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ABSTRACT	

The	 cortical	 code	 that	 underlies	 perception	must	 enable	 subjects	 to	 perceive	 the	world	 at	 timescales	

relevant	 for	 behavior.	We	 find	 that	mice	 can	 integrate	 visual	 stimuli	 very	 quickly	 (<100	ms)	 to	 reach	

plateau	 performance	 in	 an	 orientation	 discrimination	 task.	 To	 define	 features	 of	 cortical	 activity	 that	

underlie	performance	at	these	timescales,	we	measured	single	unit	responses	in	the	mouse	visual	cortex	

at	 timescales	 relevant	 to	 this	 task.	 In	 contrast	 to	high	 contrast	 stimuli	 of	 longer	duration,	which	elicit	

reliable	activity	in	individual	neurons,	stimuli	at	the	threshold	of	perception	elicit	extremely	sparse	and	

unreliable	responses	in	V1	such	that	the	activity	of	individual	neurons	do	not	reliably	report	orientation.	

Integrating	information	across	neurons,	however,	quickly	improves	performance.	Using	a	linear	decoding	

model,	 we	 estimate	 that	 integrating	 information	 over	 50-100	 neurons	 is	 sufficient	 to	 account	 for	

behavioral	performance.	Thus,	at	the	limits	of	perception	the	visual	system	is	able	to	integrate	information	

across	a	relatively	small	number	of	highly	unreliable	single	units	to	generate	reliable	behavior.	
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Introduction	
	

Animals	regularly	 identify	the	presence	of	external	stimuli,	and	make	decisions	based	on	this	evidence	

within	 very	 short	 time	 intervals1–4	 .	 Reliable	 performance	 with	 limited	 information	 requires	 a	 robust	

representation	of	the	external	world,	but	the	structure	of	neural	activity	that	underlies	representation	of	

sensory	stimuli	in	circumstances	where	evidence	is	fleeting	or	scarce	is	not	known.		

In	 primates	 and	 carnivores,	 a	 natural	 timescale	 exists	 for	 integrating	 visual	 information	 -	 the	 fixation	

duration.	Within	an	inter-saccadic	duration	(150-350	ms5,6	cf.	~1000	ms	for	rodents7),	the	subject	fixates	

on	a	part	of	the	visual	scene	and	extracts	stimulus	information	relevant	to	behavior	(orientation,	motion,	

color	 etc.)	 suggesting	 that	 behaviorally	 relevant	 information	 can	 be	 extracted	 in	 a	 few	 hundred	

milliseconds.	 Rapid	 processing	 of	 sensory	 information	 has	 obvious	 evolutionary	 benefit1,4,	 but	 the	

relationship	between	performance	and	neural	representation	has	not	been	carefully	 investigated.	One	

reasonable	hypothesis	would	be	that	animals	integrate	information	for	a	duration	that	leads	to	reliable	

responses	in	cortical	neurons.	We	sought	to	address	this	possibility	by	carefully	comparing	the	reliability	

of	cortical	representation	with	the	quality	of	performance.		

In	 several	 species8–11,	 the	 activity	 of	 neurons	 in	 the	 primary	 visual	 cortex	 (V1)	 enables	 conscious	

perception	of	visual	patterns	in	the	world	(though	unconscious	blind	sight	effects	do	not	require	V18,12,13).	

Within	 cortical	 visual	 pathways,	 visual	 information	 is	 thought	 to	 be	 represented	 by	 a	 sparse	 and	

distributed	 neural	 code14,15.	 Such	 representations	 can	 be	 energetically	 favorable16,17,	 have	 higher	

capacities	than	local	codes,	and	are	capable	of	generalization	and	tolerant	to	error.	Constraining	neural	

responses	 to	 be	 sparse	 and	 distributed	 in	 network	 models	 has	 recreated	 many	 of	 the	 properties	 of	

neurons	in	the	early	visual	system18.	Most	stimulus	parameters	associated	with	evoking	sparse	responses	
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nonetheless	 produce	 reliable	 stimulus-locked	 responses.	 It	 is	 not	 known	 if	 this	 response	 reliability	 is	

required	 for	 the	 system	 to	 extract	 meaningful	 information.	 Several	 additional	 questions	 remain	

unanswered:	(1)	How	sparse	can	the	responses	be	and	still	have	animals	perform	reliable	discrimination?	

(2)	What	"code"	do	animals	use	to	detect	and	discriminate	between	stimuli?	and	(3)	How	many	neurons	

are	required	to	perform	these	discriminations?	Answers	to	these	questions	have	the	potential	to	yield	

insight	 into	 how	 animals	 learn,	 integrate	 and	 process	 information	 over	 short	 timescales	 to	 support	

decision	making.	

In	 this	study,	we	first	establish	that	mice	can	rapidly	 integrate	evidence	over	 time	to	support	decision	

making.	Remarkably,	we	find	that	mice	achieve	plateau	performance	at	timescales	less	than	100	ms.	We	

then	measure	the	electrophysiological	responses	of	neurons	across	the	layers	of	V1	to	such	short	stimuli.	

These	 layers	 send	 and	 receive	 inputs	 to	 various	 other	 cortical	 and	 sub-cortical	 areas19	 and	 could	 be		

involved	 in	 integrating	 relevant	visual	 information.	We	find	that	 there	 is	only	a	marginal	change	 in	V1	

neural	activity	under	these	conditions	and	the	vast	majority	of	neurons	show	no	stimulus	evoked	activity	

even	for	stimuli	in	their	receptive	fields.	Characterized	by	a	measure	of	population	sparseness	(fraction	of	

simultaneously	recorded	neurons	that	produced	at	least	one	spike	in	a	time	window	spanning	the	visually	

driven	 response)	 high	 contrast	 and	 long	 duration	 (200	 ms)	 stimuli	 engaged	 only	 8%	 more	 neurons	

compared	with	no	contrast.	Furthermore,	we	find	that	L2/3	responses	can	be	extremely	unreliable	(>85%	

of	sensitive	neurons	failing	to	fire	on	a	given	trial).	L5	neurons	while	more	reliable	still	fail	to	fire	on	many	

trials.		

To	quantify	how	well	individual	neurons	perform	in	discriminating	visual	stimuli,	we	developed	a	simple	

logistic	regression	model	to	quantify	the	contribution	of	each	neuron	to	the	discrimination	task.	We	find	

that	the	vast	majority	of	recorded	neurons	were	poor	discriminators	with	only	a	small	 fraction	(~13%)	

consistently	discriminating	the	orientation	of	the	stimulus	above	chance.	While	reliable,	these	neurons	

never	improved	discrimination	of	the	visual	stimulus	beyond	a	few	percentage	above	chance.	Based	on	
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the	model,	we	can	project	the	population	requirement	for	the	orientation	discrimination	task.	We	find	

that	mice	would	need	to	integrate	from	a	few	tens	to	a	few	hundred	neurons	from	individually	unreliable	

responses	 to	account	 for	 the	 reliable	performance	of	mice	 in	 the	orientation	discrimination	 task.	 This	

constitutes	a	small	fraction	(<0.1%)	of	the	total	number	of	neurons	available	to	encode	the	stimulus	in	V1	

of	the	mouse20	indicating	that	mice	can	use	sparse	and	highly	unreliable	neural	responses	to	efficiently	

extract	information	to	enable	decision	making	at	the	limits	of	sensory	perception.	

Results	
Mice	performing	orientation	discrimination	task	integrate	information	over	very	short	
timescales	
First,	we	trained	adult	mice	in	an	orientation	discrimination	task.	Naïve	mice	were	introduced	into	the	

training	arena	with	three	response	ports	and	their	behavior	slowly	shaped	to	the	appropriate	response	

contingency	(Figure	1A;	see	also	Methods	–	Behavioral	Training	and	Task	Sequence	and	Parameters	of	

Stimuli	for	Behavior).	We	captured	the	contrast	dependence	of	the	Orientation	discrimination	task	in	a	

series	of	trials	where	we	varied	the	contrast	of	the	discriminandum.	As	expected,	we	find	that	all	subjects	

improved	 performance	 with	 increasing	 contrast	 (Figure	 1B,	 grey	 lines,	 performance	 at	 c=1.0	 >	

performance	at	c=0.15	for	8/8	mice).	We	fit	logistic	curves	to	the	performance	of	subjects	across	contrast	

(Figure	1B,	1C,	see	methods	Psychometric	data	fitting)	and	measured	the	threshold	contrast	(‘υ’	in	Figure	

1B,	inset)	for	individual	subjects	to	be	between	0.06	and	0.30	(data	not	shown).	Furthermore,	the	width	

of	 the	 tuning	 curve	 (ω,	 Figure	 1B,	 inset)	 ranged	 between	 0.11	 and	 0.50	 (data	 not	 shown).	 To	 obtain	

population	 averages,	we	 fit	 logistic	 regression	 curves	on	 a	 simulated	 average	 subject	 (Figure	 1B,	 blue	

curve,	see	methods	Animal	Variability	and	use	of	Average	Subject).	The	average	subject	had	a	threshold	

contrast	of	0.19,	a	tuning	width	of	0.48	with	a	lapse	rate	of	0.15	(Figure	1B).	Most	subjects	perform	OD	

with	a	threshold	contrast	around	15%	and	have	plateau	performance	beyond	60%	contrast.	Even	at	the	

highest	contrasts	probed,	performance	was	lower	than	100%	for	each	of	the	individual	animals	as	well	as	
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the	 average	 animal	 (Figure	 1B,	 blue	 curve).	 Thus,	 behavior	 of	 the	 mice	 shows	 a	 strong	 contrast	

dependence	with	performance	plateauing	around	80%.		

We	next	assessed	the	influence	of	integration	time	on	performance.	In	this	task,	the	animal	had	control	

over	onset	 as	well	 as	offset	of	 stimulus.	We	measured	 the	Reaction	Time	 (RT,	 duration	between	 trial	

request	and	response)	as	a	measure	of	the	maximum	amount	of	time	over	which	visual	information	could	

have	 influenced	decision	making.	RTs	were	positively	 skewed	and	median	RTs	 for	each	animal	 ranged	

between	0.7s	and	1.1s	averaging	0.97±0.13s	(mean	±	sd,	not	shown).	The	median	reaction	time	of	the	

average	mouse	was	0.95s	with	a	95%	CI	between	0.54	and	2.5	s	 (Figure	1C).	Mean	reaction	 time	was	

contrast	dependent	with	higher	mean	at	 lower	contrast	 (RTC=0.15	=	1.16s)	compared	to	mean	at	higher	

contrasts	(RTC=1.0	=	1.05s)	(Figure	1D).	This	difference	was	small	(104	ms)	but	was	highly	significant	(Mann-

Whitney-Wilcoxon	U	test,	p<10-17).		

To	 measure	 the	 time	 window	 over	 which	 mice	 effectively	 integrate	 information,	 we	 tested	 subjects	

trained	in	orientation	discrimination	to	perform	trials	where	the	maximum	duration	of	a	stimulus	available	

for	the	subject	is	systematically	controlled	(see	methods,	Task	sequence).	After	this	maximum	duration	

(denoted	‘stimulus	duration’),	the	screen	changes	to	a	gray	screen	and	awaits	response	from	the	subject	

(Figure	1E).	This	trial	structure	puts	limits	on	how	long	subjects	can	integrate	visual	information	–	stimuli	

after	the	stimulus	duration	do	not	contain	useful	information	to	perform	the	task.	All	subjects	improved	

performance	as	the	stimulus	duration	increased	(Figure	1F,	thin	lines,	performance	at	500	ms	>	16	ms	in	

all	animals,	p<0.05,	Agresti-Caffo	statistics).	This	was	true	for	high	contrast	(Figure	1F,	blue	lines)	as	well	

as	 lower	 contrast	 stimuli	 (Figure	 1F,	 green	 lines).	 For	 example,	 while	 no	 subject	 had	 performance	

significantly	above	chance	for	a	16	ms	stimulus	at	low	contrast	(c	=	0.15),	all	subjects	perform	significantly	

above	 chance	 for	 stimuli	 lasting	 50	ms	 at	 low	 contrast.	 At	 higher	 contrast	 (c	 =	 1),	 all	 subjects	 were	

significantly	above	chance	 for	a	 stimulus	duration	of	16	ms,	 the	 shortest	 stimulus	duration	 tested.	To	
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precisely	measure	the	dynamics	of	integration,	we	fit	a	logistic	regression	curve	to	the	stimulus	duration	

vs.	performance	curve	 (see	methods,	Psychometric	data	 fitting,	Animal	Variability	and	Use	of	Average	

Subject,	Figure	1G).	This	allowed	us	to	measure	the	threshold	integration	time	(t),	the	integration	width	

(w)	and	lapse	rate	(l).	Based	on	these	fits,	individual	mice	had	a	threshold	integration	time	between	13	

and	46	ms	at	high	contrast	(c=1)	averaging	24±12	ms	(mean±sd,	Figure	1H)	and	a	threshold	integration	

time	between	33	and	75	ms	at	low	contrast	(c	=	0.15)	averaging	54±16	ms	(mean±sd,	Figure	1I).	Thus,	

subjects	require	very	short	stimulus	durations	–	significantly	shorter	than	the	typical	saccade	duration	–	

to	perform	significantly	above	chance	 in	an	orientation	discrimination	task.	The	average	subject	had	a	

threshold	integration	time	of	18	ms	at	high	contrast	(Figure	1H,	blue	circle)	and	45	ms	at	 low	contrast	

(Figure	 1H,	 green	 circle),	 an	 order	 of	magnitude	 lower	 than	 the	mean	 reaction	 times	 (~1s)	 from	 the	

reaction	time	task	described	earlier.		

Our	assessment	of	 the	 integration	width	–	 the	stimulus	duration	over	which	performance	 improved	–	

indicated	 that	 it	was	between	16	and	161ms	 (Figure	1I)	 for	high	contrast	 stimuli	and	between	45	and	

168ms	(Figure	1I)	for	low	contrast	stimuli.	The	integration	width	for	the	average	subject	was	123	ms	at	

high	 contrast	 (Figure	 1I,	 blue	 circle)	 and	 94	 ms	 at	 low	 contrast	 (Figure	 1I,	 green	 circle).	 These	

measurements	indicate	that	subject	performance	plateaus	beyond	117	ms	(72	ms	width	+	45	ms	threshold	

integration	time)	even	at	the	lowest	contrast.	This	duration	is	an	order	of	magnitude	smaller	than	mean	

reaction	times.	The	lapse	rates	for	high	contrast	stimuli	(0.33	±	0.15)	(Figure	1J)	was	consistent	with	the	

lapse	rates	of	subjects	at	high	contrasts	(0.31	±	0.14)	in	the	reaction	time	task	(c.f.	Figure	1C,	p	=	0.85,	

Mann-Whitney-Wilcoxon	U	test).	Similarly,	plateau	performance	for	low	contrast	stimulus	(0.74	±	0.08,	

mean	±	sd)	is	comparable	to	the	performance	of	subjects	for	low	contrast	stimuli	(0.67	±	0.1,	mean	±	sd)	

in	the	reaction	time	task	(data	not	shown,	p	=	0.18,	Mann-Whitney-Wilcoxon	U	test).	This	indicates	that	

subjects	have	integrated	as	much	of	the	information	from	the	visual	stimulus	as	possible	within	~100	ms	

to	guide	their	behavior.	
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Activity	of	V1	Neurons	is	required	for	Orientation	Discrimination	
To	understand	the	neural	basis	for	fast	visual	integration,	we	recorded	from	neurons	across	the	layers	of	

primary	visual	cortex	(V1)	in	subjects	running	on	a	Styrofoam	ball	while	passively	viewing	stimuli	of	various	

contrasts,	durations	and	orientations	(Figure	2A).	Visual	responses	of	neurons	from	15	subjects	across	a	

total	of	81	sessions	were	captured.	Of	these,	65	sessions	(N=9	mice)	were	recorded	in	naïve	animals	that	

had	no	exposure	to	the	behavioral	arena	while	the	remaining	16	(N=6	mice)	were	recorded	in	animals	

that	had	prior	experience	 in	the	orientation	discrimination	task	and	had	threshold	performance	 in	the	

simple	orientation	discrimination	task	(Step	4,	Table	2).	In	naïve	animals,	a	total	of	618	single	unit	activities	

and	926	multi-unit	 activities	were	 recorded	 (Figure	 2B-C,	 also	 see	methods	 Single	 unit	 identification).	

These	units	had	firing	rates	that	ranged	from	a	minimum	of	0.22	Hz	to	a	maximum	of	60.25	Hz	(Figure	2E).	

Most	neurons	fired	very	few	spikes	over	the	course	of	the	session	(Figure	2E,	mode	at	lowest	firing	rate).	

Firing	rates	were	dependent	on	the	depth	of	the	recording	(superficial	(L2/3):	depth<400µm,	deep(L5/6):	

depth>400µm,	KS-test;	p<0.001	Figure	2F).	Spike	widths	varied	 from	0.07	ms	to	0.43	ms	based	on	full	

width	 at	 half	maximum	 (FWHM)	 (Figure	2G).	 Spike	widths	 and	 firing	 rates	were	negatively	 correlated	

(Figure	2H)	and	this	correlation	was	highly	significant	(p<10-9).	

As	expected	from	neurons	in	V1,	a	large	fraction	of	neurons	showed	significant	orientation	tuning	(Figure	

3A-D).	For	a	subset	of	neurons	(389	single	units	and	722	multi	units)	we	calculated	orientation	tuning	(	

Figure	3B,	polar	plot)	and	vector	sums	of	orientation	tuning	(Figure	3B,	arrows)	as	measures	of	neural	

tuning	to	orientation	(similar	to	prior	techniques21)	based	on	high	contrast	flashed	gratings	of	different	

orientations	that	lasted	500	ms	or	drifting	gratings	that	lasted	2000	ms.	For	all	these	neurons,	we	further	

calculated	 Jack-Knife	 error	 estimates	 of	 these	 measures	 by	 removing	 data	 from	 one	 trial	 at	 a	 time.	

Neurons	showed	varied	selectivity	and	orientation	preferences	(Figure	3C,	D).	The	orientation	selectivity	

index	 spanned	 values	 from	 0	 to	 1	 with	 a	 mean	 selectivity	 of	 ~0.35,	 (Figure	 3C)	 while	 the	 preferred	

orientation	spanned	the	entire	orientation	space	with	significant	preference	for	vertical	and	horizontal	
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orientations	(Figure	3D,	p<10-7,	KS-test	vs	uniform	null	hypothesis).	We	note	that	a	small	population	of	

neurons	(N=168)	show	very	high	orientation	selectivity	(OSI>0.95).	These	neurons	have	significantly	lower	

firing	rates	compared	to	the	rest	of	the	population	(0.21	Hz	for	High	OSI	vs	5.94	Hz	for	the	population,	p	

<	 10-68,	 Mann-Whitney-Wilcoxon	 U	 test).	 The	 high	 OSI	 was	 due	 to	 extremely	 low	 firing	 rate	 for	 the	

orthogonal	 orientation,	 but	 each	 of	 these	 neurons	 had	 consistent	 orientation	 tuning	 –	 the	 standard	

deviation	of	Jack-Knife	estimates	of	orientation	preference	was	less	than	20°	in	all	high-OSI	units	with	a	

median	of	2.5°.	Thus,	as	shown	previously,	we	find	that	neurons	in	V1	are	orientation	tuned	and	are	ideally	

poised	to	encode	the	stimulus	orientation	to	direct	the	animal’s	behavior.		

To	 test	 if	 V1	 neurons	 are	 required	 for	 orientation	 discrimination,	 we	 expressed	 blue-light	 sensitive	

Channelrhodopsin-2	 (ChR2)	 in	PV+	 inhibitory	 interneurons	 (Figure	3F,	 top	panel)	 in	 the	primary	 visual	

cortex,	which	should	suppress	activity	of	projection	neurons	in	V1	when	activated.	Suppression	of	cortical	

activity	by	the	activation	of	PV+	interneurons	is	known	to	be	immediate	and	reversible22,23.	We	tested	the	

causal	role	of	V1	activity	in	behaving	animals	by	activating	Channel	Rhodopsin	on	random	trials	while	the	

subjects	 performed	 an	 orientation	 discrimination	 task	 (Figure	 3E,	 also	 see	 methods	 Optogenetic	

Manipulation	During	Behavior).	Performance	in	trials	where	ChR2	was	activated	was	significantly	lower	

than	 in	 trials	 where	 no	 ChR2	 activation	 occurred	 (Figure	 3G,	 ChR2	 no	 LED	 vs.	 +LED;	 p=0.035,	Mann-

Whitney-Wilcoxon	U	 test).	We	confirmed	 that	 the	 loss	 in	performance	was	not	due	 to	 the	distracting	

influence	of	the	blue	light	by	performing	identical	experiments	in	sham	animals	that	did	not	express	ChR2	

in	 PV+	 inhibitory	 interneurons	 (Figure	 3E,	 bottom	panel).	 Performance	 in	 light	 activated	 trials	was	no	

different	than	the	performance	in	trials	without	 light	activation	(Figure	3G,	Sham	no	LED	vs.	+LED;	not	

significant,	Mann-Whitney-Wilcoxon	U	test	).	Thus,	activity	of	neurons	in	V1	is	necessary	for	mice	to	carry	

out	this	orientation	discrimination	task.	
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Visual	responses	in	V1	are	sparse	
Next,	we	characterized	the	population	responses	of	simultaneously	recorded	neurons	to	stimuli	that	last	

a	short	duration	(<=200	ms).	We	recorded	between	2	and	93	neurons	simultaneously	 in	our	recording	

sessions.	We	show	the	stimulus	(orientation,	contrast	and	duration)	(Figure	4A),	spike	counts	in	a	time	

window	that	 spanned	 the	 first	500	ms	after	 stimulus	onset	of	25	 (out	of	39)	 simultaneously	 recorded	

neurons	for	the	first	100	trials	of	one	session	(Figure	4B).	This	time	interval	(500	ms)	was	chosen	for	three	

reasons.	First,	previous	reported	 latencies	 in	mouse	visual	cortex	 indicate	that	 for	some	of	 the	stimuli	

tested,	many	neurons	would	not	have	begun	their	responses	before	the	stimulus	ended.	Second,	even	if	

responsible	 neurons	 had	 begun	 responding	 to	 the	 stimulus,	 recurrent	 connectivity	 in	 cortex	 has	 the	

potential	to	drive	activity	for	much	longer	than	the	stimulus	duration23.	And	finally,	preliminary	analyses	

showed	that	for	the	stimulus	set	we	used,	a	time	interval	of	~500	ms	maximized	the	average	information	

in	 the	neural	 responses	 (data	not	 shown).	 For	each	 trial,	 the	 fraction	of	 the	 recorded	population	 that	

responded	to	the	stimulus	with	at	least	one	spike	(Figure	4C)	was	computed.	For	the	session	shown,	the	

average	fraction	of	neurons	that	responded	to	the	stimulus	with	at	least	one	spike	was	0.36	±	0.09	(mean	

±	sd).		Across	all	sessions	and	all	trials,	the	fraction	of	L2/3	neurons	that	responded	with	at	least	one	spike	

in	the	500	ms	window	was	0.43	±	0.17	(mean	±	sd).	This	fraction	of	responsive	neurons	varied	with	the	

contrast	and	duration	of	the	stimulus	used	(Figure	4D).	We	measured	the	mean	population	fraction	for	

each	session	as	a	function	of	the	stimulus	parameters.	For	stimuli	that	lasted	100	ms,	this	mean	fraction	

was	significantly	lower	for	zero	contrast	stimuli	compared	to	the	fraction	at	high	contrast	stimuli	(Figure	

4E,	f	=	0.37	at	c	=	0	vs	f	=	0.43	at	c=	0.15,	p	=	0.037	;	and	f	=	0.37	at	c	=	0	vs		f	=	0.44	at	c	=	1,	p	=	0.015;	

Mann-Whitney-Wilcoxon	 U	 test).	 The	 difference	 between	 the	 fraction	 of	 responsive	 neurons	 was	 no	

different	between	stimuli	of	low	vs	stimuli	of	high	contrast	(p	=	0.63,	Mann-Whitney-Wilcoxon	U	test).	On	

the	other	hand,	 the	 fraction	of	 responsive	neurons	did	not	 vary	 significantly	with	 the	duration	of	 the	

stimulus	(Figure	4F).	 	These	results	 indicate	that	for	stimuli	that	drive	reliable	behavior,	stimulus	onset	
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increases	the	fraction	of	responsive	L2/3	neurons	by	at	most	8%.	This	fraction	was	independent	of	the	

contrast	or	duration	of	the	stimulus.	Among	L5/6	neurons,	this	fractional	increase	is	greater	(12%)	but	still	

represents	a	small	minority	of	total	neurons	(data	not	shown).	

Visual	responses	in	V1	are	unreliable	
	Sparse	 responses	could	still	underlie	 reliable	behavior	 if	 individual	neurons	could	 respond	reliably.	To	

study	the	reliability	of	neural	responses,	we	measured	the	probability	that	neurons	would	respond	with	

at	 least	 one	 spike	 to	 stimulus	 presentation.	 We	 show	 the	 responses	 of	 one	 such	 L2/3	 neuron	 with	

preferred	orientation	to	the	right	of	vertical	(4F-H).	The	background	activity	of	the	V1	neurons	was	very	

low	and	they	failed	to	fire	in	response	to	the	visual	stimulus	on	many	trials,	even	at	the	highest	contrast	

and	 duration	 (Figure	 4H).	 To	 assess	 the	 influence	 of	 contrast	 on	 spike	 probability	 we	 calculated	 the	

fraction	of	trials	which	elicited	at	least	one	spike	during	the	time	that	spanned	the	stimulus	presentation	

and	extended	100	ms	after	stimulus	offset.	The	spike	probability	changed	as	we	varied	contrast	at	the	

preferred	orientation	 (Figure	4F-H).	 Trials	where	 the	neuron	 failed	 to	 respond	with	 a	 single	 spike	 are	

denoted	as	grey	lines	across	the	duration	of	the	trial.	The	neuron	responds	unreliably	even	at	the	highest	

contrast	(Figure	4H)	and	this	reliability	only	reduces	for	lower	contrasts	(Figure	4F,	4G).		

To	 measure	 the	 contrast	 and	 duration	 dependence	 of	 response	 probability,	 we	 split	 the	 recorded	

population	of	neurons	into	populations	sensitive	to	orientation	tilted	to	the	right	of	vertical	and	to	the	left	

of	vertical.	Across	the	population,	even	at	the	highest	contrast	and	highest	duration	presented,	neurons	

fire	spikes	on	fewer	than	20%	of	trials	(Figure	4J,	black)	on	average.	Responses	at	lower	contrasts	(Figure	

4I,	grey)	and	durations	elicit	spikes	on	fewer	trials.	Thus,	for	the	stimulus	conditions	that	drive	reliable	

behavior	 (low	 contrast,	 100	ms	 stimuli/high	 contrast	 50	ms	 stimuli)	 neurons	 that	 are	 responsible	 for	

encoding	that	behavior	fire	fewer	than	0.1	spike	every	trial.	
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Individual	neurons	encode	short	stimuli	poorly	
Given	the	unreliability	of	individual	neurons,	we	used	the	trial-to-trial	responses	to	decode	the	orientation	

of	 stimuli.	 We	 split	 the	 responses	 of	 individual	 sessions	 across	 differing	 durations,	 orientations	 and	

contrasts	 into	 “training”	 (70%)	and	 “test”	 (30%)	 sets	 (Figure	5A,	 See	Methods,	 Fitting	Performance	of	

Individual	Neurons	and	for	Populations	of	Neurons	in	a	Session).	A	logistic	regression	model	was	created	

on	the	training	set	and	used	on	the	test	data	to	obtain	decoding	performance	for	the	neuron	(Figure	5A).	

To	ensure	that	the	choice	of	trials	did	not	bias	the	performance	of	the	logistic	regression	model,	we	fit	the	

model	to	different	random	subsets	of	trials	(splits)	100	times	and	used	the	average	performance	across	

these	 different	 subsets	 as	 a	 measure	 of	 the	 decoding	 performance	 of	 the	 neuron	 in	 predicting	 the	

stimulus.	Individual	neurons	encoded	the	orientation	of	the	stimulus	poorly.	Average	performance	across	

these	 100	 subsets	 across	 all	 stimulus	 conditions	 varied	 from	0.44	 to	 0.59	 (Figure	 5C),	 compared	with	

chance	performance	of	0.50.	The	process	of	fitting	a	logistic	regression	to	the	responses	did	not	always	

improve	prediction,	even	for	the	training	dataset.	However,	a	small	subset	of	the	neurons	(13.8%)	showed	

reliably	 improved	prediction	 in	at	 least	70	out	of	100	 training	 sets.	The	performance	of	 this	 subset	of	

neurons,	 tested	on	the	corresponding	“test”	dataset,	 (Figure	5C,	Blue)	was	marginally	but	significantly	

higher	 than	 the	 overall	 population	 (0.52	 vs	 0.5,	 p<10-19,	 Mann-Whitney-Wilcoxon	 U	 test).	 This	

subpopulation	had	units	whose	orientation	preference	was	enriched	in	angles	around	the	discriminated	

stimulus	(data	not	shown).	Specifically,	this	orientation	preference	distribution	was	significantly	different	

than	a	flat	distribution	(KS-test,	p<0.01)	as	well	as	the	distribution	of	orientation	preference	of	the	overall	

population	 (KS-test,	 p<0.01).	 Within	 this	 sub-population,	 performance	 increased	 with	 contrasts	 and	

durations	 in	a	manner	consistent	with	 the	 improvement	 in	performance	of	subjects	 in	 the	orientation	

discrimination	task	(cf.	Figure	5D	vs	Figure	1F).	Nevertheless,	even	the	best	performing	individual	neuron	

was	not	close	to	the	performance	of	the	whole	animal	(e.g.	~80%		behavioral	performance	for	full	contrast	

stimuli	 that	 lasted	100	ms	or	 ~70%	 for	 low	 contrast	 stimulus	 that	 lasted	 100	ms),	 indicating	 that	 any	
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strategy	 that	 relies	on	 the	 response	of	an	 individual	high	performing	neuron	was	unlikely	 to	drive	 the	

behavior	of	the	animal.		

Integrating	information	across	neurons	predicts	orientation	
To	determine	how	decoding	of	stimulus	improves	with	integration	of	information	from	multiple	neurons,	

we	 used	 the	 simultaneously	 recorded	 spike	 rates	 in	 all	 the	 neurons	 recorded	 in	 a	 session	 to	 fit	 a	

multinomial	logistic	regression	similar	to	the	method	employed	for	the	single	neuron	fits	(see	Methods,	

Fitting	Performance	of	Individual	Neurons	and	for	Populations	of	Neurons	in	a	Session).	Performance	with	

multinomial	logistic	regression	was	directly	correlated	both	with	the	number	of	simultaneously	recorded	

neurons	in	the	session	(Figure	5E,	r=0.48,	p<10-3)	as	well	as	with	the	number	of	reliable	neurons	recorded	

in	the	session	(Figure	5F,	r=0.54,	p<10-4).	There	was	rapid	increase	in	performance	with	recruitment	of	

additional	neurons	 indicating	a	high	sensitivity	 to	performance	of	 integrating	 information	 from	even	a	

relatively	small	number	of	neurons.	To	estimate	the	number	of	neurons	required	to	perform	as	well	as	

the	 animal,	 we	 simulated	 new	 sessions	 using	 increasing	 subpopulation	 of	 neurons	 from	 the	 overall	

population.	Each	neuron	in	the	subpopulation	was	selected	at	random	with	replacement	from	the	original	

population	and	firing	rates	for	multiple	trials	simulated	from	known	responses	of	the	neuron	for	similar	

stimuli	(Figure	5B,	also	see	Methods,	Simulating	Neural	Subpopulations	and	Measuring	Performance	of	

Simulated	 Populations).	 We	 used	 these	 virtual	 sessions	 along	 with	 known	 logistic	 fits	 for	 individual	

neurons	to	create	a	multinomial	logistic	regression	(Figure	5B).	This	analysis	revealed	that	performance	

improved	with	the	number	of	neurons	used	and	was	dependent	on	the	contrast	(Figure	5G;	100	ms	stimuli	

of	high	and	low	contrast)	and	duration	(not	shown)	of	the	stimulus.	We	used	the	population	dependence	

curves	along	with	known	performance	of	the	average	subject	in	the	behavioral	task	to	estimate	how	many	

reliable	neurons	would	be	required	to	decode	the	stimulus	as	well	as	the	average	subject	could.	Across	

stimulus	 conditions,	 a	 few	 tens	 to	 a	 few	hundred	neurons	 are	 required	 to	match	 the	performance	of	

subjects	from	behavioral	experiments	(Figure	5H)	averaging	49	neurons	for	low	contrast	stimuli	and	65	
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neurons	 for	high	 contrast	 stimuli.	 This	 still	 represented	<0.1%	of	 the	neurons	 in	V1	and	 suggests	 that	

information	contained	in	the	sparse	and	variable	firing	pattern	in	V1	is	sufficient	to	account	for	visually-

guided	 behavior.	 Our	 resampling	 analysis	 of	 the	 population	 dependence	 of	 performance	 removed	 all	

covariations	in	the	responses	of	neurons.	To	estimate	if	such	correlations	were	important	for	decoding,	

we	created	virtual	sessions	that	removed	any	correlations	present	in	the	neural	responses	within	a	session	

by	 swapping	 spike	 numbers	 across	 trials	 with	 matched	 stimulus	 parameters	 (orientation,	 contrast,	

duration).	We	then	fit	multinomial	logistic	regressions	to	the	shuffled	sessions	(Figure	5I)	similar	to	the	

procedure	described	earlier.	On	average,	shuffling	improved	the	performance	marginally	but	significantly	

(Δperformance	 =	 0.012,	 p<0.001,	Mann-Whitney-Wilcoxon	 U	 test,	 not	 shown).	 However,	 this	 did	 not	

significantly	affect	the	slope	of	the	Performance	vs	Number	of	neurons	curve	(shuffled,	red	vs.	original,	

blue,	Figure	5J)	indicating	that	the	correlations	have	little	effect	on	the	decodability	of	the	stimulus.	Thus,	

our	 population	 estimates	 are	 a	 reasonable	 approximation	 to	 the	 real	 requirements	 of	 animals	

discriminating	gratings	based	on	a	spike	rate	code.	

Discussion	

Our	assessment	of	the	timescale	of	evidence	integration	for	visually	guided	decision	making	was	enabled	

by	the	development	of	a	high-throughput	platform	for	studying	visual	function	in	rodents24.	We	adapted	

this	platform	for	mice	such	that	dozens	of	mice	would	perform	hundreds	of	trials	daily	and	quickly	learned	

many	 kinds	 of	 visually	 directed	 behaviors.	 By	 simultaneously	 training	 and	 testing	 multiple	 subjects	

programmatically,	 we	 were	 able	 to	 collect	 behavioral	 information	 at	 scale,	 allowing	 us	 to	 measure	

psychophysical	tuning	curves	by	changing	parameters	of	the	stimulus	used	to	probe	the	behavior24.	We	

first	 measured	 the	 contrast	 tuning	 of	 orientation	 discrimination	 (N=8	 mice).	 The	 threshold	 contrast	

measured	 (~15%)	was	 similar	 to	 thresholds	measured	earlier	 in	mice25–28,	 comparable	 to	 those	of	 the	

hooded	rat29	 	but	 is	an	order	of	magnitude	higher	than	contrast	thresholds	 in	monkeys	and	humans30.	
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Nevertheless,	 mice	 improve	 performance	 with	 stimulus	 duration	 and	 thus	 are	 capable	 of	 evidence	

integration	across	time.	This	is	similar	to	the	behavioral	responses	in	rats31,	but	potentially	different	from	

responses	in	monkeys	and	humans32.	

One	of	 the	principal	 findings	of	 this	study	 is	 that	mice	can	extract	sufficient	 information	on	very	short	

timescales	 (tens	of	ms)	 to	perform	visually	driven	tasks.	Moreover	 the	useful	 integration	 times	are	an	

order	of	magnitude	shorter	than	typical	stimulus	duration	used	to	probe	visual	perception	in	mice26,27,33,34.	

The	maximal	 integration	time	–	time	beyond	which	subjects	do	not	 integrate	visual	 information	–	was	

~200	ms.	This	may	not	reflect	an	inability	of	mice	to	integrate	information	over	longer	time	durations	and	

might	just	reflect	the	strategy	subjects	use	to	maximize	reward	given	the	non-zero	cost	of	accumulating	

evidence	 35,36.	 Indeed,	 in	 other	 tasks	 rats	 are	 known	 to	 integrate	 information	 over	 many	 seconds37.	

Nevertheless,	subjects	that	integrate	information	quickly	perform	well	in	the	orientation	discrimination	

task.		

The	 ability	 of	 mice	 to	 discriminate	 orientation	 requires	 V1,	 as	 their	 performance	 is	 compromised	 by	

optogenetic	 inhibition	 of	 V1	 responses.	 This	 is	 consistent	 with	 known	 response	 properties	 of	 V1	

neurons38,39	and	with	prior	research	in	rodents26	investigating	the	requirement	of	various	visual	pathways	

for	perception.	At	these	short	time	scales,	we	find	that	responses	in	V1	are	sparse	and	unreliable.	We	find	

that	the	average	neurons	can	fail	to	produce	even	a	single	spike	to	preferred	orientations	on	85%	of	the	

trials	 on	 average	 while	 still	 allowing	 maximal	 performance	 (>85%	 correct)	 in	 subjects.	 The	 ability	 to	

discriminate	 orientation	 from	 responses	 of	 individual	 neurons	 based	 on	 a	 spike	 number	 code	 varied	

between	 0.43	 and	 0.58	 indicating	 that	 the	 best	 performing	 neurons	 do	 not	 come	 close	 to	 accurately	

predicting	 stimulus	 orientation.	 This	 stands	 in	 contrast	with	 earlier	work40–42	 indicating	 that	 some	 V1	

neurons	)	can	be	as	sensitive	or	more	sensitive	than	the	subject.	It	remains	possible	that	task	engagement	

might	 increase	 the	 reliability	 of	 the	 neurons	 in	 such	 a	 manner	 that	 neurons	 become	 highly	 reliable.	

However,	 this	 increase	 in	 reliability	 needs	 to	 be	 large	 and	 prior	 estimates	 of	 reliability	 changes	 with	
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training	 do	 not	 show	 such	 large	 increases43.	 To	 assess	 if	 training	 in	 the	 behavioral	 task	 improves	 the	

reliability	 of	 the	 neurons,	 we	 recorded	 from	 an	 additional	 cohort	 (N=6	 mice,	 16	 sessions)	 that	 had	

experience	with	the	orientation	discrimination	task.	We	found	that	the	response	probabilities	measured	

from	these	animals	were	not	significantly	different	from	those	measured	in	naïve	animals.	Recording	in	

the	presence	of	task	engagement	might	further	change	these	responses,	however,	we	do	not	have	data	

to	address	that	question.	Since	the	animal	performs	much	better	than	would	be	predicted	from	single	unit	

responses,	 we	 sought	 to	 explore	 the	 impact	 of	 pooling	 information	 over	 populations	 of	 neurons	 on	

stimulus	 prediction.	 Based	 on	 the	 approximation	 that	 firing	 rates	 are	 uncorrelated,	we	 estimate	 that	

pooling	across	~50	reliable	neurons	would	be	required	to	perform	as	well	as	the	subject.	Prior	estimates	

of	the	population	requirements	of	neural	coding	has	indicated	that	very	few	neurons	may	be	required	for	

certain	kinds	of	sensory	discriminations	in	mammals40,41,44,45.	However,	the	minimal	required	population	

requirements	measured	using	sparse	optical	activation	to	be	comparable	to	that	measured	in	this	study46.	

The	mouse	V1	contains	~	1	million	neurons20,47,48	in	each	hemisphere.	Thus,	the	orientation	discrimination	

task	requires	only	a	small	fraction	of	the	overall	population	(<0.1%)	for	adequate	performance.		

We	find	that	the	performance	of	the	animal	peaks	at	about	80%.	Given	the	number	of	neurons	available	

to	 encode	 the	 stimulus,	 and	 the	 small	 fraction	 required	 to	 perform	 as	well	 as	 the	 animal,	why	 don’t	

subjects	use	more	neurons	to	improve	performance?	Our	estimate	of	the	population	requirement	is	based	

on	a	neural	decoding	model	that	uses	only	trial-by-trial	spike	counts.	Models	that	use	average	firing	rates	

within	a	time	period	to	indicate	the	strength	of	the	stimulus	have	a	long	history	in	the	literature49	and	are	

widely	used50–52.	However,	cortical	responses	can	be	temporally	precise	under	appropriate	conditions53,54.	

Many	variations	of	a	temporal	codes	have	been	proposed	including	models	that	consider	latency	to	first	

spike3,	phase	of	spike	relative	to	underlying	oscillations55,56	or	co-activation	of	ensembles	of	neuron57–60.	

However,	 this	 temporal	precision	typically	comes	with	 improved	 information	flow	within	the	brain61–63	
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and	 if	 used	 should	 reduce	 the	 population	 requirement	 below	 that	measured	 in	 our	 data.	 Thus,	 such	

temporal	codes	cannot	explain	why	subjects	are	unable	to	perform	better.	

While	coordinated	temporally	precise	firing	patterns	cannot	explain	performance	 in	OD	tasks,	another	

form	 of	 coordination	 among	 neurons	might	 affect	 decodability:	 Neural	 responses	within	 cortex	 show	

significant	 correlation	 with	 one	 another64,65.	 Covariations	 in	 neuronal	 responses	 prevent	 pooling	

responses	 across	 multiple	 neurons	 from	 removing	 noise66	 and	 therefore	 might	 reduce	 the	 overall	

information	available	to	the	subject.	Indeed,	the	effects	of	attention	on	improving	perception	are	thought	

to	largely	be	due	to	changes	in	the	correlation67,68.	Thus,	it	is	possible	that	correlations	across	V1	neurons	

limit	the	total	information	the	animal	can	extract	from	the	population.	Alternatively,	however,	correlation	

could	make	decoding	stimuli	easier	if	it	is	another	channel	to	communicate	information	about	the	stimulus	

present	in	the	animal’s	environment.	In	this	situation,	including	correlations	might	improve	the	code69,70.	

We	 investigated	the	effects	of	correlation	by	artificially	removing	them	from	our	recorded	sessions	by	

shuffling	neural	responses	across	trials	(Figure	5	I,J).	While	shuffling	improved	performance	on	average,	it	

did	not	substantially	change	the	slope	of	the	Performance	vs.	number	of	Neurons	curve	(Figure	5J).		This	

suggests	that	correlations	play	only	a	marginal	role	in	affecting	the	cortical	code	underlying	orientation	

discrimination	at	the	 limits	of	perception.	However,	even	small	correlations	can	affect	the	decoding	of	

stimuli	 if	 information	 is	spread	across	 large	populations	of	neurons.	We	have	only	tested	the	role	that	

correlations	play	for	population	sizes	between	1	and	~50	neurons.	Based	on	the	population	requirement	

for	 reflecting	 behavioral	 performance	 (~50	 reliable	 discriminators)	 and	 the	 measured	 prevalence	 of	

reliable	 discriminators	 (1	 in	 7.5),	 we	 would	 then	 need	 to	 measure	 the	 influence	 of	 correlation	 on	

simultaneously	 recorded	 population	 of	 size	 ~375	 neurons.	 We	 have	 not	 considered	 the	 effects	 of	

correlations	on	such	a	large	population	in	our	models.	Nevertheless,	L2/3	neurons	we	record	from	are	

known	to	receive	many	inputs	from	nearby	L2/3	neurons	and	are	likely	to	exhibit	significant	correlations	
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in	 responses71,72.	 Future	 experiments	 should	 aim	 to	 record	 from	 such	 large	 populations	 and	 directly	

measure	the	effects	of	correlations	on	decodability.	

Finally,	 given	 the	 unreliability	 of	 individual	 neurons	 and	 the	 evidence	 that	 behavioral	 performance	 is	

dependent	on	pooling	 information	 from	a	population	of	neurons,	 it	 is	worth	 asking	how	such	pooling	

would	be	achieved	in	the	cortex.	Both	L2/3	neurons	and	L5/6	neurons	are	known	to	receive	information	

from	 L2/3	 neurons.	 So,	 these	 are	 likely	 populations	 whose	 firing	 would	 reflect	 pooled	 population	

response.	The	fact	that	even	the	best	performing	L2/3	neurons	are	poor	predictors	of	performance,	and	

previous	data	indicating	L2/3	neurons	have	a	bias	towards	making	connections	with	other	L2/3	neurons	

with	similar	Orientation	Selectivity73,74		suggests	that	L2/3	may	not	be	the	site	of	population	pooling.	L5/6	

responses	while	more	reliable,	are	still	not	enough	to	perform	as	well	as	the	animal	in	such	a	behavioral	

discrimination	task.	This	again	eliminates	L5/6	as	the	location	of	the	population	pooling.	Thus,	the	site	of	

population	 pooling	must	 lie	 outside	V1.	 Careful	 dissection	 of	 the	 visual	 pathway	 through	optogenetic	

inactivation	of	secondary	visual	areas	along	with	recording	neural	responses	in	these	areas	may	be	needed	

to	definitively	identify	the	integrator.	Nevertheless,	this	integrator	must	be	capable	of	producing	reliable	

outputs	from	the	unreliable	outputs	of	V1.	Our	findings	provide	evidence	that	visually	guided	behavior	at	

the	 limits	 of	 perception	 relies	 on	 effective	 integration	 of	 information	 across	 units	 with	 sparse	 and	

unreliable	responses	to	stimuli.	

Methods	
All	procedures	were	performed	with	the	approval	and	guidance	of	the	Institutional	Animal	Care	and	Use	

Committee	(IACUC)	at	the	University	of	California,	San	Diego.	We	used	N=35	adult	male	and	female	mice	

for	this	study.	

Behavioral	Training	
Behavioral	training	methods	were	adapted	from	training	systems	developed	previously	for	rats	24.	Water	

restricted	adult	(>P90)	male	and	female	mice	were	trained	to	use	an	operant	conditioning	chamber	to	
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receive	 water	 rewards	 while	 performing	 visually	 guided	 tasks.	 Water	 restriction	 and	 behavioral	

training/testing	 continued	 five	 days	 a	week	 followed	 by	weekends	where	 subjects	 received	water	ad	

libitum.	Measuring	subject	weight	over	time	enabled	careful	monitoring	of	dehydration	status.	Subject	

weight	was	kept	above	90%	of	adult,	non-water	restricted	weight.	The	operant	conditioning	chamber	was	

a	transparent	arena	with	three	equally	interspaced	(distance	of	10	cm)	ports	to	record	mouse	responses	

and	provide	water	rewards.	The	arena	was	adjacent	to	a	linearized	LCD	screen	(Viewsonic	V3D245)	that	

displayed	 visual	 stimuli.	Mice	 licked	 the	 request	 port	 (center	 port)	 to	display	 a	 visual	 stimulus	on	 the	

monitor.	Mice	respond	to	the	displayed	stimulus	by	licking	one	of	the	response	ports	(left	and	right	ports).	

Correct	responses	were	rewarded	with	a	small	droplet	of	water	(~	10	μL)	while	incorrect	responses	were	

punished	with	a	timeout	(5-20	s).	Auditory	feedback	consisting	of	beeps	of	various	frequencies	and	white	

noise	stimuli	were	also	 included	to	further	 indicate	the	nature	of	the	responses:	correct,	 incorrect,	try	

again,	 etc.	 Throughout	 the	 training	 and	 testing	 process,	 we	 varied	 the	 reward	 size	 and	 the	 timeout	

duration	to	maintain	high	motivation	in	the	subject.	

Task	Sequence	and	Parameters	of	Stimuli	for	Behavior	
Mice	learned	visual	discrimination	tasks	over	many	weeks	performing	hundreds	of	trials	a	day	and	many	

thousand	trials	over	the	course	of	the	experiment.	High	performance	 in	the	orientation	discrimination	

tasks	was	achieved	by	taking	the	mice	through	a	series	of	shaping	trials.	These	trials	trained	naïve	mice	in	

using	the	operant	chamber	effectively,	and	in	learning	the	structure	of	a	self-directed	two-alternateive	

forced	choice	(2AFC)	trial	before	training	them	on	orientation	discrimination.	We	describe	the	shaping	

steps	 for	 two	 experiments	 relating	 to	 behavior:	 basic	 characterization	 of	 orientation	 tuning	

(Supplementary	 Table	 1)	 and	 measuring	 integration	 times	 (Supplementary	 Table	 2).	 Preliminary	

experiments	determined	the	specific	parameters	used	to	probe	behavior	in	the	orientation	discrimination	

task	(data	not	shown).	The	screen	subtended	an	angle	of	100°	X	65°	(width	X	height)	with	respect	to	the	

subject.	 The	 spatial	 frequency	 of	 the	 gratings	 used	 for	 these	 experiments	 (0.08	 cpd)	 maximized	
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performance	in	most	subjects.	We	used	gratings	tilted	45°	to	the	vertical	instead	of	vertical	and	horizontal	

gratings	 to	 prevent	 subtle	 variations	 in	 contrasts	 while	 rendering	 vertical	 vs	 horizontal	 gratings	 from	

influencing	the	behavior	in	an	orientation	independent	fashion.	While	preliminary	experiments	used	full-

screen	 stimuli,	 all	behavioral	data	 shown	 in	 the	paper	used	a	 circular	aperture	of	diameter	~60°.	 This	

ensured	that	the	spatial	frequency	of	the	stimulus	at	the	edge	of	the	aperture	was	no	greater	than	0.11	

cpd.	This	spatial	frequency	was	not	so	different	as	to	change	the	overall	performance	of	the	animal	and	

yet	was	high	enough	to	allow	multiple	cycles	of	gratings	within	the	aperture	such	that	the	mean	luminance	

presented	varied	by	less	that	2%	at	different	times	during	the	trial	(for	drifting	gratings)	or	for	different	

trials	(for	flashed	gratings).	When	different	contrasts	were	shown	on	the	screen,	the	stimuli	presented	

were	 isoluminant	 with	 a	 mean	 luminance	 equal	 to	 the	 background	 luminance.	While	 identifying	 the	

integration	duration	of	subjects,	we	used	flashed	gratings	with	random	spatial	phases	instead	of	drifting	

gratings	because	for	the	durations	tested,	the	stimulus	would	have	changed	little	and	would	have	changed	

inconsistently	 from	 trial	 to	 trial.	 The	 randomized	 phases	 prevented	 the	 animal	 from	 using	 luminance	

information	to	perform	the	task	–	they	had	to	use	the	overall	angle	of	the	grating	presented	to	perform	

the	task.		

Analysis	of	Behavior	
We	programmatically	capture	various	 facts	about	each	trial	performed	by	subjects.	This	allowed	us	 to	

perform	quantitative	assessment	of	behavioral	performance.	 In	our	 tasks,	 the	subjects	have	complete	

control	over	when	trials	are	requested	and	when	they	respond	to	trial	requests.	For	analysis,	we	excluded	

trials	that	were	completed	within	50	ms.	Such	fast	responses	would	have	required	unattainable	motor	

speeds	and	likely	indicated	water-clogged	ports	due	to	incomplete	reward	consumption.	This	condition	

excluded	<0.1%	of	the	trials.	We	further	excluded	trials	that	took	>5	s.	This	was	to	ensure	that	we	only	

counted	trials	where	subjects	were	highly	motivated	to	perform	the	task,	excluding	trials	where	subjects	

were	distracted	or	 in	a	 low	motivational	 state.	The	 fraction	of	 trials	 rejected	due	 to	 large	RTs	did	not	
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exceed	3.05	%	in	any	of	our	subjects	and	averaged	1.18	±	0.91	%,	(mean	±	sd).	We	measured	confidence	

intervals	on	the	performance	(#	trials	correct/#	trials	total)	using	the	Clopper-Pearson	method	75	and	the	

significance	of	difference	in	binomial	proportion	using	Agresti-Caffo	statistics	76.	

Psychometric	data	fitting	
In	the	experiments	where	we	vary	various	features	of	the	sensory	input	(contrast	and	duration),	we	model	

subject	performance	as	a	function	of	the	strength	of	the	stimulus:	

Ρ " = 	ℱ " − '
( ; *, , 	

where	‘P’	is	the	psychophysical	performance	function,	‘ℱ′	is	the	logistic	function,	such	that	

F /; *, , = 	, + (1 − * − ,) 1
1 + 456 	

‘s’	is	the	strength	of	stimulus,	‘m’	is	the	stimulus	strength	at	half-maximum	performance,	‘w’	is	the	width	

of	 the	psychometric	 function	 (stimulus	strengths	where	 the	psychometric	 function	changes),	 ‘l’	 is	 the	

lapse	rate	and	‘g’	is	the	guessing	rate.	In	our	analysis	of	contrast	threshold,	we	define	stimulus	contrast	at	

half-maximum	performance	as	the	threshold	contrast	(denoted	as	υ)	and	in	our	analysis	of	 integration	

times,	we	define	the	stimulus	duration	at	half-maximum	performance	as	the	threshold	integration	time	

(denoted	as	t).	Since	all	our	behavioral	data	was	obtained	with	a	2-AFC	trial	structure,	we	set	g	to	0.5	in	

our	analyses.	Consistent	with	this	assumption,	when	subjects	were	presented	with	trials	having	little	or	

no	 information	 about	 the	 correct	 response	 (zero	 contrast	 stimulus	 or	 very	 low	 duration	 stimulus),	

subjects’	performance	was	no	better	than	chance.	We	then	identified	those	parameters	(m,w,l)	that	best	

fit	 our	 data.	 To	 identify	 these	 parameters,	 we	 used	 constrained	 maximum	 likelihood	 techniques	 –	

techniques	 that	 maximizes	 the	 likelihood	 of	 the	 given	 data	 for	 some	 estimates	 of	 the	 unknown	

parameters,	subject	to	constraints	–	to	create	point	estimates.	These	analyses	forced	guessing	rates	to	

0.5	and	assumed	that	priors	for	the	lapse	rates	(l)	followed	a	beta	distribution	with	shape	parameters	
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(1.2,	 12)	while	 the	priors	 for	 ‘m’	 and	 ‘w’	were	 flat	 through	 the	 stimulus	 range.	We	 sampled	 from	 the	

posterior	distribution	using	Markov-chain-Monte-Carlo	techniques	and	used	the	95-percentile	range	of	

the	marginal	 of	 the	 posterior	 distribution	 of	 the	 fitted	 parameters	 as	 the	 confidence	 interval.	 These	

algorithms	 are	based	on	 previously	 described	open-source	methods	 (psignifit)77.	We	 identify	 the	

integration	time	at	the	total	time	after	which	the	performance	of	the	animal	does	not	change	appreciably.	

This	includes	the	time	required	to	reach	half-maximum	performance	(υ)	and	the	time	duration	over	which	

the	performance	changes	from	half-max	to	full	max	performance	(w/2).	Thus,	the	total	integration	time	

is	υ	+w/2.	

Animal	variability	and	use	of	average	subject	
The	perceptual	thresholds	measured	varied	from	animal	to	animal.	We	fit	psychometric	tuning	curves	to	

the	responses	of	individual	animals	and	report	the	ranges	of	the	fit	parameters	where	applicable.	When	

we	 report	 aggregate	 values,	 we	 used	 the	 values	 fit	 from	 the	 responses	 of	 an	 average	 subject.	 We	

simulated	the	average	subject	from	the	responses	of	all	the	animals	in	the	population.	However,	different	

subjects	performed	different	number	of	trials	based	on	individual	trial	rates.	Eight	subjects	were	included	

in	the	contrast	threshold	estimation	study	where	subjects	performed	between	2803	-	6078	trials	averaging	

4255	 ±	 1192	 (mean	 ±	 sd).	 Six	 subjects	 were	 included	 in	 the	 visual	 integration	 study	 where	 subjects	

performed	between	16098	-	54654	trials	averaging	32051	±	13896	(mean	±	sd).	To	ensure	equal	weight	

for	each	animal	in	measuring	aggregate	fit	parameters,	we	sampled	the	same	number	of	trials	from	each	

subject	 randomly	 across	 stimulus	 conditions.	We	 created	 the	 average	 subject	 by	 concatenating	 these	

sampled	 responses.	 To	 ensure	 that	 the	 sampling	 process	 did	 not	 bias	 estimates,	 we	 performed	 the	

resampling	 process	 1000	 times.	We	 report	 the	mean	 of	 the	most	 likely	 estimates	 across	 these	 1000	

resamples	for	the	average	subject	and	plot	the	95	percentile	ranges	for	the	same.	
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Recording	electrode	implantation	surgery	for	chronic	probes	
We	used	standard	surgical	techniques	to	implant	Neuronexus	probes	in	the	superficial	layer	of	the	primary	

visual	cortex.		Adult	mice	were	anesthetized	under	isoflurane	(2.5%	(v/v)	for	induction	and	1.5%	(v/v)	for	

maintenance).	After	subjects	were	anesthetized,	the	fur	from	the	top	of	the	head	was	shaved	and	the	

mouse	 injected	 with	 atropine	 to	 minimize	 secretion	 (0.3	 mg/kg),	 and	 dexamethasone	 to	 prevent	

inflammation	(2.5	mg/kg).	Subjects	were	then	placed	on	a	stereotaxic	frame	(Stoelting	Co.,	Wood	Dale,	

IL).	 The	 scalp	 over	 V1	 was	 removed	 using	 surgical	 scissors	 and	 the	 skull	 dried.	 A	 small	 (<0.5	 mm)	

craniotomy	was	made	over	the	monocular	region	of	V1	and	Neuronexus	probes	 (Neuronexus	 Inc,	Ann	

Arbor,	 MI)	 were	 inserted	 (Poly2,	 Poly3	 and	 A4x2-tet	 configurations)	 into	 the	 craniotomy.	 The	 open	

craniotomy	was	covered	with	silicone	gel.	A	second	adjacent	craniotomy	was	made	over	the	olfactory	

bulb	and	ground/reference	screws	were	installed	here.	The	exposed	skull	surface	was	then	closed	using	

dental	cement.	A	custom	designed	head	bar	was	also	installed	to	enable	headfixing	for	later	experiments.	

Subjects	were	then	removed	from	the	stereotaxic	frame	and	allowed	to	recuperate	in	a	heated	chamber	

and	injected	with	buprenorphine	for	post-operative	pain	management	(SQ,	0.3	mg/kg)	All	V1	recordings	

began	at	least	5	days	post-surgery.		

Headcap	surgery	for	acute	recording	preparation	
The	surgical	procedure	was	identical	to	that	of	the	chronic	probe	surgery	in	all	respects	except	that	no	

craniotomy	was	performed	over	V1.	The	skull	surface	was	cleaned	and	the	area	over	V1	was	covered	with	

a	thin	layer	of	cyanoacrylate-based	glue	and	allowed	to	dry	completely.	The	animal	was	allowed	to	recover	

for	5	days	after	surgery.	

Channelrhodopsin	expression	and	fiber-optic	cannula	implantation	
Channelrhodopsin-2	(ChR2)	was	targeted	into	Parvalbumin	positive	(PV+)	fast	spiking	inter	neurons	within	

V1	through	one	of	two	ways.	(1)	PV-cre	(JAX:0080609)	subjects	were	injected	with		200-400	nl	of	AAV2-

Flex-ChR2-tdTomato(UPenn	 Vector	 core	 Cat#:	 AV-9-20297P)	 at	 various	 depths	 using	 a	 Nanoject	 II	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2018. ; https://doi.org/10.1101/424713doi: bioRxiv preprint 

https://doi.org/10.1101/424713
http://creativecommons.org/licenses/by-nc-nd/4.0/


(Drummond	 Scientific,	 Broomall,	 PA)	 bilaterally	 over	 V1	 and	 (2)	 PV-cre	 animals	 (JAX:0080609)	 were	

crossed	with	Flex-ChR2	(JAX:024109)	and	F1	progeny	positive	for	both	genes	were	selected	for	behavior.	

Fiber-optic	cannulae	(MFC_480/500-0.63_3mm_ZF1.25(G)_B60,	Doric	Lenses	Inc.,	Quebec	City,	Quebec,	

Canada)	were	 implanted	 into	the	open	craniotomies	over	V1	such	that	the	fiber	terminus	 lay	over	the	

exposed	skull.	The	open	skull	was	covered	with	dental	cement	and	the	mouse	removed	from	stereotaxic	

frame	and	set	aside	for	recuperation.	As	a	light	stimulation	negative	control,	two	subjects	underwent	a	

sham	 injection.	 These	 subjects	 (PV-cre:0080609)	 were	 implanted	 with	 fiberoptic	 cannulae	 over	 V1	

without	viral	injection.	

Optogenetic	Manipulation	During	Behavior	
Subjects	implanted	with	fiberoptic	cannulae	were	allowed	to	recuperate	for	5	days	after	which	they	

were	introduced	into	the	behavior	chamber.	We	established	baseline	behavioral	performance	in	the	

orientation	discrimination	task	for	~	1	week	before	attaching	the	animal	to	a	fiber-optic	light	source.	TTL	

pulses	from	the	behavior	computer	controlled	the	LED	light	source	(M470F3,	ThorLabs,	Newton,	NJ,	

USA)	through	a	LED	Driver	(LEDDB1,	Thorlabs,	Newton,	NJ,	USA).	This	light	entered	the	behavior	arena	

via	an	optical	commutator	(FRJ_1x1_FC_FC,	Doric	lenses,	Quebec	City,	Canada)	and	then	split	into	two	

through	a	1X2	branching	fiberoptic	patch	cord	(BFP(2)_480/500/900-0.63_0.3m_FCM-2xZF1.25(F)	Doric	

lenses,	Quebec	City,	Canada)	and	mated	with	the	cannulae	with	a	plastic	sleeve.	Based	on	prior	

estimates	of	stimulus	latency	within	V178,	we	extended	the	LED	light	stimulation	past	the	visual	stimulus	

by	100	ms.	Thus,	LED	lights	started	with	stimulus	onset	and	finished	~	100ms	after	stimulus	offset.	We	

estimate	the	LED	power	to	be	~9	mW	at	the	fiber	tip	leading	to	a	power	density	of	~12	mW/mm2.	

	

Stimulus	presentation	and	electrophysiological	recording	from	chronic	probes	
Subjects	 that	 underwent	 electrode	 implantation	 surgery	 were	 allowed	 to	 recuperate	 for	 5	 days.	We	

acclimated	subjects	to	being	head	fixed	for	2	days	before	recording	from	V1	neurons.	Subjects	were	head	
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fixed	by	screwing	the	custom	designed	head	bar	to	a	mating	bar.	The	mating	bar	was	then	attached	to	the	

recording	rig	with	the	mouse	placed	over	a	Styrofoam	ball	suspended	in	air	to	allow	free	range	of	motion	

79,80.	Mice	quickly	adjust	to	being	head	fixed	and	begin	running	on	the	Styrofoam	ball.	Anecdotally,	mice	

run	>50%	of	the	time	(data	not	shown),	but	we	did	not	measure	running	speed	or	pupil	dilation	during	

our	recordings	and	could	not	correlate	these	features	with	spiking	responses	during	our	recording.	While	

the	mouse	 is	 head	 fixed,	 an	 LCD	monitor	 (Viewsonic	V3D245)	 is	 placed	 contralateral	 to	 the	electrode	

implantation	site.	The	LCD	is	the	same	distance	away	from	the	head	fixed	subject	as	it	would	be	during	

behavior.	The	 location	of	 the	monitor	was	adjusted	 to	drive	visual	 responses	 in	 the	V1	neurons	being	

recorded.	The	raw	waveforms	from	V1	are	buffered,	filtered	and	digitized	to	a	hard	drive	using	the	Open	

Ephys81	system.	Concomitant	to	the	physiological	recording,	we	record	synchronizing	TTL	pulses	from	the	

display	 computer	 to	 align	 spikes	 with	 the	 stimulus.	 Stimuli	 presented	 to	 the	 subject	 were	 similar	 in	

characteristics	 to	 the	 stimuli	used	 to	drive	behavior	except	 for	 a	 few	characteristics.	 To	maximize	 the	

number	of	neurons	that	were	driven	by	stimuli,	we	chose	to	use	full	screen	stimuli	instead	of	through	a	

circular	window.	An	 initial	 recording	epoch	collected	the	responses	of	subjects	 to	gratings	of	different	

orientations	(full	contrast,	12	orientations,	flashed	for	500	ms	or	drifting	for	2000	ms).	The	responses	to	

these	 stimuli	was	used	 to	 characterize	 the	orientation	 tuning	of	 the	neurons.	 Some	 sessions	 included	

responses	 to	 long	 duration	 stimuli	 (2000	 ms)	 of	 full	 (100%)	 and	 low	 (15%)	 contrast	 drifting	 gratings	

(temporal	 frequency	 of	 2Hz)	 tilted	 45°	 from	 the	 vertical.	 After	 this	 characterization,	 we	 recorded	

responses	of	neurons	to	flashed	gratings	of	short	durations	(50-200	ms).	These	included	trials	where	the	

contrast	presented	was	zero	and	no	stimulus	was	shown	on	the	screen.	These	trials	measured	background	

firing	rates	for	the	neuron.	

Stimulus	presentation	and	electrophysiological	recording	from	acute	probes	
Subjects	were	allowed	to	recover	for	5	days	post-surgery	and	were	acclimated	to	the	Styrofoam	ball	for	

at	least	2	days	before	the	recording.	On	the	day	of	the	recording,	subjects	were	lightly	anesthetized	and	
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a	small	craniotomy	was	performed	over	V1	and	the	exposed	brain	covered	with	silicone	gel.	The	animal	

recovered	from	anesthesia	for	at	least	2	hours	before	recording.		

Single	unit	identification	
Raw	neural	data	was	filtered	between	300	and	10000	Hz	using	a	zero-phase	digital	filter.	Open	source	

libraries82	(spikedetekt)	were	used	to	detect	putative	spikes	as	significant	voltage	deviations	(>	5	SD	

2.5	 SD	 from	 the	 mean	 voltage).	 Detected	 spikes	 were	 automatically	 clustered	 using	 an	 expectation	

maximization	algorithm	 (klusta82)	which	modeled	 features	 (principal	 components	of	waveforms)	of	

neurons	 as	 a	mixture	 of	 gaussians.	 Clustered	 single	 units	were	manually	 verified	 using	 a	 visualization	

algorithm	(kwik-gui).	Over	clustered	units	were	combined	based	on	the	location	of	detected	spike	on	

the	electrode,	waveform	shape,	feature	stability,	and	absence	of	refractory	violations.	Single	units	showed	

no	refractory	violation	and	were	sufficiently	separated	from	other	units	such	that	total	false	positive	+	

false	negative	rates	are	less	than	5%83.	For	each	unit,	we	extracted	the	location	within	the	brain	calculated	

as	the	location	of	the	electrode	that	had	the	largest	mean	waveform	amplitude.	This	depth	was	used	to	

categorize	the	unit	as	belonging	to	superficial	Layer	2/3	(<400	µm)	or	deep	Layer	5/6	(>450	µm).	As	we	

were	 recording	 with	 chronic	 electrodes,	 some	 units	 were	—detected	 on	 the	 same	 electrodes	 across	

multiple	days.	These	units	were	identified	by	looking	for	units	with	(1)	the	same	waveform	shape	(>95%	

correlation	across	days)	and	(2)	the	same	ISI	distribution	(>95%	correlation	across	days)	present	at	(3)	the	

same	depth	across	days.	We	found	190	V1	units	that	were	present	across	multiple	days.	Duplicate	units	

were	removed	such	that	only	the	responses	of	the	units	on	the	first	day	they	were	present	was	considered	

for	future	analysis.	

Analyzing	V1	Responses	
We	synchronized	spiking	responses	in	V1	with	stimulus	presentation	using	TTL	pulses.	On	each	stimulus	

presentation,	we	extracted	 the	 total	number	of	 spikes	 in	a	 time	windows	 that	 started	with	 the	visual	

stimulus	onset	and	extended	to	500	ms	after	onset.		We	chose	to	analyze	this	time	interval	over	a	time	
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interval	 cotemporaneous	with	 stimulus	presentation	 for	 three	 reasons.	 (1)	V1	 responses	do	not	begin	

immediately	after	stimulus	onset.	Capacitive	charging	effects,	and	line	delays	cause	response	latency	of	

~50-100	ms78,84.	(2)	V1	responses	could	sometimes	extend	far	beyond	the	duration	of	the	stimulus	due	to	

recurrent	activity	within	the	network24.	(3)	Analysis	of	various	time	intervals	showed	that	a	spike	number	

code	that	 included	the	chosen	time	 interval	 (0-500	ms)	maximized	the	average	decoding	performance	

across	all	neurons	(data	not	shown),	had	close	to	the	maximum	number	of	consistent	predictors	of	the	

stimulus	(data	not	shown),	and	completely		covered	the	stimulus	in	all	conditions.	

Fitting	Performance	of	Individual	Neurons	and	for	Populations	of	Neurons	in	a	Session	
Spike	 rates	 for	each	neuron	was	considered	one	at	a	 time.	We	 first	excluded	 the	 firing	 rates	 for	 trials	

without	 stimuli	 (i.e.	 contrast=0).	 The	 firing	 rates	 for	 the	 remaining	 trials	 was	 randomly	 assigned	 to	

“Training”	(70%)	and	“Testing”	(30%).	The	data	in	the	“Training”	set	was	used	to	fit	a	logistic	regression	

model	 (Matlab	®	function	mnrfit)	and	 logistic	regression	coefficients	obtained	for	each	neuron.	This	

regression	coefficient	was	used	to	test	the	model	on	the	“Test”	dataset	(along	with	the	no-stimulus	trials)	

We	repeated	this	process	100	times	with	a	different	subset	of	trials	belonging	to	the	“Training”	and	“Test”	

datasets.	Neurons	whose	regression	coefficients	had	the	same	sign	for	at	least	70	out	of	the	100	attempts	

was	considered	a	consistent	predictor	of	the	stimulus	(i.e.	they	predict	the	stimulus	as	belonging	to	the	

same	orientation	no	matter	which	trials	are	included	in	the	fitting	process).	For	fitting	performance	across	

populations,	we	used	all	the	spike	rates	in	a	session	and	performed	the	regression	in	a	similar	fashion.	The	

decoding	performance	of	a	single	unit	or	of	a	population	was	the	average	performance	across	the	100	

splits.			

Simulating	Neural	Subpopulations	and	Measuring	Performance	of	Simulated	Populations	
For	each	of	the	neurons	in	our	dataset,	we	tabulated	the	spike	count	responses	separated	by	the	stimulus	

conditions	 tested	 in	our	 study	 (contrasts	0,	0.15,1	and	durations	 from	50-200	ms).	To	create	a	virtual	

session	from	our	dataset,	we	first	chose	a	random	subset	from	the	overall	population	with	replacement	
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with	each	neuron	being	equally	likely	to	be	included	in	the	sub-population.	Responses	for	each	neuron	

was	 then	 simulated	 from	 the	 corresponding	 response	 table	 making	 sure	 to	 only	 sample	 from	 the	

responses	 of	 that	 neuron	 for	 that	 stimulus	 condition.	 We	 used	 the	 previously	 calculated	 regression	

coefficients	(calculated	one	neuron	at	a	time)	as	the	regression	coefficient	for	the	simulated	neuron.	The	

orientation	of	 the	stimulus	was	 then	predicted	based	on	these	 independent	 regressors	and	compared	

against	the	input	orientation.	This	was	repeated	1000	times	to	provide	an	estimate	of	the	performance	of	

this	population.			 	
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Figure	1-	Mice	integrate	visual	information.(A)	Schematic	of	trial	structure	for	contrast	dependence	of	
orientation	discrimination.	(B)	Performance	improves	with	contrast.	Sigmoid	fits	to	performance	of	
individual	subjects	(grey)	and	performance	at	specific	contrasts	along	fits	for	the	average	mouse	(blue)	
are	shown.	Also	shown	are	the	MLE	of	contrast	at	half-max	performance	(υ),	tuning	curve	width	(ω)	and	
lapse	rates	(λ).	(C)		Distribution	of	reaction	times	for	the	average	mouse.	Average	reaction	time	(black	
diamond)	with	1	SD	shown.	(D)	Average	reaction	time	as	a	function	of	contrast.	Data	show	expected	and	
95	%	CI	of	mean	reaction	times.	Best	exponential	fit	is	shown	in	red.	(E)	Schematic	of	trial	structure	
measuring	for	integration	time.	Subjects	control	stimulus	onset,	but	stimulus	offset	is	under	
experimental	control.	(F)	Performance	improves	with	stimulus	duration.	Performance	of	individual	
subjects	(thin	lines)	at	high	contrast	(100%,	dark	blue)	and	at	low	contrast	(15%,	light	green)	as	well	as	
performance	with	95%	CI	of	average	subject	(thick	lines)	at	high	contrast	and	low	contrast	(light	green)	
are	plotted.	(G)	Sigmoid	fits	to	performance	of	average	subject	at	high	contrast	(dark	blue)	and	at	low	
contrast	(light	green)	are	plotted.	Inset	shows	features	of	the	sigmoid	fit:	minimal	integration	time	(τ),	
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integration	width	(ω)	and	lapse	rates	(λ).	Maximal	Likelihood	Estimate	of	(H)	minimal	integration	time	
(τ),	(I)	integration	width	(ω),	and	(J)	lapse	rates	(λ)	for	the	individual	subjects	along	with	the	average	
animal	(bold	circle)	at	high	contrast	(dark	blue)	and	low	contrast	(light	green)	are	shown.	Error	bars	
indicate	95%	percentile	ranges	of	fits.	

	

Figure	2	-	Statistics	of	Recording	in	V1.	(A)	Schematic	of	recording	setup.	(top	panel)	Subjects	run	on	a	Styrofoam	ball	suspended	
in	air	wile	recording	in	the	left	primary	visual	cortex.	We	show	visual	stimulation	to	the	right	eye	on	an	LCD	monitor	placed	~15	
cm	 from	 the	eye	 tangential	 to	 the	eye.	 (bottom	panel)	 Stimuli	 are	gratings	of	different	orientations,	 contrasts	and	durations	
separated	by	short	periods	(~1s)	of	gray	screen.		(B)	Number	of	sessions	collected	from	each	subject	(naïve:	black;	experienced:	
grey).	(C)	Distribution	of	total	number	of	units	(top	panel)	and	well	identified	single	units	(bottom	panel)	collected	in	each	session	
(D)	Waveform,	ISI,	and	first	principal	component	of	one	single	unit	(top,	yellow)	and	one	multi-unit(bottom,	green)	simultaneously	
recorded	in	V1	on	two	separate	tetrodes.	(E)	Distribution	of	firing	rates	of	single	units	(solid)	and	multi	unit	activity	(boxed)	across	
all	sessions.	Firing	rates	(F)	and	spike	widths	(G)	as	a	function	of	recorded	depths.	(H)	Firing	rates	as	a	function	of	spike	widths.		
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Figure	3	–	Neurons	in	V1	are	orientation	tuned	and	this	activity	is	necessary	for	orientation	discrimination.	(A)	Schematic	of	
recording	setup.	(Top	panel)	Subjects	run	on	a	Styrofoam	ball	suspended	in	air	while	recording	in	the	left	primary	visual	cortex.	
We	show	visual	stimulation	to	the	right	eye	on	an	LCD	monitor	placed	~15	cm	from	the	eye	tangential	to	the	eye.	(Bottom	Panel)	
Stimuli	are	gratings	of	different	orientations	separated	by	short	periods	(~1s)	of	gray	screen.	(B)	Sample	orientation	tuning	of	two	
neurons	with	preferred	orientation	tilted	to	the	right	(top	panel;	red)	and	preferred	orientation	tilted	to	the	left	(bottom	panel;	
blue).	Arrows	denote	preferred	orientation	vector.	Data	are	mean	±SEM	of	average	firing	rates.	(C)	Distributions	of	OSI	across	the	
population	as	a	function	of	depth	of	the	unit	(Top	panel;	Solid	blue	–	single	units,	light	blue	–	multi	unit)	as	well	as	box	plots	of	the	
distributions	for	superficial(super.)	and	deep	units	 (Bottom	panel;mean	OSI(superficial)=0.29<mean	OSI(deep)=0.38,	One-sided	
KS-test,	p=3	X	10-5)	(D)	Distribution	of	preferred	orientation	calculated	from	the	preferred	orientation	vectors.	(E)	Schematic	of	
behavior.	 Subjects	 control	 stimulus	onset,	 stimulus	offset	 is	 under	 experimenter	 control.	 Stimuli	 last	 100	ms	and	 showed	 low	
contrast	gratings	(c=0.15).	On	random	half	of	trials,	a	blue	LED	light	is	delivered	to	fiberoptic	cannulae	attached	to	the	skull	of	the	
animal.	(F)	Epifluorescent	image	of	visual	cortical	neurons	with	PV+	neurons	in	green	and	neurons	expressing	ChR2	in	red	imaged	
from	coronal	slices	approximately	over	V1	(top	panel)	for	mice	expressing	ChR2	(middle	panel)	and	sham	mice	(bottom	panel)	(G)	
Average	 performance	 in	 trials	 with	 (‘+LED’)	 and	 without	 (‘no	 LED’)	 LED	 activation	 for	 four	 subjects	 expressing	 ChR2	 in	 PV+	
interneurons	and	two	sham	subjects	not	expressing	Channel	Rhodopsin.	Average	performance	is	significantly	reduced	for	PV-ChR	
animals	(paired	t-test,	p=0.0345)	but	not	for	sham	animals	(paired	t-test,	p>0.05)	
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Figure	4	–	Population	responses	are	sparse	and	unreliable.	Schematic	of	a	session.	(A)	The	orientation	(left	=	blue,	right	=	red),	
contrast	(contrast	of	0	–	white,	0.15	–	gray,	1	–	dark	gray)	and	duration	(black	bar	=	200	ms)	of	the	stimulus	of	the	first	100	trials	
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of	a	single	session.	(B)	Heat	map	of	the	spike	rates	of	simultaneously	recorded	neurons	in	a	time	window	that	started	with	stimulus	
onset	and	ended	500	ms	after	stimulus	onset.	Inset	shows	the	scale	of	the	heatmap.	This	shows	25	out	of	39	neurons	recorded	in	
this	session.	(C)	The	fraction	of	total	recorded	neurons	that	produced	at	least	one	spike	in	the	time	window	of	interest.		(D)	The	
distribution	of	fraction	of	responsive	neurons	for	all	trials	pooled	across	all	sessions	plotted	as	a	function	of	contrast	and	duration	
of	stimulus.	Box	plots	indicate	medians	and	quartiles.	Outliers	are	plotted	separately.	(E)	Mean	Fraction	of	responsive	neurons	
across	all	trials	for	all	sessions	plotted	as	a	function	of		contrast	and		duration	of	stimuli.	Not	all	sessions	contained	stimuli	for	0	
contrast.	Diamonds	indicate	mean	across	sessions.	Error	bars	are	95%	CI	of	mean	(*	indicates	t-test,	p<0.05,	n.s.	indicated	t-test	
p>0.05).	None	of	the	comparisons	across	duration	of	stimuli	for	the	same	contrast	was	significantly	different.	(F-H)	Raster	of	the	
responses	of	 a	 single	 L2/3	neuron	with	preferred	orientation	 to	 the	 right	 as	 a	 function	of	Contrast.	 Stimulus	orientation	and	
contrast	(image)	as	well	as	onset	and	offset	times	(blue	curve)	are	provided	above	the	raster.	In	these	panels,	trials	without	a	
single	spike	are	denoted	by	a	gray	line	through	the	duration	of	the	trial.		(I)	The	probability	of	neurons	responding	to	stimulus	with	
a	single	spike	at	different	contrasts(C-1,	black;	C=0.15,	dark	grey;	C=	0,	light	grey	)	as	a	function	of	duration	of	stimulus.	
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Figure	5	–	Integrating	evidence	across	neurons	improves	performance	.	(A)	Schematic	of	logistic	regression	fit.	The	responses	
of	the	neuron	were	split	into	70%	training	(TRAIN)	and	30%	testing	(TEST)	and	spike	counts	were	used	as	features	for	a	logistic	
regression.	Regression	coefficients	calculated	from	the	TRAIN	dataset	was	tested	on	the	TEST	dataset	to	obtain	a	decoding	
performance.	(B)	Schematic	of	resampling	method	to	create	virtual	session	of	different	subpopulation	of	neurons.	‘Virtual’	
neurons	were	subsampled	with	replacement	across	the	entire	dataset	and	spike	counts	of	these	neurons	simulated	by	sampling	
from	their	respective	response	distribution.	Prior	logistic	fits	were	then	used	to	estimate	performance	(C)	Histogram	of	decoding	
performance	of	neurons	(calculated	as	in	A,	with	individual	spike	counts	as	features)	in	the	recorded	population	calculated	as	
the	average	decoding	performance	across	ten	independent	splits	of	training-testing	subsets.	A	performance	of	0.5	indicates	no	
information.	Neurons	that	reliably	improve	the	logistic	fit	upon	inclusion	no	matter	how	the	data	is	split	into	training	and	testing	
is	shown	in	blue.	(D)	Duration	and	Contrast	dependence	of	performance	of	neurons.	Data	show	mean	±	95	%	CI	performance	for	
0%	(unfilled),	15%	(grey)	and	100%	(black)	contrasts	.Multinomial	logistic	regression	fits	are	obtained	from	training	data	and	
tested	on	test	data	as	a	function	of	(E)	total	number	of	neurons	in	the	session	or	(F)	total	number	of	reliable	neurons	in	the	
session.	Circles	indicate	performance	of	individual	sessions.	Solid	line	indicates	best	linear	fit	and	shaded	area	indicates	the	
confidence	interval	of	the	linear	fit.	(G)	Relationship	between	number	of	reliable	neurons	and	performance	measured	for	virtual	
sessions	created	as	in	D	for	gratings	of	high	(blue)	or	low	(green)	contrast	that	lasted	100	ms.	Solid	lines	indicate	median	
performance	and	shaded	areas	indicates	95	percentiles	of	performances	across	10000	sub-samples.	Arrows	indicate	the	
measured	behavior	for	low	and	high	contrast	stimuli	lasting	100	ms	and	dashed	lines	indicate	the	number	of	neurons	required	to	
perform	as	well	as	the	animal.	(H)	Number	of	reliable	neurons	required	to	perform	as	well	as	an	average	subject	as	a	function	of	
stimulus	duration	for	high	contrast	(blue)	and	low	contrasts	(green).	Data	shows	median	±	95	percentiles.	(I)	Schematic	of	
shuffling	strategy	for	estimation	influence	of	correlations	on	performance.	Stimuli	were	grouped	according	to	stimulus	
parameters	(orientation,	contrast,	duration).	Spike	number	swaps	(black	arrows)	occurred	only	between	stimuli	of	identical	
parameters.	(J)	Same	as	in	E	but	for	Original	(blue)	and	Shuffled	(red)	datasets.	
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Supplementary	Figure	1:	Mice	are	trained	in	visual	discrimination	in	an	automated	operant	conditioning	chamber.	(A)	Schematic	
of	 trial	 structure	performed	by	the	subject.	Subjects	 request	 trials	during	the	Request	phase	 (Req.)	by	 licking	the	request	port	
(center).	Upon	trial	request,	a	visual	stimulus	is	presented	on	the	screen	and	the	system	waits	for	animal	response	(response	phase;	
Resp.)	The	system	then	reinforces	subject	response	in	the	reinforcement	phase	(Reinf.)	by	either	providing	water	rewards	(~10	ul)	
for	correct	responses	or	timeouts	(5	–	20	s)	for	incorrect	responses	during	which	subjects	cannot	do	any	further	trials.	After	the	
reinforcement	phase,	the	system	automatically	returns	to	the	request	phase	for	the	next	trial.	(B)	Moving	average	of	performance	
(black)	 of	 an	 example	mouse	 through	multiple	 steps	 (colored	 trial	 blocks)	 during	 the	 course	 of	 the	 experiment.	Mice	 initially	
perform	a	go-towards-luminance	task	(blue).	After	reaching	threshold	performance,	they	are	trained	on	a	go-towards-orientation	
task	(blue-green).	After	reaching	threshold	performance	on	this	task,	mice	move	into	a	series	of	modifications	of	the	go-towards-
orientation	task	where	we	varied	various	features	of	the	stimulus(varied	contrast,	green;	varied	spatial	frequency,	orange;	varied	
orientation,	yellow)	one	at	a	time	keeping	all	the	others	constant.		
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Supplementary	 Figure	 2:	Mice	went	 through	 a	 series	 of	 steps	 to	measure	 integration	 times.	 (A)	 Schematic	 of	 trial	 structure	
performed	by	the	subject.	Subjects	request	trials	during	the	Request	phase	(Req.)	by	licking	the	request	port	(center).	Upon	trial	
request,	a	visual	stimulus	is	presented	on	the	screen	for	a	short	duration	before	reverting	to	a	grey	screen	and	wait	for	subject	
response	 (response	 phase;	 Resp.)	 The	 system	 then	 reinforces	 subject	 response	 in	 the	 reinforcement	 phase	 (Reinf.)	 by	 either	
providing	water	rewards	(~10	ul)	for	correct	responses	or	timeouts	(5	–	20	s)	for	incorrect	responses	during	which	subjects	cannot	
do	any	further	trials.	After	the	reinforcement	phase,	the	system	automatically	returns	to	the	request	phase	for	the	next	trial.	(B)	
Moving	average	of	performance	(black)	of	an	example	mouse	through	multiple	steps	(colored	epochs)	during	the	course	of	the	
experiment.	Mice	initially	perform	a	“go-towards-luminance”	task	(blue).	After	reaching	threshold	performance,	they	are	trained	
on	a	 “go-towards-orientation”	 task	 (blue-green).	 Subjects	were	 then	 trained	 to	perform	OD	on	 lower	 contrast	 trials	 “Change	
contrast”	(green).	In	the	timed	shutoff	step	(brown)	each	trial	request	was	followed	by	at	most	1	second	of	high	contrast	stimulus	
following	which	the	screen	reverted	back	to	gray	screen.	Subjects	were	forced	to	respond	based	on	this	limited	information.	After	
performing	well	on	the	times	shutoff	trials,	subjects	were	shifted	to	trials	where	we	varied	the	duration	of	the	stimulus	widely	for	
durations	between	120	ms	–	2000	ms	in	the	“long-duration”	trials	and	between	16	ms	–	250	ms	in	the	“short-duration”	trials.	We	
manually	moved	the	subject	to	an	earlier	task	(~22000	trials)	to	improve	motivation	and	prevent	learned	helplessness.	The	subject	
was	shifted	back	to	the	timed-shutoff	trials	after	~1000	trials.	

	

	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2018. ; https://doi.org/10.1101/424713doi: bioRxiv preprint 

https://doi.org/10.1101/424713
http://creativecommons.org/licenses/by-nc-nd/4.0/


46	
	

Table	1:	Training	steps	for	basic	characterization	of	orientation	discrimination.	

#	 NAME	 GOAL	 STEP	DETAILS	 GRADUATION	CRITERION	 FIG.	REF.	

1	 Free	drinks	 Learn	to	use	reward	
ports	

Reward	ports	occasionally	squirt	water	 2	days	 NA	

2	 Earned	drinks	 ,,	 Mice	need	to	lick	different	ports	to	receive	
water.	

3	days	 NA	

3	 Luminance	
discrimination	

Learn	2AFC	trial	
structure	

Large,	high	luminance	stimulus	appears	on	
left	or	right	side	of	monitor.	Rewards	only	at	

side	having	high-luminance	

80%	performance	over	the	
previous	200	trials	

Supp.	Figure	1b	
(blue	trial	
blocks)	

4	 Optimal	Orientation	
discrimination	(OD-

optimal)† 

Learn	OD	on	simple	high	
contrast	gratings	

Circular	patch	of	drifting	gratings	(2	Hz,	0.08	
cpd,	100%	contrast)	tilted	left	or	right	(45°)	
to	vertical.	Rewarded	in	the	direction	of	tilt. 

75%	performance	over	the	
previous	200	trials	

Supp	Figure	1b	
(blue-green	trial	

block)	

5	 Varied	contrast†‡ Perform	OD	with	varied	
contrast	

Same	as	Step	4,	except	contrasts	varied:										
c�[0,1] 

	

Manual	graduation	 Supp	Figure	1b	
(green	trial	

block)	

6	 Varied	Spatial	
frequency†	

Perform	OD	with	varied	
spatial	freqs.	

Same	as	Step	4,	except	spat.	freqs.	varied:						
sf�{0.03,	0.06,	0.13,	0.25,	0.5,1}	

Manual	graduation	 Supp	Figure	1b	
(orange	trial	

block’	

7	 Varied	Orientation†‡	 Perform	OD	with	varied	
orientations	

Same	as	step	4,	except	orientations	varied:		
tilted	q�[0,p/4]	from	vertical.	�	

Manual	graduation	 Supp	Figure	1b	
(yellow	trial	

block)	

†:	All	Orientation	discrimination	stimuli	had	randomized	orientation	presented	on	every	trial.	The	direction	of	drift	was	also	randomized	

‡:	These	steps	contained	completely	ambiguous	trials	(0	contrast	in	step	5	and	0	in	step	7).	The	correct	response	port	was	decided	based	on	the	
nominal	orientation	of	the	stimuli	(tilted	right	with	0	contrast	or	0°	gets	rewarded	in	the	right	port).	
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Table	2:	Training	steps	for	measuring	integration	time.	

#	 NAME	 GOAL	 STEP	DETAILS	 GRADUATION	CRITERION	 FIG.	REF.	

1	 Free	drinks	 Learn	to	use	reward	
ports	

Reward	ports	occasionally	squirt	water	 2	days	 NA	

2	 Earned	drinks	 ,,	 Mice	need	to	lick	different	ports	to	receive	
water.	

3	days	 NA	

3	 Luminance	
discrimination	

Learn	2AFC	trial	
structure	

Large,	high	luminance	stimulus	appears	on	
left	or	right	side	of	monitor.	Rewards	only	at	

side	having	high-luminance	

80%	performance	over	the	
previous	200	trials	

Supp.	Figure	2b	
blue	trial	blocks)	

4	 Optimal	Orientation	
discrimination	(OD-

optimal)† 

Learn	OD	on	simple	high	
contrast	gratings	

Circular	patch	of	flashed	gratings	(0.08	cpd,	
100%	contrast,	random	spatial	phase)	tilted	
left	or	right	(45°)	to	vertical.	Rewarded	in	

the	direction	of	tilt. 

85%	performance	over	the	
previous	200	trials	

Supp	Figure	2b	
(blue-green	trial	

block)	

5	 Change	contrast† Perform	OD	at	high	or	
threshold	contrast	

Same	as	Step	4,	except	contrasts	varied	
randomly	c�{0.15,1} 

	

85%	performance	over	the	
previous	200	trials	

Supp	Figure	2b	
(green	trial	

block)	

6	 Timed	shutoff†	 Adjust	to	limited	
information	

Same	as	Step	5,	maximum	duration	of	
stimulus	is	1s.	

85%	performance	over	the	
previous	200	trials	

Supp	Figure	2b	
(brown	trial	

block’	

7	 High	duration	trials†	 Perform	OD	with	varied	
durations		

Same	as	Step	6	but	maximum	duration	
varies�between	128	and	2000	ms.	

Manual	graduation	 Supp	Figure	2b	
(orange	trial	

block)	

8	 Low	duration	trials†	 Perform	OD	with	varied	
durations		

Same	as	Step	6	but	maximum	duration	
varies�between	16	and	500	ms.	

Manual	graduation	 Supp	Figure	2b	
(yellow	trial	

block)	

†:	All	Orientation	discrimination	stimuli	had	randomized	orientation	presented	on	every	trial	
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