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ABSTRACT

Two strikingly distinct types of activity have been observed in various brain structures during delay
periods of delayed response tasks: Persistent activity (PA), in which a sub-population of neurons
maintains an elevated firing rate throughout an entire delay period; and Sequential activity (SA),
in which sub-populations of neurons are activated sequentially in time. It has been hypothesized
that both types of dynamics can be ‘learned’ by the relevant networks from the statistics of their
inputs, thanks to mechanisms of synaptic plasticity. However, the necessary conditions for a
synaptic plasticity rule and input statistics to learn these two types of dynamics in a stable fashion
are still unclear. In particular, it is unclear whether a single learning rule is able to learn both
types of activity patterns, depending on the statistics of the inputs driving the network. Here, we
first characterize the complete bifurcation diagram of a firing rate model of multiple excitatory
populations with an inhibitory mechanism, as a function of the parameters characterizing its
connectivity. We then investigate how an unsupervised temporally asymmetric Hebbian plasticity
rule shapes the dynamics of the network. Consistent with previous studies, we find that for stable
learning of PA and SA, an additional stabilization mechanism, such as multiplicative homeostatic
plasticity, is necessary. Using the bifurcation diagram derived for fixed connectivity, we study
analytically the temporal evolution and the steady state of the learned recurrent architecture as a
function of parameters characterizing the external inputs. Slow changing stimuli lead to PA, while
fast changing stimuli lead to SA. Our network model shows how a network with plastic synapses
can stably and flexibly learn PA and SA in an unsupervised manner.

Keywords: unsupervised learning , persistent activity , sequential activity, synaptic plasticity, Hebbian plasticity, homeostatic

plasticity

INTRODUCTION

Selective persistent activity (PA) has been observed in many neurophysiological experiments in primates
performing delayed response tasks, in which the identity or spatial location of a stimulus must be maintained
in working memory, in multiple cortical areas, including areas in the temporal lobe (Fuster et al., 1982;
Miyashita, 1988; Miyashita and Chang, 1988; Sakai and Miyashita, 1991; Nakamura and Kubota, 1995;
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Naya et al., 1996; Miller et al., 1996a; Erickson and Desimone, 1999), parietal cortex (Koch and Fuster,
1989; Chafee and Goldman-Rakic, 1998) and prefrontal cortex (Fuster et al., 1971; Funahashi et al., 1989,
1990, 1991; Miller et al., 1996b). More recently, selective persistent activity has also been observed in
mice (Liu et al., 2014; Guo et al., 2014; Inagaki et al., 2017) as well as flies (Kim et al., 2017). It has been
hypothesized that PA represents the mechanism at a network level of the ability to hold an item in working
(active) memory for several seconds for behavioral demands. Theoretical studies support the hypothesis
that persistent activity is caused by recurrent excitatory connections in networks of heavily interconnected
populations of neurons (Amit et al., 1994; Durstewitz et al., 2000; Wang, 2001; Brunel, 2005). In these
models, PA is represented as a fixed point attractor of the dynamics of a network that has multiple stable
fixed points. The connectivity matrix in such models has a strong degree of symmetry, with strong recurrent
connections between sub-groups of neurons which are activated by the same stimulus. This connectivity
matrix can be learned by modifying recurrent connections in a network according to an unsupervised
Hebbian learning rule (Mongillo et al., 2005; Litwin-Kumar and Doiron, 2014; Zenke et al., 2015).

Sequential activity (SA) has been also observed across multiples species in a number of behaviors such
as spatial navigation (Foster and Wilson, 2006; Harvey et al., 2012; Grosmark and Buzsáki, 2016) and bird
song generation (Hahnloser et al., 2002; Amador et al., 2013; Okubo et al., 2015). Furthermore, a large
body of experimental evidence shows that SA can be learned throughout experience (Okubo et al., 2015;
Grosmark and Buzsáki, 2016). Several theoretical network models have been able to produce SA (Abeles,
1991; Amari, 1972; Kleinfeld and Sompolinsky, 1988; Diesmann et al., 1999; Izhikevich, 2006; Liu and
Buonomano, 2009; Fiete et al., 2010; Waddington et al., 2012; Cannon et al., 2015). In these models, the
connectivity contains a feed-forward structure - neurons active at a given time in the sequence project in a
feed-forward manner to the group of neurons which are active next. From a theoretical stand point, the
mechanism to generate SA is fundamentally different from the one that generates PA. While SA usually
corresponds to a path in the state space of the network, PA is identified as a fixed point attractor. Thus, SA
has an inherent transient nature while PA is at least linearly stable in a dynamical system sense.

The question of how sequential activity can be learned in networks with plastic synapses has received
increased interest in recent years. The models investigated can be roughly divided in two categories: models
with supervised and unsupervised plasticity rules. In models with supervised plasticity rules, the synapses
are updated according the activity of the network and an error signal that carries information about the
difference between the current network dynamics and the one that it is expected to learn by the network
(Sussillo and Abbott, 2009; Memmesheimer et al., 2014; Laje and Buonomano, 2013; Rajan et al., 2016).
In models with unsupervised plasticity rules, sequential dynamics is shaped by external stimulation without
an error signal (Jun and Jin, 2007; Liu and Buonomano, 2009; Fiete et al., 2010; Waddington et al., 2012;
Okubo et al., 2015; Veliz-Cuba et al., 2015). In those models SA is generated spontaneously, and the
temporal statistics of the stimulation shapes the specific timing of the sequences.

Both experimental and theoretical work therefore suggest that neural networks in the brain are capable to
learn PA and SA. One unresolved issue is whether the learning rules used by brain networks to learn PA are
fundamentally different than the ones used to learn SA, or whether the same learning rule can produce both,
depending on the statistics of the inputs to the network. Learning rules employed in theoretical studies to
learn PA typically do not contain any temporal asymmetry, while rules used to learn SA need to contain
such a temporal asymmetry.

Here, we hypothesize that a single learning rule is able to learn both, depending on the statistics of the
inputs. We investigate what are the conditions for the plasticity mechanisms and external stimulation to
learn PA or SA using unsupervised plasticity rules. We consider a model composed of multiple populations

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 12, 2018. ; https://doi.org/10.1101/414813doi: bioRxiv preprint 

https://doi.org/10.1101/414813
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pereira and Brunel Unsupervised Learning of Persistent and Sequential Activity

of excitatory neurons, each activated by a distinct stimulus. We consider a sequential stimulation protocol
in which each population of neurons is stimulated one at a time, one after the other. This protocol is
characterized by two parameters, the duration of stimulus presentations and the time interval between
stimulations. This simple setting allows us to explore between the extremes of isolated stimulations with
short or large duration and sequential stimulations close or far apart temporally. We use a rate model to
describe the activity of populations of neurons (Wilson and Cowan, 1972). The connectivity in this model
represents the average of the synaptic connections between populations of neurons, allowing to investigate
at a mesoscopic level the learning mechanisms of PA and SA. This model has the advantage of analytical
tractability.

This paper is organized as follows: We first characterize the types of possible dynamics observed in
network with both feed-forward and recurrent connections, in the space of possible (fixed) connectivities.
We then show that a network with plastic connections described by a unsupervised temporally asymmetric
Hebbian plasticity rule stimulated sequentially does not stably learn PA and SA. We then explore two
types of stabilization mechanisms: 1) synaptic normalization; 2) a multiplicative learning rule. We show
that when a synaptic normalization mechanism is included, PA and SA cannot be learned stably during
sequential stimulation. However, the addition of a modified multiplicative learning rule leads to successful
learning of PA or SA, depending on the temporal parameters of external inputs, and the learning can be
characterized analytically as a dynamical system in the space of fixed connectivities parametrized by the
stimulus parameters.

1 METHODS

1.1 Networks with fixed connectivity

We first consider three different n population rate models that share in common two connectivity motifs
that have been classically considered a distinctive feature of PA and SA respectively: recurrent and feed-
forward connections. The three network models considered are: 1) n excitatory neurons; 2) n excitatory
neurons with shared inhibition; 3) n excitatory neurons with adaptation. The strength of the recurrent and
feed-forward connections are w and s respectively. We used the current based version of the widely used
firing rate model, which is equivalent to its rate based version (Miller and Fumarola, 2012) with three
different nonlinear transfer functions.

1.1.1 Network of excitatory neurons

The network consists in n excitatory populations connected by feed-forward and recurrent connections
with strength w and s respectively as it is shown in Fig 1A.I. The dynamics is given by:

τ
du1
dt

= I1 − u1 + wφ(u1)

τ
dui
dt

= Ii − ui + wφ(ui) + sφ(ui−1) i = 2, . . . , n (1)

where Ii represents the external input to neuron i, τ is the characteristic time scale for excitatory populations
and φ(u) is the current to average firing rate transfer function (or f-I curve). The resulting average firing
rates are denoted by ri ≡ φ(ui).
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Figure 1. PA and SA generation in a network with fixed connectivity. (A) Three models of recurrent
and feed-forward connected populations: (I) pure excitatory, (II) excitatory with shared inhibition and
(III) excitatory with adaptation. (B) Phase diagram for model (I) using a piecewise linear transfer function
(top-left plot) and examples of the dynamics corresponding to the three phases. Dashed lines correspond to
the dynamics for the same network but using a linear transfer function. (C) SA generation for models (I),
(II) and (III) using sigmoidal (first row), piecewise nonlinear (second row) and piecewise linear (third row)
transfer functions. Parameters used in panels B,C can be found in Table S1.

1.1.2 Network of excitatory neurons with shared inhibition

The network consist in n excitatory populations connected as in section 1.1.1, and a single inhibitory
population fully connected with the excitatory populations. A schematic of the network architecture is
shown in Fig 1A.II. Assuming a linear inhibitory transfer function, the dynamics of the network is given
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by:

τ
du1
dt

= I1 − u1 + wφ(u1)− wEIuI

τ
dui
dt

= Ii − ui + wφ(ui) + sφ(ui−1)− wEIuI i = 2, . . . , n

τI
duI
dt

= −uI + wIE

n∑
j=1

φ(uj), (2)

where wEI is the average inhibitory synaptic strength from inhibitory to excitatory populations, wIE the
average inhibitory synaptic strength from excitatory to inhibitory populations and τI the characteristic time
scale of the inhibitory population. When τI � τ , then uI ≈ wIE

∑N
i=1 φ(ui) and Eq. (2) becomes

τ
du1
dt

= I1 − u1 + wφ(u1)−
wI
n

n∑
j=1

φ(uj)

τ
dui
dt

= Ii − ui + wφ(ui) + sφ(ui−1)−
wI
n

n∑
j=1

φ(uj) i = 2, . . . , n, (3)

where wI ≡ nWEIWIE . See Fig. S1 in the Supplementary Material for the agreement between the full
model described in Eq. (2) and its approximation in Eq. (3).

1.1.3 Network of excitatory neurons with adaptation

This network consist in n excitatory populations connected as in sections 1.1.1 and 1.1.2 plus an
adaptation mechanism for each population. A schematic of the network architecture is shown in Fig 1A.III.
The dynamics of the network is given by:

τ
du1
dt

= I1 − u1 + wφ(u1)− a1

τ
dui
dt

= Ii − ui + wφ(ui) + sφ(ui−1)− ai i = 2, . . . , n

τa
dai
dt

= ui − βai i = 1, . . . , n (4)

where τa is the characteristic time scale of the adaptation mechanism, and β measures the strength of
adaptation.

1.2 Transfer functions

For the fixed connectivity part of this study we used three different families of transfer functions. The
sigmoidal transfer function is described by

φ(u) =
1

2
(1 + tanh[a(u+ b)]) . (5)

This is a saturating monotonic function of the total input, and represents a normalized firing rate. This
transfer function has been widely used in many theoretical studies in neuroscience (Gerstner et al., 2014;
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Figure 2. Transfer Functions. Piecewise linear (PL), sigmoidal (S) and piecewise nonlinear (PNL)
transfer functions. Parameters are the same as the ones used in Fig 1.

Ermentrout and Terman, 2010), and have the advantage to be smooth. Furthermore, we have recently
shown that such transfer functions provide good fits to in vivo data (Pereira and Brunel, 2018).

The second transfer function considered is piecewise linear:

φ(u) =


0 if θ > u

ν(u− θ) if θ ≤ u ≤ uc

ν(uc − θ) uc < u.

(6)

This is a piecewise linear approximation of the sigmoidal transfer function. Using this transfer function,
the nonlinear dynamics of a network with a sigmoidal transfer function can be approximated and analyzed
as a piecewise linear dynamical system.

The third transfer function used in this work is piecewise nonlinear (Brunel, 2003)

φ(u) =


0 if θ̃ > u

ν̃
(
u−θ̃
ũc−θ̃

)2
if θ̃ ≤ u ≤ ũc

2ν̃
√

u−θ̃
ũc−θ̃

− 3
4 ũc < u.

(7)

This transfer function combines several features that are present in more realistic spiking neuron models
and/or real neurons: a supralinear region at low rates, described by a power law (Roxin et al., 2011), and
a square root behavior at higher rates, as expected in neurons that exhibit a saddle node bifurcation to
periodic firing (Ermentrout and Terman, 2010). Examples of these three transfer functions are shown in
Fig 2.
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1.3 Temporally asymmetric Hebbian plasticity rule

When a temporally asymmetric Hebbian plasticity rule is included (see sections 2.2-2.5 in Results), the
dynamics of excitatory-to-excitatory connectivity obeys

dWi,j

dt
=
wmaxf [ri(t)]g[rj(t−D)]−Wi,j

τw[ri(t), rj(t−D)]
, (8)

where f(r) and g(r) are sigmoidal functions given by

g(r) =
1

2

(
1 + tanh

[
apre(r − bpre)

])
(9)

f(r) =
1

2

(
1 + tanh

[
apost(r − bpost)

])
. (10)

They describe the dependence of the learning rule on post and presynaptic firing rates, respectively (i.e. their
dependence on φ(ui) and φ(uj)), and are bounded by zero for small or negative values of the population
synaptic current, and by one for large values (see Fig 4 A and B). Here wmax is the maximal synaptic
efficacy; D is a temporal delay; and τw is an activity-dependent time constant of the plasticity rule. The
learning time scale is given by

τw[ri(t), rj(t−D)] = τpost[ri(t)]τpre[rj(t−D)], (11)

where

τpre(r) = τpost(r) =

{
∞ if r < rw√
Tw if rw ≤ r.

(12)

Here rw and Tw are the plasticity threshold (see dashed line in Fig 4A-C) and time scale respectively. The
time scale Tw is chosen to be several order of magnitude slower than the population dynamics (see Table S3).
When pre and/or post-synaptic currents are below a plasticity threshold rw, the activity-dependent time
constant τw becomes infinite, and therefore no plasticity occurs. When both are above rw, then the activity-
dependent time constant τw is equal to Tw, and plasticity is ongoing. Thus, with this rule strong, long
and/or contiguous in time enough stimuli produce lasting modifications in the synaptic weights. Otherwise,
no learning occur.

1.4 Synaptic normalization

When a synaptic normalization mechanism is included (see section 2.3 in Results), in addition to the
Hebbian plasticity rule described in section 1.3, in our network simulations, at each time step we subtracted
the average synaptic change to each incoming synapse to a given neuron. This average is taken over all the
incoming synapses to a particular neuron. This simulation scheme ensures that the sum of the incoming
synaptic weights to each neuron remains constant, i.e.

n∑
j=1

Wi,j = C i = 1, 2, . . . , n. (13)
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1.5 Multiplicative homeostatic plasticity rule

We implement a modified version of the multiplicative homeostatic rule proposed in Renart et al. (2003);
Toyoizumi et al. (2014) (see sections 2.4 and 2.5 in Results). The rule is implemented in addition to the
Hebbian plasticity rule described in the section 1.3. In this rule an homeostatic variable Hi slowly controls
the firing rate of neuron i by scaling its synaptic weights multiplicatively. The synaptic weights will be
given by

Wi,j(t) = Hi(t)Wi,j(t). (14)

The variable Wi,j(t) is governed by the Hebbian plasticity rule described by Eqs (8-12). The dynamics for
Hi is given by

τHḢi =

(
1− ri(t)

r0

)
Hi −H2

i , (15)

where r0 = φ(u0) is a parameter that controls the average firing rate of population i and τH is the
characteristic time scale of the learning rule. Note that because of the quadratic term in the r.h.s. of
Eq. (15), this rule does not in general keep the firing rates at a fixed value, and therefore this rule is not
strictly speaking homeostatic. However, we keep this terminology due to the similarity with the standard
homeostatic rule that does not include this quadratic term.

1.6 Learning dynamics under noisy stimulation

In the last section of the Results, we include noise in the population dynamics in order to asses the
robustness of the learning process (see section 2.5 in Results). The equations used to describe the dynamics
of the network with Hebbian and homeostatic plasticity are given by

τ u̇i = σηi + Ii +
n∑
j=1

HiWi,jrj −
WI

n

n∑
i=1

φ(ui)

Ẇi,j =
wmaxf [ri(t))]g[rj(t−D)]−Wi,j

τw(ri(t), rj(t−D))

τHḢi =

(
1− ri(t)

r0

)
Hi −H2

i , (16)

where ri(t) = φ(ui(t)) for i = 1, 2, . . . , n and ηi is a Gaussian white noise.

1.7 Sequential stimulation

During the learning protocol excitatory populations are stimulated sequentially once at a time for a period
T and a time delay ∆. The stimulation can be implemented as a sequence of vectors presented to the
entire the network (i.e. I~e1, I~e2, . . . , I~en), each vector corresponds to the canonical base in Rn scaled by
a stimulation amplitude I . This sequence of stimulation is repeated k times. To prevent a concatenation
between the first and the last population stimulated, the period between each repetition k is much longer
than T and ∆ and any time constant of the network. Each stimulus in the sequence has the same magnitude,
that is larger than the learning threshold (i.e. rw < I). A schematic diagram of the stimulation protocol is
shown in Fig 5 A.
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1.8 Code

Simulations were performed using code written in Python. A self-contained version of the
code that reproduces all the figures in this paper is available in the GitHub repository:
https://github.com/ulisespereira/Unsupervised.

2 RESULTS

2.1 Persistent and sequential activity in networks with fixed connectivity

To better understand the dependence of PA and SA generation on network connectivity, we consider first
a simple n population rate model with fixed feed-forward and recurrent connectivity (see Fig 1A). This
architecture possesses the two connectivity motifs that have been classically considered the hallmarks of
PA and SA — recurrent and feed-forward connections — in a space of parameters that is low dimensional
enough to be suitable for full analytical treatment. In this model, the dynamics of the network is
characterized by the synaptic inputs ui to each population of the network (i = 1, . . . , n) whose dynamics
obey the system of ordinary differential equations in Eq. (1). Note that we use here the current based
formulation of the firing rate equations, that has been shown to be equivalent to the rate based formulation
(Miller and Fumarola, 2012).

In this model, we identify the regions in the connectivity parameter space where SA, PA or decaying
sequences of activity (dSA) are generated. We start with a piecewise linear transfer function with slope ν,
and compute the bifurcation diagram that gives the boundaries for qualitatively different dynamics in the
parameter space (see Fig 1B and section 2 in the Supplementary Material for mathematical details). We
find that robust SA can be generated provided recurrent connections are smaller than the inverse of the
slope ν, and the feed-forward connections are strong enough, w < 1/ν < w + s. For large values of w
(w > 1/ν), the dynamics converge to a fixed point where 0 ≤ p ≤ n populations are in a high rate state,
where p depends on the initial conditions. When both recurrent and feed-forward connections are weak
enough (i.e. w + s < 1/ν) the activity decays to zero firing rate fixed point, after a transient in which
different populations are transiently activated - a pattern which we term decaying sequence of activity or
dSA.

This picture is qualitatively similar when other types of nonlinear transfer functions are used (see
Methods and Fig 2 for the transfer functions used in this paper). The saturation nonlinearity of the transfer
function is key to generate long lasting (non-attenuated) SA even when the number of populations is
large. In a linear network, sequential activity would increase without bound for an increasing number of
populations participating in the SA (see Fig 1B, dashed lines and section 2 in the Supplementary Material
for mathematical details). During sequential activity, each population is active for a specific time interval.
We used the analytical solution of the linearized system (see Eq. S4) to show that the duration of this active
interval scales as the squared root of the position of the population along the sequence. This implies that
for long lasting SA the fraction of active populations will increase with time (see Fig 1B). This feature
is not consistent with experimental evidence that shows that the width of the bursts of activity along the
sequence is approximately constant in time (Hahnloser et al., 2002; Harvey et al., 2012). In the model, we
can prevent this phenomenon by including negative feedback mechanisms to our network architecture,
either global inhibition (see Fig 1A.II) or adaptation (see Fig 1 A.III). We found that in both cases the
network robustly generates PA and SA in which the fraction of active populations is approximately constant
in time. These results were also qualitatively similar when different saturation nonlinearities in the transfer
function were considered (see Fig 1C).
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dSA

SA

Figure 3. Bifurcation diagram for feed-forward-recurrent connected network of excitatory
populations with shared inhibition. Top left plot: Bifurcation diagram in the s-w plane, showing
qualitatively different regions: dSA (gray), SA (red), SA/PA (green) and PA (blue). The PA region
is divided in sub-regions which are distingushed by the maximum and minimum number of populations
active during PA (see text). The SA/PA region is also subdivided into sub-regions characterized by a
different number of the maximum number of populations active in PA at the end of the sequence. Regions
are separated by black lines and sub-regions are separated by gray lines. Five plots encompassing the
bifurcation diagram show examples of the dynamics observed in its four qualitatively different regions.
Initial condition: first population active at the maximum rate, while the rest is silent. The location in
the corresponding regions of the parameter space are indicated with the symbols on the top right of the
surrounding plots. Parameters can be found in Table S2.

We now turn our attention to the network of excitatory neurons with global inhibition (Fig 1 A.II), since
inhibition is likely to be the dominant source of negative feedback in local cortical circuits. Inhibitory
interneurons are typically faster than excitatory neurons (McCormick et al., 1985). For the sake of
simplicity we set the inhibitory population dynamics as instantaneous compared with the excitatory
timescale. Our numerical simulations confirm that this approximation preserves all the qualitative features
of the dynamics with finite inhibitory time constants, up to values of τI = 0.5τ (see Fig. S1 in the
Supplementary Material). Using this approximation, the connectivity of the network is equivalent to a
recurrent and feed-forward architecture plus a uniform matrix whose elements are wI ≡ nwEIwIE . We
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obtained the bifurcation diagram for such a network with a piecewise linear transfer function (see section
4 in the Supplementary Material). This new bifurcation diagram shows qualitative differences with the
pure excitatory network bifurcation diagram (see Fig 3). First, a qualitatively different behavior arises,
where SA ends in persistent activity (region SA/PA). Second, the PA region breaks down in n(n+ 1)/2
square regions of size wI/n×wI/n. Each region is characterized by a minimum and maximum number of
populations active during PA. The lower left corner of each squared region is (imin

(wI
n

)
, 1 + imax

(wI
n

)
)

with imin, imax = 1, 2, . . . , n (see Fig 3, different regions in graded blue), where imin and imax correspond
to the minimum and maximum number of population active during PA within this squared region when
just the first population is initialized in the active state (Fig 3 top and middle right plots). Therefore, the
number of possible patterns of PA increases with the strength of the recurrent connections and decreases
with strength of the feed-forward connections. On the other hand, the SA/PA is divided in n qualitatively
different rectangular regions of size

(wI
n

)
× [1− jSA/PA

(wI
n

)
] with jSA/PA = 1, 2, . . . , n, where jSA/PA

corresponds to the number of populations that ends in PA after SA elicited by stimulating the first population
in the sequence (Fig 3 bottom right plot). Then for a given strength of the recurrent connectivity w∗ above
1 +

(wI
n

)
, the critical feed-forward strength sc that separates the PA and SA/PA regions is

sc =
wI
n

⌈(
w∗ − 1− wI

n

)
n

wI

⌉
, (17)

where d·e is the ceiling function. Similarly, for a given strength of the feed-forward connection s∗ above
wI
n , the critical recurrent strength separating SA/PA and PA is

wc =
wI
n

⌈(
s∗ − wI

n

)
n

wI

⌉
. (18)

Lastly, we find that the SA region is shrunk compared with the pure excitatory network, and that the dSA
region is wider.

2.2 Unsupervised temporally asymmetric Hebbian plasticity rule

Let us consider now a fully connected network of n excitatory populations with plastic synapses and
global fixed inhibition. The plasticity rule for the excitatory-to-excitatory connectivity is described by
Eq. (8). Using this learning rule, with fixed pre and post activity, the connectivity tends asymptotically to a
separable function of the pre and post synaptic activity. The functions f(r) and g(r) are bounded by zero
for small or negative values of the population synaptic current, and by one for large values (see Fig 4 A
and B). This learning rule is a generalization of classic Hebbian rules like the covariance rule (Dayan and
Abbott, 2001), with a non-linear dependence on both pre and post-synaptic firing rates.

The delay D in the learning rule leads to a temporal asymmetry (Blum and Abbott, 1996; Gerstner and
Abbott, 1997; Veliz-Cuba et al., 2015). This delay describes the time it takes for calcium influx through
NMDA receptors to reach its maximum (Sabatini et al., 2002; Graupner and Brunel, 2012). When this
learning rule operates and the network is externally stimulated, the connectivity changes depending on
the interaction of the input, the network dynamics and the learning rule. Due to the relaxational nature of
Eq. (8), for long times with no external stimulation the connectivity matrix will converge to a stationary
rank-1 matrix with entries of the form f(r∗i )g(r∗j ), where ~r∗ = φ(~u∗) is the stationary firing rate vector,
independent of all inputs presented in the past. Therefore, stimuli learned in the connectivity matrix will
be erased by the background activity of the network for long times after stimulation. To prevent this
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Figure 4. Unsupervised Hebbian learning rule: (A) Piecewise linear transfer function. The dashed gray
horizontal line indicates the plasticity threshold rw. (B) Post synaptic dependence on the rates of the
stationary connectivity function, f(r). The vertical dashed gray line indicates the plasticity threshold. (C)
Contour plot of the stationary connectivity function, wmaxf(ri)g(rj). The dashed gray box indicates the
plasticity threshold. Parameters can be found in Table S3.
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Figure 5. Sequential stimulation and initial synaptic weights dynamics. (A) Schematic diagram
showing stimulation protocol for two populations. Population 1 is first stimulated for some time T .
Then, after an inter-stimulation ∆ time, population 2 is stimulated for the same duration T . (B) The
weight dynamics is shown for four different stimulation regimes. Top-left: ∆ < D < T ; top-right:
D < ∆, T ; bottom-left: T,∆ < D; bottom-right: T < D < ∆. Cyan: recurrent connections; Yellow/Green:
feed-forward; Blue: all other connections. Parameters can be found in Tables S3,S4.

inherent forgetting nature of the learning rule we introduce an activity-dependent plasticity time scale in
Eqs. (11,12). Thus, when pre and/or post-synaptic currents are below a plasticity threshold rw, the time
scale becomes infinite, and therefore no plasticity occurs. When both are above rw, then the time constant
is given by Tw (see equation (12) and Fig 4). Lastly, the time scale Tw of these changes are chosen to be
several order of magnitude slower than the population dynamics, consistent with the time it takes (∼ 1
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Figure 6. Runaway instability of the unsupervised Hebbian learning rule. (A) Population dynamics
during 10s of sequential stimulation with T = 19ms and ∆ = 10ms. After about 6s, all populations become
active at maximal rates. (B) Synaptic weights dynamics during stimulation. Color code as in Fig 4D. (C)
Connectivity matrix at different stimulation times. From left to right and from top to bottom: 0s, 3s, 6s
and 9s. (D) Three examples of population dynamics during a single sequential stimulation at 0s, 5.46s
and 7.02s respectively. Note the buildup of activity preceding each stimulus presentation because of the
build-up in the feedforward connectivity at 5.46s. In A and D the black and gray traces indicate a scaled
version of the stimulus. Parameters can be found in Tables S3,S4.

minute or more) for plasticity to be induced in standard synaptic plasticity protocols (see e.g. Markram
et al. (1997); Bi and Poo (1998); Sjöström et al. (2001), but see Bittner et al. (2017)).

Our goal is to understand the conditions for a sequential stimulation to lead the network dynamics to PA or
SA, depending of the temporal characteristics of the stimulus, when this plasticity rule is introduced. Here
we consider a simple stimulation protocol where each population in the network is stimulated sequentially
one population at a time (see Fig 5 A). In this protocol, population 1 is first stimulated for some time T .
Then, after an inter-stimulation time ∆, population 2 is stimulated for the same duration T . The other
populations are then stimulated one at a time (3, 4, ..., n) using the same protocol. The amplitude of the
stimulation is fixed such that the maximum of the current elicited in each population is greater than the
plasticity threshold of the learning rule. The time interval between each repetition of the sequence is much
longer than T and ∆ and any time constant of the network. When the duration of each stimulation is
larger than the synaptic delay (i.e. D < T ), recurrent connections increase, since the Hebbian term driving
synaptic changes (f [ri(t)]g[ri(t−D)], where i is the stimulated population) becomes large after a time D
after the onset of the presentation. When the inter-stimulation time is smaller that the synaptic delay (i.e.
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∆ < D), then the the feed-forward connections increase, since the Hebbian term driving synaptic changes
(f [ri+1(t)]g[ri(t−D)]) is large in some initial interval during presentation of stimulus i+ 1.

As a result, there are four distinct regions of interest depending on the relative values of the ∆ and T
with respect to the synaptic delay D. When T is larger than the synaptic delay, and ∆ is smaller than the
synaptic delay, both recurrent and feed-forward connections increase. When T is larger than the synaptic
delay and ∆ is much larger than D, only the recurrent connections increase. When ∆ is smaller than the
synaptic delay and T is much smaller, only the feed-forward connections increase. Lastly, when ∆ is larger
and T is smaller than D no changes in the connectivity are observed. The initial temporal evolution of
both recurrent and feed-forward weights in representative examples of the four regions is presented in
Fig 5 B. We chose not to study the region corresponding to 2T + ∆ < D here, which is a region where
‘feed-forward’ connections involving non-nearest neighbor populations can also increase during learning.

We found that this learning rule is in general unstable for long sequential stimulation when both feed-
forward and recurrent connections increase during the stimulation (i.e. ∆ < D < T ) to values large enough
to produce persistent activity states. This is a consequence of the classic instability observed with Hebbian
plasticity rules, where a positive feedback loop between the increase in synaptic connectivity and increase
in firing rates leads to an explosive increase in both (Dayan and Abbott, 2001). Larger feed-forward
and recurrent connections lead to an increase in number of populations active at the same time during
stimulation (see Fig 6 A and D) which produce an increase of the overall connectivity by the synaptic
plasticity rule (Fig 6 B and C). This leads to an increase in the overall activity producing longer periods of
PA during stimulation until a fixed point where many populations have high firing rates is reached, and
the connectivity increases exponentially to its maximum value (see Fig 6 B and C). By increasing the
plasticity threshold, it is possible to increase the number of stimulations (and consequently the strength
of the feed-forward and recurrent connections) where the network’s activity is stable. However, this does
not solve the problem, since the instability on the weights eventually occurs but for a larger number
of stimulations and stronger synaptic weights. In order to prevent this instability, we investigate in the
next sections two different stabilization mechanisms: synaptic normalization and homeostatic plasticity.
Throughout this paper, for testing whether PA, SA, SA/PA or dSA is learned, after sequential stimulation
we stimulate the first population and then check whether the network recalls the corresponding type of
activity (see Fig 3).

2.3 Synaptic normalization

The first mechanism we consider is synaptic normalization. This mechanism is motivated by experimental
evidence of conservation of total synaptic weight in neurons (Royer and Paré, 2003; Bourne and Harris,
2011). In our model, we enforce that the sum of the incoming synaptic weights to a given population is
fixed throughout the dynamics (see Eq. 13 in Methods). This constraint prevents the growth of all the
synaptic weights to their maximum value during sequential stimulation due to the Hebbian plasticity, as is
described in the previous section. This leads to an heterogeneous dynamics in the synaptic weights where
they strongly fluctuate in time during the stimulation period, see Fig 7B. We find that the network does not
reach a stable connectivity structure, and that the connectivity after the stimulation markedly depends on
the specific moment when stimulation ended for a large range of stimulation parameters.

At the initial stages of the stimulation, feed-forward and recurrent connections grow, while the rest of
the synaptic connections decrease at the same rate (see Fig 7 B). When the feed-forward and recurrent
connections are large enough for producing persistent activity, co-activation between a population(s)
undergoing persistent activity and the population active due to the stimulation (which are not necessarily
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Figure 7. Heterogeneous synaptic dynamics for Hebbian plasticity and synaptic normalization. (A)
Population dynamics during 10s of sequential stimulation with T = 19ms and ∆ = 10ms. (B) Synaptic
weights dynamics during stimulation. Cyan: recurrent connections; Light Yellow/Green: feed-forward;
Red: feed-backward; Blue: feed-second-forward; Green: feed-second-backward. (C) Connectivity matrix
at different stimulation times. From left to right and from top to bottom: 0s, 13.8s, 27.6s and 41.5s. (D)
Two examples of population dynamics during a single sequential stimulation at 0s and 15.8s respectively.
In A and D the black and gray traces indicate a scaled version of the stimulus. (E) Network dynamics
after learning for the initial condition where the first population is active at high rate and the rest silent.
Parameters can be found in Tables S3,S4.

adjacent in the stimulation sequence, see Fig 7A,D) produce an increase in feed-back and upper triangular
connections that are different than feed-forward and recurrent (see Fig 7B). In turn, feed-forward and
recurrent connections decrease due to the synaptic normalization mechanism. This leads to complex
dynamics in the synaptic weights, in which the connections sustaining co-active neuronal assemblies
learned via Hebbian plasticity are depressed due to the interplay between synaptic normalization and
sequential stimulation. This then leads to the formation of new assemblies due to the interplay of Hebbian
plasticity and sequential stimulation.

During stimulation, the feed-forward and recurrent connectivity studied in the first section increase first,
leading then in a second stage to clustered connectivities with strong bi-directional connections (see Fig 7C).
Therefore, neither persistent nor sequential activity can be learned consistently after long times (see Fig 7E).
Moreover, it is not clear whether neural circuits can use the observed complex synaptic dynamics to store
retrievable information about the external stimuli. Thus, we find that synaptic normalization is not sufficient
in this case to stabilize learning dynamics and to lead to a consistent retrieval of PA or SA. We checked
that this finding is robust to changes in parameters, in particular the sum of incoming synaptic weights. In
the next section we consider a second stabilization mechanism, namely Homeostatic plasticity.
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2.4 Multiplicative homeostatic plasticity

Homeostatic plasticity is another potential stabilization mechanism that has been characterized extensively
in experiments (Turrigiano et al., 1998; Turrigiano, 2017). The interplay between homeostatic plasticity
and Hebbian plasticity has recently been the focus of multiple theoreotical studies (Renart et al., 2003;
Toyoizumi et al., 2014; Keck et al., 2017). Here, we study the effect of multiplicative homeostatic and
Hebbian plasticity for learning SA and PA. We consider a model for homeostatic plasticity in which the
overall connectivity at each time Wi,j(t) is given by the multiplication of two synaptic variables with
different time scales as is shown in Eq. (14). In this equation, the fast plastic variable Wi,j(t) (time scale
of seconds) is governed by Hebbian plasticity, see Eq. (8). On the other hand, the slow (with a time scale
of tens to hundred of seconds) homeostatic variable Hi(t) scales the incoming weights to population
i, ensuring that the network maintain low average firing rates on long time scales. Its dynamics of the
homeostatic variable is given by Eq. (15). This is a modification of the standard homeostatic learning rule
(Renart et al., 2003; Toyoizumi et al., 2014), that does not include the quadratic term in the r.h.s. of Eq. (15).
The equation proposed in (Toyoizumi et al., 2014) stabilizes the network’s activity during stimulation,
preventing the runaway of the firing rates and synaptic weights. Scaling down the overall connectivity
during stimulation prevents co-activation of multiple populations, and lead to stable learning, see Fig S2D
and E. However, in the network’s steady state (i.e. when times longer than the time scale of the homeostatic
variable have passed without any stimulation), if the equation proposed in (Toyoizumi et al., 2014) is
used, then each connection will be proportional to the factor φ

−1(r0)
r0

multiplied by a number of order one
(see section 5.1 and 5.2 in the Supplementary Material for a general discussion and the corresponding
mathematical details respectively). This implies that the steady state connectivity after learning will depend
sensitively on the choice of the value of the objective background firing rate (i.e. r0) and the specific
functional form of the transfer function (i.e. φ(u)). Due to the transfer function nonlinearity, small changes

in r0 might produce large values for the factor φ
−1(r0)
r0

and therefore very strong connections for the steady
state connectivity (see Fig S2). This is due to the fact that steady state large values in the homeostatic
variable H scale up the connectivity learned via Hebbian plasticity in a multiplicative fashion, see Eq. (14).
In practice, PA is retrieved almost always independently of the type of stimulation presented during
learning, and in the absence of the quadratic term in Eq. (15) no temporal attractor other than PA can be
learned. This problem can be prevented by the introduction of a quadratic term in the original homeostatic
rule (see section 5 in the Supplementary Material). Note that with this quadratic term, the homeostatic
plasticity rule does not exactly achieve a given target firing rate, and therefore is not strictly speaking
‘homeostatic’. However, since it is variant of the classic linear homeostatic rule, we have chosen to stick
with this terminology.

We explore the role of this multiplicative homeostatic learning rule for learning both PA and SA. During
sequential stimulation, the average firing rate is higher than the background objective firing rate r0, and the
homeostatic variables decrease to values that are smaller than 1, see Fig 8 A and C. As a result, during
sequential stimulation the dynamics of the homeostatic variable will be dominated by the linear version of
the homeostatic learning rule proposed in (Toyoizumi et al., 2014), since H2

i � 1. Then, the small values
that the homeostatic variables take during the sequential stimulation scale down the increasing values of
the recurrent and feed-forward connections due to Hebbian plasticity. This produces a weak excitatory
connectivity during a repeated sequential stimulation (see Fig 8 C), preventing activation of spurious
populations during stimulation (see Fig 8 B), even though the strength of recurrent and feed-forward
connections learned via Hebbian plasticity are strong enough to produce PA or SA, since these connections
are masked by the homeostatic variable. When the network returns to the steady state after sequential
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Figure 8. Learning dynamics in a network with Hebbian and multiplicative homeostatic plasticity:
(A) Top: synaptic weights dynamics during and after stimulation. Cyan: recurrent; Yellow: feed-forward;
Blue: all other connections. Bottom Homeostatic variables in excitatory populations. neuron i. Gray vertical
dashed line indicate the end of the sequential stimulation. (B) Neuron dynamics during stimulation for two
different periods of time. (C) Snapshots of the connectivity matrix Wi,j(t) at the end of the sequential
stimulation (left) and 60s after the end of the sequential stimulation (right). (D) Network dynamics after
learning following an initial condition where the first population is active at high rate while all others are
silent for two different stimulation parameters, for two stimulation parameters, one that generates SA (left),
the other PA (right). Parameters can be found in Tables S3,S4.

stimulation, the homeostatic variables return to values Hi ∼ O(1) (see section 5.2 in the Supplementary
Material for the mathematical details), and the recurrent and feed-forward connections learned via Hebbian
plasticity are unmasked. This mechanism stabilizes learning, allowing the network to stably learn strong
recurrent and feed-forward connections, consistent with SA or PA dynamics (see Fig 8D).

The weakening of recurrent connections during sequential stimulation allows us to derive an approximate
analytical description of the temporal evolution of the synaptic connectivity with learning. Since the
net current due to connections between populations is very small, each population dynamics is well
approximated by an exponential rise (decay) toward the stimulation current (background current) provided
inhibition is weak enough (see Fig 9). By using this approximation we build a mapping that yields the value
of the recurrent and feed-forward synaptic strengths as a function of stimulation number k, stimulation
period, T , and delay, ∆ (see Eqs. (S32,S33) in 6 of Supplementary Material). This mapping provides a
fairly accurate match of both the dynamics of the synaptic weights and the final steady state connectivity
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Figure 9. Analytical approximation of the dynamics of the network with Hebbian and
multiplicative homeostatic plasticity: (First row) Current dynamics for the second and third populations
in a network of 20 populations during one presentation of the sequence. The dashed red line shows the
analytical approximation for the dynamics during stimulation (Eq. S24 in section 6 of Supplementary
Material). (Second row) Dynamics of the recurrent synaptic strength within the second population (cyan),
and the ‘feed-forward’ synaptic strength from the second to the third population (yellow) during the same
presentation of the sequence. The dashed red line shows the analytical approximation for the synaptic
weight dynamics (Eq. (S26,S30) in section 6 of Supplementary Materials). (A) and (B) correspond to the
first and the fifth presentation of the stimulation sequence respectively. Parameters can be found in Tables
S3,S4.

matrix in the case of weak inhibition (see Fig 10A, corresponding to wI = 1) and a less accurate match
for stronger inhibition (see Fig 10B, wI = 2). This is expected since our theoretical analysis neglects
the effect of inhibition during learning (see section 6 of Supplementary Material). The mapping derived
for evolution of the synaptic weights during sequential stimulation corresponds to a dynamical system in
the (s, w) phase space that depends on the stimulus parameters (∆, T ) and the initial connectivity. The
final connectivity corresponds to the fixed point of these dynamics (see Eqs. (S34,S35) in section 6 of
Supplementary Material).

Fig 10 shows that depending on the temporal characteristics of the input sequence, the network can reach
any of the four qualitatively different regions of the phase diagrams in a completely unsupervised fashion.
For values of ∆ that are smaller than the synaptic delay D and T on the order or larger than D, the network
generates SA. For values of T approximately larger than D and for ∆ small enough, the dynamics lead to
SA/PA. Lastly PA is obtained for large enough ∆ and T . These observations match with the intuition that
stimulations long enough but far delayed in time leads to learning of PA and that stimulations contiguous
in time but short enough leads to SA. Stimulations between these two conditions (long and contiguous)
leads to a combination of both dynamics, i.e. SA/PA, as shown in Fig 10.
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Figure 10. Changes in recurrent and feed-forward synaptic strengths with learning, for different
sequences with different temporal parameters. (Left) Dynamics of recurrent and feed-forward
connections in the (s, w) parameter space during sequential stimulation for four different values of ∆
and T . Black circles (SA), plus signs (PA), hexagons (dSA), and squares (PA/SA) show the simulated
dynamics for (T,∆) = {(7, 14), (50, 40), (5, 13), (20, 8.5)} (in ms) respectively. Red traces indicate the
approximated dynamics derived in section 6 of Supplementary Material. (Right) Rates dynamics after
many presentations of the sequence. The first population was initialized at high rates, the others at low
rates. (A) and (B) correspond to wI = 1 and wI = 2 respectively. Parameters can be found in Tables S3,S4.

2.5 Learning and retrieval is robust to noise

Under in vivo conditions neural systems operate with large amount of variability in their inputs. In order
to assess the effect of highly variable synaptic input current during learning and retrieval, we add a mean
zero uncorrelated white noise to the dynamics when both Hebbian learning and homeoestatic plasticity
are included in the network, as described in Eq. (16). We found that both the synaptic weights dynamics
during learning and the retrieved spatiotemporal dynamics after learning are robust to noise (see Fig 11),
even when the amplitude of the noise is large (i.e. inputs with values equal to the standard deviation of the
noise lead to a population to fire at 30% of the maximum firing rate). During sequential stimulation, the
learning dynamics is marginally altered for both weak and strong inhibition (compare Fig 11 with Fig 10).
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Importantly, the synaptic weights reach very similar stationary values compared with the case without
noise. After learning, even though the rates stochastically fluctuate in time, the retrieved spatiotemporal
attractors (i.e. PA, SA, dSA or PA/SA) are qualitatively similar as in the case without noise (compare
Fig 11 with Fig 10). One qualitative difference in the case with external noise, is that in both SA and PA/SA
dynamical regimes random inputs lead to a repetition of the full or partial learned sequence. Altogether,
this simulations show that the network can robustly learn and retrieve qualitatively the same spatiotemporal
attractors in the presence of external noise.
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Figure 11. Learning dynamics under noisy stimulation. Same as in Fig 10, but in the presence of a
white noise input current, with mean 0 and standard deviation of 0.3 (i.e. σ = 0.3 in Eq. (16)).

3 DISCUSSION

We have shown that under sequential stimulation a network with biologically plausible plasticity rules can
learn both PA or SA depending on the stimulus parameters. Two plasticity mechanisms are needed: 1)
Hebbian plasticity with temporal asymmetry; 2) a stabilization mechanism which prevents the runaway of
synaptic weights while learning. When unsupervised Hebbian plasticity is present alone the network fails to
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stably learn PA or SA, while including multiplicative homeostatic plasticity stabilizes learning. For stable
learning, we show that the learning process is described by a low dimensional autonomous dynamical
system in the space of connectivities, leading to a simplified description of unsupervised learning of PA and
SA by the network from external stimuli. Depending on the stimulus parameters, the network is flexible
enough to learn selectively both types of activity by repeated exposure to a sequence of stimuli, without
need for supervision. This suggests that cortical circuits endowed with a single learning rule can learn
qualitatively different neural dynamics (i.e. persistent vs sequential activity) depending on the stimuli
statistics.

Using the full characterization of the bifurcation diagram in the space of fixed feed-forward and recurrent
connections developed here, we mapped the evolution of the connectivity during stimulation in the
bifurcation diagram. We analytically and numerically showed that the synaptic weights evolve in the
feed-forward–recurrent synaptic connections space until they reach their steady state (when the number of
sequential stimulations is large). The specific point of the steady state in the bifurcation diagram depends
solely on the stimulation parameters — stimulation period T and time delay ∆– and the connectivity
initial conditions. We found that stimulations with long durations and large delays generically leads to the
formation of PA, whereas stimulations with long enough durations and short delays leads to the formation of
SA. Thus, persistent stimulation leads to persistent activity while sequential stimulation leads to sequential
activity.

3.1 Learning of sequences in networks

A growing number of network models have been shown to be able to learn sequential activity. Models
with supervised learning can reproduce perfectly target sequences through minimization of a suitable error
function (Sussillo and Abbott, 2009; Memmesheimer et al., 2014; Laje and Buonomano, 2013; Rajan et al.,
2016), but the corresponding learning rules are not biophysically realistic.

Other investigators have studied how unsupervised learning rules leads to sequence generation. Early
models of networks of binary neurons showed how various prescriptions for incorporating input sequences
in the connectivity matrix can lead to sequence generation (see Kuhn and van Hemmen (1991)) - or,
sometimes, both sequence generation or fixed point attractors depending on the inputs (Herz et al., 1988).
The drawback of these models is that they separated a learning phase in which recurrent dynamics was shut
down in order to form the synaptic connectivity matrix, and a retrieval phase in which the connectivity
matrix does not change anymore.

Our model removes this artificial separation, since both plasticity rule and recurrent dynamics operate
continuously, both during learning and recall. However, we found that there needs to be a mechanism
to attenuate recurrent dynamics during learning for it to be stable. The mechanism we propose rely
on a modified version of a standard homeostatic rule. Other mechanisms have been proposed, such as
neuromodulators that would change the balance between recurrent and external inputs during presentation
of behaviorally relevant stimuli (Hasselmo, 2006).

The cost of not having supervision is that the network can only learn the temporal order of the presented
stimuli, but not their precise timing. Veliz-Cuba et al (Veliz-Cuba et al., 2015) have recently provided a
model which bear strong similarities with our model (rate model with unsupervised temporally asymmetric
Hebbian plasticity rule), but includes in addition a short-term facilitation mechanism that allows the network
to learn both order and precise timing of a sequence presented in input. However, their mechanisms requires
precise fine tuning of parameters.
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Models with temporally asymmetric Hebbian plasticity have also been investigated in the context of
the hippocampus (Abbott and Blum, 1996; Gerstner and Abbott, 1997; Mehta et al., 1997; Jahnke et al.,
2015; Chenkov et al., 2017; Theodoni et al., 2017). In such models, feed-forward connectivity is learned
through multiple visits of neighboring place fields, and sequential activity (‘replays’) can be triggered
using appropriate inputs mimicking sharp-wave ripples. Other models use unsupervised Hebbian plasticity
but qualitatively distinct mechanisms to generate sequential activity. In particular, several studies showed
that sequences can be generated spontaneously from unstructured input noise (Fiete et al., 2010; Okubo
et al., 2015). Murray and Escola (Murray et al., 2017) showed that sequences can be generated in networks
of inhibitory neurons with anti-Hebbian plasticity, and proposed that this mechanism is at work in the
striatum.

3.2 Stabilization mechanisms

Consistent with many previous studies (Dayan and Abbott, 2001), we have shown that a network with
unsupervised Hebbian plasticity under sequential stimulation leads to a runaway of the synaptic weights.
This instability is due to a positive feed-back loop generated by the progressive increase of network activity
leading to a progressive increase in average synaptic strength when PA or SA are being learned. One
possible solution for this problem was first proposed in the context of attractor neural network models
(Amit et al., 1985; Amit and Fusi, 1994; Tsodyks and Feigel’Man, 1988). In these models, patterns are
learned upon presentation during a learning phase where synapses are plastic but there is no ongoing
network dynamics. After the learning phase, the learning of attractors is tested in a retrieval phase, where
the network dynamics is ongoing but synaptic plasticity is not present. Therefore, by compartmentalizing
in time dynamics and learning, the network dynamics does not lead to changes in the synaptic weights
during retrieval, and conversely, changes in synaptic weights do not lead to changes in the dynamics during
learning. This separation prevents the observed runaway of the synaptic weights due to unsupervised
Hebbian plasticity.

However, it is unclear whether such compartmentalization exists in cortical networks. In this work,
we explored the alternative scenario, in which both plasticity and dynamics happen concurrently during
learning and retrieval (see also Mongillo et al. (2005); Litwin-Kumar and Doiron (2014); Zenke et al.
(2015) for a similar approach in networks of spiking neurons). We found that adding multiplicative
homeostatic plasticity to unsupervised Hebbian plasticity leads to stable learning of PA and SA. During
sequential stimulation, the increase in co-activation between multiple populations due to recurrent and
feed-forward connections learned via unsupervised Hebbian plasticity is prevented by suppressing its effect
in the network dynamics. Homeostatic plasticity scales down the overall connectivity producing a weakly
connected network. PA and SA is prevented to occur during stimulation, which weakens the positive
feed-back loop generated by the increase in co-activations of neuronal populations. After learning, the
dynamic variables of the Homeostatic plasticity rule reach a steady state with values similar of what they
where before stimulation (see Fig 8 A) and the connectivity learned via unsupervised Hebbian plasticity
can lead to retrieval of PA and SA upon stimulation (see Fig 8 C). The homeostatic variable reaches its
steady state at a value close to one, and the connectivity recovers, unmasking the feed-forward and recurrent
learned architecture. We have also tried other stabilization mechanisms such as inhibitory to excitatory
plasticity (Vogels et al., 2011) instead of homeostatic plasticity. In this case we found that stable learning
of PA and SA is possible, but for distinct sets of network and stimulation parameters (data not shown).

As explained in Zenke and Gerstner (2017); Zenke et al. (2017), in order to prevent the runaway of
the synaptic weights produced by Hebbian plasticity, the time-scale of any compensatory mechanism
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should be of the same order or faster than the Hebbian time-scale. For multiplicative homeostatic plasticity,
the time-scale of the homeostatic variable Hi is dependent on the firing rate of neuron i and the target
firing rate (i.e. φ(ui)/φ(u0)). When the network firing rate is close to the target firing rate the homeostatic
learning rule is slow, and the homeostatic mechanism seldom play a role in the dynamics. On the other
hand, for high firing rates the homeostatic plasticity time-scale becomes faster, preventing the runaway of
the synaptic weights. There is currently an ongoing debate about whether the time-scales of compensatory
processes used in theoretical studies, as the ones used here, are consistent with experimental evidence (see
e.g. Zenke and Gerstner (2017); Zenke et al. (2017)).
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Sjöström, P. J., Turrigiano, G. G., and Nelson, S. B. (2001). Rate, timing, and cooperativity jointly
determine cortical synaptic plasticity. Neuron 32, 1149–1164

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 12, 2018. ; https://doi.org/10.1101/414813doi: bioRxiv preprint 

https://doi.org/10.1101/414813
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pereira and Brunel Unsupervised Learning of Persistent and Sequential Activity

Sussillo, D. and Abbott, L. F. (2009). Generating coherent patterns of activity from chaotic neural networks.
Neuron 63, 544–557

Theodoni, P., Rovira, B., Wang, Y., and Roxin, A. (2017). Theta-modulation drives the emergence of
network-wide connectivity patterns underlying replay in aa model of hippocampal place cells

Toyoizumi, T., Kaneko, M., Stryker, M. P., and Miller, K. D. (2014). Modeling the dynamic interaction of
hebbian and homeostatic plasticity. Neuron 84, 497–510

Tsodyks, M. and Feigel’Man, M. (1988). The enhanced storage capacity in neural networks with low
activity level. EPL (Europhysics Letters) 6, 101

Turrigiano, G. G. (2017). The dialectic of hebb and homeostasis. Phil. Trans. R. Soc. B 372, 20160258
Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C., and Nelson, S. B. (1998). Activity-

dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892
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