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Abstract

A large body of work on neural encoding has focused on “cascade” type models such as the linear-
nonlinear-Poisson (LNP) model. This approach seeks to describe the encoding process in terms
of a series of stages: (1) projection of the stimulus onto a bank of linear filters; (2) a nonlinear
function combining these filter outputs; and (3) a noisy spike generation process. Here we explore
the relationship of the LNP modeling framework to more recent approaches arising from the deep
learning literature. Specifically, we show that deep neural network (DNN) and convolutional neu-
ral network (CNN) models of neural activity sit firmly within the LNP framework, and correspond
to particular parametrizations of the nonlinear stage of the LNP model. Using data from primate
retina and primary visual cortex, we compare the performance of LNP models fit with deep learning
methods to LNP models fit with traditional estimators, including spike-triggered covariance (STC),
information-theoretic spike-triggered averaging and covariance (iSTAC), and maximum likelihood
estimators also known as “maximally informative dimensions” (MID). We show that models with
nonlinearities parametrized by deep networks achieve higher accuracy for a fixed number of filters,
and can extract a larger number of informative filters than traditional models. Finally, we perform a
dimensionality analysis of LNP models trained with deep learning methods, revealing that a large
number of filters are needed to accurately describe the neural responses of many cells even early in
the visual pathway. This result overturns one of the central tenets of the LNP modeling framework:
that neural computations are low-dimensional, or depend on the stimulus only via its projection onto
a small number of linear filters. We discuss the implications of these findings for both the fitting and
interpretation of LNP encoding models.

1 Introduction

One of the fundamental problems in computational neuroscience is characterizing how neurons convert
sensory inputs to spike responses. This is commonly referred to as the neural encoding problem. The
difficulty of this problem arises from the stochasticity of neural responses as well as the high dimen-
sionality of sensory stimuli, which makes it impossible to explore the entire space of possible inputs to
a neuron (e.g., the space of all 2D images). An important simplifying assumption that has made the
neural coding problem tractable is the idea that neurons compute their response in a low-dimensional
space, i.e., that their responses depend on a low-dimensional projection of the stimulus (de Ruyter van
Steveninck & Bialek, 1988; Bialek, Rieke, de Ruyter van Steveninck, & Warland, 1991; Schwartz,
Chichilnisky, & Simoncelli, 2002; Aguera y Arcas & Fairhall, 2003; Aguera y Arcas, Fairhall, & Bialek,
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2003; Sharpee, Rust, & Bialek, 2004; Rust, Schwartz, Movshon, & Simoncelli, 2005; Schwartz, Pillow,
Rust, & Simoncelli, 2006; Aljadeff, Lansdell, Fairhall, & Kleinfeld, 2016). Most approaches to neural
characterization therefore focus primarily on identifying the subspace of the sensory stimulus space
that affects a neuron’s activity. For example, information-theoretic estimators explicitly seek to identify a
small set of input filters that maximize the response-relevant information contained in the stimulus. Sim-
ilarly, moment-based estimators, such as those using the spike-triggered average (STA) and covariance
(STC), directly compute filters that span the principal axes of the spike-triggered stimulus distribution.

These methods come with their own sets of advantages and disadvantages. Moment-based estima-
tors generally have low computational cost but succeed only for restricted stimulus domains and mod-
eling assumptions, while the reverse is true for maximum likelihood or information-based estimators
(Williamson, Sahani, & Pillow, 2015). While a large literature has focused on the estimation of linear-
nonlinear-Poisson (LNP) encoding models (Korenberg & Hunter, 1986; Sharpee et al., 2004; Paninski,
2004; Truccolo, Eden, Fellows, Donoghue, & Brown, 2005; Schwartz et al., 2006; Gerwinn, Macke, &
Bethge, 2010; Park & Pillow, 2011; Williamson et al., 2015; Heitman et al., 2016; Aljadeff et al., 2016),
recent work has focused on efforts to model neural responses using deep neural networks (DNNs)
(Batty et al., 2017; McIntosh, Maheswaranathan, Nayebi, Ganguli, & Baccus, 2016). Here we show
that these two approaches need not be considered distinct, as a DNN with Poisson output noise repre-
sents a particular parametrization of an LNP model.

Our paper makes the following contributions: (i) We clarify the theoretical equivalence of the LNP and
DNN frameworks. (ii) We investigate differences between the filters obtained by traditional LNP model
estimators and DNN-based estimators; (iii) We show that DNN-based LNP models outperform LNP
models estimated with traditional estimators, even for simple white noise stimuli; (iv) We show that
early visual neural responses are in fact high-dimensional, in contrast to previous assumptions, and
that DNN-based LNP models are better able to take advantage of this fact.

2 Background: Linear-Nonlinear-Poisson model

The linear-nonlinear-Poisson (LNP) model describes the neural encoding process in terms of a series
of three stages (Schwartz et al., 2006; Pillow, 2007). First, a linear stage projects the high-dimensional
sensory stimulus onto a set of linear filters, performing dimensionality reduction to a neural feature
space in which the neuron is assumed to compute its response. Second, a nonlinear stage maps the
filter outputs to a non-negative spike rate. Third, the spike rate drives spiking via an inhomogeneous
Poisson process, which is typically sampled in discrete time bins. (See Figure 1 for an LNP model
schematic).

The model is parametrized by a set of filters contained in the columns of a matrix, K = [k1, . . . ,kd],
and a point-wise nonlinearity f : Rd → R that transforms the d-dimensional vector of filter outputs to a
Poisson spike rate. The filters operate on an n-dimensional stimulus s (e.g., an image with n pixels) and
the model output is a non-negative integer spike count r in each time bin. Mathematically, the model
can be written:

x = K>s (linear) (1)

λ = f(x) (nonlinear) (2)

r|s ∼ Poiss(∆λ) (Poisson) (3)

where x is a low-dimensional feature vector resulting from projection of the high-dimensional stimulus s
onto the filters in K, λ is the instantaneous spike rate, ∆ is the time bin width, and the number of spikes
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r follows a Poisson distribution:
P (r|s) =

1

r!
(∆λ)re−∆λ. (4)

Estimators for the LNP model can be categorized into three classes based on the kind of optimization
problem required to obtain the filter estimates:

1. closed-form expressions using sufficient statistics

2. numerical optimization using sufficient statistics

3. numerical optimization requiring multiple passes over the full dataset.

Class 1 includes moment-based estimators like the spike-triggered average (deBoer & Kuyper, 1968;
Chichilnisky, 2001) and spike-triggered covariance (STC) analysis (de Ruyter van Steveninck & Bialek,
1988; Schwartz et al., 2002), which provide analytic expressions for filter estimates using first and sec-
ond moments of the stimulus and spike-triggered stimulus distribution. Class 2 involves estimators that
require numerical optimization of a nonlinear objective function that can be evaluated using the stimulus
and spike-triggered moments. This class includes information-theoretic Spike-Triggered Average and
Covariance (iSTAC) Bayesian spike-triggered covariance, and moment-based estimators for general-
ized quadratic models (GQMs) (Park & Pillow, 2011; Ramirez & Paninski, 2013; Park, Archer, Priebe,
& Pillow, 2013). Class 1 and 2 estimators both require the use of stimuli obeying certain regularity
conditions (e.g. elliptical symmetry or Gaussianity), and achieve optimality only under certain assump-
tions about the nonlinearity (e.g. exponential or exponentiated quadratic) (Paninski, 2003a; Park et al.,
2013). The payoff for making these assumptions is that estimates require only a single pass through
the data to compute moments.

By contrast, LNP model estimators in Class 3 require a full pass through the data for each evaluation of
the obective or loss function. The resulting estimators are consistent for arbitrary choices of stimulus;
however, the optimization problem is typically non-convex, meaning that it may be difficult to find a
global optimum, and is computationally expensive due to the need to take multiple passes through the
entire dataset. Estimators in this class include maximally informative dimensions (MID) (Sharpee et al.,
2004), which is equivalent to maximum likelihood (ML) estimation of the filters under a non-parametric
model of the nonlinearity (Williamson et al., 2015). Class 3 also includes generalized linear models
(GLMs) (Truccolo et al., 2005), which typically have a convex loss function but require specifying a
nonlinearity a priori and are restricted to a single linear filter.

In this paper, we will examine classical LNP model estimators from the three classes defined above,
and compare them to an estimator based on deep learning.

2.1 Closed-form moment-based estimators

Two classic estimators for the filters in an LNP model can be obtained directly from the first and second
moment of the spike-triggered stimulus distribution: the spike-triggered average (STA) and the spike-
triggered covariance (STC), respectively. The STA is defined as the average stimulus preceding a
spike:fixed-length

µ = 1
nsp

T∑
t=1

rtst, (5)

where nsp =
∑T

t=1 ri is the total number of spikes. The STA provides an unbiased, consistent esti-
mate of the filter for a single-filter LNP model, assuming that the stimulus distribution (shifted to have
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zero mean) is spherically symmetric, and the model nonlinearity shifts the mean of the spike-triggered
stimulus distribution away from zero (Chichilnisky, 2001; Paninski, 2003b). However, the STA is asymp-
totically optimal (meaning that it achieves the lowest possible mean-squared error) only in the case that
the nonlinearity is exponential, f(x) = exp(x + a) (Paninski, 2003b; Pillow & Simoncelli, 2006; Pillow,
2007).

For LNP models with multiple filters, the STA recovers only a single dimension of the subspace spanned
by the model filters; additional dimensions can be obtained from eigenvectors of the spike-triggered
covariance matrix, defined as

Λ = 1
(nsp−1)

T∑
t=1

rt(st − µ)(st − µ)>. (6)

If the stimulus distribution has been whitened so as to have identity covariance, eigenvectors of Λ with
eigenvalues significantly different from 1 provide consistent estimators for the filter subspace, provided
the stimulus is Gaussian and the nonlinearity shifts the variance of the spike-triggered stimulus distri-
bution along all filter dimensions. (When the stimuli are correlated, the spike-triggered covariance must
be adjusted to account for the stimulus covariance matrix; see (Schwartz et al., 2006) for details). The
STC-based estimator is computationally inexpensive because it requires only a single pass through the
data and an eigendecomposition of the STC matrix. However, it is asymptotically optimal only when the
nonlinearity takes the form of an exponentiated quadratic form, f(x) = exp(x>Cx+a) for some matrix
C and a constant a (Pillow & Simoncelli, 2006; Pillow, 2007; Park & Pillow, 2011).

2.2 The iSTAC estimator

A second class of LNP model filter estimators rely on optimization of a nonlinear objective function of the
spike-triggered moments (STA and STC defined) above. The first such estimator was the information-
theoretic Spike-Triggered Average and Covariance (iSTAC) estimator (Pillow & Simoncelli, 2006), which
was motivated by the observation that STA and STC-based estimators do not optimally combine infor-
mation from the first two moments when estimating a filter subspace. For example, for a single-filter
model in which the nonlinearity increases both the mean and variance of the spike-triggered stimulus
distribution, the filter can be estimated using the STA or the top eigenvector of the STC matrix. However,
neither estimate would be optimal because it does not combine information from both moments. The
iSTAC estimator overcomes this shortcoming, but at the cost of requiring numerical optimization of a
nonlinear objective function. Technically, the objective is the Kullback-Leibler (KL) divergence between
Gaussian approximations to the spike-triggered and raw stimulus distributions, which corresponds to an
information-theoretic quantity known as the single-spike information (Brenner, Strong, Koberle, Bialek,
& de Ruyter van Steveninck, 2000; Sharpee et al., 2004). This objective takes a simple form:

Iss(K) = 1
2

(
Tr(K>(Λ + µµ>)K)− log |K>ΛK|

)
, (7)

where Iss(K) denotes the single-spike information captured by a filter matrix K, and is equal to the
KL divergence between P (K>x|spike) and P (K>x), the spike-triggered and raw stimulus distribu-
tions projected onto the filter subspace defined by K, respectively. The most informative subspace
corresponds to the K that maximizes Iss(K) (eq. 7).

The conditions of validity for the iSTAC estimator are similar to those of STC: it is consistent only when
the stimulus distribution is Gaussian. However, it achieves asymptotic optimality under slightly more
general conditions than STA or STC, namely when the nonlinearity contains exponentiated quadratic
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and linear forms: f(x) = exp(xTCx + b>x + a), for any C, b, and a. This is an example of a general
family of models known as generalized quadratic models (GQMs) (Park et al., 2013). Subsequent work
has shown that the iSTAC estimator is asymptotically equivalent to a maximum likelihood estimator
(Park & Pillow, 2011), and derived generalizations to a larger family of stimulus distributions (Park et
al., 2013). One additional advantage of iSTAC over STA and STC-based based estimators is that it
comes with closed-form estimators for the parameters of the GQM nonlinearity once the filter matrix
estimate is obtained (Pillow & Simoncelli, 2006; Park & Pillow, 2011).

2.3 Maximum-likelihood / Infomax estimators

Two important limitations of the estimators defined above is their reliance on spherically symmetric or
Gaussian stimuli, and restrictions on the class of nonlinearities for which they achieve optimality. A
more powerful if more computationally demanding approach is therefore to perform to joint maximum
likelihood inference for the filters K and a set of parameters defining the nonlinearity.

An early example of such an approach is the maximally informative dimensions (MID) estimator, which
used histograms of the projected raw and spike-triggered stimuli to estimate the nonlinearity (Sharpee
et al., 2004). Although framed in terms of maximizing single-spike information, later work showed MID
to be the maximum likelihood estimator for an LNP model in which the nonlinearity is parametrized by
piecewise-constant basis functions (Williamson et al., 2015). In this framework, the nonlinearity can be
described as:

f(x) = g

( nφ∑
i=1

αiφi(x)

)
, (8)

where φi(·) is the i’th basis function (a function that takes a value of 1 within a rectangular region of the
filter output space and 0 elsewhere), αi is the coefficient weighting this basis function, nφ is the number
of basis functions, and g is a fixed rectifying function (e.g., rectified-linear) that enforces non-negative
firing rates. MID corresponds to a joint maximum likelihood estimate for the filter parameters K and
nonlinearity parameters α = (α1, . . . , αnφ), namely:

K̂, α̂ = arg max
K,α

T∑
t=1

rt log(∆λt)− λt, (9)

where the right-hand-side is the Poisson log-likelihood (from the log of eq. (4), ignoring constant terms),
and λt = f(K>st) is the firing rate computed by the LN cascade applied to stimulus st.

Subsequent work proposed using the same maximum likelihood framework with radial or cylindrical
basis functions in place of piece-wise constant (“histogram”) basis functions (Williamson et al., 2015).
Cylindrical basis functions (CBFs) resemble radial basis functions but are constrained only in some
dimensions. A “first-order” CBF, which is constrained in only 1 dimension, is defined

φ(x) = exp

(
(xj − µ)2

2σ2

)
, (10)

where xj is a single component of the vector x, and µ and σ denote the mean and width of the basis
function along this dimension. Compared to piece-wise constant basis functions, RBFs and CBFs have
the advantage that the nonlinearity is continuous and differentiable, resulting in a log-likelihood function
that is continuous and differentiable with respect to the model parameters.

The family of maximum-likelihood estimators defined by equations (8-9) can be considered a semi-
parametric because they include a parametric component (the filter matrix K) and a non-parametric
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Figure 1: Neural encoding frameworks. (a) The classic multi-filter LNP framework, in which a small
set of linear filters K perform dimensionality reduction on the input stimulus. The set of filter responses
in feature space is then passed to a nonlinear function f whose output λ is interpreted as a Poisson
spiking rate. (b) A DNN model for neural encoding works equivalently, with the input filtered through
a linear transformation before being passed to a multilayer nonlinear function in the form of a neural
network.

component (a nonlinearity that can be made arbitrarily flexible by growing the set of basis functions as
dataset size increases). Statistically, these estimators can achieve asymptotic optimality for any stim-
ulus distribution and neural nonlinearity given appropriate control of the degrees of freedom governing
the non-parametric nonlinearity (i.e., number of basis functions). However, in practice these estimators
are computationally expensive, due to the need to pass through the entire dataset for each evaluation
of the log-likelihood, and may be difficult to fit due to the ubiquity of sub-optimal local optima in the log-
likelihood function. These shortcomings provide strong motivation for deep-learning based approaches,
which have developed strategies for overcoming precisely these challenges.

2.4 Hybrid approaches

Before continuing, another approach is to use filters obtained from either STA/STC or iSTAC and then
perform maximum likelihood inference for the parameters of a particular parametric nonlinearity. Such
methods can be considered ‘hybrid’ approaches, because they employ fast, moment-based filter esti-
mation in conjunction with maximum likelihood estimation for the nonlinearity. The foremost example of
such a method, which we term the excitatory-suppressive pooling (ES-pool) model, was first applied by
(Rust et al., 2005) to V1 neurons. In its original formulation, STA/STC analysis was used to derive a set
of initial linear filters, which were then sorted into a set of excitatory (E) filters (those whose preferred
stimulus induced an increase in firing rate) and a set of suppressive (S) filters (those whose preferred
stimulus decreased firing rate). To reduce the high dimensionality of the problem of combining the filter
responses, the excitatory and suppressive filter responses were separately pooled via a rooted sum of
weighted squares and fed to a fixed nonlinearity N(·). This inference process can be summarized as
follows:

E =

√√√√ nE∑
i=1

wEi

(
k>Eis

)2
, S =

√√√√ nS∑
i=1

wSi

(
k>Sis

)2
(11)

λ = N(E ,S), (12)

where nE and nS are the numbers of excitatory and suppressive filters, respectively, kEi and kSi are
the ith filters, and wEi and wSi are the respective weights for the ith filters. λ is interpreted as a Poisson
firing rate as in Equation 2. In the original model, a half-wave rectification is applied to the weighted
output of the STA filter instead of squaring, but we omit that here for clarity of presentation. The model
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was then fitted by maximizing the mutual information between the joint excitatory and suppressive
signals and the neural response. We modified this initial formulation, however, using iSTAC analysis
to derive the initial filters, replacing the static nonlinearity N with a feedforward neural network F ,
and optimizing the model using gradient descent on the Poisson negative log-likelihood, training both
the pooling weights and the neural network parameters. We were able to achieve significantly better
performance with these modifications compared to the original model.

3 Deep learning models

Deep learning approaches to neural encoding are typically considered distinct from the LNP framework.
However, this is not the case. Like the generalized LNP model presented in Figure 1a, a DNN applied to
neural encoding accepts an input stimulus and performs a series of affine and nonlinear transformations
across its layers before producing a single non-negative value interpreted as a Poisson spike rate. The
model can also be constructed to produce multiple outputs, with each value interpreted as a spike rate
for a separate neuron in a population (McIntosh et al., 2016). (Note that for clarity’s sake, throughout this
article we will use the term DNN to refer to fully-connected feedforward architectures, unless otherwise
specified.)

In this way, a DNN is simply a high-dimensional non-linear function approximator (Goodfellow, Bengio,
& Courville, 2016). It is this flexibility that enables the unification of these two frameworks, such that a
deep network can be seen as the nonlinearity in an LNP architecture, accepting as input the linearly-
filtered stimulus (Figure 1b).

Alternatively, an LNP model as a whole can also be seen as a specific type of DNN. Consider a simple
LNP model with a single filter k ∈ Rn, where n is the dimensionality of the input stimulus, and a fixed
nonlinearity f : R → R≥0. Predicting the probability of the spike rate r given s, the model can be
summarized as

λ = f(k>s),

r|λ ∼ Poiss(λ∆).
(13)

A bias term b ∈ R can also optionally be incorporated into the initial affine transformation. Assuming
both are trained using gradient ascent on the Poisson log-likelihood, this is exactly equivalent to a 1-
layer neural network with parameters θ = {k, b} and activation function f . More sophisticated LNP
models with multiple filters and fitted nonlinearities, as presented in Equations ??-??, are also strongly
linked to multi-layer DNNs. In this case, the fitted basis functions {φi}

nφ
i=1 act as the hidden layer(s) of

the network, and the {αi}
nφ
i=1 act as the output layer weights.

More precisely, consider a deep network with L layers, with each layer l structured as

ul = W lxl−1, xl = f(ul), (14)

with x0 = s. The network is then equivalent to an LNP model with W 1 = K> and nonlinearity φ
parametrized by θ = {W 2,W 3, ...,WL−1}, and α = WL:

x = K>s,

λ = g (αφθ(x)) ,
(15)

where g is a static nonlinearity.

Note, bias terms are omitted here for clarity of presentation, but can easily be added. Interestingly, the
canonical formulation does not include a first layer bias term (Williamson et al., 2015), which we found
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to significantly boost performance when used in DNNs. However, it’s possible that the nature of certain
basis functions such as CBFs could implicitly incorporate the computational benefit of a bias through
the centers of their Gaussian bumps (see Supplementary section 7.1). In this way, we can see that
the basic DNN model is simply a special case of a LNP model with a different parameterization of the
nonlinearity. Importantly, the DNN nonlinearity is directly optimized along with the filter weights during
training. It is worth noting that it is also possible to reparameterize the input layer of the network as
follows:

u1 = W 1x + b1, x1 = f(u1), (16)

where x = K>s+z, with z being a bias vector. This effectively adds an extra affine layer before the first
layer weights. Interestingly, this formulation has some connection to the bias transformation introduced
by (Finn, Yu, Zhang, Abbeel, & Levine, 2017), with z acting as the transformation’s parameter vector.
Such a parameterization is thought to increase the representational power of the model’s gradient
during learning.

If the assumption underlying the LNP framework is correct – namely, that only a few filters are required
to cover the relevant stimulus subspace – we would expect that a DNN trained on a neural encoding
task should only require several input filters to comprise the first layer weight matrix, regardless of the
width of the downstream hidden layers. For example, in a simple cell found in primate V1, STA/STC
analysis suggests that approximately 7-8 filters are sufficient to account for the full range of neural
responses (Rust et al., 2005). Such bottlenecking of the input is unusual in the construction of DNNs,
as typical hidden layer sizes are significantly greater.

Beyond simply reformulating the model, this adaptation has practical effects. Let W 1 ∈ Rn×m be a
typical deep network first layer weight matrix, where n is the dimensionality of the input stimulus and m
is the number of output units for that layer. For a DNN constructed with the above assumption, however,
if there are k < m filters, the model will use an n × k filter matrix followed by a k ×m weight matrix
in the next layer. If the second layer weight matrix is normally m × m, and k � m, the reduction in
the number of parameters is significant. For example, if we have n = 500, k = 7, and m = 100, the
model saves 92.9% of the parameters in its first two layers, in theory reducing the risk of overfitting and
increasing training speed without losing its ability to capture the correct stimulus response. Additionally,
it is possible to simply use iSTAC analysis of the neuron’s spiking response to initialize the input filters
(Rust et al., 2005), which further speeds convergence (see Section 5.3). However, results that we
present in Section 5 indicate that, contrary to conventional thought, traditional fully-connected DNN
architectures are able to achieve a greater correlation with the true spike train through the use of a
greater number of input filters. Our subsequent analysis indicates that neurons in the early visual
system may have a far more complex response to stimuli than has been previously assumed.

4 Experiments

4.1 Data

We tested our models on two different neural recording datasets consisting of three different cell types
from the retina and primary visual cortex (V1), both obtained in vivo from adult macaque monkeys.
The first dataset consists of extracellular multi-electrode array recordings from 9 parasol retinal gan-
glion cells (RGCs), 5 of which were classified as ON cells and 4 as OFF cells. Obtained by (Uzzell &
Chichilnisky, 2004), the stimulus consists of a binary full-field flicker generated by a cathode ray tube re-
freshing at a rate of 120Hz. The second dataset consists of extracellular recordings from 9 simple cells
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and 9 complex cells from V1. These cells were exposed to a randomized binary bar stimulus aligned
with each neuron’s preferred orientation, and the recordings were obtained and the cells classified by
(Rust et al., 2005).

For both datasets, we only used cells for which repeat recordings of the same stimuli were obtained
as a measure of inherent response reliability, leaving out cells that either lacked such repeat data or
for whom reliability was markedly low. We defined a cell as having low reliability if the correlation r2

between its repeat responses was less than 0.3. Example stimuli from each dataset are viewable in
Supplementary Figure 8.

4.2 Models

We compared information-theoretic spike-triggered average and covariance (iSTAC), cylindrical basis
function (CBF), excitatory-suppressive pooling (ES-pool), and deep neural network (DNN) estimators
for all three cell types (RGC, simple, & complex). Due to the relative simplicity of the stimuli, we used
only fully-connected neural networks on the retinal data, but for the V1 data we also experimented
with 1-D CNNs and recurrent Long Short-Term Memory (LSTM) networks (Hochreiter & Schmidhuber,
1997), designed to process sequential data with long-term time dependencies. Consistent with the
findings of (McIntosh et al., 2016), we also found that using larger CNN filters (7-dimensional) than are
typically applied in computer vision was more effective.

Each of these models carries with it a different inductive bias governing the functionality of its input
filters. In the traditional LNP and fully-connected models, the input filters are applied simultaneously to
the concatenated stimuli across all time steps in the relevant stimulus history.

In contrast, in a 1-D CNN, each filter of size k < n, where n is the stimulus dimension, is convolved
over the stimuli separately, with the weights shared across time steps. Similarly, the input weights of an
RNN are each applied to one stimulus at a time, and shared across time steps. For each model, we
ran a hyperparameter search to identify the optimal model width and depth for the DNNs and number
of filters and basis functions for the LNP models.

All models were trained using gradient descent on the full Poisson loss function J :

J(r, λ) =

N∑
t=1

λt − rt log λt + log rt!, (17)

where N is the number of time bins, rt is the true spike count in time bin t, and λt is the predicted spike
rate. The last term, log rt! is not dependent on the model and is therefore not necessary for training and
can be dropped. This is equivalent to minimizing the negative log-likelihood of the neural response un-
der an assumed Poisson distribution. For more model and training details, see Supplementary section
7.2.

4.3 Performance Metrics

We experimented with two different performance measures: the single-spike information Iss and the
coefficient of determination r2. While Iss is traditionally calculated as DKL (p(s|spike)||p(s)), where
DKL denotes the KL divergence (Brenner, Strong, Koberle, Bialek, & Steveninck, 2000), (Williamson
et al., 2015) showed this is equivalent to

Iss =
1

log 2

L(r,λ)− L(r, r̄train)∑N
i=1 ri

, (18)

9

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/463422doi: bioRxiv preprint 

https://doi.org/10.1101/463422
http://creativecommons.org/licenses/by-nd/4.0/


Example ON Cell

Number of Filters

(a)

(b)

1 2 3 4 5

0.3

0.4

0.5

0.6

0.7

iSTAC

CBF

ES-pool

DNN

1 2 3 4 5

0.3

0.4

0.5

0.6

0.7

Te
st

 r
2

Example OFF Cell Example ON Cell

1 2 3 4 5

0.3

0.4

0.5

0.6

0.7

RGC Population

Example ON Cell

t

Figure 2: RGC cell results. (a) The 1D temporal filters learned by each estimator, ordered by alignment
with the sorted iSTAC filters. In contrast to the other models, the DNN filters are more generalized,
usually learning one broad peak where the other model filters learn a cluster of narrow spikes. (b)
Model performance for an example ON cell, example OFF cell, and the average across the population.
The example ON cell is the same as in part (a). Note that the Excitatory-Suppressive Pooling (ES-pool)
model results begin with two filters, as the model fundamentally relies on two streams of processing.
The DNNs display higher performance than the other methods, though for all nonlinearities performance
saturates after approximately five filters.

where r is the target spike train. L(r,λ) is the model log-likelihood, given by −J(r, λ) (Equation 17).
L(r, r̄train) is the log-likelihood obtained by predicting the average spiking rate 1

N

∑N
i=1 ri, where N is

the number of bins, in each time bin. The information is then divided by log 2 to convert its units from
nats to bits. In this way, maximizing Iss is equivalent to maximizing the model Poisson likelihood (or,
minimizing the negative log-likelihood). It is also worth noting that the quantity L(r,λ)− L(r, r̄train) is
directly proportional to the deviance of the Poisson distribution, a generalization of the use of residuals
as a measure of goodness-of-fit to maximum-likelihood models (Nelder & Wedderburn, 1972). Using
the coefficient of determination, or r2, simply measures the proportion of the variance in the true spike
response that is explained by a given model. In addition to being a simple and commonly used metric,
it is numerically unrelated to the single spike information. The use of repeat data, in which the same
stimulus is replayed over multiple trials to the same cell, allows us to compare the correlation of a cell’s
responses with itself to those obtained by our models. We found that Iss and r2 were generally closely
correlated, and generally default to presenting results in terms of r2, both for the ability to upper bound
them via the use of repeat data, as well as due to its greater use in the wider literature.
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Figure 3: V1 cell results. (a) The spatiotemporal filters learned by each estimator, ordered by alignment
with the sorted iSTAC filters. The models learn similar filters, although in general the DNN filters exhibit
less smoothness. (b) Average model performance across the population and on an example cell for
each cell type as a function of the number of input filters in the model. Note that the Excitatory-
Suppressive pooling (ES-pool) model results begin with two filters, as the model fundamentally relies
on two streams of processing. The high variability is a result of high variability in the reliability of the
cellular response. Most models typically reach peak performance at seven filters or fewer, but DNNs
continue to improve beyond that number (see Figure 5).

5 Results

5.1 Retinal Ganglion Cells

We trained traditional LNP nonlinearities as well as DNN nonlinearities on the RGC data. Due to the
simpler nature of both the full-field flicker stimuli and the retinal cellular responses themselves, we only
used feedforward fully-connected (FC) networks. We found that a simple 2-layer network was enough
to outperform the traditional LNP nonlinearities. These results were in accordance with the prediction
that performance saturates with a relatively low number of filters (Figure 2). Average performance of
the best model for each nonlinearity can be seen in Figure 4a. Examining the 1-D filters learned from
the same example ON cell whose performance is plotted in Figure 2b, we can see that the network
learns similar filters to those obtained through STA/STC analysis, with the differences accumulating
from left to right. In particular, the primary iSTAC filter, which accounts for the most information in the
cellular response, is found nearly exactly by each of the other nonlinearities. One notable feature of
the DNN filters is their relative broadness and simplicity in comparison to the other models. While the
other nonlinearities learn filters that have multiple closely concentrated peaks, the corresponding DNN
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Figure 4: Test r2 means and standard deviations for the best model of each type trained on (a) RGCs,
(b) simple cells, and (c) complex cells. The average max explainable r2 is the r2 between two halves of
the repeat data, averaged across different splits of the data and across cells. This acts as a measure
of the average reliability of the population’s response, effectively upper-bounding possible model per-
formance. The shaded region is the standard deviation of these value across cells. The neural network
models display an increasing advantage over the traditional LNP nonlinearities as the complexity of the
cellular responses and input stimuli increases.

often has a single broad area of activation in the same location. The effect is that the DNN is less
discriminating in responding to stimuli, resulting in a broader nonlinearity (see Supplementary Figure
9a). It appears that the neural network nonlinearity is more sensitive to a wider range of the stimulus
space, with the traditional LNP nonlinearities being more selective.

5.2 V1 Cells

The differences between the DNN models and the traditional LNP nonlinearities are more apparent in
the V1 results. While for equal numbers of filters (Figure 3b), the fully-connected DNN performs on par
with the other LNP nonlinearities, it’s able to continue improving beyond the point at which performance
saturates for the other models (Figure 5). This difference becomes more substantial as the complexity
of the filters grows (Figure 4). It is likely that the relative non-specificity of the DNN filters contributes
to this comparative lack of a performance ceiling (note the relative lack of smoothness in the DNN
filters in Figure 3a). Although absolute test performance is low in the V1 cells, it is still comparable to
that achieved by the retinal models relative to the performance ceiling established by the repeat data.
While difficult to discern in the complex cell nonlinearities, the same relative broadness in the plotted
nonlinearity in comparison to the traditional models can be seen in Supplementary Figure 9b,c.

The fully-connected network performance continues to improve beyond 7-8 filters as shown in Figure 5.
This challenges the notion that only a few filters are required to fully characterize the neural response.
However, one possible reason that these larger models outperform the others is not that the cellular
response is indeed sensitive to a high-dimensional subspace, but that the models require the greater
number of parameters in the larger model to adequately learn a smaller subspace. To investigate
whether the latter is true, or if a large number of filters are actually required to characterize the neural
response, we performed principle components analysis (PCA) on the input filters of the best fully-
connected and convolutional models trained on the simple and complex cell populations. We then
reconstructed the full filter matrix one principle component (PC) at a time, evaluating the model’s test
performance after each component was added. As a form of normalization to allow comparability
across cells and models, we divided the r2 performance of each model by their peak performance as
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Figure 5: Average held-out test performance as a function of the depth and layer width of neural net-
work models for simple cells (a-c) and complex cells (d-f). Each grid square represents the average final
test r2 across each cell in the population. Each architecture had a constant number of units per layer
with the exception of the output layer. For fully-connected (FC) models, the results show that perfor-
mance improves consistently as a function of model width, with depth having a more moderate effect.
In recurrent (RNN) and convolutional (CNN) models, there is a more complex relationship between
architecture and performance.

PCs were added to the reconstruction. If the relevant stimulus subspace is in fact low-dimensional, then
the performance of a large, trained network should not suffer if it filters the input with only the first few
PCs of the input weights. If a higher dimensional stimulus subspace affects the neural response, then
accordingly a higher dimensional filter space must be learned to adequately filter it, a greater number
of PCs would be required to reach optimal performance.

The results are summarized in Figure 6. We can see that for many of the simple cells, while high
performance is obtained very quickly, it peaks at ∼10 PCs and declines or levels off quickly as PCs
continue to be added in the fully-connected network . This indicates that for these cells the relevant
subspace likely has lower dimensionality than the complete number of filters, but that it still has higher
dimensionality than the LNP framework typically assumes. Indeed, there are several cells for which
performance continues to increase as components are added (Figure 6a). On average across the
population, performance is relatively flat and even declines slightly as PCs are added (Figure 6c).
Especially strong performance on those simple cells whose performance does improve as PCs are
added is then likely why average FC performance is slightly above the traditional nonlinearities for
simple cells (Figure 4b), as for the low-dimensional cells it underperforms. This is an important result,
as it shows that there is considerable variability even within cell types as to the nature of the neural
response. It would be useful in the future to test this trait in a larger population of cells. Therefore while
the low-dimensional hypothesis seems to hold in whole or in part for many of these cells, for many it
appears to fail.

In contrast to the simple cells, nearly every fully-connected complex cell model improves performance
as components are added. This indicates that complex cells likely do respond to a much higher-
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Figure 6: Normalized test performance for fully-connected models (a,d), convolutional models (b,e),
and on average across the cell populations (c,f) as a function of the number of principle components
(PCs) used to reconstruct the input filters. Each trace in parts a,b and d,e represents a separate cell.
The top row is simple cell results and the bottom is complex cells. To standardize across cells, we
divided each curve by the maximum r2 value obtained as PCs were added. If the low-dimensional
encoding hypothesis is correct, we would expect to see performance peak at <10 PCs. For most cells,
this is not the case.

dimensional stimulus subspace, and could also partly explain the superior performance of FCs over
traditional nonlinearities (Figure 4c). Moreover, across both cell types, CNNs improve performance as
PCs are added (Figure 6b,c). This is likely because each 7-dimensional kernel learns a specific feature
of the simple 16-dimensional stimulus space, and so a greater number of filters are required to cover it.
It is also likely that for higher dimensional natural stimuli that performance would not begin to saturate
as seen here.

5.3 Model Efficiency

We also tested several variants of the bottlenecked DNN framework discussed in Section 3. In addition
to the ES-pool model, we trained fully-connected DNNs with their initial filters determined through iSTAC
analysis. We tested two conditions within this strategy: one in which these filters were kept frozen
during training, and one in which the filters were allowed to train. The second condition produced
far superior performance, and in general initialization using iSTAC filters nearly halved model training
time in comparison to random filter initialization in the standard DNN models (Figure 7). In addition,
we not only measured the single-spike information (Iss) of each model, but on average how much
information was accounted for per model parameter (Iss/parameter), shown in Supplementary Figure
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Figure 7: When possible, initializing filters with iSTAC analysis can have a significant benefit to min-
imizing both loss and convergence time. These results are from fully-connected models. (a) In this
simple cell, such initialization does not make a difference in the final performance, but it does nearly cut
convergence time in half. (b) Not only is convergence time reduced in this complex cell, but the overall
performance is significantly improved via iSTAC initialization. The benefits of iSTAC initialization are
unsurprising, as it the standard procedure for more traditional LNP estimators.

10a,b. Interpreted as a measure of model efficiency, we can see that all of the low-filter DNN variants
outperform the standard DNN by this measure, with the ES-pool model being especially notable.

6 Discussion

Collectively, these results demonstrate both the fundamental compatibility of the DNN and LNP ap-
proaches, as well as show that as nonlinear function approximators, DNNs have a greater capacity to
exploit all of the relevant information in the stimulus space compared to more traditional nonlinearities.
While their feedforward architectures may fit within the LNP framework, the specialized optimizers used
to perform gradient descent in deep models also confer an advantage. Through the CBF nonlinearity,
these results also connect deep networks to information-theoretic estimators like MID. This compatibility
also allows for easier comparison between model components. Examining the filters and resulting non-
linearities above shows that DNNs learn a more diffuse representation of the stimulus subspace and
as a result are able to capture a broader range of the neural response. It should be noted that these
results do not completely overturn the understanding that only a small number of filters are necessary
to characterize the relevant stimulus subspace for neurons in the early visual system. It is clear that the
vast majority of performance gains, as well as the bulk of the relevant information, is obtained in the first
few filters, even for cells that seem to require a high number of filters for optimal performance. However,
they do indicate that DNNs are better able to take advantage of residual information in the stimulus.
Similar gains were not observed in the traditional LNP nonlinearities when the number of filters was
increased beyond its usual limit, although it was not computationally tractable to push the number of
filters to the same level as the DNN models. This computational efficiency is another factor in favor of
their use. It is also clear that the different ways in which RNNs and CNNs process the input produces
significant advantages over other models, although the reasons for this have no yet been fully explored.
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The fact that these effects are observed even for simple binary stimuli implies not only that neurons are
sensitive to a richer subspace of the input stimulus than previously thought, but also that these discrep-
ancies are likely even more significant for natural stimuli. Investigating the underlying causes of these
differences is a promising avenue for future work and a greater understanding of neural encoding.
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7 Supplementary Information

7.1 First Layer Biases

It is possible that, while the traditional LNP formulation does not include a first ’layer’ bias to accompany
the linear transformation of the input stimulus, certain basis functions may play a similar role. For
example, a ’first-order’ CBF is defined as a Gaussian bump aligned with a particular direction of the
feature space, centered at µ with characteristic width σ:

φ1st(x) = exp

(
(xi − µ)2

2σ2

)
. (19)

Viewed alternately as acting on the shifted stimulus projection xi−µ, we can see that the CBF effectively
applies a uniform first layer bias term. Defining a vector of such centers µ ∈ Rk, where k is the number
of filters, with µi used to offset xi, would be equivalent the unconstrained first layer biases used by
DNNs.

7.2 Model and Training Details

All neural network models used the softplus nonlinearity at each layer and were trained using the
Adam optimizer (Kingma & Ba, 2014). The softplus nonlinearity was chosen for numerical stability
in conjunction with the Poisson loss function. Dropout (Srivastava, Hinton, Krizhevsky, Sutskever, &
Salakhutdinov, 2014) was added after hidden layers of sufficient size to prevent overfitting. Simple cell
model architecture details can be found in Table 1.

Layer DNN DNN-LNP ES-pool

Input 16× 16× 1 16× 16× 1 16× 16× 1

1 64 dense softplus 5 linear filters 3 E filters | 2 S filters
2 0.25 dropout 64 dense softplus 3 dense | 2 dense
3 64 dense softplus 0.25 dropout L2-norm of E | L2-norm of S
4 0.25 dropout 64 dense softplus Concatenate E and S (2-D)
5 64 dense softplus 0.25 dropout 16 dense softplus
6 0.25 dropout 64 dense softplus 16 dense softplus
7 1 dense softplus 0.25 dropout 16 dense softplus
8 - 1 dense softplus 1 dense softplus

# Params 24,833 10,054 627

Table 1: Several simple cell model architectures. Input was flattened to 256 × 1. ’# Params’ refers to
the number of trainable model parameters. A ’dense’ layer is a fully-connected layer. DNN-LNP refers
to a model with an extra linear layer for dimensionality reduction as described in Section 3.
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7.3 Figures

Figure 8: Sample stimuli. (a) The retinal data stimuli simply consisted of binary full visual field flickers.
(b) The V1 stimuli were only slightly more complex, consisting of binary bars aligned with the target
neuron’s preferred direction of orientation. The fact that the most successful V1 models required a high
number of input filters even for such simple stimuli implies that the fundamental dimensionality of simple
and complex cell responses is higher than previously thought.
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Figure 9: Nonlinearities from two-filter models. The two filters were orthogonalized and used to create
a basis from which a 2D grid of stimuli was generated. The model firing rates in responses to these
stimuli form the nonlinearity. It should be noted that for all nonlinearities other than those trained on
RGCs, two-filter model performance was very weak. (a) Models trained on RGCs. These plots are the
most interpretable, clearly demonstrating the relative broadness of the DNN nonlinearity relative to the
other models. This is likely a direct consequence of the relative broadness of the DNN filter contours in
Figure 2a. (b) Simple and (c) complex cell nonlinearities. These results are more difficult to interpret,
likely because two-filter models trained on these data did not achieve high performance.
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Figure 10: Measures of model efficiency: (a) test single spike information (Iss) and (b) test single
spike information per parameter (Iss/parameter) for simple cell DNN model variants. Here, DNN-iSTAC
denotes models whose input filters were initialized with iSTAC filters, but were frozen during training,
while DNN-iSTAC (Tr.) denotes models whose filters with initialized with iSTAC but were allowed to train.
DNN-LNP denotes models with an additional linear layer for dimensionality reduction as described in
Section 3. We can see that these and the ES-pool models achieve significantly greater parameter
efficiency.
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