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Abstract

It is proposed that a cognitive map encoding the relationships between objects
supports the ability to flexibly navigate the world. Place cells and grid cells
provide evidence for such a map in a spatial context. Emerging evidence suggests
analogous cells code for non-spatial information. Further, it has been shown that
grid cells resemble the eigenvectors of the relationship between place cells and can
be learnt from local inputs. Here we show that these locally-learnt eigenvectors
contain not only local information but also global knowledge that can provide
both distributions over future states as well as a global distance measure encoding
approximate distances between every object in the world. By simply changing the
weights in the grid cell population, it is possible to switch between computing these
different measures. We demonstrate a simple algorithm can use these measures to
globally navigate arbitrary topologies without searching more than one step ahead.
We refer to this as intuitive planning.

1 Introduction

In order to generate complex behaviour that is flexible to changes in circumstance and internal
goals, it has been argued that animals maintain a model of the relationships between objects in the
world, often termed a cognitive map [25]. In physical space the neural substrate for such a map is
hypothesized to exist in the hippocampal formation in the form of place cells [20] and grid cells [15].
Place cells are found in the hippocampus and fire when an animal is in a specific location, whereas
grid cells, found in the entorhinal cortex, amongst other regions, fire in a periodic hexagonal lattice
over the environment.

It is not yet clear why it is advantageous to encode such a map both locally (using place cells that
fire in specific locations) and globally (using grid cells that each fire in many different locations,
but whose population can encode location precisely). However, one attractive recent suggestion is
that these grid codes can be used to efficiently solve navigation problems as much of the necessary
computation is already solved in the representation. Angles and distances between different points
in the map can be extracted from grid codes using inexpensive computations that do not require
searches through place cells [5}24], endowing the agent with a sense of direction for navigating the
map intuitively.

Tolman’s original concept of a cognitive map was not, however, restricted to spatial relationships,
but encompassed relationships that subserved flexible behaviour across multiple domains of life
[25]]. Indeed the hippocampal formation is critical for knowledge representation and generalisation in
behavioural domains as distinct as social cognition [22], reward learning [[14] and episodic memory
[19]. Furthermore, neurons coding for non-spatial information in a fashion analogous to place cells
have been found in human [21]] and rodent [2]] hippocampus, and signatures of grid-like activity have
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been reported in rodents encoding time rather than space [16] and in humans navigating conceptual,
rather than spatial, knowledge [6]].

It has recently been suggested that these different properties of hippocampal neurons can be reconciled
formally if the idea of a place cell is generalised to encode a state in a reinforcement-learning world
[23]]. This conceptual insight allows the machinery of reinforcement learning theory to be applied
to understand neural coding in the hippocampal formation. Indeed it has been shown that global
navigational strategies can be performed in place cells, if the scope of their coding is broadened to
predict future states using successor representations [8]] that relate them to the navigational goal [23].
Furthermore, signatures of predictive state representations have been observed in human entorhinal
cortex in discrete state space environments [[13]], and there is evidence that humans use predictive
representations for planning [18].

Here, we present a different technique for navigating arbitrary conceptual worlds. This technique
allows place cells to retain local scope but instead, as in the spatial domain [5} [24], relies on grid-like
codes to generate globally optimal (or nearly optimal) routes with efficient computations that do not
require any sequential search. Similar to space, this technique uses grid-like codes to endow the
agent with an intuitive sense of direction, but in arbitrary relational worlds. We therefore refer to it as
intuitive planning.

2 Global distances from local learning

We rely on the recent suggestions that grid cells can be understood as the eigenvectors of the
relationship between place cells. This has been demonstrated both using a PCA of place cell firing
[LO], and using the eigenvectors of successor representations [23]]. This view is consistent with
the recently acknowledged importance of the feedback connections from place cells to grid cells
(26} 14, [17].

The key insight in the current work is that grid cells representing eigenvectors learnt from only local
inputs can be used to construct distributions of distant future states as well as a global distance matrix
that encodes the approximate distances between every pair of points in the world. We are proposing
this eigenstructure contains the information necessary to compute all possible distances without any
search.

To see why this is true, consider the adjacency matrix, A, that defines relationships between neigh-
bouring states (or place cells) by encoding the weight of the edge between 7 and j, as element A;;
(figure 1). To compute the distribution of states after n steps, it is necessary to compute the matrix
A"™. Notably, element A7, is the number of walks of length n from states ¢ to j. As it is simply a
power of A, all matrices A™ share the same eigenvectors of A (see figure 2 for example eigenvectors
of A of a simple two-dimensional world):

A" = AT (1)

where the matrices ¢ and )\ are the eigenvectors and eigenvalues of A, respectively.

Furthermore, any summation of C; A™¢, (where n; is an integer, and C; is an arbitrary scalar) will
share these eigenvectors, so if we choose an approximate distance metric that is a weighted sum of
future states, it is easily computable from the eigenvectors of A.

For example, consider the following two weighted sums:

o et = petp! )
k=0

and

YA A=) = (I T (3)
k=0
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set to the commonly used [3L1]] v = /\0'—8?. The infinite sums in equations 2 and 3 converge to the

where v < 5 and A, is the largest eigenvalue of A in modulus. Throughout the paper, v is

matrix exponential (e) and resolvent (I —~yA)~1), respectively.

A=p o™t A" =pA"p t —log(perpt)

Figure 1: Construction of local and global knowledge from locally-learnt eigenvectors. a) A
two-way linear track. For the three columns on the right, bottom is a matrix and top is a slice
through that matrix (red line) at state four. From left to right: Schematic of the environment with
a mouse occupying state four; the associated adjacency matrix A; A™, where n = 5, and therefore
A;; is the number of possible walks of length n from state i to state j; —log(C ), where Cjj is the
communicability from state ¢ to state j. b) The same format as a for a two-way circular track. Red
circles in the adjacency matrix mark the new adjacency between the ends of the linear track in a
turning it in to a circular track. Bottom: Crucially, not only the matrix A containing local knowledge,
but also A™ and —log(C') containing global knowledge can be constructed from the eigenvectors
¢ and eigenvalues A of the matrix A. The local knowledge in state four is identical across the
two environments (compare the slices through the adjacency matrices in a and b) but the global
knowledge, obtained from the eigenvectors of A, is very different (compare slices in A™ and —log(C')
across a and b).

In each of these sums the dominant contribution to element (¢, j) is given by the shortest path
between ¢ and j. Longer paths are dramatically downweighted (particularly with the matrix exponent,
equation 2). Hence element (4, j) contains information that closely relates to the shortest distance
between ¢ and 7 (this is shown empirically below, including some exceptions). In graph theory, these
two summations are used to compute the communicability between nodes of a graph [T} [}, [12].
The second of these two summations (equation 3) is similar to the successor representation in
reinforcement learning [8], which is computed from the transition rather than adjacency matrix.

Notably, in order to compute these functions it is simply necessary to recombine the eigenvectors of
A (grid cells) with different weights (figure 1). Instead of using the original eigenvalues A\, A" will
give the distribution of future states after n steps, e* will give the matrix exponent, and (I — y\)™*
will give the resolvent (or successor representation). Further, these reweightings are inexpensive to
implement because the number of eigenvalues is equal to the number of grid cells (eigenvectors), not
the number of distances (relationships) that can be reconstructed.
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Figure 2: Example eigenvectors of the adjacency matrix of a simple two-dimensional world are
periodic. Eigenvectors of the adjacency matrix A of a discrete-state two-dimensional box projected
back in to the space of the box have periodic waveforms. These are similar to the eigenvectors
reported in [10] before a non-negativity constraint was applied that rendered them hexagonal. The
permitted transitions between states encoded in A were in the up/down and left/right directions.
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Figure 3: Communicability measures in arbitrary topologies. a) A one-way linear track. Left:
The adjacency matrix A. Middle: the matrix —log(C) where element C;; is the communicability
between states ¢ and j. Red line marks the column of a target state (note this is different to figure
1 where it is the row of the current state). Right: This column represented on the space defined by
A. Red circle indicates target state. b) A two dimensional 10x10 box. The same format as a except
the target column of —log(C) is represented as a heatmap on a two-dimensional environment with
warmer colours corresponding to higher values. ¢) A box with barriers and a wormhole connecting
states which are not adjacent in a two-dimensional space. Same format as b. States separated
by a magenta line are not adjacent. White squares and circles mark entrance and exit gates of a
wormhole, respectively: the states are adjacent yet distant in the regular two-dimensional topology.
The conventions used in this figure will be used throughout the paper.

We emphasise that these measures work for arbitrary topology environments. They accurately reflect
communicability in environments that cannot be easily mapped on to normal maps, such as those
containing wormholes linking disparate parts of a map (figure 3), as well as environments with
one-way links between states, which result in complex eigenvectors and eigenvalues (figure 3). Such
arbitrary topologies are more likely those found in non-spatial cognitive maps.
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Figure 4: Approximately linear relationship between intuitive distance and true distance. In-
tuitive distances between pairs of states are approximately linearly related to the true distance, as
defined by the length of the shortest path. a) Intuitive distance reliably increases with true distance
on a two way, one-dimensional track (the same as that reported in figure 1b). b) Spread of intuitive
distances for a given true distance in a 10x10 two-dimensional box (the same as that reported in
figure 3b), because communicability is influenced by the number of routes between states.

Both the matrix exponential and resolvent measures can be approximately linearly related to the true
distance, as defined by the length of the shortest path between states, by taking their —log (figure
4), a measure we refer to as intuitive distance. This relationship is dependent on the sets of walks
between pairs of states with the same distance. In some environments, the set of walks between a pair
of states can be obtained by a permutation from the set of walks between another pair of states with
the same true distance. In such a case there is no variance in the relationship between intuitive and
true distance (figure 4a). However, in environments where there are many short, yet not necessarily
shortest, paths between states, the communicability might differ between pairs of states with the same
true distance, and hence so will the intuitive distance (figure 4b). This predicts failures to navigate
the shortest path between states (see below).

3 Global navigation from local computation

Given current and target states, as well as the eigenvectors and eigenvalues, all calculations necessary
for navigation are local: The agent needs to calculate which of the available next states has the
shortest distance to the target. This can be done in the case of the matrix exponential by calculating
for target state 7" and each neighbouring state, N:

Cnr =Y pu(N)py(T)e™ )
v=1

and in the case of the resolvent by calculating:

Ont =) 2u(N)u(T)(1 = 7A) ™ (5)

where ¢, (N) is the N'th element of the vth eigenvector of the adjacency matrix associated with the
eigenvalue A\, and n is the number of eigenvectors. The agent can then proceed to the neighbouring
state with the maximal C -, or equivalently minimal intuitive distance —log(Cn). This procedure
finds trajectories that are approximately globally optimal without any global (tree) search. Because
it stores the relational structure, the algorithm can flexibly reroute when the values of candidate
target states change, for example due to changing internal goals. Further, parallel neural circuitry can
naturally implement the summations in equations 4 and 5.

4 Navigation using intuitive planning

We constructed several discrete-state mazes and tested whether intuitive planning could successfully
navigate between start and target locations. We demonstrate the algorithm successfully navigates the
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shortest route to the target in several two-dimensional, undirected mazes (figure 5). Cognitive maps
encoding non-spatial relationships, however, will likely have arbitrary topologies. We show that the
algorithm generalises to arbitrary topologies as its performance is not affected by the insertion of a
wormbhole in to the maze, rendering it no longer topologically two-dimensional (figure 5). Successful
navigation of the shortest route to the target, as defined by the minimum number of transitions to
reach it, is achieved in all of the above mazes when using both the matrix exponential and resolvent
measures. The mazes in figure 5 can be mapped on to two-dimensional spaces for visualisation
purposes. The algorithm also achieved successful navigation to the target in randomly generated,
unweighted graphs, provided there was a route to the target (figure 5).

Since the relationship between intuitive distance and true distance is only approximately linear (figure
4), it is possible to construct mazes where the algorithm successfully navigates to the target, but does
not take the shortest route. This is achieved by increasing the communicability of initial states not
associated with the shortest route, but with multiple longer routes to the target (figure 6).

Figure 5: Navigation in arbitrary topology worlds. Successful navigation from start (red square)
to target (red circle) states in two-dimensional worlds with barriers and differing start and target states
(a-c). Introducing wormholes that connect disparate parts of the map and therefore warp it rendering
it no longer described by a simple map does not affect the ability to successfully navigate to the
target (d-f). Nor does the introduction of a one-way wormhole (e-f), resulting in complex eigenvalues
and eigenvectors. In all navigation simulations, state transitions were permitted in the up/down and
left/right directions (unless, for example, blocked by a barrier), and black circles denote the agent’s
path. g) Successful navigation in a randomly generated graph.
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Figure 6: Failure to navigate the shortest path. Introducing multiple wormholes that cause multiple
longer routes to the target to pass through a nearby state (magenta star) that is not in the direction of
the shortest route (green star) causes the agent to take a longer route to the target (a). With fewer
such wormholes, the shortest route is taken (b)

5 Experimental predictions

This theoretical work makes some experimental predictions:
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e Unlike explicit planning [9], such intuitive planning will not require a precession through
place cells leading to a goal.

e In intuitive planning the distance to a goal does not influence the difficulty of the next
decision. The opposite is true in explicit planning (tree-search). We therefore predict that
for local goals, distance to goal (where explicit planning is possible) will predict reaction
time, but for distant goals it will not.

e The intuitive distance measures are most likely to differ from shortest-path measure when
there are many possible routes to the goal that pass through one nearby state, but where the
shortest route passes through a different state (figure 6). This predicts a precise pattern of
planning errors.

6 Discussion

We believe that the observation that grid cell patterns can be related to the eigenspectrum of local place
cell transitions [[10} 23] is an important one. We have shown that one consequence of this observation
is that grid cell patterns contain information not only about the current location but also about all
possible future locations. It is therefore possible to compute distance metrics between every pair of
locations in the state space using grid patterns that have been learnt from only one-step transitions.
With one choice of weighting of future states, this distance metric allows rapid computation of
successor-like representations [8}, [23]] but with states (place cells) that retain local scope. Other
distance metrics can also be computed. Like successor representations, this provides only a partial
solution to the model-based reinforcement-learning problem leaving open the problem of how values
are assigned to different target locations. The eigenvector-based computations suggested here are
easily implemented in parallel, and therefore suggest natural implementations in recurrent neural
circuits that support grid codes. Indeed, Corneil & Gerstner [7] have elegantly implemented a
planning algorithm based on the eigendecomposition of the SR of the environment in a recurrent
attractor neural network. The global metrics we have presented here allow global navigation through
arbitrary topology maps without searching more than one step ahead. We refer to this as intuitive
planning. Such a strategy could be combined, for example, with hierarchical representations of state
space to further reduce computational complexity. Together, such strategies demonstrate how the
expensive computations that underlie state-space navigation can be finessed by efficient choices of
neuronal representation.
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