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Abstract 
 

We present the Similarity Networks (SIMNETS) algorithm, a computationally efficient 

and scalable method for identifying groups of functionally related neurons within larger, 

simultaneously recorded ensembles. Our approach begins by independently measuring the 

intrinsic relationship between the activity patterns of each neuron across experimental 

conditions before making comparisons across neurons (instead of directly comparing firing 

patterns using measures such as correlations in firing rate or synchrony). This strategy 

estimates the intrinsic geometry of each neuron’s output space and allows us to capture the 

information processing properties of each neuron in a format that is easily compared 

between neurons. Dimensionality reduction tools are then used to map the pairwise neuron 

comparisons into a low-dimensional space where groupings of functionally related neurons 

are identified using clustering techniques. The algorithm’s computational complexity 

scales almost linearly with the number of neurons analyzed and makes minimal 

assumptions about single-unit encoding properties, making SIMNETS especially well-

suited for examining large networks of neurons engaged in complex behaviors. We 

validate the ability of our approach to detect functional groupings using simulated data 

with known ground-truth as well as three datasets including ensemble activity from primate 

primary visual and motor cortex as well as rat hippocampal CA1 region.  
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Introduction 
 

The neural computations underlying complex sensory, cognitive, and motor information 

processing are thought to emerge from interactions across large networks of neurons 

organized across multiple topographical scales. Within large networks, smaller ensembles 

of neurons (‘sub-nets’) engaged in similar information processing tasks have been proposed 

to embody computational units that support specific functions including perceptual 

integration, memory storage/retrieval, and dexterous motor control1–3. Identifying 

functional sub-nets would greatly simplify the process of tracking information flow in 

cortical circuits, modeling neural activity, and ultimately understanding and potentially 

replicating the general principles of neural computation 4–7. While it is now possible to 

record ever larger neural populations, detecting functional groupings of neurons and 

characterizing their computational operations has proven notoriously difficult because of 

the scale of data processing involved and the lack of accepted mathematical tools to 

partition large networks into smaller functional components 8.  

 

One of the critical challenges lies with the selection of an appropriate quantitative 

definition of ‘functional similarity’ across neurons. Motivated by theories of Hebbian cell 

assemblies, several neuron clustering approaches have focused on using synchrony or 

firing rate covaritaions to define functional associations between neurons 9–14. One widely 

discussed hypothesis proposes that synchronously-active neurons could act as an 

independent coding dimension to facilitate perceptual or cognitive integration of the 

information encoded in the firing rates of individual neurons 15–17. Although a number of 

studies have observed synchronous and correlated activity between neurons in multiple 

brain regions, discrepant reports regarding the functional and statistical significance of the 

detected correlations have led to some doubts about usefulness of this approach for 

detecting functionally meaningful ensembles18,19. While focusing on spike rate and spike 

time covariations is intuitive, cross correlation methods do not scale well for large datasets 

and could limit the complexity of the functional relationships that can potentially be 

detected between neurons.  Specifically, these methods prioritize grouping neurons that 

exhibit similar firing patterns9,11,20, as opposed to grouping neurons that exhibit similar 

information processing properties. The underlying premise with this approach is that 

similar firing patterns imply similar encoding properties, however, a growing body of work 

suggests that this may be an oversimplified view 21. Individual neurons in higher-level 

brain areas22,23, motor areas2425, and even primary sensory areas 26, can exhibit highly 

heterogeneous and temporally complex responses 21. Previously, trial-to-trial fluctuations 

of single neuron spiking activity were interpreted as biological noise; however, these 

studies suggest that heterogeneity and temporal complexity are relevant for information 

processing operations taking place across the network. It follows that measures of trial-

averaged spike rate or spike time covariations may neglect important aspects of a neuron’s 

activity that can reveal a functional associations to other neurons. Here, we propose a more 

general strategy to assess and compare the information processing properties of individual 

neurons. 
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SIMNETS: a novel mathematical framework to identify functional neuronal sub-

ensembles  

 

The SIMNETS algorithm is designed to transform spike trains from simultaneously 

recorded neurons into a common representation that captures their information processing 

characteristics in an abstract way. Instead of comparing the spiking output between 

neurons directly, we seek to compare the intrinsic structures of their individual sets of 

spike train outputs, i.e., how ‘self-similar’ a neuron’s spike trains are across time. We 

envision each neuron as performing some unknown operation on a set of high dimensional 

inputs (potentially thousands of synaptic connections). To be useful as a computational 

element, each neuron should have a relatively consistent internal mapping between inputs 

and outputs -- allowing for noise and the potential to change the mapping over time, i.e. 

learning. A given neuron may be insensitive to certain changes taking place across the 

network where it is embedded, and so the neuron’s spike train outputs will appear similar 

across many different global network states. On the other hand, other global network states 

may elicit dramatic changes in the output of the neuron, depending on the strength of the 

relevant synaptic connections. Thus, the spike train outputs generated by a single neuron 

across different perceptual, cognitive, or behavioral states highlight the differences 

between some global network states and generalize over others (note that we define a 

‘network state’ holistically to encompass all neural activity including both incoming 

sensory information as well as internal drives evolving through time). The key insight is 

that we can characterize the information processing occurring at the level of individual 

neurons by examining the differences or similarities between the set of spike train outputs 

generated during different conditions across time. Our basic assumption is that the outputs 

of neurons that are ‘computationally equivalent’ will generalize and differentiate across the 

same sets of network states. Note that this approach makes it possible to compare the 

operations performed by simultaneously recorded neurons on a trial-by-trial basis, without 

requiring explicit knowledge of the type of function they may be computing. 

Mathematically, we can represent the relationship between spike trains originating from a 

given neuron across a set of events of interest, e.g., stimulus presentations, behavioral 

responses, etc., using a pairwise distance matrix, where each entry represents the similarity 

between a pair of spike trains (note that several metrics to quantify spike train similarity 

have been proposed, see Online Methods for a detailed discussion). We shall refer this type 

of matrix as a Spike-Train Similarity (SSIM) matrix (Fig. 1a-c). A SSIM matrix can be 

thought of as a high-dimensional representation of the relationship between the neuron’s 

outputs across experimental conditions, agnostic to any experimenter-selected parametric 

encoding model27 (see Supplementary Fig 1-2 for example single neuron SSIM matrices). 

Stated another way, a SSIM matrix represents the intrinsic geometry of the output space of 

a neuron across a set of sampled conditions (Fig 1d). Geometric models of similarity data 

have a long history of application in the field of psychology, where they have been used to 

model the perceptual relationships between sensory stimuli, i.e. perceptual metric-space28. 

However, it is only more recently that this approach has found application in the field of 

Neuroscience, where it has been successfully used to model the relational structure of 

neuronal ensemble activity patterns29–31 and fMRI activity patterns32. Crucially, when 

neurons are recorded simultaneously, the intrinsic geometry of their output spaces can be 

directly compared. This can be accomplished by comparing their SSIM matrices using 

standard correlation statistics, such as Pearson’s correlation (Fig 1e). Thus, our proposed 

strategy involves calculating the pairwise spike train distances between all spike trains 

generated by a given neuron, and then comparing each neuron’s distance matrix to that of 
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every other neuron in the population. The resulting NxN pairwise correlation measures is 

represented as a single Neuron Correlation (NC) matrix (Fig. 1f), where each column of the 

matrix can be viewed as a vector that represents the functional relationship of a given 

neuron to all others N-1 neurons in the population (Fig. 1g). Standard dimensionality 

reduction techniques (e.g. multidimensional scaling, t-distributed stochastic neighborhood 

embedding) can be used to project these vectors into a low-dimensional Neuron Similarity 

(NS) map such that neurons are positioned according to their information processing 

properties. Applying dimensionality reduction makes the data easier to visualize and 

facilitates statistical analysis. Overall, this representation reduces the problem of 

identifying functional sub-ensembles to one of detecting clusters of neurons within the NS 

map. This step can be accomplished using standard clustering algorithms (e.g. k-means), 

and validated using a Monte-Carlo based approach relying on shuffled distance matrices to 

avoid false cluster discovery (see Methods; supplementary Fig 4). We call this new 

strategy for identifying sub-nets of neurons with similar informational properties 

SIMNETS. The main steps of algorithm are outlined in Fig. 2. Note that there is a wide 

choice of (1) similarity metrics for spike trains, (2) dimensionality reduction algorithms, 

and (3) clustering algorithms that can be employed within the proposed analytical 

framework.  

Fig 1| Assessing functional relationships between neurons by comparing state spaces generated from 

within-neuron single trial spike train distance measures   

 
a. Simulated spike train data for three ‘simultaneously recorded’ synthetic neurons (n) during repeated 
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stimulus presentations: n2 was designed to exhibit similar time-varying firing rate functions to n1 and shared, 

trial-to-trial fluctuations in spike patterns with n3. Top row: trial-averaged firing rate functions for each 

neuron. Bottom row: spike train outputs of each neuron in response to repeated stimulus presentations, 

however, note that n2 and n3 encode a ‘mixed signal’ variable on trial 3 as a reduction in spike rate (n2) and 

a change in the temporal pattern of the output (n3). b. Victor-Purpura (VP) spike train metric applied to n3 

spike trains: the metric assigns an ‘edit cost’ to spike train pairs in accordance to the similarity of their spike 

patterns. c. The relationship between a set of spike trains originating from a common neuron is summarized 

as a pairwise distance matrix; each entry corresponds to the edit-distance between two spike trains. We refer 

to these data structures as spike train similarity (SSIM) matrices d. Visualization of SSIM matrix using a 

graph representation (c); a separate graph is plotted for each matrix. Each point represents a spike train from 

a given neuron and the line connecting pair of points corresponds to the distance values assigned to the spike 

trains. Note that the sizes of the spike train graphs are different across neurons, but that shape of n2 and n3 

graphs are similar, i.e., covariation in their side lengths. (e) Pairs of single neuron SSIM matrices are 

compared using Pearson’s correlation and represented as a Neuron Correlation (NC) matrix. Note that the 

diagonal represents the comparison of each neuron to itself, and so always equal to one. Each NC matrix 

column (broken line) represents the correlations between one neuron versus all others. Each of these column 

vectors can be used to map a neuron into an N-dimensional neuron space.  f. Scatter plot showing the data 

contained in the NC matrix (e): each point corresponds to a single neuron with coordinates defined by a N 

dimensional vector of correlation values, i.e., a NC matrix column. Note that neurons 2 and 3 are located next 

to each other in the map because of the high correlation between their SSIM matrices, which is ultimately 

dependent upon the geometric similarity of their spike train output spaces.  

Unlike methods based on measures of synchronous spiking activity9,20,33, the SIMNETS 

algorithm identifies neurons with similar functional properties, even if they exhibit diverse 

firing statistics, i.e., even if their firing rates or spike times are different. Critically, unlike 

other pairwise methods 9,11,20, SIMNETS is well suited for studying datasets with large 

numbers of neurons and relatively small numbers of experimental trials. Largely because 

the computational cost of the generating the high-dimensional neuron embedding (Fig 2) 

grows linearly with the number of numbers (each additional neuron only requires the 

generation of one additional computationally expensive SSIM matrix). Further, SIMNETS 

can be implemented without a priori knowledge of neural tuning functions or trial labels, 

making it particularly useful for the analysis of complex, naturalistic behaviors.  

 

Fig. 2|The SIMNETS algorithm can be used to identify functionally related groups of 

neurons. 
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The basic steps of the algorithm (demonstrated using synthetic data) are as follows: Step 1. Generate N 

Single-neuron Spike Train Similarity (SSIM) matrices:  extract S spike train events of equal duration from N 

simultaneously recorded neurons and calculate the pairwise spike train distances between all spike trains 

using a predetermined metric, e.g., Victor-Purpura. Step 2. Neuron Correlation (NC) Matrix: pairwise 

correlations between single neuron SSIM matrices are used to generate an NxN NC matrix. Left Circular 

Inset: example neuron pair with a low SSIM correlation value indicating dissimilar spike train geometries. 

Right Circular Inset: neuron pair with a high SSIM correlation value indicating similar spike train 

geometries. Step 3: NC Matrix Dimensionality reduction: project the NxN correlation matrix down into a 

smaller number of dxN dimensions using standard techniques  (e.g. t-SNE). Each row represents the 

coordinates of a single neuron (red broken line) in a low-dimensional space. Step 4. Visualization of Neuron 

Similarity (NS) map and Cluster Detection: each colored point represents a single neuron with x, y, z 

coordinates that correspond to a single row of the low-dimensional data structure shown in step 3. Clustering: 

neuron clusters (denoted using color) are detected in a 10-d space using agglomerative clustering methods 

(e.g., k-means clustering). Inset: Optimal cluster number is estimated as the maximum average silhouette 

value for a range of test cluster number, where a high silhouette value indicates good cluster separation. The 

statistical significance of the estimated optimal cluster number is determined from a null-distribution of 

silhouette values (gray band), which was obtained by repeating steps 2 - 3 on shuffled SSIM matrices (step 1) 

over multiple iterations (see Methods for more details). Neurons assigned to same cluster will have similar 

spike train geometries.   

 

Results 
 

Here, we apply SIMNETS to four different datasets to validate its ability to detect 

functional associations between neurons. We first apply the algorithm to a synthetic dataset 

with known functional ensembles. Performance is compared against an alternative 

approach representative of traditional methods14,34 that use spike train metrics to compare 

the spike patterns between neurons directly. Next, to demonstrate the generalizability of 

SIMNETS, we apply the algorithm to three datasets of real neurons (i.e., single units) 

recorded from non-human primate V135, primary motor cortex (M1) 36, and the rat CA1 

hippocampal region37 (see Methods, table 2).  For the V1 and M1 datasets, the SIMNETS 

neuron functional maps are validated against the estimated computational properties of the 

neurons calculated using parametric tuning models. We use the rat CA1 dataset to 

demonstrate how SIMNETS can be used for exploring the functional properties of neurons 

when the tuning functions of the neurons are not easily quantifiable or are unknown.  

 

 

Synthetic Neuron Population — clustering functionally similar neurons exhibiting 

distinct firing patterns  

 

Here, we apply the SIMNETS algorithm to simulated spike train data from a population of 

180 synthetic neurons comprised of 3 functionally distinct ‘ensembles’ (E1, E2, E3). Each Ei 

ensemble (n = 60, neurons) was designed to represent a sub-group of computationally 

equivalent neurons that exhibited heterogenous firing patterns. Specifically, sub-groups of 

neurons within ensemble Ei responded to a common ‘preferred’ test condition through 

either a change in spike rates (n = 20, neurons), a change in the precise timing of their 

spikes (n = 20, neurons), or a change in both spike rates and spike timing (n = 20, neurons) 

(Fig 3a) (see Methods for more details). We simulated 30, one-second spike trains for each 

of the 180 neurons, which included 10 repetitions of each stimulus (S = 30, spike trains per 

neuron). 
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Figure 3| SIMNETS detects ensembles of functionally similar neurons in population of 

synthetic neurons with mixed coding schemes

 

a. Trial-averaged firing rates for a population of 180 synthetic neurons as a function of three different 

stimulus condition. Neurons are ordered along the y-axis according to preferred condition and by encoding 

strategies. The red-yellow, green, and blue color-hue range of filled circles indicate ensemble membership 

(e.g., n1-60, ensemble 1). Filled circles with dark, mid, and light color-hues indicates the rate neurons, hybrid 

neurons, and temporal coding neurons, respectively. b. SIMNETS NC matrix for three different analysis 

temporal sensitivity values (left-to-right): rate, 100 ms, 5 ms. SIMNETS color-bar represent a range of 

normalized correlation values, where higher correlation values (light pixels) correspond to greater similarities. 

c. Low-dimensional NS map. Each dot represents a single neuron and different color dots indicate each 

neurons’ ensemble membership and coding scheme (color notation similar to a). d. Low-dimensional 

SIMNETS NS map (same as c) with neurons labeled according to k-means cluster assignment. e. Histogram 

of normalized ‘Within-’ and ‘Between-ensemble’ correlations from SIMNETS NC matrix (b). Non–

overlapping Within/Between distributions (e.g., middle and right SN plot) corresponds to good separation 

between each of the three ensembles in the Neuron Map (ranksum, p<.001). 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 9, 2018. ; https://doi.org/10.1101/463364doi: bioRxiv preprint 

https://doi.org/10.1101/463364
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

 

 

 

SIMNETS was applied to the resulting NxS spike trains using three different temporal 

accuracy settings for the Victor-Purpura (VP) spike train metric: 5ms (q = 200), 100ms (q = 

10), and temporal sensitivity (q = 0). The VP parameter, q, operationally defines the 

timescale over which the similarity of spike trains are considered (see Methods for details 

on VP spike train Metric). As expected, with a setting of q = 0, the neurons operating with 

a rate-based encoding scheme (‘rate-code’ neurons) and rate/temporal-based coding 

scheme (‘mixed-code’ neurons) are grouped into three functionally dinstinct clusters in the 

NS map, while the functionally dissimilar ‘temporal-code’ neurons form a single cluster at 

the center of the map (Fig 3c, left column). When the temporal sensitivity of the analysis is  
 

Figure 4| Direct Comparison Method (DCM) fails to detects functional ensembles in 

population of synthetic neurons. 

 

a. DCM NxN distance matrices shown for three different analysis temporal sensitivity values (left-to-right): 

rate, 100 ms, 5 ms. Color-bars represent a range of distance values where smaller distance values (dark 

pixels) correspond to greater similarities. b. Low-dimensional DCM NS maps were generated from the high-

dimensional neuron distance matrices (a). Each point represents a single neuron and different color points 

indicate each neuron’s ensemble membership (E1, E2, or E3) and coding scheme (color notation same as Fig 

3). c.  Low-dimensional DCM NS maps (bottom row) with neurons labeled according to k-means cluster 

assignment. d. Histogram of normalized ‘Within-’ and ‘Between- ensemble’ distances from DCM distance 
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matrices (a).set to values of q > 0, the algorithm sensitive to differences in spike timing in addition to the total 

number of spikes. Using these settings, SIMNETS correctly groups all neurons into three distinct clusters that 

reflect the ground-truth functional ensemble assignments (Fig 3c, middle and right column). At very high q 

values, the NS map shows sub-groupings within each of the main clusters that reflect the coding properties of 

the neurons; however, the optimal number of clusters remains in agreement with the ground-truth functional 

ensemble assignments. By specifying a higher partition value for the k-means clustering step of the algorithm 

(e.g., k = 9), it is possible to confirm that the sub-groupings within the detect clusters are defined by the 

coding properties of the neurons (data not shown). For a demonstration of the interaction between the cluster 

number and the SIMNETS hyper parameters, perplexity and q, see Supplementary Fig. 5.  

 

Ideally, the SIMNETS algorithm should rank neurons in the same functional group as 

being more similar to each other than to neurons in a different functional group. In order to 

quantify this trend, we compared the distribution of similarity estimates (entries in the NC 

matrix) within and between the artificially generated ensembles (Fig. 3e). Within-ensemble 

similarity was significantly higher than between-ensemble values in all cases (Mann-

Whitney p<.001). For q values > 0, there was no overlap between the two distributions, 

indicating complete separation of the functional classes. Our results demonstrate that the 

SIMNETS algorithm can accurately separate neurons according to their computational 

properties, even if they employ different coding schemes to represent information.   

 

In order to demonstrate the potential pitfalls of traditional approaches that directly compare 

the spike trains between neurons on a trial-by-trial basis14 we applied a ‘Direct Comparison 

Method (DCM)’, to the synthetic dataset (see online Methods and Fig. 4). This algorithm 

also uses Victor-Purpura spike train metrics, but compares spike trains from different 

neurons directly, without generating SSIM matrices as an intermediate step. In this case, 

each entry of the resulting NxN matrix is the sum of the spike train distances between 

matching trials across a neuron. For example, neurons that generate similar spike train 

outputs on matching trials will have a lower the sum of their spike train distances A neuron 

pair with a similar trial-to-trial spike train outputs will have a low distances   Overall, the 

DCM failed to cluster functionally similar neurons into the three ground-truth functional 

ensembles for any of the tested q values (Fig 4c).  The  distributions of similarity estimates 

for neurons within and between ensembles (Fig. 4d) displayed broad overlaps, reflecting 

the poor separation between functional sub-ensembles. Our results demonstrate that 

grouping neurons based on the similarity of their spike train outputs does not necessarily 

reflect their informatinal content (and presumed computational properties). 

 

 

V1 Neuron Population – clustering real neurons with known tuning functions 
  

We next analyzed a previously described dataset of 112 Macaque V1 neurons 

simultaneously recorded using a 96-channel electrode array during the presentation of 

drifting sinusoidal gratings 35,38 (Fig 5). We extracted 1 second of spiking data from the 

first 30 repetitions of each stimulus (S = 360), starting 0.28 seconds after stimulus onset 

(Fig 5a). Each neuron’s receptive field orientation (‘preferred’ orientation) was estimated 

by finding the orientation that maximizes a Gaussian function fitted to the stimulus-

dependent firing rates (Fig. 5b) (see Methods for more details). 

We examined the NS map produced using SIMNETS in order to determine if it accurately 

captured the functional relationships between neurons (Fig 5d-e). A Circular-linear 

correlation (rcl) analysis shows a significant positive relationship between preferred 
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orientation and neuron location in the map (Pearson, rcl = 0.88; p = .001), confirming that 

neurons with similar computational properties are located close to each other in the NS 

map. Applying the k-means algorithm to the NS map revealed an optimal number of 𝑘̂ = 3 

neuron clusters (ℎ̂  = 0.74, max average silhouette value), indicating that the neurons are 

organized into three separate sub-ensembles (Fig. 5e).  The statistical significance of the 

number of estimated optimal clusters was determined using the shuffle-based statistical test 

 
Figure 5| V1 neuron population during the presentation of drifting sinusoidal grating at 

multiple orientation

 

a. Normalized trial-averaged firing rates of a population of V1 neurons (N = 112, neurons) during the 

presentation of 12 different drifting grating stimuli (T = 360, trials). Stimuli were presented for 1.28 s at 6 

different orientations (0, 60, 90, 120, 150 degrees) and 2 drift directions (rightward and leftward drift, 

orthogonal to orientation). b. Distribution of calculated preferred grating orientations for all neurons. c. SN 

NC matrix with neurons ordered according to preferred grating orientation. Color-bar represent a range of 

correlation values where higher correlation values (light pixels) correspond to greater similarities between 

neurons. d. SN NS map with neurons labeled according to preferred orientations. e. SN NS map with neurons 
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labeled according to k-means cluster assignments. Right (g): Average silhouette value for SIMNETS RN map 

as a function of the number of clusters (red filled circle denotes optimal cluster separation), compared to 

expected chance distribution obtained from shuffled data. (bootstrap, p < 0.01). f-g. DCM NS map with 

neurons labeled according to preferred directions (f) and k-means cluster assignments (g). Right (g): Average 

silhouette value for DCM RN map as a function of the number of clusters (red filled circle denotes optimal 

cluster separation), compared to expected chance distribution obtained from shuffled data. h. Ensemble 

orientation tuning functions for each of the SN neuron clusters (e) with significant peaks around 0, 60, 120 

degrees for clusters 1,2, and 3, respectively. Red line and gray band correspond to the mean and 99% 

confidence intervals of the null-distribution (bootstrapped).   

The shuffle-test involves generating a null-distribution of silhouette values by shuffling 

each of the N SSIM matrices, calculating a new NC matrix, and the associated silhouette 

value. This procedure is repeated over multiple iterations until a distribution of silhouette 

values is generated. The estimated number of neuron clusters is considered statistically 

significant if the original silhouette value falls outside the 99% confidence interval of the 

null-distribution of silhouette values (see Methods and Supplementary Fig 4 for more 

details. We examined the computational properties of each of the detected clusters by 

calculating ensemble tuning functions that take into account the average activity of all 

neurons within each identified cluster. Our analysis revealed that sub-ensembles displayed 

significant tuning with peaks evenly distributed at Δ60° intervals. (Fig.5e). Tuning strength 

and direction-of-motion tuning preferences did not appear to contribute to the cluster 

organization (data not shown). 

 

The SIMNETS results were again compared against DCM results to demonstrate how a 

more traditional approach fails to organize the neurons according to their functional 

properties (Fig. 5). Although neuron clusters were detected using DCM, we observed a 

weak and non-significant rcl correlation between neuron location and preferred orientation 

(Pearson, rcl = 0.01; p = .56), indicating that the two detected DCM clusters (𝑘̂ = 2; ℎ̂ = 

0.82) were unlikely to exhibit a tuning preference for any particular orientation.  We also 

compared SIMNETS performance to a modified cross-correlation analysis (See 

Supplementary Fig. 7a-b) and found that measures of cross-correlation between the spike 

trains of different neurons failed to capture the neuron’s estimated functional properties.  

 

M1 Neuron Population – clustering real neurons with known tuning functions 

 

We next applied the SIMNETS algorithm to a dataset of 103 M1 neurons recorded using a 

96-channel electrode array in a macaque performing a planar 8-direction instructed-delay 

reaching task (see Methods, Section 3.1). Using a standard metric, each neuron's preferred 

reach direction was estimated by fitting a von Misses distribution 39 to the firing rates as a 

function of direction (Fig. 6b). This dataset and task has previously been described 

elsewhere 40,41 (see Methods for more details).  

 

We extracted 1-second spike train events (S = 114) from each neuron during all trials 

where the monkey sucesfully reached the cued target, starting 0.1 seconds before 

movement onset. As with the V1 data, the layout of the neurons in the SIMNETS NS map 

accurately reflected the estimated tuning properties (Fig 6d - e). A circular-linear 

correlation analysis found a significant positive relationship between preferred direction 

and mapped location (Pearson, rcl = 0.91; p = .001). SIMNETS revealed a statistically 

significant optimal number of k̂ = 3 clusters (ĥ = 0.71), indicative of three functional sub-

ensembles.  Each cluster displayed ensemble-level tuning with significant peaks at 45°, 
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180°, and  315°. Additionally, our results show that neurons are not distributed along a 

uniform continuum within the NS map, but instead from statistically separable clusters in 

space. These results are in agreement with previous findings, supporting the hypothesis that 

the biomechanical constraints of the limb are reflected in an uneven distribution of 

preferred directions among motor cortical neurons 43,44. 

As before, the DCM failed to organize the neurons according to their preferred directions 

(Fig 6d), resulting in weak, non-significant relationship between the neurons’ preferred 

direction and location in the NS map (Pearson, rcl = 0.18; p = 0.56). Again, we also applied 

compared SIMNETS performance to a modified cross-correlation analysis (See Fig. 7c-d) 

and found that measures of cross-correlation between the spike trains of different M1 

neurons failed to capture the functional relationships between the majority of the neurons.  

 

Figure 6| M1 neuron population during center-out reaching task

 

a. Trial-averaged, normalized firing rates for each neuron (N = 103) as a function of reach direction for a 

planar 8-directional reaching task. b. Histogram of estimated preferred reach direction for the population. c. 
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SIMNETS NC matrix. Color-bar represent a range of correlation values, where higher correlation values 

(light pixels) correspond to greater similarities between neurons. d - e. SN NS map with neurons labeled 

according to the estimated preferred reach directions (d) or k-means cluster assignments (e). Right (e): 

Average silhouette value for SIMNETS RN map as a function of the number of clusters (red filled circle 

denotes optimal cluster separation), compared to expected chance distribution obtained from shuffled data 

(bootstrap, p < 0.01). f - g. DCM NS map with neurons labeled according to preferred reach directions (f) or 

k-means cluster assignments (g). Right (g): Average silhouette value for DCM RN map as a function of the 

number of (bootstrap, p < 0.01). h. Ensemble tuning functions for each of the SN neuron clusters (e) with 

significant peaks around 30, 180, 315 degrees for clusters 1, 2, and 3, respectively. Red line and gray band 

correspond to the mean and 99% confidence intervals of the bootstrapped null-distribution (see Methods).   

 

Hippocampal Dataset – clustering neurons with complex or unknown tuning 

properties 

 

We applied SIMNETS to a publically available 37 dataset of N = 80 rat CA1 hippocampal 

neurons recorded using Multi-site silicon probes while the rat performed left/right-

alternation navigation task in a ‘figure-8’ maze45,46 (Fig 7a). The rat performed 17 correct 

trials (T = 17, trials) taking on average 4.3 seconds to reach the reward location at either 

end of the arms. The input to the SIMNETS algorithm was obtained by dividing the 

linearized trajectories 37 of the rat’s path along the track into six equal segments and 

extracting 0.75 s spike train events, starting from the time that the rat entered each segment 

(see Methods for more details). This resulted in S = 102 spike train events from each of the 

N = 80 neurons. In order to validate SIMNETS performance, the CA1 neurons were 

characterized as having non-place cell (n = 22, non-PCs) or place cells (n = 58, PCs) based 

on their spatial firing properties and took note of their receptive field locations (Fig 6b; 

Supplementary Figure 6c) (see Methods for more details on neuron characterization and 

exclusion criteria). 

 

SIMNETS analysis revealed an uneven distribution of neurons within the NS map (Fig 7c), 

with PCs and non-PCs occupying different regions: distances were significantly smaller 

between non-PCs (M = 33, STD = 18.55; rank-sum test, p < 0.001) than between non-PCs 

and PCs (M = 77, STD = 2 1).  K-means analysis suggests that the neurons formed six 

separate clusters (Fig 7d). One of the putative sub-ensembles was composed almost entirely 

(96%) of non-PCs, while the other five clusters were either entirely or almost entirely (> 

92%) composed of PCs. An inspection of the ensemble firing rate maps indicates that each 

of the ‘PC’ clusters were comprised of neurons with over-lapping or partially overlapping 

place-fields (Fig 7e; Supplementary Fig. 6b). PCs with single and multiple peaks in their 

spatial firing maps were found within the same ensemble if they shared a common firing 

field (for example, see Supplementary Fig. 6c, cluster-2 and 4). Interestingly, despite being 

made up of neurons that lack place-dependent signals, the cluster-6 spatial firing map 

exhibited a single significant firing field (Fig 7e, last column). In order to get a better 

understanding of the computational properties of this cluster in relation to the other 

detected clusters, we examined the ensemble activity patterns of each cluster using a spike 

train relational analysis framework 29 (see Methods).  

 

The ensemble spike train similarity analysis (described in detail in Vargas-Irwin et al., 

2015) generates Ensemble Activity Similarity maps similar to those presented in Fig. 1c, 

but encompassing the activity of multiple neurons rather than just one. Each point in these 

ensemble activity Similarity maps corresponds to activity patterns across all neurons in a 

particular ensemble (Fig. 7f). As expected from the previous analysis, the topology of the 
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Ensemble-Activity Relational map for the ‘place-field cell-assemblies’ (clusters 1 and 3) 

(Fig 7f, columns 1 and 2) captured the modulation of the ensembles firing patterns as the 

rat traversed the neurons’ place-fields (Fig 7f, columns 1 and 2).  

 

 
Figure 7|Hippocampal CA1 neurons during left-right alternation task. 

 
a. Maze showing rats position in a ‘figure-8’ maze during left-right alternation task. Red and blue lines show 

the rat’s location during correct right and left trials (T = 18, trials), respectively (similar color convention 

used throughout b, e-f). Gray lines show the rats location during reward and inter-trial interval period. b. Left: 

Normalized firing rates are shown for each neuron (N = 80, neurons) as a function of linearized distance on 

track (50 mm bins, 150mm Gaussian smoothing) during left and right trials. Neurons were ordered according 

to the latency of their peak response along the track and according to their characterization as a non-place cell 
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(n = 22, non-PC) or a place cell (n = 58, PC). Arrow indicates the left/right decision point in maze. Right: 

Spike rate maps and spike theta-phase spatial maps for one example non-PC (top row) and two example PCs 

(bottom rows). c-d. SN NS map with neurons labeled as non-PCs (gray points) and PCs labels (blue points) 

(c) and k-means clustering labels (d, left) and Silhouette plot (d, right). An optimal number of k = 6 neuron 

clusters were detected in the NS map. e. Ensemble spatial firing rate maps shown for three example 

SIMNETS clusters (top row), and the spatial firing map for two representative neurons from each example 

cluster (middle, bottoms rows). Gray bands indicate the significant firing fields (rank-sum, p < 0.01, in-field 

vs. out-of-field comparison) for the left and right trials (blue and red asterisks). f. Top row: Ensemble 

Activity Relational map showing the similarity between ensemble activity patterns as a function of the rat’s 

location on the linearized track during left and right trials (L1 - L14). Each point represents an ensemble 

activity pattern on a single trial and the distance between points represents the similarity of the ensemble 

spiking patterns. Different colors correspond to the different locations on the left and right track. Bottom row: 

distance plots showing the mean distance between points corresponding to each event type and all other 

points (e.g., distance between L1 points and all other points). Gray bands represent the 99% confidence 

interval of a null-distribution (bootstrap analysis).  

 

Interestingly, the neuron cluster that was primarily non-PCs (cluster 6), had a ‘torus-

shaped’ topology that exhibited variance along the z-dimension according to rat’s position 

along the track (Fig 7f, view 2), and variance in the x- and y-dimension (Fig 7f, view 2) 

according to an unknown variable, or variables. This result suggests that the activity of the 

non-PC sub-ensemble displays dynamics that may reflect a non-spatial task-variable or 

potentially the intrinsic dynamics of the circuit. The toroid structure of the ensemble 

activity relational map suggests that the unknown variable is likely to be periodic in nature. 

Although this phenomenon warrants further investigation, it is outside of the scope of the 

present work. In general, the results from this dataset highlight the advantages of applying 

SIMNETS to neural recordings where the tuning properties of the neurons are not readily 

apparent or known a priori.  

 

Computational efficiency and analysis run-time 

 

The SIMNETS algorithm processed each of the synthetic, M1, and Hippocampal datasets 

in under 5 seconds. Because of a larger trial number, the V1 dataset was processed in a 

relatively slower time of around 20 seconds. In general, SIMNETS’ run-time for a dataset 

of 100 neurons, with 100 spike trains per neuron, takes approximately ~4 s (see 

Supplementary Fig. 8a). Importantly, the computational complexity of the algorithm scales 

almost linearly with neuron number and quadratically with the number of spike trains, 

meaning that datasets of up to 1000 neurons can be analyzed in a reasonable amount of 

time (~ 4 minutes). By comparison, calculating the pairwise cross-correlation 38,47 for 100 

and 1000 neurons would take approximately 6 minutes and 6 hours, respectively, using the 

same hardware (supplementary Fig. 8b).  

 

Discussion 
 

Summary of Findings  

 

Advances in multi-electrode recording technology have now made it possible to record or 

image from 100s and even 1000s of single-units simultaneously 7,48–50. By contrast, the 

development of analytical tools capable of parsing out the complexity of large-scale neural 
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activity patterns have lagged behind advances in recording technology. Here, we introduce 

a computationally efficient and scalable method to quantify the functional similarity 

between individual simultaneously recorded neurons, allowing us to identify and visualize 

computationally related sub-networks within large neuronal ensembles. 

 

Our analysis of simulated data with known ground truth demonstrates that SIMNETS is 

capable of organizing the neurons into functionally related sub-nets, even when 

computationally equivalent neurons utilize very different encoding schemes (e.g., rate, 

temporal, or mixed encoding schemes). Our analysis of V1 and M1 recordings shows that 

SIMNETS can generate neuron maps that capture the computational properties of cortical 

neurons without imposing stimulus or movement driven tuning models a priori. The tuning 

functions for single units in these two areas have been extensively studied, allowing us to 

validate the performance of the SIMNETS algorithm. Our results with the hippocampal 

CA1 data suggest that it will be possible to use this approach to simplify the functional 

characterization of groups of neurons where the underlying tuning functions are unknown 

or very complex. Our results also suggest that SIMNETS may be able to detect functional 

sub-ensembles hypothesized to support ensemble place-coding51, memory-recall52, or 

complex feature conjunction53. Although it was beyond the scope of this report to 

demonstrate functional significance of the detected putative functional sub-ensembles, our 

results strongly suggest that sub-nets detected using SIMNETS are statistically and 

physiologically meaningful. Our particular choice of datasets allowed us to demonstrate 

that this method generalizes well to neural recordings from a variety of brain regions 

(including sensory, motor, and hippocampal areas) and across multiple species (including 

rat and non-human primate). 

 

Comparison to existing methods 

 

The concept of a low dimensional embedding that captures the functional relationship 

between neurons was introduced in the seminal papers by Gerstein & Aertsen 47,54. They 

used a technique called ‘Gravitational Clustering’ (GC) to identify groups of neurons with 

synchronous spiking patterns. GC is based on an analogy of the physics of the gravitational 

forces governing the dynamics and interactions of macroscopic particles. It treats the N 

neurons as N particles moving within an N-dimensional space, where charges that 

influence the attractive and repulsive interactions between particles are dictated by the 

temporal dynamics of pairwise synchronous spiking activity between neurons. The end 

result is a visualization of particle clusters (and their trajectories) that represent 

dynamically evolving assemblies of synchronously-active neurons. Recent formulations of 

the GC algorithm have improved visualization and sensitivity, but retain the same basic 

strategy 11,33.  

 

Several previous studies have used spike train metrics to identify putative functional sub-

ensembles 55,56. As with GC, these studies have operated under the general assumption that 

the detection of similar sequences of spike patterns across neurons is indicative of a 

potential functional link 56,57With the simulated neuron population, we demonstrated that 

traditional methods relying on such an assumption could result in either a spurious 

fractioning or a collapse of functionally similar neurons into clusters that are primarily 

defined by the neurons’ spike statistics or encoding timescales (as opposed to their 

computational properties). In contrast, SIMNETS was capable of clustering the simulated 

neurons according to their ground-truth functional ensembles and, by varying the temporal 
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sensitivity of the analysis, organizing the neurons within each sub-net according to their 

encoding timescales. This feature of SIMNETS could be particularly useful for determining 

if neurons with different encoding timescales – such as, for example, fast-spiking PV 

inhibitory neurons and slow-spiking pyramidal neurons – are involved different 

information processing operations 58,59.   

 

The critical component that differentiates the SIMNETS framework is our novel 

application of spike train metrics. We emphasize that, unlike other related algorithms, 

SIMNETS does not directly compare spiking responses between neurons; instead, our 

approach compares intrinsic geometry of the output spaces of each neuron (represented by 

SSIM matrices), which reflects information-processing properties in a more general way 

(i.e. regardless of how the information is encoded). Our results demonstrate that estimates 

of correlation between SSIM matrices provide a simple, yet, powerful approach for 

quantifying the functional similarities between neurons. Our analysis strategy shifts the 

emphasis from detecting coincident or correlated activation to comparing the intrinsic 

structure of single-trial firing patterns. This critical difference allows our method to detect 

neurons with similar computational properties even if they do not display coincident or 

correlated spiking. Although other approaches techniques to visualize pairwise and high-

order neuron interactions have been proposed11,12,60–63 these methods can become 

mathematically intractable or computationally expensive when extended beyond a small 

numbers of neurons. The combination of a short processing time (< 5 second per 100 

neurons) and a computational complexity that scales linearly with the size of the neuron 

population makes SIMNETS an extremely efficient and, thus, appealing tool for exploring 

very large-scale neuron populations.  

  

Limitations of SIMNETS 

Several important limitations of SIMNETS are worth noting. First, estimates of similarity 

using spike train metrics require that the time windows of interest be of equal length, 

making it difficult to compare neural responses with different time courses. This particular 

weakness is common to all trial-averaging models commonly used in the literature. Second, 

although the SIMNETS framework does not require a priori assumptions about the 

variables potentially encoded by neural activity, experimental design and data selection 

will still have a direct effect on the results obtained. For example, a set of neurons 

identified as a functional sub-net could separate into smaller groups with different 

computational properties when additional task conditions are added to the analysis. Thus, 

the functional properties identified using SIMNETS are only valid within the context of the 

data examined, and may not necessarily extrapolate to different experimental conditions. 

Third, it is likely that neuronal sub-nets are constantly re-arranged depending on 

ethological demands. A neuron could potentially be functionally interacting with one group 

of neurons for one computation (or moment in time) and then another group of neurons for 

another computation (or another moment in time). The current version of the SIMNETS 

algorithm was not designed to distinguish between such rapidly changing network 

membership. However, it is possible to apply the SIMNETS algorithm multiple times over 

different epochs in order to determine if different sub-nets are present across different 

conditions. Our future work will focus on examining the temporal evolution of sub-net 

clustering using this approach. Fourth, the computations required to generate a SSIM 

matrix for a neuron scale quadratically with the number of trials. Despite this 
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computational cost, SIMNETS scales much better than methods that require computing 

power-sets (and thereby grow exponentially with the number of neurons). 

 

The role for SIMNETS to mitigate experimenter bias 

 

A considerable amount of research in systems neuroscience has focused on identifying new 

classes of neurons based on their information processing properties. The standard approach 

for many of these experiments involves recording single unit activity while a certain 

experimental variable of interest is manipulated (for example, providing different stimuli, 

or eliciting different movements, etc.). Standard statistical tests (ANOVA, etc.) are then 

used to determine if each neuron displays significant changes in firing rate across the 

experimental conditions. The percentage of significant neurons is usually reported, and 

highlighted as a ‘class’ of neurons sensitive to the variable of interest. It is common to 

exclude neurons that do not reach statistical significance or cannot be fit using a 

predetermined model from further analysis. This approach is prone to both selection and 

confirmation bias, and ultimately produces ‘classes’ of neurons identified based on 

arbitrary statistical thresholds imposed on what are likely continuous distributions of 

properties 64,65.  

The SIMNETS framework provides provide an efficient way to represent the 

computational structure of neuronal networks and quantitatively assess if neurons represent 

discrete functionally separate classes or alternatively span a continuous gradient of 

properties. In addition to providing a principled way to determine if a consistent 

organization of information processing modules can be found across sessions and subjects, 

we believe that the ability to intuitively visualize relationships within networks of neurons 

will provide a unique perspective leading to new data-driven hypotheses and experimental 

refinement.  
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SIMNETS Algorithm Implementation 
 

Here, we provide a short description of the steps in the algorithm and a detailed description 

of the methods used to implement each step of the SIMNETS framework:  

 

Step 1: Calculate Distances Between Within-neuron Spike Train Pairs 

Pairwise spike train distances are calculated between within-neuron spike 

train pairs (S) using a spike train metric. This results in separate SxS Spike 

train Similarity (SSIM) matrices for each neuron. Here, we use the Victor-

Purpura Spike train metric 31,66. 

 

Step 2: Spike Train Similarity Matrix Correlation 

Pairwise measures of correlation are calculated between all pairs of single-

neuron SSIM matrices, resulting in a single NxN Neuron Correlation (NC) 

Matrix. Here, we use Pearson’s Correlation.   

 

Step 3: Dimensionality Reduction 

The high-dimensional, NxN Neuron Correlation Matrix is projected down 

into a desired number of d dimensions and visualized in a scatter plot, 

resulting in what we refer to as the Neuron Similarity (NS) Map. The 

dimensionality reduction step is carried out using t-distributed Stochastic 

Neighbor Embedding (t-SNE)67. 

 

Step 4: Cluster Detection and Statistical test 

Putative functional ensembles are detected in the N×d Neuron Similarity 

Map  using the unsupervised k-means clustering algorithm 68. The number 

of clusters in the data is determined using a silhoutte analyis69 and the 

significance of the number of detected clusters is determined using a 

shuffle-based procedure. 

 

The user selected parameters of the SIMNETS algorithm include: a) the VP spike train 

metric, q, which operationally defines the temporal resolution over which the similarity of 

two spikes trains are tested, and b) the t-SNE parameter, perplexity, which influences the 

number of effective nearest neighbors (i.e., neurons) included in calculations that results in 

the low-dimensional neuron map.  
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Step 1: Victor-Purpura Spike Train Metric 

 

The Victor-Purpura (VP) metric is a cost-based spike train distance function (D) that 

describes the similarity between pairs of spike trains (common neuron) in terms of their 

‘edit-distances’. A single distance value (d) is assigned to each pair of spike trains through 

a process that involves calculating the minimum total ‘cost’ (c) of the edit-steps needed to 

transform spike train A into spike train B: 

 
 𝒅(𝐀, 𝐁) = 𝒎𝒊𝒏{∑ 𝒄𝒎−𝟏

𝒋=𝟎 (𝒔𝒋,𝒔𝒋+𝟏)}, (1) 

where {S0, S1, ..., Sm} is the series of intermediate spike trains created after performing a 

single edit step. The list of possible edit-steps used in the VP transformation include: (1) 

inserting a spike, (2) deleting a spike, and (3) shifting a spike in time. Inserting or deleting 

a spike has a cost of c = 1, and shifting a single spike in time has a cost proportional to the 

amount of time that it is moved (c =q t). The set of edits-steps associated with the 

minimum total edit-cost defines the shortest path between two points (spike trains) in the 

neuron’s spike train metric-space.  

 

The q parameter influences the relative importance of spike count and spike time 

differences when assessing spike train similarities.  When q = 0, the cost of shifting a spike 

to a desired location will always be cheaper than deleting and re-inserting a spike in a spike 

train. Thus, for D[q=0], the total minimum cost is a function of the difference in the number 

of spikes between the spike trains. As the q value is increased beyond zero, spike time jitter 

begins to impact the cost of matching the spike trains.  For example, if q = 10, shifting a 

spike by 0.15 s will have a cost of c = 1.5, which is still just under the cost of deleting and 

re-inserting spike, i.e., c = 2, making it the more cost effective option. However, if q = 15, 

the deleting and reinserting a spike will become the cheaper option. This means that if we 

were matching two temporally jittered spike trains with a similar number of spikes, the 

assigned spike train distance would jump from a small to a high value as q increases (due 

to the increasing cost associated with shifting a spike). On the other hand, if we were 

matching two spike trains that differed only by spike number, i.e., no temporal jitter, the 

cost of shifting a spike would not impact the total cost of matching the spike trains, and so 

we would not expect a jump in the assigned spike train distances with an increase in q 

value. In this way, q controls the temporal resolution of the spike train comparison.  In the 

context of the SIMNETS algorithm, a low q parameter will bias the algorithm towards 

groupings neurons based on the ‘information’ encoded over coarse timescales, whereas a 

high q parameter will bias the algorithm towards groupings neurons based on the 

information encoded over coarse and fine timescales. 

 

 

 

Step 2: Spike Train Similarity Matrix Correlation  

We characterize the functional similarities between neurons by calculating pairwise 

measures of correlation between all pairs of SSIM matrices. We used Pearson’s Correlation 

(r) to compare the SSIM matrices in this report (Spearman’s correlation or another 

correlation statistic can be used if an assumption of linearity between the SSIM matrices 
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cannot be made). The formula for calculating Pearson’s r between a pair of SSIM matrices, 

A = (aij) and  B = (bij) is given as:  

                              𝑟(𝜑) = 𝛽 + ℎ. 𝑒𝑥𝑝(ℎ. 𝑐𝑜𝑠(𝜑 − 𝜇)),                               (2) 

    

where cov is the covariance and  is the standard deviation. This results in an NxN 

Correlation matrix, where each matrix entry corresponds to the correlation between a given 

pair of SSIM matrices, and each column (or row) of the matrix could be interpreted as the 

intrinsic coordinates of a single neuron in an N-dimensional space.   

  

 

Step 3: t-SNE Dimensionality Reduction algorithm 

In broad terms, the goal of the dimensionality reduction step is to reduce the 

number of variables required to represent each neuron’s N dimensional correlation vector 

(step 2), i.e., its coordinates in the high-dimensional neuron space. This step improves 

clustering performance and allows us to simultaneously visualize the relationships between 

all neurons in a low-dimensional map. We used the t-distributed Stochastic Neighbor 

Embedding (t-SNE) dimensionality reduction algorithm, since it is capable of preserving 

local densities of the high-dimensional data, while also revealing global structure such as 

the presence of clusters at several scales 67. It is also particularly well suited for visualizing 

high-dimensional data with varying cluster densities.  

A t-SNE transform is calculated through a process that involves 1) converting the sets of 

high- and low-dimensional correlation/distance measures into sets of joint probability 

distributions that describe the ‘similarity’ between the data points in the respective high 

and low dimensional spaces, and 2) minimizing the Kullback-Leibler divergence70 between 

the sets of joint probabilities in the high-dimensional space and the low-dimensional map 

via gradient descent.  

In the first step, the similarity of the data point wj to wi in the high dimensional space is 

modeled as the conditional probability, pj|i, that wi would pick wj as its neighbor if 

neighbors were (stochastically) picked in proportion to their probability density, Pi, under a 

Gaussian kernel centered at wi. Mathematically, the condition probability pj|i is given by:  

 
𝑝𝑖|𝑗=  = 𝑒𝑥𝑝

(−||𝑤𝑖−𝑤𝑗||
2

2⁄ 𝜎𝑖
2)

∑𝑘≠𝑖𝑒𝑥𝑝(−||𝑤𝑖−𝑤𝑘||
2

2⁄ 𝜎𝑖
2)

 
(3) 

where σi  is the variance of the Gaussian centered on wi.  Importantly, the variance of the 

Gaussian kernel adapts to the local density of the data around each point to produce a 

probability density (Pi) with a fixed perplexity (perp). The perp hyper-parameter specifies 

the number of effective nearest neighbors included in the probability calculations, where 

smaller perplexity values result in maps that are biased towards representing local 

relationships and larger values result in maps that represent local relationships with 

increasing consideration to any global structure that might exist. More formally, perplexity 

is a measure of information describing how well a probability distribution predicts a 

sample and is defined as 2 H(Pi), where H(Pi) is the Shannon entropy of Pi measured in bits. 
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Next, to simplify the optimization of the low-dimensional representation during the 

gradient descent, the conditional probabilities pji are converted to joint probabilities using a 

symmetrized version of the conditional probabilities, pji = pj|i + pi|j / 2n. 

The low-dimensional probability (zij) distributions takes a similar form to pji except that a 

long-tailed Students t-distribution replaces the Gaussian distribution: 

 
𝑍𝑗,𝑖 =

(1+||𝑢𝑖−𝑢𝑗||
2

)
−1

∑𝑣≠𝑖(1+||𝑢𝑣−𝑢𝑙||
2

)
−1. 

(4) 

The long-tail of the Students t-distribution ensures that moderately close points in the high-

dimensional space are modeled by larger distance in the low-dimensional space, and as a 

result, eliminates any unwanted attractive forces between moderately dissimilar points that 

would have otherwise resulted in ‘crowding’ 67 in the low-dimensional representation 

between neighboring clusters with very different densities. Additionally, this particular 

form of the Students t-distribution (single degree of freedom) ensures that the low-

dimensional representation is (mostly) scale invariant, meaning that clusters of points will 

interact in the same way as individual points. The effect is that the functional relationships 

between neurons are preserved across multiple scales of organization67.  

The overall aim of t-SNE is to find a low-dimensional data representation that minimizes 

any mismatch between the high-dimensional joint probability density, P, and the Students-t 

based joint probability distribution, Z. The minimization of the cost function is performed 

via gradient decent, with a gradient given by the equation:   

 𝛿𝐶

𝛿𝑦𝑖
= 4 ∑(𝑝𝑖𝑗– 𝑧𝑖𝑗)

𝑗

(𝑢𝑖−𝑢𝑗) (1 + ‖𝑢𝑖−𝑢𝑗‖
2

)
−1

. 
(5) 

In order to reduce computational complexity of this step, we perform a preliminary round 

of dimensionality reduction using principal component analysis (PCA) to project the N×N 

Neuron Correlation Matrix into smaller dimensional space (e.g., 50-d). The t-SNE 

algorithm then refines the resulting linear transform by minimizing the single Kullback-

Leibler divergence between P and Q over multiple iterations. Seeding with a low-

dimensional PCA projection also ensures that the algorithm converges to the same solution 

across repeated runs of the algorithm. This step results in the dxN Neuron Similarity map. 

 

 

Step 4: k-means Clustering Algorithm, Silhouette Analysis, and Significance Test 

 

k-means algorithm 

The k-means algorithm is an unsupervised clustering method that partitions data into k 

clusters. We elected to use the k-means algorithm to cluster neurons in the NS map into 

putative functional ensembles because of its efficiency and its empirically evaluated 

performance in detecting functional groupings of neurons.  
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k-means clustering aims to partition the t-SNE outputs into k number of clusters, such that 

each data point belongs to a cluster with the nearest mean (see next section for selection of 

k value). The algorithm works iteratively to assign each data point (ui) to one of the C 

centroids based on proximity, where the centroids have been initialized at the random 

locations C1, C2..., Cm. After all points are assigned, new centroids are calculated from the 

assigned data points. This procedure is repeated for a specific number of iterations, e.g., 

100, or until the centroids no longer move between iterations. The algorithm aims to 

minimize the sum of the squared error (SSE) between each data point:  

 

 

𝑆𝑆𝐸 = ∑ ∑ ‖𝑢𝑖
(𝑗)

− 𝑐𝑗‖
2

𝑙

𝑖=1

𝑚

𝑗=1

 

(6) 

   

Silhouette Analysis  

We used a silhouette analysis to assess the quality of the k-means clustering partitions 

across a range of values of k 69, with the goal of finding an optimal partition number for the 

data. A silhouette value (hi) is a measure of how similar point yi is to other data points in its 

assigned cluster cj as compared to other clusters:  
 

 ℎ𝑖 =
(𝑏𝑖−𝑎𝑖)

𝑚𝑎𝑥(𝑎𝑖 ,𝑏𝑖)
 , (7) 

 

where ai is the average distance from ui to other points in its assigned cluster cj, and bi is 

the average distance from ui to points in the other clusters, minimized over all possible 

cluster configurations. An optimal number of clusters 𝑘 is the value of k that maximizes the 

average silhouette (ℎ̂) value for k = 2..., kf. Silhouette values ranges from −1 to +1, where a 

high value indicates that ui is well matched to its own cluster and poorly matched to 

neighboring clusters. In general, a maximized average silhouette below 0.25 indicates data 

that are not structured while a value below 0.5 would indicate poor or potentially spurious 

clusters.  In the next section, we outline a procedure for testing the statistical significance 

of the cluster number to determine if the data can be partitioned into statistically 

meaningful clusters.  

 

 

SIMNETS Significance Test  

 

We developed a significance test for the purpose of determining the likelihood of 

detecting a given number of clusters by chance under the null hypothesis that there is no 

genuine relationship between the inherent structures of the SSIM matrices.  

 

The significance test involves generating a null-distribution of silhouette values based on 

shuffled data across a range of k values. In SIMNETS, functional similarities are captured 

by the pairwise measures of correlation between the single neuron SSIM matrices. Our test 

relies on a shuffling procedure that destroys the pairwise dependencies between the SSIM 

matrices, and subsequently, any significant measures of correlation in the Neuron 

Correlation Matrix.  

  

Our approach is inspired by the Mantel test 71, a permutation based procedure that tests the 

significance of the observed correlation between two symmetrical matrices. The intuition 
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of a Mantel test is that if a significant relationship exists between the values of matrix A 

and matrix B, then randomizing the rows and columns of one matrix will destroy any 

existing dependencies. As a result, the correlation between the shuffled matrix pair will 

tend to be lower than the original correlation value observed between the un-shuffled 

matrix pair. The probability of observing rA.B is then calculated as the proportion of 

permutations for which the shuffled correlation measures are smaller than or equal to rA.B.  

Here, we carry out a similar permutation operation on the SSIM matrices, in that we 

destroy any dependencies that exist between the matrices; however, we use the average 

silhouette value as the test statistic, rather than the correlation values, as is the case with the 

Mantel test.  

 

The procedure involves a symmetrically shuffling of the rows/column of each N SSIM 

matrix separately, and re-calculating the pairwise correlations between the SSIM matrices 

to generate a new NxN Correlation Matrix. This NxN correlation matrix is then transformed 

into a new NR map using t-SNE (i.e., step 3), and a new set of silhouette values is 

calculated (i.e., step 4) for the range of tested k values. This procedure – SSIM matrix 

shuffling, steps 3 and step 4 from SIMNETS – are repeated to generate a null-distribution 

of average silhouette values that is approximately normally distributed (e.g., 1000+ 

iterations).  If the observed maximized average silhouette value ℎ̂ falls above the 

empirically calculated (1 − 𝛼)100% confidence interval, then the detected number of 𝑘 
clusters is considered statistically meaningful. 

  

Explanation of relevant symbols associated with SIMNETS algorithm 

 
Table 1: explanation of relevant symbols  

Symbol Description Calculation/Selection 

q temporal sensitivity value for Victor-Purpura spike 

train metric 

 

hyper-parameter (user specified) 

perp perplexity: a measure of information that controls the number of effective 
nearest neighbors in t-SNE dimensionality reduction algorithm 

 
hyper-parameter (user specified) 

d desired dimensions for low-dimensional Neuron Similarity Map  

hyper-parameter (user specified) 

 

k 

k-means partition number/  

range of cluster numbers to test for during k-means clustering 

range of k-values (user specified) 

 

 

𝑘 

Optimal number of detected clusters  
Estimated from Silhouette analysis over a range of k values 

output (eqt. 6) 

ℎ̂ maximized average silhouette value output (eqt. 7) 

 

 

 

Hardware, Software, and Processing Time 

 

All analyses were run on a Dell PC with an Intel Xeon® Processor and 24 GB of RAM. 

All analyses were run using MATLAB® software from MathWorks, version 9.4, R2018. 

Armadillo, a C ++ linear algebra library (called from within MATLAB) performed some of 

the main matrix operations. 

On this hardware, analysis run-time for a dataset of 100 neurons (100 one-second spike 

trains per neuron) takes approximately 3.0 seconds, while 1000 neurons takes 
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approximately 4 minutes (Supplementary Fig. 8). By comparison, calculating the pairwise 

cross-correlation values (without a jitter/shuffle correction procedure) for 100 or 1000 

neurons takes approximately 6 minutes and 6 hours, respectively, on the same hardware. 

The computational complexity of the SIMNETS algorithm scales almost linearly with 

neuron number and exponentially with the number of spike trains Introducing a new 

neuron only requires generating a single new SSIM matrix, however, adding a new trial 

requires generating a new SSIM matrix for each neuron. The low computational cost of 

adding new neurons means that datasets with large numbers of neurons could be 

functionally categorized and clustered in a reasonable amount of time (< 1 hr for 5,000 

neurons). 

 

 

A live code tutorial is available for download at:   .. (see peer-reviewed publication for 

link).  

 

Direct Comparison Method 
 

We emphasize that the SIMNETS algorithm does not directly compare the firing patterns 

between different neurons. Instead, pairwise comparisons are performed between common 

spike trains of a single neuron, on a neuron-by-neuron basis.  The between neuron 

comparisons are then made between all pairs of the single neuron SSIM matrices. This 

allows the algorithm to find neurons that generate a set of spike trains with common 

signature spike train geometries (i.e., set of distances), rather than grouping neurons based 

on the degree of coordination between their moment-to-moment firing patterns. In order to 

evaluate the effectiveness of this strategy, we compared the performance of SIMNETS to a 

representation of traditional approaches that directly compare the spike trains of different 

neurons. 

 

The ‘Direct Comparison Method’ (DCM) computes pairwise spike train similarities 

between matching ‘trials’ between neuron pairs. In contrast to the SIMNETS method, the t-

SNE dimensionality reduction step is applied to an NxN matrix of distance values, rather 

than SSIM correlation values. That is, for a set of neurons N = {n1, n2, … nk}, the DCM 

methods builds a NxN matrix, M, where each Mx,y entry is the sum of the spike train 

distances between the spike trains of neuron nx, S = {S1, S2, …, Sj},  and the spike trains of 

neuron ny , U = {U1, U2, …, Sj}:  

 

 

where D is a vector of Victor-Purpura spike train distance of length j (equation 1).  

 

Synthetic Dataset – Data Simulation and Analysis  

Spike train Simulation We simulated the spiking activity of a population of N = 180 

synthetic neurons that consisted of 3 functionally distinct ‘ensembles’ (E1, E2, E3) of 60 

 
𝐼𝑠𝑝𝑖𝑘𝑒 = ∑ 𝑃𝑖

𝑙

𝑖=1

𝑣𝑖

𝑉
𝑙𝑜𝑔2

𝑣𝑖

𝑉
, 

(8) 
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neurons. Each functional ensemble was designed to produce similar spike-trains for two 

non-modulating conditions, referred to as the ‘baseline’ conditions, and a different pattern 

for a third condition, referred to as the ‘modulating’ condition. For example, ensemble E1 

was modulated during condition A and exhibited the same baseline activity spike pattern 

during both conditions B and C, whereas ensemble E2 was modulated during condition B 

and exhibited the same baseline spike pattern during conditions A and C, etc.  Each Ei 

ensemble was further divided into three sub-groups of n = 20 neurons, where each sub-

group altered their spike-train patterns between the active and baseline states according to 

one of three different encoding strategies:  

 

(1) Rate coding: firing rate increased by 50% for the modulating condition (all 

spike times were randomly chosen) 

(2) Temporal coding: the two baseline conditions and the modulating condition 

were associated with specific (randomly generated) temporal sequences of spikes. 

The number of spikes was kept constant across baseline and modulating conditions. 

Spike times were jittered by +/- 50 ms for each trial.  

(3) Mixed temporal/rate coding: Similar to the temporal coding, but the spikes were 

jittered in a temporal window of 5 ms. Additionally, the modulating condition 

included 25% more spikes.   

In order to simulate stochastic variation in spiking patterns, 50% of the spikes were 

randomly removed for each condition. A total of 30 seconds of simulated recording time 

was generated, with the trial condition changing every second between A, B, and C 

patterns.  

 

SIMNETS Cluster Characterization We demonstrate SIMNETS’ ability to cluster 

functionally similar neurons in the synthetic dataset by comparing the pairwise similarity 

measures between and within ground-truth functional ensembles. We compare the 

distributions of the pairwise correlation values from the Neuron Correlation/Distance 

Matrices for neurons from the same functional ensemble (‘Within’ ensemble pairs) and 

different functional ensembles (‘Between’ ensemble pairs). A rank-sum statistical test was 

carried out on the Within and Between distributions of similarity values, using an alpha 

value of α = .001.  

 

Neural Datasets – Task Description and Data Analysis  
 

Primate Primary Visual Cortex  

 

Task Description We analyzed a previously described dataset of 112 primary visual (V1) 

single-units (which we refer to as neurons) recorded in an anesthetized Macaca fascicularis 

using a 96-channel microelectrode array 35,38Briefly, sinusoidal gratings were presented at 

6 different orientations 𝜃 = {0°, 30°, 60°, 90°, 120°, 150°} and 2 drift directions (rightward 

and leftward drift, orthogonal to orientation). Each stimulus was presented 112 times for 

1.28 seconds. The position and size of the stimuli was sufficient to cover the receptive 

fields of all recorded neurons. For more details on the data processing and task design, see 

Smith and Kohn (2008) and Kohn and Smith, (2016). 

 

Single Neuron Functional Characterization We characterized the preferred orientation of 

each V1 neuron by fitting a Gaussian distribution to the firing rate function R: 
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𝑅(𝜃) = 𝐴. 𝑒𝑥𝑝

−(𝜃−𝜇)2

2𝜎2  , 
(9) 

 

where  is the stimulus orientation, Â is the peak response, μ the mean, and σ2 is variance 

of the Gaussian. The function takes on a maximum value at  = μ, for  = [0, 180), which 

corresponds to the neuron’s preferred orientation. We choose not to use drift-direction 

preferences when characterizing the functional properties of the neurons72,73 as only a very 

small percentage exhibited significant differences in the magnitude of their peak responses 

for drift-direction.   

SIMNETS Analysis We extracted 1 second of spiking data from the first 30 repetitions of 

each stimulus (S = 360, spike trains), starting 0.28 seconds after stimulus onset. Only a 

small fraction of the total number of recorded trials was used in the analysis (25%) as we 

wanted to demonstrate SIMNETS ability to clusters neurons in datasets where only a small 

number of trials are available.  

SIMNETS Cluster Characterization We used a circular-linear correlation (rcl) analysis to 

assess SIMNETS’ ability to group neurons according to their functional similarities. The 

correlation between each neuron’s preferred orientation and its location in the low 

dimensional map yi was calculated using: 

             

                                                    𝑟𝜃,𝑦 =
𝑐𝑜𝑣(𝜃𝑖,𝑦𝑖)

𝜎𝐴𝜎𝐵
  ,                                                             (10) 

 

where 𝜎𝐴 and 𝜎𝐵 are the standard deviation of the neurons’ preferred orientations and y 

represents the neurons’ locations in the map. A high correlation value indicates a strong 

relationship between a neuron’s preferred orientation/direction and map location and 

demonstrates that functionally similar neurons were mapped to nearby regions of the map. 

We then characterized the functional properties of the ensembles identified using 

SIMNETS by calculating ensemble tuning functions (ETFs). ETFs were calculated by 

normalizing and averaging the joint firing rates across all neurons for each ensemble. A 

bootstrap resampling method was used to test for significant peaks in the ensemble tuning 

function (i.e., preferred ensemble tuning).  A null-distribution was iteratively generated by 

randomly sampling a subset of neurons, equal in size to the number of neurons in the i-th 

ensemble, for which a new ensemble tuning function was calculated over each iteration 

(10000 iterations). The null distribution describes the probability of getting the observed 

peak response if the detected ensembles were chosen at random. A response that falls 

above (or below) the 99% confidence interval is considered significant.  

 

Primate Primary Motor Cortex 

 

Task Description 

 SIMNETS was applied to previously described dataset of 103 Macaca mulatta primary 

motor (M1) cortex neurons (i.e., single-units) recorded during a planar 8-direction reaching 

task 29,36The single-unit activity was simultaneously recorded from the upper limb area of 

primary motor cortex using a chronically implanted microelectrode array. The monkey was 

operantly trained to move a cursor that matched its hand location to targets projected onto a 

horizontal reflective surface. A visual cue was used to signal movement direction during a 
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variable duration instructed delay period (1 – 1.6 s) to one of eight radially distributed 

targets on the screen with the associated reach angles of 𝜑 = {0°, 45°, 90°, 135°, 180°, 

225°, 270°, 315°}. At the end of the instructed delay period, the central target was 

extinguished, instructing the monkey to reach towards the previously cued target. 

 

 

SIMNETS Analysis 

We analyzed 1 second of neural data from correct trials (S = 114, trials), starting 0.1 

second before movement onset. Characterization of the detected SIMNETS clusters is 

similar to that described in section 5.1.  

 

We characterized the preferred direction of each M1 neuron by fitting a von Misses 

distribution 39 to the firing rate function R: 

            

         

  𝑟(𝜑) = 𝛽 + ℎ. 𝑒𝑥𝑝(ℎ. 𝑐𝑜𝑠(𝜑 − 𝜇))     (11) 

where 𝛽 is the offset of the function, h is the depth of the tuning, is the reach angle and μ is 

preferred reach direction of the cell. The function takes on a maximum value at  = μ, 

which corresponds to the neuron’s preferred reach angle.  

 

Rat Hippocampal CA1  

 

Task Description 

 We applied SIMNETS to a previously described dataset of rat hippocampal neurons45,46 

made publicly available by the Collaborative Research in Computational Neuroscience 

(CRCNS) data-sharing repository 37. The neurons were simultaneously recorded from the 

CA1 hippocampal region using multi-site silicon probes while the rat performed a spatial 

navigation task in a maze. Briefly, the rat was trained to run through the arms of a ‘figure-

8’ maze in a left/right alternating manner in order to receive a reward. The left/right track 

runs were interleaved with a wheel-run period that functionally served as a memory delay-

period. The rat performed T = 17 correct trials (Tr = 8, left trials; Tl = 9, right trials), taking 

on average 4.3 seconds to reach the rewards located at either end of the arms. The rat’s 

path along each arm of the track was linearized and divided into small (50 cm) or large 

(325 cm) spatial bins for the spatial firing field analysis or SIMNETS analysis, respectively 

(see next section for more details).  

 

Single Neuron Functional Characterization 

The rat’s path along each arm of the track was linearized and divided into 50 mm spatial 

bins when generating the spatial firing field maps. Bins corresponding to reward locations 

and the inter-trial activity were excluded from the analysis, leaving a total of 39 bins for 

each of the left and right trajectories, where the first 19 spatial bins were common to both 

trajectories. We generated a separate spatial firing map for the left and right trajectories of 

each neuron by dividing the number of spikes in the i-th bin by the rat’s occupancy time ti, 

and used a Gaussian kernel (width = 3 bins/150 mm) to smooth across the firing rates in 

each bin. Neurons that did not exhibit a 5 Hz firing rate in at least 1 spatial bin were not 

included in the analysis, leaving a total of N = 80 neurons. Neurons were characterized as 

non-place cells (n = 22, nPC) and place cells (n = 58, PC) based on their firing field 
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properties and an information-theoretic measure of the spatial information in their spikes 
45,74,75. Neurons were classified as having place cell-like activity if the mean firing rate in 

three contiguous bins exceeded the mean of all other firing fields by 20% 74,76 ( using 3.5 

STD of the out-of-field firing rate produced similar results 45) and if their information 

content exceeded 0.5 bits/spike 75 on either the left or right trajectories. The spatial 

information metric, Ispike, is a measure of the extent to which a neuron’s spiking activity 

can be used to predict the rat’s position along the track. The spatial information content of 

the neuron (measured in bits/spike) is defined as:      

            

               𝐼𝑠𝑝𝑖𝑘𝑒 = ∑ 𝑃𝑖
𝑙
𝑖=1

𝑣𝑖

𝑉
𝑙𝑜𝑔2

𝑣𝑖

𝑉
,                               (12) 

 

where Pi is the occupancy probability,𝑣𝑖 is the firing rate in the i-th bin, and V is the overall 

mean firing rate of the cell across all bins in trajectory.  

 

SIMNETS Analysis 

 

We divided the T linearized trajectories into six 325 cm spatial bins and extracted 0.75 s 

spike trains beginning at the time that rat entered a given bin. The time window duration 

was selected to capture the smaller receptive fields ~ 0.6 s but still include a large portion 

of the average place field width (1 s – see Pastalkova et al. 2008). The spatial bin size 

corresponds to the approximate distance travelled in this time window. This resulted in S = 

108 spike train events.  The SIMNETS algorithm was applied to the resulting N x S spike 

train 

 

SIMNETS Cluster Characterization 

 We compared the distances between neurons characterized as non-PCs and PCs in order to 

demonstrate the ability of SIMNETS to cluster the non-PCs to a specific region of the NS 

map. The Euclidean distances were calculated between all pairs of non-PCs (referred to as 

‘Within’ pairs) and between pairs of non-PCs and PCs (‘Between’ pairs) in the low 

dimensional NS map. A rank-sum statistical test was carried out on the Within and 

Between distance distributions using a significance threshold of p = .001.  Ensemble firing 

rate maps were generated for each of the three example SIMNETS clusters by averaging 

across the normalized single neuron firing rate spatial maps for all neurons in the i-th 

cluster. A bootstrap resampling method was used to test for significant peaks (p = .01) in 

the ensemble spatial firing map (i.e., place-field cell-assemblies). The procedure involved 

randomly sampling a subset of neurons from the neuron population, where each subset was 

equal in size to the number of neurons in the i-th cluster. A new ensemble tuning function 

was calculated over repeated iterations of this procedure (10000 iterations). The resulting 

null distribution describes the probability of getting the observed peak response if the 

detected neuron clusters were selected at random. A response that falls above (or below) 

the 99% confidence interval is considered significant.    

 

Ensemble Activity Similarity Maps are low-dimensional neural activity state-space maps 

that capture the relationships between neural ensemble activity patterns on individual trials. 

This method of visualizing low-dimensional projections of ensemble activity has 

previously been described by this group 29,41 Generating the low-dimensional Ensemble 

Activity Similarity maps consists of three steps. 1) Calculate the pairwise spike train 

distances between the i-th spike train event of neuron j and all other spike trains belonging 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 9, 2018. ; https://doi.org/10.1101/463364doi: bioRxiv preprint 

https://doi.org/10.1101/463364
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

 

to that neuron Sj = {S1,j, S2,j, …, Sm,j}. This results in a vector of pairwise spike-train 

distances d(Si,j) of length m. 2) the pair-wise similarity vectors for the i-th trial of all n 

neurons of a given ensemble are concatenated and combined into a matrix, resulting in an 

m x mn matrix (Densemble). The resulting m x mn pairwise distance matrix constitutes the 

relational embedding of the entire data set. 3) The final step consists of projecting the high-

dimensional m x mn distance matrix down into a m x d matrix, where d is the desired 

dimension of the projection.  

 

 

Table 2: Summary of datasets 

 

Symbol Synthetic 

Dataset 

V1 

Dataset 

M1 

Dataset 

CA1 

Dataset 
N 180 112 103 80 

 T                T 30 360 114 18 

S 30 360 114 119 
Spike train 

duration (s) 
1 1 1 0.75 

 

 

Table 3: Summary of SIMNETS Inputs/Outputs for each dataset 

 

Symbol Synthetic 

Dataset 

V1 

Dataset 

M1 

Dataset 

CA1 

Dataset 
q [0, 10, 200] 20 10 50 

perp 50 30 20 15 

d 3 3 3 3 

𝑘 
4,3,3 3 3 6 

k 2-15+ 2-15+ 2-15+ 2-15+ 

ĥ 
0.5, 0.99, 0.95 0.71 0.68 0.78 
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