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Abstract 12 

In this study, a new spike sorting method was developed based on a combination of 13 

two methods, t-Distributed Stochastic Neighbor Embedding (t-SNE) and Density-14 

Based Spatial Clustering of Applications with Noise (DBSCAN). Parameters of both 15 

methods were simultaneously optimized using a Genetic Algorithm (GA) using a 16 

simulated dataset containing 2 to 20 simultaneously recorded neurons. The 17 

performance of this method was evaluated using both a stimulated dataset as well as 18 

real multichannel electrophysiological data. The results indicated that our fully 19 

automated algorithm using t-SNE-DBSCAN outperforms other state-of-the-art 20 

algorithms and human experts in spike sorting especially when there are a large 21 

number of simultaneously recorded units. Our algorithm also determines the noise 22 

waveforms and has an overall high sensitivity, precision and accuracy for correctly 23 

classifying waveforms belonging to each neuron (all >90%) without the need for 24 

manual corrections afterwards. Our method can be a crucial part of the analysis 25 

pipeline in particular when manual sorting of units is becoming prohibitive due to 26 

the sheer number of recorded neurons per session. 27 

Keywords: Spike sorting; t-SNE; DBSCAN; Genetic algorithm, Multichannel 28 

recording 29 
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1. Introduction 30 

Neurons are the building blocks of the nervous system. Inspecting and investigating 31 

the activity of single neurons is the foundation for understanding the brain 32 

mechanisms. Since a few decades, it has been possible to decode the behavior of 33 

single neuron activity from multiunit brain recordings (Moser and Moser, 2013; 34 

O'Keefe, 1976; Olshausen and Field, 1997). The basis of this recording is by 35 

measuring reflected current flows in the extracellular medium. Usually, neural action 36 

potentials or spikes are detected with extracellular recordings, typically using micro-37 

electrodes (metal, silicon or glass micropipettes)(Buzsáki et al., 2012). The 38 

procedure of discriminating the spikes of each neuron from the multiunit recorded 39 

neural signal is usually referred to as “spike sorting” and is often based on the shape 40 

of the spikes as the discriminative information (Gibson et al., 2012). The goal in 41 

spike sorting is to find the number of neurons recorded in a single channel and to 42 

specify the activation times of each neuron (Quiroga, 2012).  43 

Spike sorting has been studied extensively during the last decades. Some of its 44 

applications are neural interfaces (Oliynyk et al., 2012; Todorova et al., 2014), new 45 

prosthetic control devices (Zaghloul and Bayoumi, 2015), neurorehabilitation 46 

(Farina et al., 2013), and cognitive studies (Moser and Moser, 2013; O'Keefe, 1976). 47 

Review papers by Lewicki (1998), Gibson et al. (2012) and Rey et al. (2015) 48 

summarized a large number of techniques used for spike sorting. Some algorithms 49 
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are designed for sorting single channel extracellular signals while others were 50 

developed for recording systems like stereotrodes or tetrodes. Commonly applied 51 

methods for single-channel spike sorting are principal component analysis (PCA) 52 

(Adamos et al., 2008), Bayesian approaches (Haga et al., 2013), wavelet-based 53 

algorithms (Kim and Kim, 2003; Quiroga et al., 2004), and filter-based methods 54 

(Calabrese and Paninski, 2011). Spike sorting methods for multi-channel recordings 55 

have been proposed by Carlson et al. (2014); Swindale and Spacek (2014); and 56 

Rossant et al. (2016). Recently, the electrode technology has made it possible to 57 

record from hundreds of neurons concurrently with sub-millisecond timescale 58 

(Stevenson and Kording, 2011). However, the algorithm developments have been 59 

slower and currently the efficient and reliable sorting of a large number of neurons 60 

is challenging (Pedreira et al., 2012; Rey et al., 2015). Unfortunately , the amount of 61 

information that needs to be processed is now too high for a spike sorting in manual 62 

or semi-automated fashion (Einevoll et al., 2012). Thus, the main challenge is to 63 

develop automatic spike sorting algorithms (Wood et al., 2004).  64 

In this paper, we introduce a novel automatic spike sorting algorithm based on t-65 

Distributed Stochastic Neighbor Embedding (t-SNE), developed by Maaten and 66 

Hinton (2008), and Density-based spatial clustering of applications with noise 67 

(DBSCAN) combination, specifically designed for decoding large number of 68 

neurons in single-channel extracellular recordings. The t-SNE algorithm, like other 69 
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dimensionality reduction methods, transforms the data in the high-dimensional 70 

space to a space of fewer dimensions. However, t-SNE unlike most of the techniques 71 

are capable of retaining both the local and the global structures of the data in a single 72 

map (Maaten and Hinton, 2008). 73 

 74 

2. Materials and methods 75 

In this study, spike sorting performance with increasing number of neurons was 76 

evaluated for simulated 10 minutes-long extracellular recordings datasets including 77 

different number of single units, from 2 to 20 recorded on a single channel (total of 78 

95 channels) (http://bioweb.me/CPGJNM2012-dataset). The spike sorting algorithm 79 

was also tested on real multi-electrode array neural recordings  (Ghazizadeh et al., 80 

2012) . The neural recordings were conducted in Long–Evans rats from the Nucleus 81 

accumbens shell, using drivable 16 electrode array. This system allowed recording 82 

simultaneously from multiple neurons across the 16 channels of recording 83 

(Ghazizadeh et al., 2012). 84 

The overall procedure of the proposed spike sorting algorithm is illustrated in Fig 1. 85 

The method consists of the following steps: 86 

1- Spike detection 87 

2- Dimensionality reduction of spikes by t-SNE method 88 

3- Clustering spikes by DBSCAN method 89 
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 90 

2.1. Spike detection 91 

As all spike sorting algorithms, the initial step prior to the sorting method is to extract 92 

the spikes from the recording data. Primary preprocessing and band-pass filtering 93 

(300–6000 Hz, four pole Butterworth), enhances the spike detection on top of the 94 

background noise activity. Generally, spike detection is carried out by amplitude 95 

thresholding (T). To set an automatic threshold, a method is described based on the 96 

median absolute deviation (MAD).  97 

𝑀𝐴𝐷 (𝑥) = 𝑚𝑒𝑑𝑖𝑎𝑛 (|𝑥𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥)|) (1) 

where 𝑥 is the bandpass-filtered signal. In common cases where the median of signal 98 

(x) is zero, the Eq. 1 simplifies to:  99 

𝑀𝐴𝐷 (𝑥) = 𝑚𝑒𝑑𝑖𝑎𝑛 (|𝑥𝑖|) (2) 

This method measures the variability of a univariate sample of quantitative data. 100 

Therefore, the variance is then robustly estimated as (Donoho and Johnstone, 1994): 101 

�̂� = 𝑘 ∗ 𝑀𝐴𝐷 (𝑥) (3) 

where k=1.4826 is a scale factor for normally distributed.  Generally, amplitude 102 

threshold (T) is defined as the multiple (≅ 4) of an estimate of the standard deviation 103 

of the noise (Quiroga et al., 2004):  104 

T=4�̂�𝑛 (4) 

where �̂�𝑛 is an estimate of the standard deviation of the background noise.  105 
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 After detection of all of the likely spikes, the next step is to store the detected spike 106 

waveforms (∼2 ms long) in an array and align them to the spike peak in such a way 107 

that the peaks were located in the middle of the array. This array is passed to the next 108 

step.  109 

 110 

2.2. t-Distributed Stochastic Neighbor Embedding (t-SNE) 111 

Before clustering step, dimensions of spikes were reduced by t-SNE method. Briefly, 112 

t-SNE method converts high-dimensional data points into a lower dimension by 113 

minimizing the Kullback-Leibler (KL) distance between the joint probability 114 

distribution defined between each two data point under high- and low- dimensional 115 

spaces. The joint probability distribution is made by using a Gaussian centered at 116 

each point in the high dimensional space and a heavy-tailed Student-t distribution in 117 

the low dimensional space. A major strength of t-SNE is its capability in retaining 118 

the local structure of the data while also revealing some important global structure 119 

(Maaten and Hinton, 2008). The primary results of the t-SNE spikes map indicated 120 

that much of the local structure of the spikes is captured as well. Therefore, this 121 

method was used as a feature extraction algorithm for spikes. For achieving the best 122 

condition, the parameters of t-SNE algorithms must be optimized. One of the 123 

important parameters in t-SNE algorithm is the distance metric which can be 124 

Euclidean, Standardized Euclidean, City block, Chebychev, 125 
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Minkowski, Mahalanobis, Cosine, Linear Correlation, Spearman's rank 126 

correlation, Hamming or Jaccard coefficient distances for both Gaussians and t- 127 

distributions. Also, perplexity or effective number of local neighbors of each point 128 

is another important parameter of Kullback-Leibler algorithm which must be 129 

specified. Other parameters include exaggeration which is size of natural clusters in 130 

data, and number of dimension of the representation. All of the parameters were 131 

optimized using Genetic Algorithm (GA) for simulated data (see below for details 132 

of GA).  133 

2.3. DBSCAN Clustering 134 

Density-based spatial clustering of applications with noise (DBSCAN) is a density-135 

based clustering method first introduced by Ester et al. (1996). As opposed to some 136 

clustering methods such as k-means, DBSCAN does not require to specify the 137 

number of clusters in the data. Furthermore, DBSCAN can find general cluster 138 

shapes and does not force all points to fall into detected clusters unlike k-means 139 

algorithm. DBSCAN has two free parameters: size of neighborhood considered 140 

around each point (ɛ) and minimum number of points that should be in a cluster 141 

(MinPts). These parameters were also optimized along with the t-SNE parameters 142 

using GA for the above-mentioned ground truth dataset. 143 

 144 

 145 
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 146 

2.4. Genetic Algorithms (GA) 147 

The six free parameters of the algorithm (distance metric, perplexity, exaggeration, 148 

number of dimension, ɛ and MinPts) were optimized using a GA. Some options of 149 

the GA are indicated in Table 1. Therefore, 6-demensional string (chromosome) are 150 

presented for solving this problem. The overall procedure for combined optimization 151 

of t-SNE and DBSCAN using GA, illustrated in Fig 2, includes the following steps: 152 

1. The first step in the functioning of a GA is the generation of an initial 153 

population. Certainly, if the initial population to the GA is good, then the 154 

algorithm has a better possibility of finding a good solution. The initial 155 

generation is random in the specified range that seemed to end up with 156 

acceptable results in pilot tests (Table 2) 157 

2. The accuracy of confusion matrix (Acc) is calculated for each session of 158 

simulated spikes that ranged from 2 to 20 neurons in a given session for every 159 

6-demensional string (chromosome) using Equation 5: 160 

   Acc =
True positives 

Total predictions
 (5) 

 161 

3. A cost function (J) was defined based on the averages accuracy values (A) of 162 

confusion matrixes of all sessions: 163 
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  J = 1 − avg(Acc) (6) 

4. Scores each member of the current population by computing its fitness value. 164 

(population size = 200). Selects parents, based on their expectation. 165 

5. Forming a gene pool: children are produced either by making a random vector 166 

from a Gaussian distribution to the parent (mutation) or by creating the child 167 

as a random weighted average of the parents (crossover). The crossover 168 

fraction of 0.7 means that 70% children other than elite individuals are 169 

crossover children. Finally, new papulation replaced to form the next 170 

generation.  171 

6. This procedure continues until either of stopping criteria (Generations=100; 172 

Function tolerance=10-6; Nonlinear constraint tolerance=10-6) is reached.  173 

 174 

2.5. Evaluation of the optimal t-SNE and DBSCAN algorithm 175 

In order to describe the performance of the designed classification model, confusion 176 

matrix of each evaluated signal was obtained based on comparing the dataset ground 177 

truth with clusters identified by designed t-SNE and DBSCAN algorithm. Each 178 

identified cluster was assessed as valid if at least 50% of its spikes were time-locked 179 

to the spikes of an actual simulated  neuron (Martinez et al., 2009). The values of 180 

true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN) 181 

of each confusion matrix were calculated. Then, the values of sensitivity or true 182 
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positive rate (TPR) and precision or positive predictive value (PPV) were obtained 183 

by the following equations: 184 

 185 

TPR =
TP  

TP + FN
 (7) 

PPV =
TP  

TP + FP
 (8) 

Another performance measure is based on the histogram of the Inter-Spike-Interval 186 

(ISI). When spikes from two different neurons are incorrectly classified as a single 187 

cluster, it is possible to have spikes with ISIs below the minimum refractory period 188 

of the neuron (taken to be below 2 ms in this study). If the proportion of refractory 189 

period violations is significant, it can be seen as a measure of poor isolation of the 190 

single units. Finally, the optimal t-SNE and DBSCAN spike sorting algorithm 191 

obtained from GA was assessed using a real data. The results were compared with 192 

the sorting was performed independently and blindly by three expert operators. 193 

 194 

3. Results and discussion 195 

3.1. The optimal values of t-SNE and DBSCAN parameters 196 

According to GA results, the optimal values of t-SNE and DBSCAN parameters 197 

were obtained (Table 3). Based on these optimal values, the optimal spike sorting 198 

algorithm was developed and assessed for simulated and real datasets. 199 
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3.2. Spike sorting results 200 

The results of the proposed algorithm for a sample population of 10 neurons are 201 

shown in Fig. 3. The optimal t-SNE and DBSCAN algorithm correctly detected 10 202 

neurons, with accuracies ranging from 97.1% to 100.0% across neurons 203 

(98.6±0.1%). In this example, there were no false positive neurons. The sorting 204 

identification sensitivity and precision were on average 99.2±0.7 and 99.3±0.6, 205 

respectively. There was not any firing time inconsistency (i.e., ISI values less than 2 206 

ms) in any of the detected classes. The overall performance of the robust algorithm 207 

is summarized in Table 4 and Figure 4. Overall, the number of missed and erroneous 208 

detected neurons was 1.5±1.3 and 1.4±0.5, respectively. The overall sensitivity, 209 

precision and accuracy for correctly identified neuron classes were 97.8±1.2, 210 

90.1±4.8 and 94.4±1.4 respectively. These results indicated that the combination of 211 

t-SNE with DBSCAN works well for sorting spikes of different neurons in a fully 212 

automatic fashion. Next, the performance of our algorithm was compared with  213 

WAVECLUS using the same synthetic data. . 214 

 215 

3.3. Comparison with the state-of-the-art 216 

The sorting algorithm proposed by Quiroga et al. (2004), which is an open source 217 

and freely available software (https://github.com/csn-le/wave_clus), known as 218 
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WAVECLUS, was used for comparison with the proposed optimal t-SNE and 219 

DBSCAN sorter algorithm. It was shown in the literature that the other well-known 220 

algorithm, KlustaKwik, proposed by Harris et al. (2000) has the same performance 221 

as WAVECLUS algorithm (Pedreira et al., 2012). They are, in fact, among the most 222 

cited algorithms in spike sorting literature (Wild et al., 2012). The neural decoded 223 

data used for comparison was the previously published result of the operation of  224 

three experts with parameter optimization using the WAVECLUS GUI (Pedreira et 225 

al., 2012). 226 

The performance of optimal t-SNE and DBSCAN sorter algorithm was compared 227 

with that of WAVECLUS in terms of the number of the units were correctly 228 

identified (hits) as well as maximum and minimum (Fig. 5). Note that we have taken 229 

the results of WAVECLUS as previously published in Quiroga et al. (2004) and have 230 

used the same performance measures for comparison. As seen in this figure, the 231 

average number of hits as well as maximum and minimum of optimal t-SNE and 232 

DBSCAN sorter algorithm were in general higher than with those of WAVECLUS. 233 

Overall, 48% increase in the number of hits was obtained in our algorithm compared 234 

with WAVECLUS. Although the two methods were almost similar where number 235 

of neurons was equal or less than 7, the proposed algorithm significantly 236 

outperformed the other algorithm when the number of neurons was equal or greater 237 

than 8 (Fig. 5B). 238 
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The average missed neuron and false positive errors of the proposed algorithm for 239 

different number of neurons is shown in Fig. 6. The proposed algorithm 240 

outperformed the WAVECLUS algorithm (Rey et al., 2015)(Fig. 5), particularly in 241 

terms of missed errors (see Fig. 4B of Pedreira et al. (2012)). 242 

The knowledge derived from these results is that the our proposed algorithm could 243 

effectively improve spike sorting of simulated data. To further validate our method, 244 

our algorithm was next tested on real data and results was shown in following 245 

section.    246 

 247 

3.4. Comparison with the real data 248 

The performance of optimal t-SNE and DBSCAN sorter algorithm on real data were 249 

compared with sorting carried out by three human experts using Plexon offline sorter 250 

V3.3.5 manuallyFor this purpose, 91691 spikes are detected using an amplitude 251 

threshold after filtering real data and each expert clustered these spikes separately. 252 

The spikes were also separately clustered by our fully automated algorithm. Result 253 

of sorting the real data with the proposed algorithm is shown in Fig. 7. Because there 254 

is no ground truth here for comparing and statistical analysis, we use the intersection 255 

of both spikes in corresponding clusters in proposed algorithm and experts as a 256 

measure of truly detected spikes. In this method, as seen in Fig. 8A, the 257 

corresponding spike clusters have an intersection area (c) of mutually detected 258 
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spikes as well as relative complements of proposed algorithm not in expert (𝑎) and 259 

vice versa (𝑏). 260 

As a measure of quality of spike sorting, we assumed that average correlation 261 

between the spikes in relative complements in our algorithm and in the expert with 262 

the representative of spikes in the intersection area, can tell us whether detected 263 

spikes in the relative complements really represented true positives. The higher this 264 

average correlation, the better the sorting algorithm (Table 5). We assume that this 265 

average correlation can speak to the homogeneity of detected spikes in each 266 

algorithm or the experts, compared to the intersection. The homogeneity is defined 267 

as the average of correlation coefficients between representatives (mean point) of 268 

intersection cluster (c) with relative complement spikes in areas ‘a’ or ‘b’. The same 269 

measure was calculated by comparing spike clusters between experts. As can be seen 270 

the homogeneity of responses in the proposed algorithm was not significantly 271 

different from the experts (Fig 8B, F2,33=2.45 P=0.09). There was even a 272 

nonsignificant trend for higher homogeneity for the algorithm.  273 

 274 

 275 

 276 

 277 
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As another quality measure, we defined consistency as the number of spikes in the 278 

intersection clusters (c) divided by spike numbers of ‘a’∪’c’ or spike numbers of 279 

‘c’∪’b’ expressed as percentage (Fig 8C). As shown in Fig. 8C, the consistency 280 

between expert and the proposed method is significantly higher than the consistency 281 

between experts themselves. This means that the algorithm is consistent with the 282 

consensus of the experts. 283 

According to Table 5, average of Pearson’s correlation coefficient between 284 

representative of intersection cluster and relative complements of proposed 285 

algorithm (area ‘b’) #1-3 were 89.6, 89.4 and 92.11, respectively. These values for 286 

relative complements of experts (area ‘a’) were 78.52, 82.27 and 83.55, respectively.  287 

Thus on average the correlation coefficient with intersection (area ‘c’) was higher 288 

for the algorithm compared to the experts. 289 

 290 

Also, we assumed that percentage of spikes with 𝜌 < 90%, can be interpreted as 291 

false positive error. This percentage was also lower for the proposed algorithm 292 

compared to the experts. As seen in Table 5, the average of these values for expert 293 

#1-3 are 88.52, 72.95 and 64.91 versus 47.77, 55.28 and 24.59 for proposed 294 

algorithm, respectively. As a result, it is clear that the combination of t_SNE with 295 

DBSCAN algorithm considerably improve sorting of real data.  296 

4. Discussion 297 
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Direct electrophysiological recording of neurons is the gold standard for 298 

understanding the signal processing in the brain.  Recent advances in technology that 299 

allows  simultaneous recording of many neurons across a large number of channels  300 

present a challenge for manual spike sorting. In this study, a combination of two 301 

methods t-SNE and DBSCAN was developed for an off-line and fully-automated 302 

spike sorting algorithm. Our algorithm outperformed the state of the art for spike 303 

sorting using WAVECLUS as well as manual spike sorting by experts in simulated 304 

and real neural recordings. In particular our algorithm performance was significantly 305 

better than WAVECLUS when the number of neurons was large (Fig 5). The 306 

sensitivity and accuracy of spike sorting was above 90% and specificity was above 307 

80% in simulated data for up-to 20 simultaneously recoded neurons (Fig 4). Detected 308 

neurons had distinct spike shapes with ISI distribution outside the refractory period 309 

in almost all cases in both simulated (Fig 3) and real data (Fig 7). Comparison of 310 

algorithm performance with that of manual sorting by experts showed equal or better 311 

performance as measured by homogeneity of spike shapes for detected neurons (Fig 312 

8b). 313 

 314 

  315 

 316 
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The six parameters in our algorithm were optimized using a genetic algorithm. While 317 

this algorithm was optimized on the simulated data, using the same parameters on 318 

the real spike seemed to give satisfactory results compared to the manual sorting by 319 

experts. Ideally, if manual sorting for a large number of different experiments 320 

become available the parameter optimization can be done on matching performance 321 

of the experts while maximizing the desired cost function such as homogeneity or 322 

consistency. Such optimization should result is even better performance of algorithm 323 

on real data in the future. 324 

 325 

The main problem that we tried to overcome was sorting of large number of neurons. 326 

Although some methods tried to tackle this issue (Ekanadham et al., 2014; Pedreira 327 

et al., 2012) but most of the sorting methods to date (Carlson et al., 2014; Franke et 328 

al., 2010) focused their attention on sorting a small number of neurons (< 10). One 329 

of the advantages of our method is its ability to deal with sparse firing neurons while 330 

most of the other algorithms (Ekanadham et al., 2014; Franke et al., 2010; Hilgen et 331 

al., 2017; Yger et al., 2016) miss these neurons because of few spikes per second. 332 

This is because in those algorithms neurons with low firing rate are often discarded 333 

as noise or a grouped together with neurons with more numerous but similar spikes. 334 

A problem that is avoided in our algorithm by using density based clustering which 335 

is less sensitive to the actual cluster shape and size. The other advantage of the 336 
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proposed algorithm is that it is fully automated without the need for manual post 337 

processing correction. As sorting of large signals or big number of channels can be 338 

difficult and cumbersome, having an automatic and unsupervised method compared 339 

to other supervised or semi-supervised algorithms (Adamos et al., 2008; Calabrese 340 

and Paninski, 2011; Haga et al., 2013; Kim and Kim, 2003; Quiroga et al., 2004; 341 

Vargas-Irwin and Donoghue, 2007) would be highly desirable. 342 

 343 

Results highlight advantages of our proposed algorithm in sorting data from brain 344 

regions as well as simulated dataset using the same parameters illustrates the power 345 

of this approach. Also, the results indicated that the t-SNE apparently handles some 346 

changes in waveforms of spikes result maybe from movement of electrodes relative 347 

to the tissue. We have provided a software equipped with a graphical user interface 348 

(GUI) that implements our t-SNE-DBSCAN algorithm along with this paper. 349 

Although our software runs quickly on datasets with low number spikes, the 350 

clustering time theoretically scales linearly with the number of spikes.  351 

 352 

Taken together, our results demonstrate the optimal t-SNE and DBSCAN sorter 353 

algorithm can perform the spike sorting in a fully automated fashion with high 354 

accuracy, sensitivity and precision. In future work, we will be extending our 355 

algorithm to handle cases such as tetrode recording in which the same unit can 356 
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appear in multiple channels. In addition, the current algorithm will take some time 357 

to sort the recorded spikes into separate clusters corresponding to each unit and thus 358 

is not well suited for online applications. Adaptations of this model where clustering 359 

can be done in an adaptively and in trial by trial fashion in real time would be an 360 

important extension for future work which will allow its use in brain machine 361 

interface applications as well.  362 
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(D) (E) 

Fig. 1 Shematic of consecutive steps for our automatic spike sorting procedure. (A) spikes are detected 

using an amplitude threshold after filtering raw data. (B) all of the detected spikes are extracted and 

aligned by their positive peaks. (C) dimensionality reduction was used in order to reduce complexity of 

clustering using t_SNE. (D) clustering algorithm using DBSCAN. (E) spike shapes associated with each 

cluster shown in D. 

 445 
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Fig. 2 The flowchart of GA optimization procedure: 1) An initial population 

is generated by randomly choosing parameters from a specified range. 2) The 

accuracy of confusion matrix (Acc) for the simulated dataset is calculated. 3) 

The desirability function (J) was calculated based on the averages accuracy 

values of confusion matrixes across the sessions. 4) The process is repeated 

for all chromosomes in the pool. 5) Population is assessed and a new gene pool 

is formed by: recombination and mutation. 6) This procedure continues until 

either of stopping criteria. 
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Figure 3. The spike shape and ISI of each neuron determined by our t-SNE and DBSCAN algorithm using GA optimized  

parameters on a session with 10 simultaneously neurons. There were 10 hit neurons with zero missed neurons. There were  

not any false positive clusters and any refractory period violations. Performance for each neuron is shown in a pair of plots:  

all detected spike shapes are shown in the left plot and the ISI distribution is shown in the right plot. The zoomed in  

distribution of ISIs is shown as an inset in the right plot to allow one to examine ISIs less than 2ms refractory period.  

  447 
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Fig. 4. The accuracy, PPV and TPR performances of the proposed algorithm on all sessions with 

different number of simultaneously recorded neurons ranging from 2 to 20. The values shown 

are  mean across sessions and the error-bars indicate std. 

 448 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2018. ; https://doi.org/10.1101/418913doi: bioRxiv preprint 

https://doi.org/10.1101/418913
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

 
(A) 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2018. ; https://doi.org/10.1101/418913doi: bioRxiv preprint 

https://doi.org/10.1101/418913
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

 
(B) 

Fig. 5. Comparison of performance of our model compared to WAVECLUS (Pedreira et al., 2012; 449 

Rey et al., 2015)  on sessions from simulated data. (A) the number of hits with increasing number 450 

of neurons. Upward-pointing triangle and downward-pointing triangle denote maximum and 451 

minimum of hits, respectively. The dashed line has slope of one. (B) The average number hits for 452 

sessions with 2-7, 8-13 or 14-20 units. (mean ± SEM is shown, n.s., * and *** means 453 

nonsignificant, p-value< 0.05 and p-value< 0.001, respectively)  454 
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Fig. 6. The Average number of missed neuron and false positives in the proposed algorithm. Error-bars denote SEM. 
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Figure 7. The spike shape and ISI of each neuron using our proposed optimal t-SNE and 

DBSCAN algorithm on a real signal with 4 neurons. Performance for each neuron is shown in 

a pair of plots: all detected spike shapes are shown in the left plot and the ISI distribution is 

shown in the right plot. The zoomed in distribution of ISIs is shown as an inset in the right plot 

to allow one to examine ISIs less than 2ms refractory period. Spike numbers with ISIs below 

the minimum refractory period (2 ms) is 0.02% (14 out of 68443 spikes) for unit #1, 0.03% (3 

out of 8011 spikes) for unit #2, 0% (0 out of 6601 spikes) for unit #3 but is 32% (169 out of 

509 shapes) for noise cluster. 
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(B) 

 

(C) 

The results of one-way Anova indicated the means of group are significantly difference (F1,22=  

8.01; p value = 0.009). 

 

Fig 8.  Comparison spike sorting performance of our algorithm with that of 3 experts on real 

data (A) The Venn diagram showing the relationship between detected spikes for a given unit 

using our algorithm and a given expert area ‘c’ (intersection area) denotes spikes detected by 

both methods. Areas ‘a’ show spikes detected by the expert not our algorithm and areas ‘d’ 

denote spikes detected by our algorithm not by the expert (complement areas). (B) Average of 

Pearson’s correlation coefficient in the complement areas between experts, and for the 
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complement of in expert – not in proposed algorithm and for the complement of proposed 

algorithm – not in expert. The higher this average correlation coefficient in the complement 

areas indicated the higher the homogeneity of detected spikes (C) (C) Average percentage of 

detected spikes in the intersection area ‘c’ compared with all detected spikes when comparing 

between experts and between experts and our algorithm. This percentage shows the 

consistency of various spike detection methods. Consistency of our algorithms and experts was 

higher than consistency between experts  

Homogeneity: Average of correlation coefficients between representative of intersection 

clusters (C) with relative complements spikes 𝐴 ∪ 𝐵  or 𝐷 ∪ 𝐸 

Consistency: Spikes numbers of intersection clusters (C) divides by Spikes numbers of 𝐴 ∪

𝐵 ∪ 𝐶 or  Spikes numbers of 𝐶 ∪ 𝐷 ∪ 𝐸 (based on percentage) 
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1.1.1.1 Table 1. Some options for the GA solver. 
Value  Parameters: 

Double vector Population type 

200 Population size 

Constraint function  Creation function 

Stochastic  uniform Selection function 

Gaussian Mutation function 

Constraint dependent Crossover function 

0.7 Crossover fraction 

5 Elite count 

100 Generations  

10-6 Function tolerance 

10-6 Nonlinear constraint tolerance 
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Table 2. The initial population values of GA algorithm. 

Parameters: 

 limit 

Low High 

t-SNE:   

 Distance Metric* 0 11 

 Perplexity** 30 150 

 Exaggeration* 3 6 

 Number of Dimension* 2 3 

DBSCAN:   

 ɛ *** 1 10 

 MinPts *** 1 10 

*     Step by increments of 1 (integer) 

**   Step by increments of 10 (integer) 

*** (floating point) 
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Table 3. the optimal values of t-SNE and DBSCAN 

parameters 

Parameters: 

 

Optimal values 

t-SNE:   

 Distance Metric cityblock 

 Perplexity 70 

 Exaggeration 4 

 Number of Dimension 3 

DBSCAN:  

 ɛ  3.39 

 MinPts  2.58 
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Table 4. The performance of the proposed algorithm shown as mean±std 
 Clustering  Identification (%) 

Number of 

neurons 
Hit Miss 

 
FP TPR PPV 

2 2.0±0.0 0.0±0.0  1.4±0.9 0.93±0.10 0.98±0.01 

3 2.8±0.4 0.2±0.4  1.4±1.1 0.99±0.01 0.91±0.15 

4 3.8±0.4 0.2±0.4  0.6±0.9 0.98±0.04 0.93±0.09 

5 4.8±0.4 0.2±0.4  1.2±0.4 0.98±0.01 0.94±0.08 

6 5.6±0.6 0.4±0.5  1.0±0.7 0.98±0.01 0.91±0.09 

7 6.6±0.9 0.4±0.9  0.8±0.4 0.99±0.00 0.93±0.13 

8 7.4±0.5 0.6±0.5  1.2±0.4 0.97±0.04 0.91±0.06 

9 8.6±0.9 0.4±0.9  0.6±1.1 0.97±0.02 0.92±0.10 

10 8.4±1.8 1.6±1.8  1.6±1.5 0.97±0.04 0.86±0.10 

11 8.8±1.3 2.2±1.3  1.8±1.8 0.97±0.03 0.82±0.08 

12 10.4±0.5 1.6±0.5  1.2±0.4 0.98±0.01 0.86±0.05 

13 11.6±0.5 1.4±0.5  1.0±0.7 0.98±0.02 0.86±0.06 

14 11.2±1.1 2.8±1.1  1.6±0.9 0.97±0.01 0.81±0.04 

15 11.4±2.0 3.6±2.1  2.0±1.2 0.98±0.01 0.82±0.10 

16 14.8±0.4 1.2±0.4  0.4±1.1 0.98±0.01 0.90±0.04 

17 13.8±1.7 3.2±1.8  2.0±0.7 0.98±0.01 0.82±0.07 

18 15.2±1.1 2.8±1.1  1.2±0.4 0.98±0.00 0.83±0.08 

19 15.2±1.6 3.8±1.6  0.8±1.1 0.98±0.01 0.81±0.06 

20 16.4±2.2 3.6±2.2  0.8±0.8 0.98±0.01 0.83±0.09 
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Table 5. The performance of the proposed algorithm vs. experts spikes sorting. 
Cluster #1 #2 #3 #4 Noise 

Expert #1       

 Spikes numbers      

 Proposed algorithm 68443 8127 8011 6601 509 

 Expert 56096 2426 7639 6234 19296 

 intersection of Expert and proposed algorithm  56042 2328 7052 6233 472 

 In expert-Not in proposed algorithm 54 98 587 1 18824 

 In proposed algorithm - Not in expert 12401 5799 959 368 37 

 Average of 𝝆 between intersection clusters with      

 In expert-Not in proposed algorithm 85.74 78.86 75.03 74.46 - 

 In proposed algorithm - Not in expert 86.19 87.87 86.59 97.77 - 

 Percentage of spikes numbers with  𝝆 < 𝟗𝟎%      

 In expert-Not in proposed algorithm 64.81 92.86 96.42 100 - 

 In proposed algorithm - Not in expert 59.1 56.91 72.89 2.18 - 

Expert #2       

 Spikes numbers      

 Proposed algorithm 68443 8127 8011 6601 509 

 Expert 63211 5181 9846 5700 7753 

 intersection of Expert and proposed algorithm  63153 3728 7345 5696 471 

 In expert-Not in proposed algorithm 58 1453 2501 4 7284 

 In proposed algorithm - Not in expert 5290 4399 666 905 38 

 Average of 𝝆 between intersection clusters with      

 In expert-Not in proposed algorithm 88.01 88.12 72.94 80.01 - 

 In proposed algorithm - Not in expert 84.5 86.61 87.09 99.34 - 

 Percentage of spikes numbers with  𝝆 < 𝟗𝟎%      

 In expert-Not in proposed algorithm 63.79 81.21 96.8 50 - 

 In proposed algorithm - Not in expert 75.88 61.53 83.63 0.11 - 

Expert #3       

 Spikes numbers      

 Proposed algorithm 68443 8127 8011 6601 509 

 Expert 55199 5344 7012 5926 18210 

 intersection of Expert and proposed algorithm  55176 3956 7001 5895 406 

 In expert-Not in proposed algorithm 23 1388 11 31 17804 

 In proposed algorithm - Not in expert 13267 4171 1010 706 103 

 Average of 𝝆 between intersection clusters with      

 In expert-Not in proposed algorithm 85.63 86.46 80.12 82.00  

 In proposed algorithm - Not in expert 92.50 86.72 90.51 98.72  

 Percentage of spikes numbers with  𝝆 < 𝟗𝟎%      

 In expert-Not in proposed algorithm 52.18 70.24 72.73 64.52  

 In proposed algorithm - Not in expert 22.74 31.41 43.66 0.57  
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