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Abstract 
 
Cognitive flexibility, the adaptation of mental processing to changes in task demands, is thought to depend on                 
biological neural networks’ ability to rapidly modulate the dynamics governing how they process information.              
While extensive work has elucidated how network dynamics can be reshaped by slowly occurring structural               
changes, e.g. the gradual modification of recurrent synaptic patterns, much less is known about how dynamics                
might be reconfigured over faster timescales of seconds. One compelling example of rapid and selective               
modulation of network dynamics potentially involved in cognitive flexibility is observed in rodent hippocampus,              
where short bouts of exploratory behavior cause new activity sequences to preferentially “replay” during              
subsequent awake rest periods without continued sensory input. Fast mechanisms for selectively biasing             
sequential activity through networks, however, remain unknown. Using a spiking neural network model, we              
asked whether a simplified version of sequence replay could arise from three biophysically plausible              
components: recurrent, spatially organized connectivity; homogeneous, stochastic “gating” inputs; and rapid,           
activity-dependent scaling of gating input strengths, based on a phenomenon known as long-term potentiation              
of intrinsic excitability (LTP-IE). Indeed, these enabled both forward and reverse replay of flexible sequences               
reflecting recent behavior, despite unchanged recurrent weights. Specifically, activation-triggered LTP-IE “tags”           
neurons in the recurrent network by increasing their spiking probability when gating input is applied, and the                 
sequential ordering of spikes is reconstructed by the existing recurrent connectivity. In a proof-of-concept              
demonstration, we also show how LTP-IE-based sequences can implement temporary stimulus-response           
mappings in a straightforward manner. These results elucidate a simple yet previously unexplored combination              
of biological mechanisms that converge in hippocampus and suffice for fast and flexible reconfiguration of               
sequential network dynamics, suggesting their potential role in cognitive flexibility over rapid timescales. 
 
 
Introduction 
 
We can rapidly and flexibly adapt how we process incoming information from the environment, a mental faculty                 
known as cognitive flexibility. For example, after being instructed to raise our left hand when one word is heard                   
and our right hand when another is heard, we perform the task with little error. How brain networks quickly                   
induce novel stimulus-response mappings such as this into their underlying neural dynamics, however,             
remains mysterious. In particular, while extensive prior work has elucidated how stimulus-response mappings             
might be implemented biologically, the mechanisms for inducing these mappings typically require slow, gradual              
modifications to network structure e.g. by incrementally training connection weights to minimize errors between              
correct and predicted responses (​Williams and Zipser, 1989 ​; ​Sussillo and Abbott, 2009 ​; ​Laje and Buonomano,               
2013 ​; ​Rajan, Harvey, and Tank, 2016 ​; ​Nicola and Clopath, 2017 ​) or by allowing local plasticity to reshape                 
network dynamics in response to internal activity (​Song and Abbott 2001 ​; ​Fiete, et al., 2010 ​; ​Gilson, Burkitt,                 
and Van Hemmen, 2010 ​; ​Lee and Buonomano, 2012 ​; ​Klampfl and Maass, 2013 ​; ​Rezende, Wierstra, and               
Gerstner, 2014 ​; ​Diehl and Cook, 2015 ​). Biologically observed spike-timing-dependent plasticity (STDP)           
mechanisms, however, typically increase post-synaptic potentials (PSPs) by at most a few percent (​Markram,              
et al. 1997 ​; ​Bi and Poo, 1998 ​; ​Sjostrom, et al., 2001 ​; ​Wang, et al., 2005 ​; ​Caporale and Dan, 2008 ​).                   
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Furthermore, due to the precise timing requirements of canonical plasticity mechanisms (e.g. in STDP spike               
pairs must occur in the correct order within tens of milliseconds) and low firing rates of cortex and                  
hippocampus (typically less than a few tens of Hz [​Griffith and Horn, 1966 ​; ​Koulakov, Hromadka, and Zador,                 
2009 ​; ​Mizuseki and Buzsaki, 2013 ​]), STDP-triggering spike patterns may occur relatively rarely, especially             
given the asynchronous nature of cortical firing patterns in awake animals (​Renart, et al., 2010 ​). As a result,                  
computational models for shaping dynamics that modify network structures via synaptic plasticity typically rely              
on at least dozens of learning trials over extended time periods (​Song and Abbott 2001 ​; ​Masquelier,                
Guyonneau, and Thorpe, 2008 ​; ​Klampfl and Maass, 2013 ​), challenging their suitability for rapid reconfiguration              
of network dynamics. Computationally, modifying connections to change network function might also interfere             
with long-term memories or computations already stored in the network’s existing connectivity patterns,             
leading, for instance, to catastrophic forgetting (​McCloskey and Cohen, 1989 ​). Consequently, it is unclear (1)               
how biologically observed plasticity mechanisms could reshape network function over the timescales of             
seconds required for rapid cognitive flexibility, and (2) how such restructuring of synaptic connectivity could               
occur over the short term without degrading existing long-term memories.  
 
One feature of neural dynamics potentially reflecting processes of cognitive flexibility is stereotyped sequential              
firing patterns (​Hahnloser, Kozhevnikov, and Fee, 2002 ​; ​Ikegaya, et al., 2004 ​; ​Luczak, et al., 2007 ​; ​Pastalkova,                
et al., 2008 ​; ​Davidson, Kloosterman, and Wilson, 2009 ​; ​Crowe, Averbeck, and Chafee, 2010 ​; ​Harvey, Coen,               
and Tank, 2012 ​). Functionally, firing sequences are thought to be involved in various cognitive processes, from                
short-term memory (​Davidson, Kloosterman, and Wilson, 2009 ​; ​Crowe, Averbeck, and Chafee, 2010 ​) to             
decision-making (​Harvey, Coen, and Tank, 2012 ​). More generally, one can imagine sequential activity as              
reflecting information propagating from one subnetwork to another, e.g. stimulus S evoking a cascade of               
activity that eventually triggers motor output M. A compelling empirical example of memory-related firing              
sequences that arise in a neural network almost immediately after a sensorimotor event, apparently without               
requiring repeated experience or long-term learning, occurs in so-called awake hippocampal replay. Here,             
sequences of spikes in hippocampal regions CA1 and CA3 originally evoked by a rodent traversing its                
environment along a specific trajectory subsequently replay when the rodent pauses to rest (​Foster and               
Wilson, 2006 ​; ​Davidson, Kloosterman, and Wilson, 2009 ​; ​Gupta, et al., 2010 ​; ​Carr, Jadhav, and Frank, 2011 ​).                
Such replay events occur at compressed timescales relative to the original trajectory and often in reverse                
order. Replay has also been observed in primate cortical area V4, where firing sequences evoked by a short                  
movie were immediately reactivated by a cue indicating the movie was about to start again, but without                 
showing the movie (​Eagleman and Dragoi, 2012 ​). The functional role of replay has been implicated in memory,                 
planning, and learning (​Ego-Stengel and Wilson, 2010 ​; ​Carr, Jadhav, and Frank, 2011 ​; ​Eagleman and Dragoi,               
2012 ​; ​Jadhav, et al., 2012 ​; ​Olafsdottir, Bush, and Barry, 2018 ​), but little is known about the mechanisms                 
enabling the underlying sequential activity to become induced in the network dynamics in the first place.                
Elucidating biological mechanisms for rapidly inducing sequential firing patterns in network dynamics may not              
only illuminate the processes enabling replay but may also shed light on principles for fast and flexible                 
reconfiguration of computations and information flow in neural networks more generally. 
 
An intriguing fast-acting cellular mechanism whose role in shaping network dynamics has not been              
investigated is the rapid, outsize, and activity-dependent modulation of cortical inputs onto pyramidal cells              
(PCs) in hippocampal region CA3 (​Hyun, et al., 2013 ​; ​Hyun, et al., 2015 ​; ​Rebola, Carta, and Mulle, 2017 ​).                  
Specifically, following a 1-2 s train of 20 action potentials in a given CA3 PC, excitatory postsynaptic potentials                  
(EPSPs) from medial entorhinal cortex (MEC) more than doubled in magnitude within eight seconds (the first                
time point in the experiment). Thought to arise through inactivation of K​+​-channels colocalized with MEC               
projections onto CA3 PC dendrites and deemed “long-term potentiation of intrinsic excitability” (LTP-IE),             
potentiation occurred regardless of whether the CA3 PC spikes were evoked via current injection or by                
upstream physiological inputs, indicating its heterosynaptic nature, since only MEC EPSPs, and not others,              
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exhibited potentiation (​Hyun, et al., 2013 ​; ​Hyun, et al., 2015 ​). Notably, the ~10-20 Hz spike rate required for                  
potentiation matches the range of ​in vivo ​spike rates in hippocampal “place cells” when rodents pass through                 
specific locations (​Moser, Kropff, and Moser, 2008 ​; ​Mizuseki, et al., 2012 ​), suggesting LTP-IE may occur in                
natural contexts. Furthermore, EPSP potentiation persisted throughout the multi-minute course of the            
experiment (​Hyun, et al., 2015 ​), suggesting that in addition to fast onset, the modulation could extend                
significantly into the future. Although inducing sequential activation patterns in neural networks is typically              
associated with ​homosynaptic plasticity (e.g. in STDP a postsynaptic following a presynaptic spike strengthens              
the activated synapse, thereby incrementally increasing the probability of subsequent presynaptic spikes            
triggering postsynaptic spikes), the rapidity, strength, and duration of this heterosynaptic potentiation            
mechanism suggest it might significantly modulate network dynamics in natural conditions, warranting further             
investigation within the context of neural sequences. Moreover, while this mechanism has so far been               
observed in hippocampus only, an intriguing possibility is that functionally similar mechanisms exist in cortex               
also, enabling rapid effective changes in excitability of recently active cells, with potentially similar              
computational consequences (see Discussion). 
 
To explore this idea we first develop a computational model for the effect of LTP-IE on EPSPs from upstream                   
inputs as a function of their spiking responses to physiological inputs. Next, we demonstrate how LTP-IE                
combined with recurrent PC connectivity in a spiking network can yield spike sequences reflecting recent               
sensorimotor sequences that replay in both forward and reverse and which are gated by an upstream gating                 
signal. We subsequently identify parameter regimes allowing and prohibiting LTP-IE-based sequence           
propagation and examine the effect of specific parameters on replay speed, spontaneous activity, and              
information transmission. Finally, we show how LTP-IE-based sequences can be used to induce temporary              
stimulus-response mappings in an otherwise untrained recurrent network. We discuss implications for cognitive             
flexibility and rapid, non-stereotyped memory storage that does not require modification of recurrent network              
weights. 
 
Results 
 
To investigate its consequences on neuronal spiking dynamics we implemented LTP-IE in a network of leaky                
integrate-and-fire (LIF) neurons (​Gerstner, et al., 2014 ​). Overall neurons received three types of inputs:              
sensorimotor inputs S, carrying tuned “external” information; recurrent input R from other cells in the network                
(developed further, ​Fig 2 ​​); and “gating” inputs G, which are assumed to be random, with a homogeneous rate                  
across the network, but independent to each cell. We first provide an overview and intuition of the model that                   
follows. 
 
First, we demonstrate our implementation of LTP-IE in spiking neurons: LTP-IE in a given neuron is activated                 
by that neuron’s firing within a physiologically plausible range (~20 Hz) for 1-2 seconds. LTP-IE specifically                
augments EPSPs from gating (G) inputs (analogous to MEC inputs); consequently, recently activated cells,              
“tagged” by LTP-IE, will show stronger positive voltage deflections in response to G inputs. Thus, when                
continuous G inputs are present, recently active, LTP-IE-tagged cells will, on average, sit closer to spiking                
threshold. Unless otherwise specified, in all simulations of reactivation dynamics that follow we assume the               
presence of G inputs, as LTP-IE cannot affect membrane voltages without them. 
 
Second, in analogy to hippocampal “place cells” (​Moser, Kropff, and Moser, 2008 ​; ​Mizuseki, et al., 2012 ​) we                 
consider the case where different neurons maximally activate when a simulated animal is in different positions                
in the environment. Consequently, when the simulated animal navigates along a trajectory, LTP-IE tags the               
cells with place fields along the trajectory, thus storing the trajectory memory as a set of positions, without                  
order or timing information. When G inputs are turned on post-navigation (representing an awake resting               
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state), these recently active LTP-IE-tagged cells sit closer to spiking threshold than cells that were not                
activated by the trajectory. 
 
Finally, inspired by excitatory recurrence in CA3 (​Lisman, 1999 ​) we assume recurrent excitatory connections in               
the network, which allows activity to propagate through the network over time. We assume that cell pairs with                  
more similar tuning (nearby “place fields”) have stronger connections (​Lisman, 1999 ​; ​Kali and Dayan, 2000 ​;               
Giusti, et al., 2015 ​). Thus, activity from cell A is more likely to propagate to cell B if (1) cell B has been                       
LTP-IE-tagged after being activated by the trajectory, and (2) cell B has a nearby place field to cell A.                   
Consequently, given the right model parameters, activity that begins at one point in the network (e.g. in cells                  
tuned to the animal’s resting position) should propagate primarily among LTP-IE-tagged cells, in an order               
potentially reflecting the original trajectory. We discuss additional model components we excluded for the sake               
parsimony, such as inhibition, structured G inputs, additional tuning parameters, and LTP-IE extinction, in the               
Discussion. 
 
Note that our model accords two meanings of “excitability” to the LTP-IE acronym. As coined by (​Hyun, et al.,                   
2013 ​; ​Hyun, et al., 2015 ​), LTP-IE’s “excitability” originally refers to the augmented EPSPs of G inputs (MEC                 
inputs in (​Hyun, et al., 2013 ​, ​Hyun, et al., 2015 ​) arriving to distal dendrites. Here, however, “excitability” also                  
refers to the increased voltage of LTP-IE-tagged cells, which makes them more likely to spike in response to                  
inputs. 
 
LTP-IE increases membrane voltages and spike rates under random gating inputs 
 
We first model LTP-IE mathematically and demonstrate its effect on neuronal membrane voltages and spiking.               
To model LTP-IE, when a naive cell spikes at a sufficiently high rate (~10 Hz) over 1 second, we increase the                     
strength of that cell’s G inputs by a factor σ, in accordance with its spike rate, such that future G inputs yield                      
augmented EPSPs (​Fig 1A, B​​). Consequently, cells that have recently emitted several spikes in quick               
succession end up with high LTP-IE levels, which causes them to sit at higher average voltages given a steady                   
random stream of G inputs (​Fig 1C-E​​); additionally, cells with higher LTP-IE exhibit increased variability in their                 
membrane voltages (​Fig 1D, E​​). 
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Fig 1: Mechanism and consequences of LTP-IE​​. A. Demonstration using leaky integrate-and-fire (LIF)             
neuron model of fast activity-driven LTP-IE, which doubles membrane voltage responses to gate inputs as               
described in ​Hyun, et al., 2013 ​, ​Hyun, et al., 2015 ​. A spike in an upstream gate neuron (G) first elicits a small                      
EPSP in the pyramidal cell (PC); a 1-second spike train (dots) at approximately 20 Hz is evoked by strong                   
stimulation of sensory inputs S; when G spikes again, the EPSP has doubled in size. “RCR” refers to recurrent                   
inputs from other PCs (not used in this figure). B. Shifted logistic function for LTP-IE strength (effective weight                  
scaling factor) σ vs. PC firing rate over 1 second. C. Example voltage responses (V​m​) of PCs with different σ                    
receiving statistically identical stochastic gating input spikes. D. Distribution of PC membrane voltage for σ               
values shown in C. E. Mean (thick) and standard deviation (shading) of V​m as a function of σ for three gate                     
firing rates. Black: r​G = 75 Hz; dark red: r​G = 125 Hz; red: r​G = 175 Hz. F. Example differential sensitivities of PC                        
spike responses to injected current input (blue) for two different σ. Dashed lines show leak and spike threshold                  
potential; dots indicate spikes (which only occur for the σ = 2 case [cyan]). G. Difference between                 
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current-evoked spike probability and spontaneous spike probability as a function of ​σ ​for four initial gate input                 
weights (unitless). Color code, in order of increasing lightness: w​PG,G​ = .004, .008, .012, .016. 
 
Due to their increased membrane voltage, cells with high LTP-IE also exhibit higher spiking probability, both                
spontaneously (​Fig 1S1 ​​) and in response to depolarizing current inputs (​Fig 1F,G​​), although substantial              
variability remains, and even with high LTP-IE, current-evoked spiking is not assured (​Fig 1F,G​​). Nonetheless,               
for moderate values of the synaptic strength of initial G inputs, LTP-IE substantially increases the probability of                 
transforming a depolarizing input into an output spike from near zero to approximately 0.5 (​Fig 1G​​). (For overly                  
weak initial G inputs, LTP-IE does not substantially facilitate spiking; for overly strong initial G inputs,                
spontaneous spike rates are already high and increased spiking leads to more frequent voltage resetting [​Fig                

1G, 1S1 ​​].) Thus, given moderate initial G input strengths, when a cell undergoes LTP-IE, its chance of spiking                  
in response to future inputs (i.e. its excitability) substantially increases, although variability remains. Since              
LTP-IE-triggering spike rates are only around 10 Hz, this suggests LTP-IE may play an active role in                 
modulating firing properties of recently active cells in physiological conditions. 
 
Spike sequences propagate along LTP-IE-defined paths through a network 

 
We next asked how LTP-IE would shape activity in a recurrent spiking network of 1000 excitatory neurons.                 
Individual neurons were inspired by hippocampal place cells (​O’Keefe, 1979 ​; ​Moser, Kropff, and Moser, 2008 ​),               
with firing rates tuned to specific positions (“place fields”) within an environment (​Fig 2A-C​​). We furthermore                
assumed preferential connections between neurons with nearby place fields (​Fig 2D and Methods). Since our               
primary goal was to evaluate whether LTP-IE alone was sufficient to induce activity sequences we did not                 
include inhibitory neurons, but potential roles for inhibition are described in the Discussion.  
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Fig 2: Demonstration of history-dependent sequence replay via LTP-IE​​. A. Network architecture used in              
simulations. B. Squared exponential position tuning for an example neuron (20 Hz max. firing rate, 0.15 m                 
length scale). C. Resultant LTP-IE as a function of distance between a cell’s maximum tuning and the closest                  
point on the trajectory through the environment (red), computed as a sigmoidal function (​Fig 1B​​) of                
position-dependent firing rate (black). D. Recurrent weights as squared exponential function of distance             
between peak tuning positions of two cells. E. LTP-IE profile induced by example trajectory (inset). Cells are                 
positioned according to peak tuning. F. Cells activated during a 100 ms replay epoch, colored by the ordering                  
of the first spikes emitted during replay. Black cells did not activate during replay. G. As in F, but for a different                      
trajectory (inset). H. Raster plot depicting spike times for select cells across several replay epochs.               
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Current-pulse triggers to cells in upper-left or lower-right portion of trajectory are shown by triangles and                
inverted triangles, respectively. I-K. Zoom in on two triggered replay events (I, J) and one spontaneous event                 
(K). L. Trajectories decoded from replay spikes when LTP-IE was induced by trajectories in F or G. 
 

To investigate network activity depending on recent sensorimotor sequences, we considered the scenario in              
which a rodent has just completed a short trajectory through its environment, in analogy with experimental                
setups used to measure neuronal replay in hippocampus (​Foster and Wilson, 2006 ​; ​Davidson, Kloosterman,              
and Wilson, 2009 ​; ​Gupta, et al., 2010 ​; ​Carr, Jadhav, and Frank, 2011 ​). Since our goal was to understand                  
sequential reactivation during the awake, quiescent period following the trajectory, we only used the trajectory               
geometry to predict the LTP-IE levels one would expect following its termination. To do so, we computed each                  
neuron’s maximum expected spike rate during the trajectory as a function of the distance from its place field to                   
the nearest point on the trajectory (​Fig 2C​​). We then passed the result through the soft-thresholding LTP-IE                 
activation function (​Fig 1B​​) to compute the final expected LTP-IE level σ (​Fig ​2C​​). This allowed us to model                   
the expected LTP-IE profile over the network of neurons as a function of the recent trajectory (​Fig 2E​​). As per                    
our design, the LTP-IE profile stores which locations were covered by the original trajectory but bears no                 
explicit information about its speed or direction. 
 
Can replay-like sequences that recapitulate the original trajectory structure emerge from the LTP-IE profile              
stored in the network? Indeed, when we triggered replay with a depolarizing current pulse into cells at the                  
lower-right corner of the trajectory, an approximately 100 ms sequence of activity cascaded along the path                
through the network aligned with the LTP-IE profile (​Fig 2F​​). Due to the refractory period of ~8 ms (see                   
Methods​), activity propagated in one direction without reversing. When an alternative trajectory was used to               
induce the LTP-IE profile, triggered replay recapitulated that trajectory instead (​Fig 2G​​), indicating the replay of                
a specific trajectory was not an ​a priori consequence of the recurrent connectivity; indeed, this is to be                  
expected from the spatial uniformity of the recurrence. Additionally, the replay sequence was able to turn                
corners, suggesting robustness to multidimensional trajectory geometries. Moreover, replay could occur in            
either direction along the LTP-IE profile depending on which end of the trajectory received the initial trigger                 
(​Fig 2H-L​​), in line with empirical observations in which replay often occurs in the reverse direction as the                  
original trajectory (​Foster and Wilson, 2006 ​; ​Davidson, Kloosterman, and Wilson, 2009 ​; ​Gupta, et al., 2010 ​;               
Carr, Jadhav, and Frank, 2011 ​). Replay events also arose spontaneously, in either direction (​Fig 2H, K​​), and                 
sometimes—due to the lack of inhibition—arose from the middle of the trajectory, propagating outwards in both                
directions (not shown). Thus, despite sizable variability in membrane voltages arising from the random gating               
inputs G, LTP-IE was able to induce activity sequences into the network that recapitulated recent sensorimotor                
experiences. 
 
Dependence of LTP-IE-based sequence propagation on network parameters 

 
What conditions must hold for LTP-IE to induce successful sequences through the network? To address this                
we explored how the network activity evoked by a trigger at the lower-right corner of the Z-shaped LTP-IE                  
profile from ​Fig 2E changed as we varied different pairs of network parameters. For each parameter                
combination we classified triggered activity into one of four classes: in ​fadeout (​Fig 3A​​), activity fails to                 
propagate along the full LTP-IE profile; in ​blowup (​Fig 3B​​), activity propagates through whole network instead                
of being constrained to the LTP-IE profile; in ​disordered ​replay ​(​Fig 3C​​), activity remains constrained to the                 
LTP-IE profile but does not propagate strictly from one end to the other, as may occur if a spontaneous event                    
arises at the same time as a triggered one. If neither fadeout, blowup, nor disordered replay occurred, we                  
classified the response as ​successful replay​. In general, successful replay was sensitive to certain parameter               
variations but robust to others (​Fig 3D-F​​). For instance, whereas a fine balance was required between the                 
recurrent connection strength and the recurrent connectivity length scale (​Fig 3D​​), replay was more robust to                
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variations in the gating input rate r​G and the maximum LTP-IE strength σ ​max (​Fig 3E​​). (We note, however, that                   
sensitivity to recurrent connection strength and length scale could be improved by increasing the density of                
cells in the network [​Fig 3S1 ​​].) In general, excessive decreases in any of these four parameters led to fadeout                   
whereas excessive increases led to blowup, with disordered replay occurring when either σ ​max or r​G was too                 
large while other parameters retained moderate values (​Fig 3E-F​​). 
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Fig 3: ​Parameter dependence of LTP-IE-based sequential replay ​​. A. Demonstration of “fadeout”, in which              
sequential activity initiated at lower right fails to propagate along full trajectory defined by LTP-IE profile. Same                 
format as Fig 2F-G, with colors indicating spiking order (with only first spikes used for neurons spiking multiple                  
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times) during replay epoch. B. Demonstration of “blowup”, in which all neurons activate during replay epoch. C.                 
Demonstration of “disordered” replay, in which LTP-IE-tagged neurons activate during replay epoch but not in               
either a fully forward or fully reverse order. In this example, activity was triggered by a current injection in the                    
middle of the trajectory, which caused propagation in both directions. D. Profile of replay dynamics regimes as                 
a function of recurrent connectivity length scale λ ​PC,PC and scale factor w​PC,PC (see methods). Colors               
corresponding to Fig 3F colorbar indicate number of successful replay events out of ten trials, for parameter                 
regimes that yielded successful replay. If fewer than 2/10 successful replay events occurred, colors indicate               
most common dynamics (fadeout: blue; blowup: cyan; disordered: green). E. Same as D but showing               
dynamics as function of gate input rate r​G and max LTP-IE value σ​max​. F. Same as E, F but showing dynamics                     
as function of w​PC,PC and r​G​. G. Spontaneous spike rate of neurons with at least 50% of max LTP-IE value,                    
calculated over 10-second time period absent external stimulation, as function of λ ​PC,PC and w​PC,PC​.              
Spontaneous spike rates were calculated for all non-fadeout/non-blowup parameter regimes, i.e. where            
ordered or disordered replay occurred. H. Same as G but as function of r​G and σ​max​. I. Same as G, H except as                       
function of w​PC,PC and r​G​. J. “Virtual” replay speed of triggered sequential activity propagation for all parameter                 
regimes in G. K. Same as J but for parameter regimes in H. L. Mutual information between trigger presence                   
and spike detection at upper left between 50-250 ms following trigger, calculated for all non-fadeout and                
non-blowup parameter regimes. Perfect information transmission is 1 bit.  
 
Within parameter regimes enabling successful replay, precise parameter values modulated specific activity            
dynamics. For instance, spontaneous spiking (typically dominated by spontaneous replay events) increased            
with the recurrent connection strength, maximum LTP-IE strength, and gating input rate (​Fig 3G-I​​).              
Furthermore, the “replay speed” (the speed of movement along the trajectory decoded during the replay event)                
showed the greatest positive relationship with the recurrence length scale, but also exhibited some              
dependence on other parameters (​Fig 3J-K​​). This result corroborates the hypothesis that the speed of replay                
events emerges from internal network structure, as opposed to the temporal structure of the animal’s original                
trajectory (​Davidson, Kloosterman, and Wilson, 2009 ​). Note that empirical replay speeds have been measured              
near ~8 m/s (​Davidson, Kloosterman, and Wilson, 2009 ​) whereas ours were in the range of 20-50 m/s; this                  
range is largely determined by the density of our network, however. When we doubled the density of neurons                  
(2000 neurons with place fields spanning the same environment), allowing us to decrease the recurrence               
length scale, replay became more reliable, and replay speed decreased substantially across all parameter sets               
(compare ​Fig 3D ​​with ​Fig 3S1A​​ and ​Fig 3J-K​​ with ​Fig 3S1B-C​​). 
 
A key component of brain dynamics underlying cognitive flexibility may be the ability to selectively route                
information from one neural subnetwork to another (​Akam and Kullmann, 2010 ​; ​Stocco, Lebiere, and              
Anderson, 2010 ​; ​Kirst, Timme, and Battaglia, 2016 ​). One substrate for such selective information propagation              
may be flexible sequential activity patterns that coordinate activity between disparate areas within the network               
(​Pezzulo, et al., 2014 ​; ​Jadhav, et al., 2016 ​; ​Rajan, Harvey, and Tank, 2016 ​), which our results suggest LTP-IE                  
may facilitate. For instance, if activating one end of the LTP-IE profile reliably causes activation at the other,                  
this could be used to quickly carve out a temporary communication channel within the network. To this end, we                   
measured the mutual information (MI) between the presence/absence of a triggering pulse at the lower right                
end of the trajectory, and subsequent elevated spiking activity at the opposing end in the upper left (where                  
perfect transmission is 1 bit). When we computed MI along the LTP-IE profile as a function of gating input rate                    
r​G and maximum LTP-IE level σ ​max​, which both influence the spontaneous spiking that is most likely to interrupt                  
MI, we found that MI was maximized for a high r​G and moderate σ ​max​, although MI remained below 1 bit for all                      
parameter values, indicating that transmission was never 100% reliable (​Fig 3L​​). This suggests that for               
LTP-IE-induced sequences, information transmission through these sequences may be maximized for           
moderate values of σ ​max​, so stronger differentiation between LTP-IE-tagged and non-LTP-IE-tagged cells does             
not necessarily imply improved information transmission. We note further that we could increase MI to 1 by                 
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increasing the density of neurons in the network and shortening their recurrence length scale (​Fig 3S1C​​), with                 
information transmission likely improving due to decreased variability in the average signal propagation (since              
more neurons are involved). Thus, experience-dependent LTP-IE at biologically realistic levels can rapidly and              
flexibly modulate sequence-based information propagation through a network of spiking neurons. 
 
LTP-IE-based sequences can encode temporary stimulus-response mappings 

 
A popular hypothesis in cognitive neuroscience is the multiplexing and interaction of mnemonic and spatial               
representations, contributing, for example, to the formation of “memory maps”. Indeed, hippocampus’            
experimentally observed roles in both memory and spatial navigation lends compelling evidence to this notion               
(​Schiller, et al., 2015 ​). The potential neural mechanisms underlying this phenomena, however, remain poorly              
understood. To demonstrate how LTP-IE could shape temporary memory storage and computation more             
generally, beyond simply replaying recent sensorimotor sequences, we considered the simple task of requiring              
a network to represent one of two possible stimulus-response mappings, and then asked how LTP-IE could                
induce these mappings in the network (​Fig 4A​​). We assume such an induction could be generated by                 
appropriately transformed sensorimotor inputs from upstream areas, but we did not model this explicitly, as our                
goal was to demonstrate the final results. 
 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/494310doi: bioRxiv preprint 

http://www.jneurosci.org/content/35/41/13904.short
https://doi.org/10.1101/494310
http://creativecommons.org/licenses/by-nc/4.0/


 
Fig 4: Using LTP-IE-based sequential activity propagation to maintain and decode pairwise            

associations. A. Example of two different mappings between a pair of stimuli (S1, S2) and a pair of responses                   
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(M1, M2). In Mapping 1 (solid), activating S1 should activate M1, and activating S2 should activate M2. In                  
Mapping 2 (dashed) activating S1 should activate M2, and activating S2 should activate M1. B. Depiction of                 
simulation structure. Either S1 or S2 is activated with a recall cue (injected current input into colored cells).                  
Readout units average all units from either S1, S2, M1, or M2, indicated by colors. C. Example LTP-IE-based                  
encoding of Mapping 1 with neurons laid out in 2-D coordinate space. D. Time-dependent readout responses                
(normalized to maximum readout response over the 3 s), with colors corresponding to readout units depicted in                 
B. S1 and S2 were each alternately activated 3 times by appropriate recall cue (direct current injection into the                   
relevant neurons; inverted colored triangles), and all readout responses were plotted. In this example,              
activating S1 (magenta) causes M1 (red) to activate, and activating S2 (cyan) causes M2 (blue) to activate,                 
due to spike propagation along paths defined by LTP-IE profile in C. E. Order of first spikes of all neurons that                     
spiked during shaded time period in D. F. Example LTP-IE-based encoding of Mapping 2 with neurons laid out                  
in same 2-D coordinate space as in C. G. Readout responses for same recall cue pattern as D. H. First spike                     
order of all neurons that spiked during time-period shaded in G. I-K. Same as F-H but for an LTP-IE profile                    
encoding Mapping 2 that is distinct from that in F. L-N. Same as F-H, I-K but for a third alternative LTP-IE                     
profile encoding Mapping 2. 
 
LTP-IE was able to induce multiple stimulus-response mappings in the network, each in multiple ways. As an                 
example we let two regions in the network represent two stimuli S1 and S2, and two regions represent motor                   
outputs M1 and M2, with the average activity in each region read out by a corresponding downstream readout                  
unit (​Fig 4B​​). We then introduced non-intersecting LTP-IE paths into the network connecting each stimulus               
region to its associated motor output region, and recorded the ability of a trigger in each stimulus region to                   
subsequently activate the correct motor output (​Fig 4C-N​​). (We discuss intersections in the Discussion.) We               
first verified our idea with a simple mapping in which each stimulus was connected via a one-dimensional                 
LTP-IE profile to its appropriate motor output (​Fig 4C-E​​). Indeed, triggering each stimulus region with a                
depolarizing current input led to subsequent activation of its corresponding motor output after a short delay                
(​Fig 4D-E​​), although there were occasionally low levels of spontaneous activity. We next explored a mapping                
requiring at least one LTP-IE path to take a roundabout course through the network (​Fig 4F-H​​). As before,                  
triggering each stimulus region led to activation of its corresponding motor output, with the longer LTP-IE path                 
reflected in a longer stimulus-response delay (​Fig 4G-H​​). Responses, however, appeared less reliable than              
when shorter LTP-IE paths were used, likely due to the increased opportunities for propagation to fail due to                  
variability in the baseline G inputs. Notably, the same stimulus-response mapping could be implemented via               
LTP-IE in several different ways (​Fig 4F, I, L​​), with the different LTP-IE paths reflected in the different                  
stimulus-response delays. This contrasts with alternative models of temporarily binding together distinct            
components of a neural network, which typically suppose a single stereotyped structure of the mapping/binding               
representation (​Raffone and Wolters, 2001 ​; ​Botvinick and Watanabe, 2007 ​; ​Swan and Wyble, 2014 ​). Thus,              
LTP-IE combined with recurrent connectivity might serve as a biophysically plausible, yet highly flexible              
substrate for inducing temporary stimulus-response mappings in a recurrent spiking network, a potential key              
property enabling rapid and flexible induction of temporary information-processing patterns in brain networks             
underlying cognitive flexibility. 
 
Discussion 
 
Structured sequential spiking activity is a key feature of recurrent neural network dynamics, potentially              
reflecting information flow and computations within the network. One compelling example of spike sequences              
observed is the so-called “replay” of neural sequences representing recent sensorimotor sequences through             
the environment. This has been observed ​in vivo ​in both hippocampus and cortex during awake quiescent                
periods in both rodents and primates (​Foster and Wilson, 2006 ​; ​Davidson, Kloosterman, and Wilson, 2009 ​;               
Karlsson and Frank, 2009 ​; ​Gupta, et al., 2010 ​; ​Carr, Jadhav, and Frank, 2011 ​; ​Eagleman and Dragoi, 2012 ​)                 
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and is thought to be involved in navigational planning (​Foster 2012, ​Curr. Opin. Neurobiol.​; ​Pfeiffer 2013,                
Nature ​) and memory consolidation (​Carr, Jadhav, and Frank, 2011 ​; ​Jadhav, et al., 2012 ​; ​Olafsdottir,              
Carpenter, and Barry, 2017 ​; ​Zielinski, Tang, and Jadhav, 2017 ​). Such replay serves as a compelling entrypoint                
for uncovering the biophysical mechanisms that support rapid modulation of information processing.            
Accordingly, here we take the perspective that sequential spike patterns reflect information transmission             
between distinct subnetworks. While substantial work has shown how modifications to the structure of              
recurrent network connections can induce sequences into a network’s dynamical repertoire (​Sussillo and             
Abbott, 2009 ​; ​Klampfl and Maass, 2013 ​; ​Laje and Buonomano, 2013 ​; ​Rajan, Harvey, and Tank, 2016 ​), little                
was known about alternative mechanisms acting on faster timescales. Here we have demonstrated the              
sufficiency of an empirically observed, strong, and fast-acting heterosynaptic plasticity mechanism known as             
long-term potentiation of intrinsic excitability (LTP-IE) (​Hyun, et al., 2013 ​; ​Hyun, et al., 2015 ​; ​Rebola, Carta,                
and Mulle, 2017 ​), applied to a spatially organized recurrent spiking network, to coerce a network into                
generating selective sequences. These are capable of recapitulating recent sensorimotor sequences,           
implicating their potential role in memory storage, as well as encoding simple stimulus-response mappings,              
suggesting their suitability for organizing flexible computations. 
 
Additionally, as observed ​in vivo ​and as predicted by our model, the sequences that replay during awake                 
quiescence are significantly compressed relative to the initial behavioral timescales, suggesting replayed            
spikes may occur within the appropriate time windows for long-term, spike-timing-dependent plasticity            
mechanisms (STDP) (​Markram, et al. 1997 ​; ​Bi and Poo, 1998 ​; ​Dan and Poo, 2004 ​). For example, it was                  
shown in CA1 place cells that replaying place-tuned firing sequences ​in vitro ​that were previously recorded ​in                 
vivo could induce long-term connectivity changes between cells with overlapping place fields (​Isaac, et al.,               
2009 ​). Our model reveals a mechanism by which spatial sequences could be transiently stored in the first                 
place, in order to be later embedded into long-term memories. 
 
Finally, although our work was inspired primarily by hippocampus and the notion of LTP-IE-based short-term               
sequences, the core concept of excitability-based network dynamics might naturally extend to cortical areas,              
and to more diverse timescales (​Zhang and Linden, 2003 ​; ​Titley, Brunel, and Hansel 2017 ​). For example, it                 
was recently found that small neuronal ensembles could be “imprinted” into a mouse cortical network and                
subsequently reactivated ​in vivo via repeated optogenetic stimulation (​Carrillo-Reid, et al., 2016 ​). While this              
result was taken as evidence of Hebbian (associative) synaptic plasticity, our work suggests the same result                
might also arise simply via increasing the excitability of the neurons in the ensemble. Distinguishing these two                 
mechanisms in cortical circuits and understanding how they interact presents an exciting avenue for further               
investigation. 
 
Comparison to existing sequence-generation models 
 
While we do not aim to provide a complete account of hippocampal replay, but rather to demonstrate how                  
specific biophysical mechanisms can rapidly generate selective network sequences, we believe it is still              
worthwhile to compare our model to existing models for rapidly storing and recalling sequences in neural                
systems, both in terms of biological plausibility and computational robustness. One family of models for               
encoding and decoding sequences in hippocampus supposes that sequential information is stored in the timing               
of spikes relative to theta (5-10 Hz) and gamma (~40 Hz) oscillatory cycles in the hippocampus (​Lisman and                  
Idiart, 1995 ​; ​Lisman, 1999 ​). Briefly, gamma cycles are “nested” within theta cycles, and a sequence of stimuli                 
is stored by stimulus-specific neurons spiking at unique gamma cycles within the encompassing theta cycle.               
While these models provide a persuasive computational account of how oscillations might be used to store                
temporary information, it is not clear how the sensory input would be appropriately transformed so as to be                  
“entered” into the oscillation cycle at the correct time, how stable these mechanisms are in the face of noise,                   

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/494310doi: bioRxiv preprint 

https://www.ncbi.nlm.nih.gov/pubmed/22226994
https://www.ncbi.nlm.nih.gov/pubmed/22226994
https://www.nature.com/articles/nature12112
https://www.nature.com/articles/nature12112
https://www.nature.com/articles/nn.2732
http://science.sciencemag.org/content/336/6087/1454
https://www.sciencedirect.com/science/article/pii/S0896627317309042?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0896627317309042?via%3Dihub
https://onlinelibrary.wiley.com/doi/10.1002/hipo.22821
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756108/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756108/
http://www.jneurosci.org/content/33/28/11515
https://www.ncbi.nlm.nih.gov/pubmed/23708144
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824643/
https://www.ncbi.nlm.nih.gov/pubmed/23981714
https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/JP270372
https://www.nature.com/articles/nrn.2017.10
https://www.nature.com/articles/nrn.2017.10
https://www.ncbi.nlm.nih.gov/pubmed/8985014
http://www.jneurosci.org/content/18/24/10464
https://www.sciencedirect.com/science/article/pii/S0896627304005768
https://www.ncbi.nlm.nih.gov/pubmed/19474311
https://www.ncbi.nlm.nih.gov/pubmed/19474311
https://www.nature.com/articles/nrn1248
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5519140/
http://science.sciencemag.org/content/353/6300/691
https://www.ncbi.nlm.nih.gov/pubmed/7878473
https://www.ncbi.nlm.nih.gov/pubmed/7878473
https://www.sciencedirect.com/science/article/pii/S0896627300810855?via%3Dihub
https://doi.org/10.1101/494310
http://creativecommons.org/licenses/by-nc/4.0/


nor how multiple sequences might be stored simultaneously in the network; in particular, sequence information               
could be lost if the oscillation were disrupted, and one would require an independent nested oscillation for a                  
second sequence. In our LTP-IE-based model, however, memories are directly entered into the network by               
physiological spiking patterns (​Fig 1​​), are stored in effective synaptic weight changes likely driven by ion                
channel inactivation (as opposed to persistent spiking activity) and might therefore be more robust to noise,                
and multiple sequences can theoretically be stored in the same network (​Fig 4 ​​). 
 
The second main family of replay models either explicitly (​Molter, Sato, and Yamaguchi, 2007 ​; ​Veliz-Cuba, et                
al., 2015 ​; ​Haga and Fukai, 2018 ​) or implicitly (​Chenkov, Sprekeler, and Kempter, 2017 ​) assume that the                
sequences produced by the network are initially induced in the network via modification of recurrent network                
weights, for example through homosynaptic mechanisms like spike-timing-dependent plasticity (STDP)          
(​Markram, et al. 1997 ​; ​Bi and Poo, 1998 ​; ​Fiete, et al., 2010 ​). While such models can indeed selectively bias                   
network sequences when implemented computationally, given the hypothesized weak magnitude of STDP, it is              
unclear whether such a mechanism could account for the awake trajectory replay observed in rodents, which                
can sometimes occur even when the animal has experienced the original trajectory only once (​Foster and                
Wilson, 2006 ​), nor whether it could be used to immediately induce novel computations that the animal cannot                 
afford to learn over extensive repetitions. In our model we rely on a strong, fast-acting mechanism, LTP-IE,                 
which although heterosynaptic in nature (unlike STDP, LTP-IE follows spiking regardless of which input elicited               
the spikes (​Hyun, et al., 2013 ​; ​Hyun, et al., 2015 ​) suffices in biasing a network toward producing highly specific                   
sequences: LTP-IE “tags” cells in the recurrent network with a higher probability of spiking in response to input                  
(​Fig 1​​), and sequential ordering is reconstructed by the existing but unmodified recurrent connectivity. While               
recent research has begun to investigate how small, biophysically plausible recurrent weight changes might              
successfully encode new memories (​Curto, Degeratu, and Itskov, 2012 ​; ​Yger, Stimberg, and Brette, 2015 ​), to               
our knowledge this has not been applied in the context of sequences. Overall, it is likely that memory and                   
computational flexibility over short timescales relies on a host of plasticity and dynamics mechanisms, but we                
propose that LTP-IE may play a significant role. 
 
Model limitations 
 
As a proof-of-concept account demonstrating the sufficiency of a small number of mechanisms to quickly bias                
selective sequence production in a network, we did not explicitly model several features in order to keep our                  
model parsimonious. First, we did not include inhibition, as we discovered that LTP-IE-based sequences could               
arise through excitatory connectivity alone. Among a number of possible roles, inhibition in hippocampal and               
cortical networks supports network oscillations (​Wang and Buzsaki, 1996 ​; ​Jadhav, et al., 2012 ​) and balances               
excitatory activity to stabilize dynamics (​Brunel, 2000 ​; ​Chenkov, Sprekeler, and Kempter, 2017 ​). Indeed,             
empirical hippocampal sequence replay co-occurs with brief oscillatory events called sharp-wave ripples (​Carr,             
Jadhav, and Frank, 2011 ​), suggesting that hippocampal inhibitory circuitry may contribute to oscillatory replay              
patterns, perhaps serving as a clock-like signal for controlling signal propagation. An additional role for               
inhibition in sequence replay may be to induce competition among reactivating representations, for example so               
that multiple sequences would not replay simultaneously, or so activity traveling along a branching LTP-IE-path               
would follow only one branch at a time. Inhibitory balance might also serve to decrease the parameter                 
sensitivity of our model to small variations in ​w​PC,PC or ​λ ​PC,PC

​(​Fig 3D​​) by providing a counterbalance to                  
over-excitation, but precisely how the structure and dynamics of inhibitory interactions with our network would               
modulate LTP-IE-based sequences is beyond the scope of this work. 
 
A further issue with LTP-IE-based sequences surrounds trajectories that intersect themselves. At an             
intersection point, our current model would typically lead to sequential reactivation that spread in multiple               
directions, thus failing to recapitulate the original trajectory. This, however, could be resolved by the               
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embedding of trajectories in a higher-dimensional space beyond just the x-y plane. Indeed, neuronal firing is                
typically modulated by multiple stimulus features; for example, hippocampal neurons are also tuned to              
head-direction (θ) (​Leutgeb, Ragozzino, and Mizumori, 2000 ​) and running velocity (​McNaughton, Barnes, and             
O'Keefe, 1983 ​). Thus, if excitatory connectivity between neurons with similar x- and y-tuning were only present                
if neurons had similar θ-tuning also, the trajectory representation would expand into a third θ dimension, such                 
that it might no longer intersect with itself and replay would reflect the actual trajectory travelled. Consequently,                 
extending our assumption of preferential connectivity among similarly tuned neurons to additional input             
dimensions could increase the capacity of our network to store non-interfering sequences.  
 
Additionally, while we have assumed the upstream “gating” inputs in our model are stochastic with               
homogeneous firing rates, cortical activity likely contains higher order structure beyond mean firing rates, such               
as the grid-like representations of space observed in neural firing patterns in entorhinal cortex (​O’Keefe and                
Burgess, 2005 ​; ​Yamamoto and Tonegawa, 2017 ​), the hippocampal input that inspired our gating inputs. Our               
model demonstrates that replay can occur absent additional mnemonic information in such, but one would               
imagine such additional information would only increase the capacity and robustness for memory storage and               
computational flexibility, since this would act as an additional memory buffer. 
 
Finally, our model begs the question of how information would be erased from the network or prevented from                  
entering it in the first place. Indeed, with no forgetting or selective LTP-IE activation, one would expect all                  
neurons in our model to undergo LTP-IE after the animal had fully explored the environment, thus preventing                 
sequential reactivation along specific trajectories through the network. While this problem would be partially              
solved by considering additional input dimensions as described above (i.e. so that even if the x-y space were                  
fully explored, only a fraction of the x-y-θ space would have been explored), one might also imagine additional                  
neuromodulatory inputs serving to control the strength of LTP-IE during exploration. For example, the              
neurotransmitter acetylcholine is known to interact with the voltage-gated potassium channel Kv1.2 (​Hattan, et              
al., 2002 ​), the ion channel hypothesized to underlie LTP-IE (​Hyun, et al., 2015 ​), and hippocampus receives                
state-dependent cholinergic inputs from medial septum (​Yoder and Pang, 2005 ​; ​Mamad, et al., 2015 ​). Thus,               
sufficient machinery for erasing or selectively modulating the overall effects of LTP-IE, say, as a function of                 
arousal or motivation state, may converge in the brain region that has served as the inspiration for our model. 
 
Experimental predictions 
 
Despite its parsimony, our model of LTP-IE-based network sequences makes specific predictions that could be               
tested in hippocampal replay experiments. First, pharmacological blocking of LTP-IE during exploration should             
prevent the encoding of new trajectory information into CA3, consequently preventing subsequent replay. This              
could be achieved by ​in vivo application of nimodipine or PP2, which block intracellular calcium increase,                
protein tyrosine kinase activation, and Kv1.2 channel endocytosis, all potential mechanisms of LTP-IE, and              
which have been shown to block LTP-IE ​in vitro (​Hyun, et al., 2015 ​). Second, inactivating medial entorhinal                 
layer II (MEC II), which projects to CA3 and which we associate with gating inputs in our analogy with                   
hippocampal circuitry, should inhibit CA3 sequential replay events. Indeed, inactivation of MEC III inputs has               
been shown to inhibit forms of replay in CA1 (​Yamamoto and Tonegawa, 2017 ​); we propose that a parallel                  
effect would be seen in MEC II inputs to CA3. Finally, the core prediction of our sequence induction model is                    
that the neurons do not have to be initially activated in the order (or the reverse order) in which they will later                      
reactivate. As the only information explicitly added to the network at the time of encoding is the set of neurons                    
activated, speed or ordering information must be reconstructed from existing connectivity. While identifying the              
position tunings of individual neurons ​in vivo and subsequently artificially activating them out of order currently                
presents a substantial technical challenge, one could potentially achieve a similar effect using a virtual reality                
environment with place-specific sensory cues, and in which specific places along a virtual trajectory were               
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presented out of order. Our model predicts that as long as the animal had sufficient knowledge of which                  
sensory cues corresponded to which virtual environment locations, replay would occur in an order              
corresponding to a path through the environment, rather than the order in which the virtual places were                 
presented to the animal. 
 
Computational significance 
 
Besides revealing a potential core mechanism for sequence induction, our model lends two key insights into                
the structure and control of replay in biological neural networks. First, it suggests a link between isotropy in                  
pre-existing spatial representations in the network (i.e. the spatially organized connectivity) and the             
experimental observation that replay sometimes occurs in the forward, and sometimes in the reverse order               
relative to the neurons’ initial activation during the trajectory (​Foster and Wilson, 2006 ​; ​Davidson, Kloosterman,               
and Wilson, 2009 ​; ​Gupta, et al., 2010 ​; ​Carr, Jadhav, and Frank, 2011 ​). In particular, since no directionality                 
information is stored by LTP-IE (which only tags which neurons were recently active), replay should occur with                 
equal chance in forward or reverse. (Note however, that as observed in (​Davidson, Kloosterman, and Wilson,                
2009 ​), replay events may have an increased probability of originating at cells tuned to the animal’s current                 
location, as a result of place-tuned inputs to the network during awake quiescence.) One would therefore not                 
expect to observe reverse replay for neural sequences that do not have a natural spatial embedding, e.g.                 
spoken sentences in humans. Second, the upstream gating signal in our model might serve as a substrate for                  
the short-term state-dependence of replay, e.g. with arousal or motivation controlling when the gating signal is                
present or absent. This could ensure that replay occurs only at appropriate times (e.g. quiescent rest) without                 
interfering with other computations being performed by the network, such as pattern separation in external               
sensory inputs (​Leutgeb, et al., 2007 ​; ​Bakker, et al., 2008 ​). 
 
Further, while our network was embedded in 2-D space, our results frame the more general question of how a                   
network embedded on a higher dimensional manifold, or with no natural embedding, supports excitability-              
based sequence induction and information flow. For example, one could imagine the rapid induction of spike                
sequences corresponding to movement along 3-dimensional trajectories if the recurrent architecture reflected a             
3-dimensional space, as might occur within the three-dimensional hippocampal place-cell network of free-flying             
bats (​Yartsev and Ulanovsky, 2013 ​). More generally it remains an open and intriguing question as to which                 
network structures are most suited to rapid excitability-based flexibility among sequences and behaviorally             
relevant computations. One example of a network model with no obvious spatial embedding, and which could                
potentially be recast in the framework of excitability-based information flow, is the “binding pool” model of                
associative memory proposed by Swan & Wyble (​2014 ​). Here, associations are encoded in a set of steady,                 
persistently active “binding” units that allow preferential signal transmission among specific sets of units              
representing object features, to which the binding units are randomly connected. While the role of such                
persistent spiking in coding mnemonic information is presently undergoing substantial reevaluation           
(​Sreenivasan, Curtis, and D'Esposito, 2014 ​), one could theoretically replace it with excitability increases, with              
an equivalent consequence for information transmission. Whether this could be done via biological             
mechanisms remains an open question, but our present work suggests its plausibility. 
 
Finally, one can draw an equivalence between the modulation of cellular properties to shape sequences and                
information flow and selective variation in upstream modulatory inputs to a cell. For example, a neuron                
receiving strong inhibition might be less likely to participate in a computation than one receiving excitation,                
since the latter would be more likely to spike in response to inputs, similar to if one had increased its excitability                     
through intrinsic cellular mechanisms. Indeed, it was recently shown that external modulatory inputs to a               
recurrent network could control the speed at which a computation performed by the network unfolded through                
time, closely recapitulating experimental results (​Remington, et al., 2018 ​). We propose that the control of               
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information flow and computation in recurrent networks via effective excitability alone, without structural             
connectivity changes, might be a rich framework for investigating rapid cognitive flexibility and short-term              
information storage. This may lead to significant insights into how we adapt our mental processes and                
behaviors in the face of ever-changing environments and task demands. 
 
Methods 
 
Membrane and synaptic dynamics 

 
We modeled single neurons as leaky integrate-and-fire neurons with conductance-based synapses according            
to the equation 

 
 

where ​v​i ​is the membrane voltage of neuron ​i ​, ​τ​m = 50 ms is the membrane time constant, ​E​leak = -68 mV is the                        
leak/resting potential, ​g ​E is the time-varying conductance of excitatory synaptic inputs, ​E​E = 0 mV is the                 
excitatory synaptic reversal potential and ​I​ext is externally injected currents (expressed as voltage deflections).              
If ​v exceeded a threshold ​v​th = -36 mV at any time step, a spike was emitted and ​v was reset to ​E​leak for a                         
refractory period ​τ​r = 8 ms. This outsize refractory period ensured that the sequential events in our simulations                  
propagated only in one direction and is consistent with refractory periods measured in hippocampal region CA3                
(​Raastad and Shepherd, 2003 ​). 
 
Synaptic dynamics were conductance-based and were modeled as exponentially filtered trains of weighted             
delta functions representing input spikes arriving from different upstream neurons. Specifically, for an individual              
neuron ​i 
 

 
 
where ​j indexes neurons and ​k indexes spikes, such that ​w​ij is the synaptic weight from neuron ​j onto neuron ​i                     
and ​t​k​j is the ​k-​th spike of the ​j-​th neuron; and h(t) was a one-sided exponential with time constant ​τ​E = 2 ms. In                        
our simulations we assumed all synapses were excitatory and did not explicitly model effects of inhibition.                
Weights were unitless since they acted only to scale conductance changes. 
 
Neuron tuning and network structure 

 
In network simulations, we assigned each neuron a position (x​i ​, y​i ​) corresponding to the peak of its tuning                  
curve, the (x, y) position eliciting maximal firing. Positions were assigned so as to approximately tile a grid                  
spanning -1 to 1 m in both dimensions (​Fig 2, 3 ​​) or -2 to 2 m (​Fig 4 ​​), using 1000 or 4000 neurons, respectively.                        
We used the following position-dependent firing-rate equation to calculate the maximal firing rate we expected               
to be evoked by the trajectory through the simulated environment (the firing rate evoked by the closest point on                   
the trajectory to the neuron’s place field center): 
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where ​r​max = 20 Hz is the maximum firing rate (i.e. when the trajectory passes directly through the neuron’s                   
peak tuning position) and ​λ ​PL = 0.15 m is the length constant determining how close a neuron’s peak tuning                   
must be to the trajectory to significantly activate. All neurons had the same ​r​max​ and ​λ ​PL​. 
 
We explicitly modeled two sources of synaptic input to the neurons in our recurrent network: recurrent inputs                 
and gating inputs. Recurrent synaptic weights were assigned such that neurons with similar position tuning had                
stronger connectivity, with the connectivity between two neurons ​i and ​j with peak tunings separated by ​d​ij                 
given by 
 

 . 
 
This was motivated by past modeling studies (​Kali and Dayan, 2000 ​, ​Solstad, Yousif, and Sejnowski, 2014 ​)                
and by analyses of correlated hippocampal activity in the absence of sensory input (​Giusti, et al., 2015 ​). Note                  
that in our network architecture, all recurrent connections between position-tuned cells are reciprocal, due to               
the symmetry of the distance function ​d ​ij ​. All ​w​ij ​ below a minimum value  ​w​min​

PC,PC​ = 0.001 were set to 0. 
 
Synaptic weights ​w​i ​G on gating inputs G were initially uniform across all position-tuned neurons, and each                
neuron received an independent instantiation of an upstream G spike train, generated from a              
Poisson-distributed point process with constant rate ​r​G​. While effective ​w​i ​G varied as a function of each                
neuron’s trajectory-dependent LTP-IE, ​r​G was identical across all neurons regardless of tuning or LTP-IE              
status. 
 
Long-term potentiation of intrinsic excitability (LTP-IE) of gating inputs 

 

Although LTP-IE is thought to result from changes in dendritic conductances (​Hyun, et al., 2015 ​), we modeled                 
it as an effective synaptic weight change (since conductance changes can be absorbed into connection               
weights according to the equations underlying conductance-based synaptic dynamics), such that initial weights             
w​i ​G were scaled by a factor ​σ​i as a function of neuron ​i ​’s position along the initial trajectory. For computational                    
efficiency we did not model network activity during the initial trajectory, but instead directly calculated the ​σ​i                 
expected to result from the maximum firing rate ​r​i ​max = max( ​r​i ​(x, y) | (x, y) ϵ trajectory). From ​r​i ​max we computed                      
σ​i ​ according to the following equation (​Fig 1B​​):  
 

 
 

with ​r​σ = 10 Hz and ​β ​σ = 1. Thus, neurons with position-tuning peaks close to the original trajectory had a σ ​i                      
near σ ​max​ whereas neurons far away from the trajectory had σ ​i ​ near unity.  
 
Sequence replay 
 
We fully simulated the replay epoch, during which all neurons in the recurrent network received independent                
stochastic gating input G at constant rate ​r​G​. Replay was triggered by applying a short depolarizing current                 
pulse to a set of neurons with peak position-tuning within 0.4 m (​Fig 2-3 ​​) or 0.3 m (​Fig 4 ​​) of a central trigger                       
location (e.g. (x = 1 m, y = -0.75 m) in ​Fig 2F​​) for 3 ms, of amplitude 8 mV (​Fig 2-3 ​​) or 7 mV (​Fig 4 ​​); exact                            
trigger parameters were unimportant, as long as they elicited significant spiking activity in the neurons at the                 
start of the sequence. In ​Fig 2L​​, replayed positions were decoded during by taking the median peak-tuning of                  
neurons that spiked within 10 ms windows spanning the replay event. 
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Simulations 

 
Single-neuron LTP-IE simulation ​(​Fig 1​​) 
 
LTP-IE-level-dependent voltage distributions (​Fig 1D, E​​) were computed using 15-second simulations. In            
measuring ​Fig 1F-G​​, current pulses were 10 ms in duration, and spiking probability was measured within this                 
window. Current-evoked spike probabilities (​Fig 1G​​) were computed using 125-second simulations, with            
pulses presented every 250 ms. 
 
Replay in networks of neurons ​(​Fig 2-3​​) 
 
In replay simulations, we used 1000 neurons, with place fields distributed on an approximate lattice over a 2 m                   
x 2 m environment. Replay was triggered by a short, depolarizing current pulse into all cells with place field                   
centers within a 0.4 m radius of either (-1 m, 0.75 m) or (1 m, -0.75 m), although our results were not sensitive                       
to these precise numbers, so long as sufficiently many LTP-IE-tagged cells at one end of the trajectory were                  
activated by the trigger. 
 
Replay dynamics parameter sweep (​Fig 3 ​​) 
 
For each parameter set we ran ten 800 ms simulations starting with different random number generator seeds                 
(which controlled the instantiation of gating inputs, which is the only stochasticity in our simulation). Each                
simulation contained one replay trigger at 500 ms, and we counted how many of the ten triggers resulted in                   
either fadeout, blowup, disordered replay, or successful replay. If successful replay occurred 2 or more times                
out of the 10 simulations, we colored the point in parameter space by how many successful replay events                  
occurred; otherwise we colored it by the most common unsuccessful event type (fadeout: blue; blowup: cyan;                
disordered: green). 
 
We first varied the magnitude factor ​w​PC,PC and the length scale ​λ ​PC,PC of the recurrent excitatory weight profile                  
(​Fig 2D​​), while holding σ ​max = 2 and ​r​G = 125 Hz. We next varied σ ​max and ​r​G while holding ​w​PC,PC = 0.03 and                        
λ ​PC,PC​ = 0.083 m, (​Fig 3E​​). Finally, we varied ​w​PC,PC​ ​and ​r​G​ while fixing ​λ ​PC,PC​ = 0.083 m and σ ​max​ = 2 (​Fig 3F​​). 
 
Spontaneous activity was determined by computing spike rates over 10 seconds without no additional current               
inputs. Replay speed was calculated as the slope of a line fit to the neuronal positions along the trajectory                   
profile and the times at which they activated during replay. Note that for high levels of spontaneous activity but                   
without blowup, two replay events sometimes occurred in this window, distorting the speed measure (dark blue                
dots in ​Fig 3K​​). 
 
To measure mutual information between a replay trigger at one end of the trajectory and elevated spiking                 
activity at the opposing end, we defined the trigger as an injected current into cells with place fields within 0.4                    
m of (1 m, -0.75 m) and measured elevated spiking activity of neurons within 0.4 m of (-1 m, 0.75 m) between                      
50 and 250 ms following the trigger. The binary trigger variable corresponded to the presence or absence of                  
the trigger, and the binary opposing-end-spiking variable was positive if > 90% of the opposing-end neurons                
spiked and otherwise negative. 
 
LTP-IE-based stimulus-response mappings (​Fig 4 ​​) 
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For this simulation, in order to construct sufficiently non-interfering LTP-IE-defined paths, we constructed a              
model network of 4000 neurons with neural place fields ranging from -2 to +2 m in both the x- and y-                     
dimensions and let two clusters of radius of 0.25 m, centered at (-1, 1) and (-1, -1), represent two stimuli S1                     
and S2, respectively, and two additional clusters, centered at (1, 1) and (1, -1), encode motor outputs M1 and                   
M2, respectively. Readout units summed activity in any of the four clusters at every timestep. Sequence                
reactivation was triggered by depolarizing current injections into cells contained in the S1 or S2 clusters. 
 
Other simulation parameters 
 
Unless otherwise noted we used the following values for all simulation parameters: 
 

Symbol Definition Value Symbol Definition Value 

τ​m Membrane time 
constant 

50 ms N Number of neurons 
in recurrent network 

1000 (​Fig 2-3 ​​) 
4000 (​Fig 4​​) 

E​leak Leak potential -68 mV w​G Initial gating input 
weight 

0.008216 

v​th Spike threshold -36 mV w​PC,PC Max recurrent 
weight 

.03 (​Fig 2-3​​) 

.034 (​Fig 4 ​​) 

τ​r Refractory period 8 ms w​min​
PC,PC Min nonzero 

recurrent weight 
.001 

E​E Excitatory synaptic 
reversal potential 

0 mV λ ​PC,PC  Recurrent 
connectivity length 
scale 

.083 m (​Fig 2-3 ​​) 

.0835 m (​Fig 4 ​​) 

τ​E Excitatory synaptic 
time constant 

2 ms σ ​max  Max LTP-IE value 2 

r​max Max position-driven 
firing rate 

20 Hz r​σ Threshold firing rate 
for LTP-IE 

10 Hz 

λ ​PL  Position-tuning 
length constant 

0.15 m β ​σ Scale factor for 
LTP-IE onset 

1 

r​G Gating input firing 
rate 

125 Hz (​Fig 2-3 ​​) 
105 Hz (​Fig 4 ​​) 

ΔT Simulation time 
step 

0.5 ms 

 
All code for this work was written in Python 3 and is available at ​https://github.com/rkp8000/seq_speak​. 
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