

Dim(C) =
(Tr Cint + Tr Cext)

2

Tr (Cint +Cext)2
=

(Tr Cint)
2 + (Tr Cext)

2 + 2(Tr Cint · Tr Cext)

Tr(C2
int) + Tr(C2

ext) + 2Tr(Cint ·Cext)
.

(18)

We decompose the input covariance Cinp into Ninp orthogonal unitary factors ξ, so that 331

Cinp =
∑Ninp

i cξ,iξiξ
T
i . The external input to the network might arise from the 332

spontaneous or evoked activity of other areas; regardless, it can be modeled as a sum of 333

independent contributions where the number of factors Ninp and the individual strength 334

of these factors cξ,i has to be determined. 335

The theory introduced in Sec. 2.3 needs to be extended to reflect a crucial fact: the 336

input may target different neurons in the network to a different degree. In turn, 337

connections from and to specific neurons will be more important than others in driving 338

network-wide activity. In Sec. 2.3 and Fig. 2, we introduced motif moments and 339

cumulants by specifying that weights from different neurons were equally taking part to 340

the computation of the dimensionality. This idea was rendered mathematically by using 341

a uniform weight vector u = (1, 1, 1...1)T /
√
N in defining and resumming motif 342

cumulants. In the following we will also employ a set Ninp of vectors uξ,i = ξi to 343

properly resum different contributions to the input structure and their reverberation 344

through the network. In Suppl. Mat. sec. 3.2 we show how all these contributions can 345

be dealt with and re-summed simultaneously via proper handling of weighted motifs and 346

cumulants, building from [17, 18]. Here, each motif simply carries a weight 347

corresponding to the product of input strengths for each of the neurons that compose it. 348

The resulting equations have function forms similar to the one of Eq. 11, but with 349

weighted cumulants. Denoting with κext the set of input weighted cumulants and with 350

κint the set of internal cumulants employed in Eq. 11 , we have: 351

Dim(C) = F (N, c0, cξ,κint,κext) (19)

The full expression for this equation, in terms of its building blocks of Eq. 18, is given in 352

Methods b. This equation formalizes the interplay between stimuli, connectivity, and 353

internally generated activity in creating network activity with a particular dimension. 354

In what follows, we illustrate one aspect of this: how the strength and dimensionality of 355

inputs to a network modify the “total” dimensionality of the network responses. While 356

the limiting trends are exactly what one would expect – stronger inputs increasingly 357

entrain the network response, and higher dimensional inputs lead to higher dimensional 358

August 13, 2018 12/28

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 17, 2018. ; https://doi.org/10.1101/394684doi: bioRxiv preprint 

https://doi.org/10.1101/394684
http://creativecommons.org/licenses/by/4.0/


a

c

p
Weakly connected recurrent 

D
im

e
n

si
o

n
al

it
y 

- 
D

im
(C

) 
/ 

N

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%
Input dimensionality - Ndim/N Input dim - Ndim/N

D
im

e
n

si
o

n
al

it
y 

- 
D

im
(C

) 
/ 

N

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%
Input dimensionality - Ndim /N

Input dim - Ndim /N

e f

hg

Strongly connected recurrent 

dimensionality
expansion}

input
dimensionality}

dimensionality
expansion}

Real values
Cumulants reduction

0%0.0 0.5 1.0 1.5

Input strength - cξ

D
im

e
n

si
o

n
al

it
y

0%

20%

40%

60%

80%

100%

0.0 0.5 1.0 1.5

Input strength - cξ

D
im

e
n

si
o

n
al

it
y

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

D
im

e
n

si
o

n
al

it
y

20% 40% 60% 80%100%

0%
0%

20%

40%

60%

80%

100%

D
im

e
n

si
o

n
al

it
y

20% 40% 60% 80%100%

p

Dimensionality vs. Stimulus dim.

Fixed stimulus dim. Fixed stimulus strength

Dimensionality vs. Stimulus dim.

Fixed stimulus dim. Fixed stimulus strength

Real values
Cumulants reduction
2nd Cumulants red.

Dimensionality = 1.6 Dimensionality = 88.2

Dimensionality = 1.6 Dimensionality = 11.1

Dimensionality = 65 Dimensionality = 4.7

dimensionality
reduction }

Fig 4. Dimensionality of the network response in weakly and strongly connected
excitatory recurrent networks. a) Dimensionality of stimulus driven responses as a
function of the dimensionality of the stimulus in a weakly recurrent network (see text
for important details on how the stimulus is defined). The line in green is the full theory
while the line in red is the theoretical approximation in the cumulant framework. In
light green is the area that marks the region of expansion of the dimensionality with
respect to the input. b) Example of the expansion of the input to the network,
schematized by the effect of the network in inflating the cloud of points. c)
Dimensionality versus stimulus strength for a unidimensional input. d) Dimensionality
versus stimulus dimensionality for a stimulus of fixed strength. The total strength is
rather high so that the initial dimensionality for a unidimensional input is extremely
low. e) Dimensionality of stimulus driven responses as a function of the dimensionality
of the stimulus in a strongly recurrent network. The line in green is the full theory while
the line in red is the theoretical approximation in the cumulant framework. In pink is a
second approximation in the cumulant framework that accounts for a high dimensional
input. The areas in orange and blue are mark respectively the cases of dimensionality
expansion and reduction. f) Cartoons for examples of dimensionality reduction and
expansion induced by the internal modes of a strongly recurrent network. These
behaviors are induced by the strongly recurrent connectivity. g,h) Analogous panels to
panels c and d for the strongly connected case.
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responses – both the limiting values of dimensionality and the approach to them depend 359

on details of network connectivity. 360

To better illustrate this process, we study the response of two different networks: a 361

weakly and a strongly connected network. These two cases correspond to the two points 362

highlighted in Fig. 3b: the green point (p = 0.03) to a weakly connected network, while 363

the orange one (p = 0.08) to a more strongly connected one. In both cases the internally 364

generated activity is uniformly weak or strong across all neurons. To gain more insight 365

on how skewed distributions of intrinsic variances would affect our analysis we refer the 366

reader to [25]. 367

To begin, consider a weakly connected random network receiving Ninp input factors, 368

each with the same strength cξ , so that Cinp = cξ
∑Ninp

i ξiξ
T
i . We examine the 369

dimensionality of the network response as a function of Ninp in Fig. 4a. Note that as 370

Ninp grows, both the dimension of the input (Ninp) and its overall strength (variance 371

Ninpcξ) grow. The initial dimensionality in the absence of any input is close to 100%, 372

then it decreases as more and more inputs are fed into the network, eventually growing 373

with the number of inputs as these entrain the network activity. Both the extremes have 374

dimensionality close to 100%, as shown in Fig. 4a, and in between there is a trade-off 375

region where the low dimensionality of the input and the high dimensionality of the 376

internal activity interact non-linearly as shown in Eq. 18. To better understand these 377

trends we rewrite Eq. 18 by using Eq. 2 with C0 = c0I, A = gI and Cinp = cξC̄inp 378

where we have highlighted the scaling factor of Cinp. The resulting expression is: 379

Dim(C) =
(Tr Cint)

2 + (Tr Cext)
2 + 2(Tr Cint · Tr Cext)

Tr(C2
int) + Tr(C2

ext) + 2Tr(Cint ·Cext)

=
c20Tr(∆∆∗) + (gcξ)

2Tr(∆C̄inp∆
∗)2 + 2c0cξgTr(∆∆∗)Tr(∆C̄inp∆

∗)

c20Tr(∆∆∗) + (gcξ)2Tr(∆C̄inp∆∗)2 + 2c0cξgTr(∆∆∗∆C̄inp∆∗)
.

(20)

In this formula we recognize that the limits highlighted above (absence of input regime 380

and input dominated regime) correspond to the cases where either the terms in c20 or in 381

c2ξ dominate, while intermediate cases are trading-off the contribution due to internal 382

dynamics or external input. The distance of the full dimensionality from the diagonal 383

(green region) measures the dimensionality expansion, where the input distribution is 384

“inflated’ by the network’s noisy internal dynamics, Fig. 4b. 385

The non-monotonic behavior displayed in Fig. 4a can be explained as a trade-off of 386

the two input properties introduced above: the input strength and dimensionality. The 387

effect of the former can be understood in Fig. 4c , where we show how the 388

dimensionality of the response decreases as a function of a gradually stronger 389

unidimensional input (Ninp = 1 and increasing cξ). This behavior can be compared to 390

established properties of stimulus driven dynamics in cortical circuits [25, 60] where it 391

has been observed that evoked activity suppresses the dimensionality of spontaneous 392

activity. The influence of the latter factor, input dimensionality, is displayed in Fig. 4d 393

where we provide the network an input of overall constant strength, of standard 394

deviation
√∑Ninp

i c2ξ,i = 2.5c0 (cfr. Methods g), with increasing number of factors 395

(dimensions). In this case, as the inputs fully entrain the network response, the 396

dimensionality constantly increases. The trend in Fig. 4a can be interpreted as a 397

trade-off between these two trends, again recalling that stimulus dimension and strength 398

increase together in that plot Figs. 4c and 4d. 399

If we describe Fig. 4a as passing stimuli into weakly coupled networks leading to an 400

expansion of the input dimensionality, then fig:4e shows that strongly coupled networks 401

leads to a more complex trend. At first the input dimensionality is expanded, but then 402

it is compressed; overall, the network response never achieves the full dimensionality of 403

the input. In other words, the response is always constrained by the network dynamics: 404
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a first phase of dimensionality expansion is followed by a second phase of dimensionality 405

reduction (Fig. 4f). 406

These two phases can both be understood qualitatively in terms of the propagator ∆ 407

in Eq. 2, that restrains the total network dynamics. In Fig. 4e the theoretical prediction 408

made by the second order cumulant framework (red line) agrees with the exact 409

dimensionality from formula Eq. 18 (green line) only for a low dimensional input, but 410

then departs. This can be attributed to the many ways with which the inputs can 411

interact with the internal modes of the network: as the number of input factors 412

increases, evidently, the term Cint ·Cext in Eq. 20 can no longer be captured by low 413

order motif cumulants. In particular the motif cumulant approximation tends to 414

overweight the importance of the input: the predictions for high Ninp in both Figs. 4a 415

and 4e are similar. To weaken this limitation we show (pink line in Fig. 4e) a second 416

theoretical approximation, where the terms arising from the internal modes are 417

disengaged from the input contribution in Eq. 18. See Methods g for more details. This 418

approximation captures more closely the properties of the network when, in the case of 419

high dimensional input Ndim the activity is mainly constrained by the internal modes. 420

We denote the two approximations, red and pink lines in Figs. 4e to 4h, respectively as 421

the low and high dimensional input approximation. These two limits taken together 422

show how low order cumulants are able to predict general trends in the dimensionality 423

of driven responses. 424

Altogether we have shown in Fig. 4 how the interaction between the input and the 425

network dynamics gives rise to a number of scenarios where the input dimensionality 426

can be expanded, reduced or somehow controlled through the internal recurrent 427

dynamics. Specifically we point out three different scenarios: 428

• If the input has low dimensionality and the network has high dimensionality due 429

to weakly recurrent connectivity, the network expands the dimensionality of the 430

input. The dimensionality expansion is effectively an “inflation” of the input 431

dimensionality into the high dimensional neural space of the recurrent network 432

(see Fig. 4b). 433

• If the input has low dimensionality and the network has also a low dimensional 434

internal response due to strongly recurrent connectivity, the network still expands 435

the input dimensionality. This mechanism (see Fig. 4f first case) is obtained as the 436

input interacts with the internal activity of the network and their interaction adds 437

up to create a new representation with higher dimensionality. This is mainly due 438

to the constructive interaction between the internal and external covariance in the 439

numerator of Eq. 18. 440

• If the input has high dimensionality and the network has low dimensionality due 441

to strongly recurrent connectivity, the network reduces the input dimensionality. 442

This results from a “bottleneck” induced by the low dimensional recurrent 443

dynamics of the network (see Fig. 4f second case): the internal dynamics restrict 444

high dimensional inputs to a lower dimensional subspace, as all they are projected 445

onto the dominant eigenvectors of the network. 446

These points, as illustrated in Fig. 4, will be revisited in Sec. 3. 447

2.6 Complex and excitatory/inhibitory networks 448

Our results so far have shown a variety of phenomena in which the connectivity of a 449

recurrent spiking network, and its resultant internal dynamics, shape its dimensionality. 450

We have shown how this spectrum of behaviors can be interpreted in terms of the 451

statistics of connectivity motifs: the theoretical framework introduced in Sec. 2.4 and 452
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Scale-Free, Small-World. d) Dimensionality as a function of average connectivity for the
three classes of networks. Dashed red lines correspond to theoretical approximations
based on second order motif cumulants, while continuous colored lines correspond to full
(exact) values. e) Dimensionality versus average correlation.

illustrated in Figs. 3 and 4 points to motif cumulants as the logical building blocks. 453

Moreover, truncating motif cumulant expansions at second order, so that only very 454

localized connectivity data enters, can lead to quantitatively accurate predictions of 455

dimension of intrinsic network activity and qualitative predictions of trends in the 456

presence of stimulus drive. 457

This said, above we have tested these results only for fully excitatory random 458

networks, and for those that are either fully random (Erdos-Reyni) or are generated 459

according to low order connectivity statistics (SONET networks). It is possible that 460

either the theoretical framework proposed (cfr. Fig. 3) or the dimensionality phenomena 461

analyzed (cfr. Fig. 4), may not generalize to more complex networks. To attest this, in 462

this section we generalize the results to complex networks with other structures, and 463

with both inhibitory and excitatory neurons. 464

In Sec. 2.5 we introduced weighted cumulants to account for an input that was fed 465
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unevenly into different neurons within a networks. This is necessary as the cumulants 466

originating in some neurons may have more impact on the network dynamics than 467

others. The same argument holds true for the way internal activity in a recurrent 468

network is generated intrinsically in a network, as some neurons, and their connectivity 469

patterns, are known to have a stronger influence [61, 62]. Thus, we make use of 470

generalized motifs for the internal activity of the network, in a similar fashion to what 471

was done in Sec. 2.5 to account for input effects , by using weight vectors u in Eq. 7 472

that are chosen to be the eigenvectors of the connectivity matrix G. This choice is 473

justified by the same logic as in the case of the input: the directions identified by the 474

eigenvectors are the ones where the activity propagates, so that neurons which 475

participate more to the dynamical mode of the network are weighted more in computing 476

the cumulants. Weighting neurons and thus motifs in such a way therefore handles the 477

relative importance of cumulants in propagating activity through the network (see 478

Suppl. Mat. 3.2 for further details). 479

To generalize our results we start by showing that the findings in Fig. 3 hold true for 480

a wider class of complex networks. Specifically we compare three different network 481

topologies: the Erdos-Renyi case studied before, together with Small World and Free 482

Scale (Albert-Barabasi model) networks. For each case, we vary a single common 483

parameter (cfr. Methods h), the density (probability) of synapses in the network p. In 484

Figs. 5a to 5c we show three examples of the underlying weight matrices, one for each 485

topology. 486

We find that the dimensionality of the network response for the different connection 487

topologies appears follows the same general trend: it decreases as a function of the 488

average connectivity p (cfr. Fig. 5b), until it reaches the boundary of instability for the 489

dynamics. Interestingly, the relation between the average correlation and the 490

dimensionality appears to be very tightly stereotyped as shown in Fig. 5c. Such a tight 491

relationship suggests that one may be able to to interpret average correlations in 492

observed in a circuit in terms of their dimensionality, at least across some classes of 493

network connectivity. Overall, these results suggest that the framework and results 494

given so far do generalize to a more general class of excitatory networks. 495

In Fig. 6 we move beyond excitatory networks to consider the case of 496

excitatory/inhibitory networks To do so we analyze a random Erdos-Renyi network 497

where 10% of the neurons are randomly selected to be inhibitory and balance out, on 498

average, the excitatory connection weight in the network (see Methods l for more 499

details). The result of this process is a block Erdos-Renyi network with a non-trivial 500

statistics of motifs and cumulants. The sign of the motifs reflects their excitatory, 501

inhibitory or mixed nature. Importantly E-I networks tend to be more stable, which 502

allows for stronger synapses overall. Taking advantage of this, we increase the average 503

synaptic strength by changing its scaling from 1/N to 1/
√
N [63, 59]. 504

We see that the resulting relationship between the dimensionality of the network and 505

the average synaptic connectivity p in Fig. 6a is even stronger that in the fully 506

excitatory case of Fig. 3a. Specifically, Fig. 6a shows that the dimensionality rapidly 507

decreases as a function of the average connectivity, and – different from the purely 508

excitatory case – does so with a very steep initial slope. Moreover, the dimensionality 509

decreases very quickly as a function of average correlations Fig. 6c, so that, once again, 510

E-I networks whose activity might at first appear to be (at least on average) 511

independent due to low values of average pairwise correlations actually show very 512

tightly coordinated dynamics. We also find that the theoretical approximation (red 513

dots), despite capturing the overall steeply decreasing trend, is in poor agreement with 514

the full (exact) values of dimensionality. This is due to the fact that the theory shown is 515

perturbative: we keep terms only up to second order (second order cumulants cfr. 516

Fig. 2). While it could be expanded to account for higher orders at the price of 517
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increasing its complexity [18], we here instead highlight its limitations of at second 518

order, at least in our hands, while pointing out important trends in the relationship 519

between the dimensionality of the response and other network properties. For example 520

Fig. 6b and Fig. 6c show that, in the balanced case, the theory approximates to a better 521

extent the average correlations (Fig. 6b) than the dimensionality [17, 18]. 522

To highlight the role of cumulants in controlling these effects we carry out a similar 523

analysis to the one illustrated in Figs. 3d to 3g. We compute the dimensionality for an 524

ensemble of 500 SONETS networks of 1000 neurons each (see Methods m) with 525

excitatory connectivity p = 0.03. The average connectivity between inhibitory neurons, 526

together with the motif content, varies perturbatively around p = 0.03. How the 527

dimensionality varies as a function of the probability of connection between inhibitory 528

neurons is shown in Fig. 6f, for each network in the ensemble. We then carry out a 529

multilinear regression where the dimensionality of the network is regressed against all 530

the values of the cumulants between neurons in the inhibitory population (r2=0.420). 531

The result is shown in Fig. 6d. This result is similar to the one shown in Fig. 4e and 532

shows how different motifs may lead to a dimensionality increase or decrease. 533

One of the main characteristics of E-I balanced networks is the cancellation between 534

strong excitatory and inhibitory contributions. This, in turn, means that the network 535

tends to be in a strongly coupled regime where the internal dynamics is strong and the 536

inputs, rather than driving the network, are entrained to its dynamics. This is shown in 537

Fig. 6e, where the dimensionality of the network varies with the input dimensionality 538

but the span over which the former is modulated by less than 30%, from a 539

dimensionality of roughly 30% to a dimensionality of roughly 60%, over a wide range of 540

input dimensions. If we imagine the input to itself vary in a reasonable range of, say, 541

30% then the network acts to equalize the dimensionality of its response across this 542

range. Specifically, this seems to be achieved optimally at the minimum of the green 543

line in Fig. 6e, where the contribution of the input and internal network dynamics 544

appears to be of similar strength. This may be an important working point for the 545

network, as we will further cover in the Discussion. 546

3 Discussion 547

We have introduced a theory of dimensionality in linear, spiking recurrent networks, 548

which predicts the dimensionality of a network’s response from basic features of its 549

internal connectivity and the stimuli it receives. The theory builds on the existing 550

framework of motif cumulants [19, 17, 18, 42], which identified the significance of 551

connectivity motifs in leading a number of other effects in the network dynamics. We 552

single out three important results from our analysis for further discussion here. 553

First, we find that the statistics of highly local “second order” connectivity motifs – 554

subnetworks of just two or three cells at a time – can be used to predict several (but not 555

all) global aspects of the dimensionality of network-wide activity. These are as follows: 556

for purely excitatory, autonomously spiking networks, the values of connection 557

probability and the prevalance of second order connectivity motifs provides highly 558

accurate quantitative predictions of dimension – and hence dimension appears to be 559

regulated by these connection features alone. For excitatory-inhibitory networks, we can 560

use these localized motifs to make qualitative predictions about trends in dimension with 561

connectivity, but quantitative estimates have large errors. The same is true about the 562

network response to strong inputs: trends can be captured from local motif cumulants, 563

but quantitative accuracy demands a fuller description of network connectivity. 564

The ability, when it occurs, of local circuit features to regulate global activity 565

patterns is important because local activity dependence appears as one of the major 566

constraints in biological learning paradigms [64, 65, 66]. Thus, when it succeeds, 567
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Fig 6. Dimensionality in random balanced recurrent networks and the role of
connectivity motifs. a) Dimensionality as a function of average connectivity in E-I
balanced networks. Highlighted in orange is a network producing low dimensionality. b)
Average correlation versus average connectivity. c) Dimensionality versus average
correlation. e) Dimensionality as a function of stimulus dimension. The green line
corresponds to the full theory, while the red and pink lines correspond to theoretical
approximations in the second order cumulant framework, respectively for low and high
stimulus dimensionality. The areas in orange and blue indicate, respectively,
dimensionality expansion or reduction in the network (cfr. Fig. 4f. f) Dimensionality
versus average inhibitory connectivity for an ensemble of balanced networks with low
dimensionality. The ensemble statistics are averaged around the network corresponding
to the orange point. d) Regression of the dimensionality against the cumulants of the
inhibitory population.

expressing neural dynamics in terms of local connectivity motifs may reveal the function 568

of learning rules, and how they target the dynamics of specific connectivity patterns 569

[67, 68]. 570

Second, our results show that the dimensionality of the network activity has the 571

tendency to assume low values, even when the average pairwise correlations in a 572

network are themselves so low that it might be tempting to consider them as neglibible. 573

In Figs. 3h, 5e and 6c we have shown that, across a number of different connectivity 574

regimes, the network response has low dimensionality when the average correlation is 575

lower than 0.025. This effect is important, it may point to the dimensionality, rather 576

than the often reported statistic of average pairwise correlations (see review in [34]), as 577

a better metric for describing how strongly network activity is coordinated [43, 26]. 578

Moreover, our theory suggests that specific connectivity motifs, i.e. reciprocal motifs, 579

have a prominent role in influencing the activity dimensionality over and above its 580

average correlation. 581

August 13, 2018 19/28

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 17, 2018. ; https://doi.org/10.1101/394684doi: bioRxiv preprint 

https://doi.org/10.1101/394684
http://creativecommons.org/licenses/by/4.0/


Third, depending on stimulus properties and network connectivity, the network 582

response may have a higher or lower dimensionality than the stimulus; in this way, 583

feeding a stimulus to a network results in either an expanded or contracted 584

dimensionality in the response (cfr. Figs. 4 and 6e). Which of these occurs depends 585

strongly on the network connectivity. Here, stronger coupling leads to a more restricted 586

range of dimensionalities with which the network operates. This restricted range – 587

produced in response to a wide range of stimuli – may be interpreted as a type of 588

“dimensionality equalization:” the network reduces or expands the stimulus 589

dimensionality to lie in a relatively tight range Figs. 4d and 6e. Moreover, when inputs 590

assume a fixed strength in each dimension, there is a specific stimulus dimensionality 591

where the network response assumes minimum value. This point is of interest as it 592

marks the transition from a dynamical regime dominated by the internal network 593

response to one governed by the stimulus: thus, near the minimum, the network is 594

entrained by the stimulus but not dominated by it, with the internal dynamics serving 595

as scaffold for the activity that is produced. 596

We close by considering three future research directions that our work here has 597

helped to define. 598

The first is the question of finding efficient, readily measurable features of network 599

connectivity that drive key aspects of neural network dynamics. Here, we demonstrated 600

some substantial new successes, and failures, of local connectivity motifs in this regard. 601

Further research across our field will be important to understand the relevance of 602

specific connectivity patterns and their statistics, including how they vary across space 603

and cell types [69, 21]. This will be especially interesting in relation to next generation 604

connectomics data, which may unlock new roles and new forms of connectivity 605

structures. 606

The second is the extension of link between connectivity structure and activity 607

dimension to nonlinear networks. While the theory in this study is for networks that are 608

linearized around their working point, recent work [70, 71] has developed an expansion 609

that predicts that predicts correlations of arbitrary orders in similar Poisson-type 610

networks, for increasing orders of nonlinearity. Further work to elucidate their influence 611

in shaping the dimensionality of neural response would extend the scope of the present 612

analysis beyond linear circuits, possibly bridging our framework with others that have 613

been recently advanced [72]. 614

The third and final direction for future study is analysis of the stimulus entrainment 615

of network dynamics highlighted above. Specifically, neural representations, i.e. the 616

encoding of stimulus-specific information by neural networks, may involve circuitry that 617

either increases, decreases, or equalizes the dimensionality of neural responses, but 618

further work is needed to understand the implications for neural coding [26, 3, 2]. 619

4 Methods 620

a) Full expression of Dimensionality as a function of cumulants. The 621

expression for the dimensionality Dim(C) is the ratio between Tr(C)2 and Tr(C2). In 622
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terms of cumulants the functions of Eq. 11 can be written as: 623

Tr(C) =c0

(
1−

∞∑
n=1

Nnkchn

)−2(
1 +

∞∑
n,m=1

Nn+mkdivn,m

)(
1 +

∞∑
n.m=1

Nn+mkconvn,m

)

+ c0N
∞∑

n,m=1

Nn+mκTrn,m

Tr(C2) =c20

(
1−

∞∑
n=1

Nnkchn

)−4(
1 +

∞∑
n,m=1

Nn+mkdivn,m

)2(
1 +

∞∑
n.m=1

Nn+mkconvn,m

)2

+Nc20

∞∑
n,m,p,q=1

Nn+m+p+qκTrn,m,p,q .

(21)

These two expressions are both tightly linked to the average covariance Eq. 10. In 624

particular they can be written as follows to highlight this connection: 625

Tr(C) =N〈C〉 ·

(
1 +

∞∑
n.m=1

Nn+mkconvn,m

)
+ c0N

∞∑
n,m=1

Nn+mκTrn,m

Tr(C2) =N〈C〉2 ·

(
1 +

∞∑
n.m=1

Nn+mkconvn,m

)2

+Nc20

∞∑
n,m,p,q=1

Nn+m+p+qκTrn,m,p,q .

(22)

b) Full expression of dimensionality as a function of cumulants, in the 626

presence of input stimuli. The full expression for Eq. 19 is: 627

Tr(Cext) = cξ

(
1−

∞∑
n=1

Nnκext−n

)−2(
1 +

∞∑
n.m=1

(gN)n+mκconvext−n,m

)

Tr(C2
ext) = c2ξ

(
1−

∞∑
n=1

Nnκ̃ext−n

)−4(
1 +

∞∑
n.m=1

Nn+mκconvext−n,m

)2

Tr(Cinp ·Cext) = c0cξ

(
1−

∞∑
n=1

Nnκ̃ext−n

)−4(
1 +

∞∑
n.m=1

Nn+mκ̃divext−n,m

)2

(
1 +

∞∑
n.m=1

Nn+mκ̃convext−n,m

)
.

(23)

These formulas can be resumed with different choices of cumulants. In particular both 628

κint and κext can be employed simultaneously (cfr. Suppl.Mat. sec. 3.2). In Eq. 23 we 629

show the expression used to generate figures in the main text; this choice is best 630

motivated in the case of low dimensional input. 631

c) Description of SONET networks The SONET model for random graphs can 632

be seen as an extension of the Erdos-Renyi model. In an Erdos-Renyi graph two nodes 633

are randomly connected with probability p (0 ≤ p ≤ 1). In SONET networks also second 634

order connection motifs (convergent, divergent, etc.) appear with controlled statistics 635

(see [40, 56] for further details). As an extension of the Erdos-Renyi model, the 636

algorithm we use (provided by the authors of [40]) generates a W with binary entries. 637
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d) Details for Fig. 1f, Figs. 3b to 3h. The ensemble of networks used for Fig. 3b, 638

Fig. 3c and Fig. 3h consists of 500 networks with N = 1000 neurons each. All networks 639

share the parameters c0 = 1, Aii = 10 ∀i ∈ {1..N} while the connectivity graph W is 640

generated through the SONET algorithm with the same set of parameters ( α’s) used in 641

[40]. Such parameters regulate the statistics of convergent, divergent, reciprocal and 642

chain motifs. They are uniformly sampled in the ranges p ∈ [0.01, 0.1], αrecip ∈ [−1, 4], 643

αconv ∈ [0, 1], αdiv ∈ [0, 1] and αchain ∈ [−1, 1]. 644

e) Details for the regression in Figs. 3d to 3g The ensemble of networks used 645

for Figs. 3d to 3g has exactly the same parameters as the one above, except that the 646

range for p is different: p ∈ [0.078, 0.082]. The dimensionality for each network is 647

computed and the difference in dimensionality from an Erdos-Renyi network with 648

p = pER = 0.08 is regressed against 6 different variables: p− pER, and the value of 649

chain, convergent, divergent and the two trace cumulants. The coefficients of the 650

regression are displayed in Fig. 3e. 651

f) Details for Figs. 4a, 4c and 4d. These figures display the full covariance 652

dimensionality expression Eq. 3 and the motif reduction Eq. 11 for a SONET network 653

with p=0.03 and a random choice of second order motifs. An input of varying strength 654

and number of factors is fed onto the network. This is captured by 655

Cinp =
∑Ninp

i cξ,iξiξ
T
i where each ξ is a random vector of unit norm. In the case of 656

Fig. 4a the number of factors Ndim is increased and cξ = 0.05. In Fig. 4c the number of 657

factors is one while cξ is increased. In Fig. 4d the number of factors is increased but the 658

total strength constrained to
√∑Ninp

i c2ξ,i = 2.5c0. 659

g) Details for Figs. 4e, 4g and 4h and theoretical approximation. The 660

procedure for obtaining these figures is equal to the one used for Figs. 4a, 4c and 4d 661

except that the initial network is a SONET network with p = 0.08 and random second 662

order motifs. 663

The pink line in these figures corresponds to a theoretical approximation of the 664

formula in Eq. 18. The term in the denominator Tr(Cint ·Cext) is the only term in the 665

expression with the product Cint and Cext. We used the following inequality to build 666

an upper bound for this term: 667

Tr(Cint ·Cext)
2 ≤ Tr(C2

int) · Tr(C2
ext) ≤

1

2
(Tr(Cint) + Tr(Cext))

2
. (24)

By substituting the rightmost side of this expression into Eq. 18 we obtain the 668

expression for the pink line displayed in Figs. 4a, 4c and 4d. 669

h) Details for Figs. 5a to 5e. The figures use the same values and techniques of 670

Figs. 3b and 3c. The different network architectures are all generated using the package 671

NetworkX in Python 3.6. The Erdos-Renyi network is a randomly connected network, 672

the small world network has a number of nodes denoted by p ·N and probability of 673

rewiring 0.3, the scale-free network is obtained through a Barabasi-Albert graph where 674

the number of number of edges to attach from a new node to existing nodes (parameter 675

m) is derived as a function of the final number of connections p ·N and the number of 676

nodes N (m = (N +
√
N2 − 2N2p)/2). 677

i) Details for Figs. 6a to 6e . The networks displayed in these figures are 500 678

SONET networks with average synaptic strength g = 1.25/
√
N that scales with

√
N 679

rather than N . For each network a random 10% of the neurons is selected to be 680
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inhibitory and their strength rescaled so that 〈GEE〉 = 〈GII〉 where GEE andGII 681

denote respectively the part of the connectivity graph G in between the excitatory and 682

the inhibitory population. We checked that the network so obtained respects the 683

constraints for a balanced state determined in [73]. 684

l) Details for Figs. 6d and 6f. We generate 500 SONET networks with 685

connectivity p = 0.03. Upon balancing the network 10% of the neurons are inhibitory. 686

The dimensionality of this ensemble of networks is regressed against the values of the 687

connectivity cumulants computed on the inhibitory part of the network. 688
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neural spike trains increases with firing rate. Nature. 2007;448(7155):802–806. 831

doi:10.1038/nature06028. 832

48. Shea-Brown E, Josic K, de la Rocha J, Doiron B. Correlation and synchrony 833

transfer in integrate-and-fire neurons: Basic properties and consequences for 834

coding. Physical Review Letters. 2008;100(10):108102. 835

doi:10.1103/PhysRevLett.100.108102. 836

49. Bair W, Zohary E, Newsome WT. Correlated firing in macaque visual area MT: 837

Time scales and relationship to behavior. Journal of Neuroscience. 838

2001;21(5):1676–1697. 839

50. Yatsenko D, Josic K, Ecker AS, Froudarakis E, Cotton RJ, Tolias AS. Improved 840

Estimation and Interpretation of Correlations in Neural Circuits. Plos 841

Computational Biology. 2015;11(3):UNSP e1004083. 842

doi:10.1371/journal.pcbi.1004083. 843

51. Sejnowski T. Stochastic Dynamics of Neuronal Interaction. Biological 844

Cybernetics. 1976;22(4):203–211. doi:10.1007/BF00365086. 845

52. Doiron B, Lindner B, Longtin A, Maler L, Bastian J. Oscillatory activity in 846

electrosensory neurons increases with the spatial correlation of the stochastic 847

input stimulus. Physical Review Letters. 2004;93(4):048101. 848

doi:10.1103/PhysRevLett.93.048101. 849

August 13, 2018 26/28

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 17, 2018. ; https://doi.org/10.1101/394684doi: bioRxiv preprint 

https://doi.org/10.1101/394684
http://creativecommons.org/licenses/by/4.0/


53. Lindner B, Doiron B, Longtin A. Theory of oscillatory firing induced by spatially 850

correlated noise and delayed inhibitory feedback. Physical Review E. 851

2005;72(6):061919. doi:10.1103/PhysRevE.72.061919. 852

54. Hawkes A. Spectra of Some Self-Exciting and Mutually Exciting Point Processes. 853

Biometrika. 1971;58(1):83–&. doi:10.1093/biomet/58.1.83. 854

55. Ocker GK, Hu Y, Buice MA, Doiron B, Josić K, Rosenbaum R, et al. From the 855
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