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Abstract

How does the size of a neural circuit influence its
learning performance? Intuitively, we expect the
learning capacity of a neural circuit to grow with the
number of neurons and synapses. Larger brains tend
to be found in species with higher cognitive function
and learning ability. Similarly, adding connections
and units to artificial neural networks can allow them
to solve more complex tasks. However, we show that
in a biologically relevant setting where synapses in-
troduce an unavoidable amount of noise, there is an
optimal size of network for a given task. Beneath this
optimal size, our analysis shows how adding appar-
ently redundant neurons and connections can make
tasks more learnable. Therefore large neural circuits
can either devote connectivity to generating com-
plex behaviors, or exploit this connectivity to achieve
faster and more precise learning of simpler behaviors.
Above the optimal network size, the addition of neu-
rons and synaptic connections starts to impede learn-
ing performance. This suggests that overall brain size
may be constrained by the need to learn efficiently
with unreliable synapses, and may explain why some
neurological learning deficits are associated with hy-
perconnectivity. Our analysis is independent of spe-
cific learning rules and uncovers fundamental rela-
tionships between learning rate, task performance,
network size and intrinsic noise in neural circuits.

Introduction

In the brain, computations are distributed across cir-
cuits that can include many millions of neurons and
synaptic connections. Maintaining a large nervous

system is expensive energetically and reproductively
[1, 2, 3], suggesting that the cost of additional neu-
rons is balanced by an increased capacity to learn and
process information.

Empirically, a ‘bigger is better’ hypothesis is sup-
ported by the correlation of brain size with higher
cognitive function and learning capacity across ani-
mal species [4, 5, 6]. Within and across species, pos-
itive correlations exist between the volume of a spe-
cific brain region and the behavioural importance of
tasks related to the brain region in question [7, 8, 9].
These observations make sense from a theoretical per-
spective because larger artificial neural networks can
be trained to solve more challenging computational
tasks than smaller networks [10, 11, 12, 13, 14, 15].

However, biologically it is not clear that there is
always a computational advantage to having more
neurons and synapses engaged in learning and solv-
ing a task. During learning, larger networks face the
problem of tuning a greater number of synapses using
limited and potentially corrupted information on task
performance [16, 17]. Moreover, no biological com-
ponent is perfect, so unavoidable noise arising from
the molecular machinery in individual synapses might
sum unfavourably as the size of a network grows.
Intriguingly, a number of well-studied neurodevelop-
mental disorders exhibit cortical hyperconnectivity at
the same time as learning deficits [18, 19, 20, 21]. It
is therefore a fundamental question whether learning
capacity can grow indefinitely with the number of
neurons and synapses in a neural circuit, or whether
there is some law of diminishing returns that even-
tually leads to a decrease in performance beyond a
certain network size.

We address this question with a general mathemat-
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ical analysis of learning performance in neural circuits
that is independent of specific learning rules and cir-
cuit architectures. Given some fixed task, we show
analytically that expected learning rate and steady-
state performance is higher in larger networks than
smaller networks when there is no intrinsic noise in
the connections. The analysis reveals how connec-
tions can be added to a network in a principled way
to reduce the difficulty of learning a task. This gain
in overall learning performance is accompanied by
slower per-synapse rate of change, predicting that
synaptic turnover rates should vary across brain ar-
eas according to the number of connections involved
in a task, and the typical task complexity.

If each synaptic connection is intrinsically noisy we
show that there is an optimal network size for a given
task. Above the optimal network size, adding neu-
rons and connections degrades learning and steady-
state performance. This reveals an important dis-
parity between synapses in artificial neural networks,
which are not subject to unavoidable intrinsic noise,
and those in biology, which are necessarily subject to
fluctuations at the molecular level [22, 23, 24, 25].

For networks that are beneath the optimal size,
it turns out to be advantageous to add apparently
redundant neurons and connections. We show how
additional synaptic pathways reduce the impact of
imperfections in learning rules and uncertainty in
the task error. This provides a potential theoret-
ical explanation for recent, counterintuitive experi-
mental observations in mammalian cortex [26, 27],
which show that neurons frequently make multiple,
redundant synaptic connections to the same postsy-
naptic cell. A non-obvious consequence of this result
is that the size of a neural circuit can either reflect the
complexity of a fixed task, or instead deliver greater
learning performance on simpler, arbitrary tasks.

Results

Modelling the effect of network size on
learning

Our goal is to analyse how network size affects learn-
ing and task performance in a general setting de-

picted in Figure 1, which is independent of specific
tasks, network architectures and learning rules. We
assume that there is some error signal that is fed
back to the network via a learning rule that adjusts
synaptic weights. We also assume that the error sig-
nal is limited both by noise and by a finite sam-
pling rate quantified by some time interval T (Fig-
ure 1A). In addition to the noise in the learning
rule, we also consider noise that is independently dis-
tributed across synapses (‘intrinsic synaptic noise’).
This models molecular noise in signalling and struc-
tural apparatus in a biological synapse that is uncor-
related with learning processes, and with changes in
other synapses. Network size is adjusted by adding
synapses and neurons (Figure 1B).

Before dealing with the general case, we motivate
the analysis with simulations of standard nonlinear
feedforward neural network models that we trained to
compute arbitrary input-output mappings, as shown
in Figure 2A. We simulate learning in networks us-
ing the so-called student-teacher framework, where
we generate a fixed input-output mapping using a
nonlinear feedforward ‘teacher’ network with ran-
domly chosen fixed synaptic weights. Importantly,
teacher networks can generate arbitrarily complex
input-output mappings with the convenient property
of being learnable by a ‘student’ network with the
same underlying connection topology. We added neu-
rons and connections to internal layers to generate
student networks of increasing size (Figure 2B). This
scales network size while ensuring that all networks
can solve the same task.

Learning was simulated by modifying synapses
with noise-corrupted gradient descent to mimic an
imperfect biological learning rule. We emphasize
that do not assume that learning in a biological net-
work occurs by explicit gradient descent. However
any error-based learning rule must induce synaptic
changes that approximate gradient descent, as we
show below (Equation 1).

The phenomenon we wish to understand in detail
is shown in Figures 2C and D. We trained networks of
varying sizes on the same task, with the same amount
of learning rule noise. Larger networks learn more
quickly and to a higher steady state performance than
smaller networks when there is no intrinsic noise in
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the synapses Figure 2C. This is surprising because
the only difference between the smallest network and
larger networks is the addition of redundant synapses
and neurons, and the task is designed so that all net-
works can learn it perfectly in principle. Moreover, as
shown in Figure 2D, a small amount of internal noise
in each of the connections of the student networks
results in a non-monotonic relationship between per-
formance and network size. Beyond a certain size,
both learning and asymptotic performance start to
worsen.

The simulations in Figure 2 provide evidence of an
underlying relationship between learning rate, task
performance, network size and intrinsic noise. To un-
derstand these observations in a rigorous and general
way, we mathematically analysed how network size
and imperfections in feedback learning rules impact
learning in a general case.

Learning rate and task difficulty

We first establish a general relationship between
learning rate and key properties of error-based learn-
ing rules. We define task error as a smooth function
F [w] which decreases with increasing levels of per-
formance, and which depends on the vector w of N
synaptic weights in a network. We assume that learn-
ing rules use some (potentially imperfect) estimate of
this error to adjust synaptic weights.

Biologically, it is reasonable to assume that
learning-related synaptic changes occur due to old
information. For example, a task-related reward or
punishment may be supplied only at the end of a
task, which itself takes time to execute. Similarly,
even if error feedback is ongoing in time, there will
always be some biochemically induced delay between
acquisition of this error signal and its integration into
plastic changes at each synapse.

Thus, there will be a maximum rate at which task
error information can be transmitted to synapses dur-
ing learning, which for mathematical convenience can
be lumped into discrete timepoints. Suppose feed-
back on task error occurs at timepoints 0 and T ,
but not in between, for some T > 0 (Figure 3A).
If the network learned over the interval [0, T ] then
F [w(T )] − F [w(0)] < 0 by definition. We quantify

learning rate during this interval as the value of k
such that

F [w(T )] = (1− kT )F [w(0)],

with k < 1
T . A larger positive value of k implies a

faster rate of learning. We can write the total change
in error over the interval T (see Figure 3A) as:

F [w(T )]− F [w(0)] =

∫ T

0

〈∇F [w(t)], ẇ(t)〉 dt

= T Et[〈∇F [w(t)], ẇ(t)〉], (1)

where expectation is taken across a uniform dis-
tribution of timepoints in [0, T ], dots denote time
derivatives and angle brackets denote the (standard)
inner product. Equation (1) shows that synaptic
changes, on average, must anticorrelate with the gra-
dient for learning to occur. We can thus decompose
net learning rate during the interval T into contribu-
tions as follows (further details in SI section ‘Learn-
ing rate and local task difficulty’):

k = −‖∇F [w(0)]‖2
F [w(0)]︸ ︷︷ ︸
gradient
strength


contribution
from gradient︷ ︸︸ ︷

〈ω̇T ,∇F̂ [w(0)]〉+ GF [ ˙̂ωT ]‖ω̇T ‖22T︸ ︷︷ ︸
contribution

from curvature


+O(T 2)

(2)

where

GF [ ˙̂ωT ] :=
1

2‖∇F [w(0)]‖2

〈
˙̂ωT ,∇2F [w(0)] ˙̂ωT

〉
.

Hats indicate unit length normalized vectors (i.e. x̂ =
x
‖x‖2

) and ω̇T denotes the average synaptic change over

the time interval [0, T ], normalised by T :

ω̇T =
w(T )−w(0)

T
. (3)

Note that we have made no assumptions on the size
of T , so the O(T 2) term in (2) is not necessarily small.
Nonetheless, we can gain useful insight for how error sur-
face geometry affects learning by examining the other
terms on the right hand side of (2). The gradient strength
scales the overall learning rate. Inside the brackets, the
curvature term (which can change sign and magnitude
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during learning) can compete with the gradient term to
slow down (or reverse) learning.

Informally, the curvature term in (2) therefore controls
the learning ‘difficulty’ at each stage of learning. As we
will show, this term can be tuned by changing the number
of neurons and synaptic connections in the network.

The learning rate, k, is likely to remain positive dur-
ing learning if the gradient direction changes gradually as
the error surface is traversed (i.e. the error surface is al-
most linear). In this case a high rate of plasticity - due to
a high gain between feedback error and synaptic change
- will result in a high learning rate. However, if the de-
scent direction changes rapidly due to the curvature of the
error surface (i.e. the surface is crinkled up), then cor-
relation with −∇F [w(0)] becomes a weaker predictor of
learning over the entire time interval T . Effective learn-
ing therefore involves balancing error surface curvature
and per-synapse rate of plasticity. This is illustrated in
Figure 3A, where the length of the leaps along the error
surface indicate the rate of plasticity.

We next decompose the contributions to the overall
synaptic change during a learning increment. First we
assume that synapses are perfectly reliable, with no in-
trinsic noise fluctuations affecting their strengths. In this
case, we can decompose ω̇T into two components that
are parallel and perpendicular to the gradient at time 0,
when error information was supplied to the network (see
Figure 3B):

ω̇T = −γ1∇F̂ [w(0)] + γ2n̂2.

where γ1 is the component of synaptic change that
projects onto the error gradient direction and γ2 is the
component perpendicular to the gradient direction, with
n̂2 denoting the unit vector in this direction. We call these
two components, γ1 and γ2, the task-relevant plastic-
ity and task-irrelevant plasticity respectively.

Note that a learning rule could theoretically induce
task-relevant synaptic changes in a direction that is not
parallel to the gradient, ∇F [w(0)], if information on the
Hessian ∇2F [w(0)] were available. However, as men-
tioned previously we are assuming that such information
is not available biologically and the best the network can
do is follow the gradient. In fact, the results of the paper
can be generalised so as to eliminate this assumption (see
SI section ‘Task-relevant Plasticity’) but this complicates
the presentation without adding insight.

There are several sources of task-irrelevant plasticity.
Firstly, there can be inherent imperfections in the learn-
ing rule: information on task error may be imperfectly

acquired and transmitted through the nervous system.
Secondly, as we have emphasized above, the process of
integrating feedback error and converting it into synaptic
changes takes time. Therefore any learning rule will be
using outdated information on task performance, imply-
ing that the gradient information will have error in gen-
eral, unless it is constant for a task. This is illustrated in
Figure 3A, where we see that during learning, the local
information used to modify synapses leads to a network
overshooting local minima in the error surface. Thirdly,
in a general biological setting, synapses will be involved
in multiple task-irrelevant plasticity processes that con-
tribute to γ2 (Figure 1A). For instance, the learning of
additional, unrelated tasks may induce concurrent synap-
tic changes; so too could other ongoing cellular processes
such as homeostatic plasticity. The common feature of
all these components of task-irrelevant plasticity is that
they are correlated across the network, but uncorrelated
with learning the task.

We now consider the impact of intrinsic noise in the
synapses themselves. Synapses are subject to continuous
fluctuations due to turnover of receptors and signalling
components. Some component of this will be uncorre-
lated across synapses so we can model these sources of
noise as additional, independent white-noise fluctuations
at each synapse with some total (per-synapse) variance
γ3T over the interval [0, T ]. Because this noise is inde-
pendent across synapses the total variance in the network
will scale with the number of synapses. This gives a new
expression for synaptic weight change:

w(T )−w(0) = −γ1T∇F̂ [w(0)] + γ2T n̂2 + γ3
√
T
√
N n̂3

= T

(
−γ1∇F̂ [w(0)] + γ2n̂2 + γ3

√
N

T
n̂3.

)
(4)

Note that γ3 describes the average degree of intrinsic
noise per synapse, whereas γ1 and γ2 describe compo-
nents of synaptic change over the entire network. This in
turn gives the following expression for the average weight
velocity over the learning interval:

ω̇T = −γ1∇F̂ [w(0)] + γ2n̂2 + γ3

√
N

T
n̂3. (5)

If we assume that each component is independent (see
SI section ‘Decomposition of local task difficulty’ for jus-
tification) we can also write down the magnitude of total
synaptic rate of change in a convenient form:

‖ω̇T ‖22 = γ2
1 + γ2

2 + γ2
3
N

T
. (6)
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Expressions (5) and (6) allow us to rewrite (2):

E(k) =
−‖∇F [w(0)]‖2

F [w(0)]

[
−γ1 + GF [ ˙̂ωT ]‖ω̇T ‖22T

]
+O(T 2).

(7)

If we fix values of the γi and T , we see from (7) that GF

controls the learning rate of a network: a higher value of
GF [ ˙̂ωT ] leads to slower or negative learning. For this
reason, we refer to GF as the local task difficulty.
Again, the O(T 2) term may not be small. However, as
mentioned, it is reasonable to assume this term cannot
be controlled by the learning rule because it depends on
higher order derivatives of F that synapses are unlikely
to be able to compute. Therefore we can reasonably say
that learning requires the first term of (7) to be negative,
and ceases to occur when this term is zero. This implies:

GF [ ˙̂ωT ] ≤ γ1

T
(
γ2
1 + γ2

2 + γ2
3
N
T

) . (8)

This inequality relates the intrinsic ‘learnability’ of a
task (local task difficulty, GF ), the rate of information on
task error (T ), the quality of the learning rule (relative
magnitudes of γ1 and γ2), the network size (N), and the
intrinsic noisiness of synapses (γ3).

If inequality (8) is broken, then learning stops entirely.
At some point in learning, this breakage is inevitable: as
F [w] approaches a local minimum, the gradient ∇F [w]
approaches zero, and the Hessian ∇2F [w] is guaranteed
positive semidefinite. At a precise minimum of error, GF

becomes unbounded. This means that for a nonzero T ,
cessation of learning is preceded by an increase in local
task difficulty, and learning stops just as inequality (8)
above is broken.

To validate our analysis we numerically computed the
quantities in (7) in simulations (Figure 4). In the case
of a linear network with quadratic error the O(T 2) terms
disappear, allowing us to verify that equality in (8) indeed
predicts the steady-state value of GF . This agreement is
confirmed in Figure 4A.

For more general error functions, we have observed that
(8) is always conservative in numerical simulations: learn-
ing stops before local task difficulty reaches the critical
value value, implying that the O(T 2) term of (7) is usu-
ally negative. This is demonstrated in Figures 4A and
4B.

In summary, we have shown that local task difficulty
GF determines the learning rate as well as the steady
state learning performance of a network.

Local task difficulty as a function of
network size

We next show precisely how network size influences the
local task difficulty, and thus learning rate and steady
state performance when other factors such as noise and
the task itself remain the same.

Recall that n2 represents the direction in which
synapses are perturbed due to error in the learning rule
and other task-irrelevant changes that affect all synapses.
Meanwhile n3 represents the direction of weight change
due to intrinsic white-noise fluctuations at each synapse.
For arbitrary tasks, networks and learning trajectories
we can model these terms as coming from mutually in-
dependent probability distributions that are independent
of task error F [w] and its derivatives. Thus we assume
E[nT2 n3] = 0, for any i, which allows us to write an ex-
pression for expected local task difficulty:

E
[
GF [ ˙̂ωT ]

]
= γ2

1G1
F [w(0)] +

Tr(∇2F [w(0)])

2‖∇F [w(0)]‖2

[
γ2
2

N
+
γ2
3

T

]
,

(9)

where

G1
F [w(0)] =

1

2‖∇F [w(0)]‖2

〈
∇F̂ [w(0)],∇2F [w(0)]∇F̂ [w(0)]

〉
.

(10)

This new expression for the local task difficulty explic-
itly incorporates N , the number of synaptic weights. So
too does the learning rate (7), as we see by substituting
into it the expanded forms of E[‖ω̇T ‖22] and E

[
GF [ ˙̂ωT ]

]
.

We can gain intuition into how (9) is derived with-
out going through additional technical details (SI section
‘Decomposition of local task difficulty’). Suppose that the
weights were perturbed by a randomly chosen direction
n over the time interval [0, T ]. This gives:

F [w(T )] = F [w(0) + n] =

F [w(0)] + 〈∇F [w(0)],n〉+ 〈n,∇2F [w(0)]n〉+O(‖n‖22)

(11)

If the direction n is drawn independently of task error
and its derivatives, then

E[〈∇F [w(0)],n〉] = 0.

Therefore it is the quadratic term of (11) that deter-
mines the effect of the perturbation on task error. Its
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contribution is:

E[〈n,∇2F [w(0)]n〉] = ‖n‖22E[〈n̂,∇2F [w(0)]n̂〉]

= ‖n‖22
Tr(∇2F [w(0)])

N
.

So the effect of random perturbations on learning
grows with the ratio of Tr(∇2F [w(0)]) to the number
of synapses, N . (9) tells us explicitly how local task
difficulty (and thus expected learning rate and steady-
state performance) can be modified by changing the size
of a network, provided the size change leaves G1

F [w(0)]

and Tr(∇2F [w(0)])
2‖∇F [w(0)]‖2

unchanged. For different network ar-
chitectures there are many possible ways of adding neu-
rons and connections while satisfying these constraints.
This explains why the naive size increases in Figure 2C
generically increased learning performance, and provides
a general explanation for enhanced learning performance
in larger networks.

Network expansions that increase
learning performance

We next give detailed examples of network expansions
that increase learning rate and use the theory developed
so far to compute the optimal size of a network when
intrinsic noise is present. We first provide an analysis in
the case of a linear network, which offers useful insight
into the more general nonlinear case.

Consider a linear network (i.e. a linear map, as shown
in Figure 5A that transforms any input u into an output
y = Wu for a matrix W ∈ Roi of synaptic weights. The
input-dependent error of the network is taken as a simple
mean square error:

F [W ] =

∫
F ′[W ′, u′]P(u) du =

∫
‖y∗(u)−Wu‖22P(u) du.

where the input vectors are drawn from some distribu-
tion P(u) (e.g. a Gaussian) and y∗(u) is a target output
generated by a linear mapping of the same rank and di-
mension.

We next embed this network in a larger network with
c1i inputs, c2o outputs and a synaptic weight matrix
W ′, for some integers c1, c2 > 1. We will define the
total number of weights as Ñ = c1ic2o. We take the
transformation u′ = Bu ∈ Rc1i, where B ∈ Rc1i×i is
an arbitrary semi-orthogonal matrix. (i.e. it satisfies
BTB = Ii). Geometrically, B therefore represents the
composition of a projection into the higher dimensional
space Rc1i with a rotation. Note that this is an invertible

mapping: if u′ = Bu then BTu′ = u. Similarly, we can
take y′

∗
(u′) = Dy∗(u) ∈ Rc2o, where DTD = Io. This is

illustrated in Figure 5A.

The expanded neural network with weights W ′ ∈
Rc1o×c2i has to learn the same mapping as the original,
but with respect to the higher dimensional inputs. So the
network receives inputs u′ ∈ BU , and transforms them to
outputs y′ = W ′u′, with input-dependent error

F ′[W ′, u′] = ‖y′∗(u′)−W ′u′‖22
= ‖Dy∗(u)−W ′Bu‖22
= ‖y∗(u)−DTW ′Bu‖22 (12)

For some weight configuration W ′ in an expanded net-
work, (12) tells us that if these weights are related to the
original network weights by W = DTW ′B ∈ Roi, then we
have:

F ′[W ′] = F [W ].

If we rewrite the weight matrices W ′ and W as vectors

w′ ∈ RÑ and w ∈ RN , then w = Hw′ for some H
with HHT = IN . We can then apply the chain rule to
relate gradients and hessians in the original and expanded
networks:

H∇F ′[w′] = ∇F [w],

H∇2F ′[w′]HT = ∇2F [w].

Semi-orthogonality of H implies that it has N singular
values with value one, and Ñ − N singular values with
value zero. We take the heuristic that w′ should project
approximately equally onto each of the associated sin-
gular vectors. This is reasonable given that we took a
random choice of w′. This implies

‖∇F ′[w′‖2
‖∇F [w]‖2

≈ Ñ

N
= c1c2 (13)

Meanwhile the quadratic error function implies
∇2F ′[w] is constant. The trace of this matrix can thus
be calculated explicitly as

Tr(∇2F ′[w′]) = (c2o)
2

∫
u∈U
‖u‖42 P(u). (14)

We will also assume that ∇F̂ ′[w′] (which is a nor-
malised vector) projects approximately equally onto the
different eigenvectors of ∇2F ′[w′]. The latter is constant,
whereas the former is a linear function of the (randomly
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chosen) W ′, which justifies this assumption. In this case,
(14) implies

∇F̂ ′[w′]T∇2F ′[w′]∇F̂ ′[w′] ≈

(c2)2∇F̂ [w]T∇2F [w]∇F̂ [w].
(15)

Bringing together equations (13), (15), and the formula
(10) for G1

F , we see that

G′
1
F ′ [w′] ≈ (c2)2

c1c2
G1
F [w] =

c2
c1

G1
F [w],

similarly

Tr(∇2F ′[w′])

‖∇F ′[w′]‖2
≈ c2
c1

Tr(∇2F [w])

‖∇F [w]‖2
.

Equations (16) imply that we can alter N as an inde-
pendent parameter in the equations for local task diffi-
culty (9) and speed of weight change (6), as long as the
ratio c2

c1
is preserved. Indeed this allows us to optimise

the steady state error of the network by changing N . To
see how, recall that

E[k] =
−‖∇F [w(0)]‖2

F [w(0)]

[
−γ1 + δ

]
+O(T 2),

where δ = GF [ ˙̂ωT ]‖ω̇T ‖22T,

with O(T 2) ≡ 0 for quadratic error. Suppose the net-
work has reached steady state error, i.e E[k] = 0. If we
decreased δ, then E[k] would also decrease, and the net-
work would learn further. Therefore, to derive the opti-
mal N∗, we should minimise the expression for δ in N .
We differentiate δ in N , and note that stationary points
satisfy the equation:

N2 [γ2
1CT + γ2

3

]
=
T 2γ2

2

γ2
3

(
γ2
1 + γ2

2)

where C =
〈∇F̂ [w(0)],∇2F [w(0)]∇F̂ [w(0)]

〉
Tr(∇2F [w(0)])

.

For γ2 6= 0, this implies the existence of two stationary
points differing only in sign. Since limN→∞ δ = ∞, and
limN→−∞ δ = −∞, the positive stationary point is nec-
essarily a global minimum of δ. So this stationary point
defines N∗. We have

Nopt =
Tγ2
γ3

√√√√√ 1 +
γ22
γ21

CT +
γ23
γ21

. (17)

Note that C is unknown in general because it depends
on the weight configuration of the network. However, we
can take the heuristic C ≈ 1

Nopt
, since if the gradient

∇F̂ [w(0)] is uncorrelated with the Hessian ∇2F̂ [w(0)],
then it would project equally onto each of the eigenvalues
of the latter, and thus the denominator of C would be

the mean eigenvalue, i.e. Tr(∇2F̂ [w(0)])
N

. This results in
an approximate expression for the optimal network size:

Nopt ≈
Tγ2
γ3

√√√√√ 1 +
γ22
γ21

T
Nopt

+
γ23
γ21

, (18)

which can be solved for Nopt algebraically. Note that the
optimal Nopt loses any dependence on the specific value of
Tr(∇2F [w(0)])
2‖∇F [w(0)]‖2

. Our formula is verified numerically in Fig-
ure 6A, by evaluating the learning performance of trans-
formed neural networks of different sizes, with different
γi values.

This estimate of the optimal network size is plotted
in Figure 5B, which shows the dependence on intrinsic
synaptic noise levels. As noise decreases to zero, we see
that the optimal network size grows arbitrarily. In ad-
dition, the optimal network size is smaller for a lower
amount of task-irrelevant plasticity (i.e. a ‘better’ learn-
ing rule). We validate the optimal network size estimate
in Figure 6A with numerical simulations.

We next consider nonlinear multilayer, feedforward
networks. Again, we use the student-teacher framework
to generate learning tasks. We will consider learning per-
formance of a nominal and expanded network, both with
l layers, and both using the same learning rule. The only
difference between the two networks will be the larger
number of neurons in each hidden layer of the expanded
network. Unlike the linear case, this size expansion will
modify some factors in the learning rate equation. Nev-
ertheless, we can use our theory to predict an optimal
number of synapses (and consequently optimal hidden
layer sizes) for the transformed network. As before, this
size will depend on the learning rule used by the net-
works, which is defined by levels of task-relevant plas-
ticity, task-irrelevant plasticity, per-synapse white-noise
intensity, and frequency of task error feedback. Our pre-
dictions are validated in simulations in Figure 6B.

We first describe the nominal network architecture.
Given a vector h(k−1) of neural activities at layer k − 1,
the neural activity at layer h(k) is

h(k) = σ(W (k)h(k−1)).
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Here, W (k) is the matrix of synaptic weights at the kth

layer. The concatenation of the synaptic weight matri-
ces across all layers is denoted W , and has N elements.
We will interchangeably denote it as a vector w ∈ RN .
The function σ passes its arguments elementwise through
some nonlinearity. The first layer of neurons receives an
input vector u in place of neural activities h(0). The out-
put y(W,u) is defined as neural activity at the final hidden
layer.

For any given state w of the nominal network, we can
construct a state φ(w) of the expanded network with the
same input-output properties, i.e. y(w, u) = y′(φ(w), u),
where y′ denotes expanded network output. We do this by
setting synaptic weights of the added neurons in the ex-
panded network to zero, so the neurons do not contribute
at state φ(w). Nevertheless the extra neurons can affect
expanded network behaviour because once they are per-
turbed by the learning rule they contribute to the error
gradient and higher derivatives.

Suppose the nominal network is at state w(0), and a
learning rule picks the direction ω̇T for weight change over
the time interval [0, T ]. This direction will have some lo-
cal task difficulty GF [ ˙̂ωT ]. If we map the state w(0)
and the direction ω̇T to the transformed network via the
transformation φ, then we can estimate local task diffi-
culty G′F [φ( ˙̂ωT )] of the transformed network (see SI sec-
tion ‘Learning in a Nonlinear, Feedforward Network’ for
additional detail). We get:

E[G′F ′ [φ( ˙̂ωT )]] ≈ N

Ñ
γ2
1G1

F [w(0)] +
Tr(∇2F [w(0)])

2‖∇F [w(0)]‖2

[
γ2
2

Ñ
+
γ2
3

T

]
.

(19)

We can use (19) to minimise

δ = G′F [ ˙̂ωT ]‖ω̇T ‖22T

in Ñ , the number of synapses. This gives an optimal size
of the transformed network for minimising steady state
task performance (validated in Figure 6B):

Nopt ≈
Tγ2
γ2
3

√(
1 +

γ2
1N

γ2
2Nopt

)(
γ2
1 + γ2

2

)
. (20)

Note the dependence of the optimal network size, Nopt, on
N , which is the number of weights in the nominal and the
teacher networks. The teacher networks can generate ar-
bitrary nonlinear mappings whose complexity grows with
N . In this way the above formula (Equation 20) reflects
the intrinsic difficulty of the task.

Discussion

It is difficult to disentangle the physiological and evolu-
tionary factors that determine the size of a brain circuit
[28, 29, 30]. Previous studies focused on the energetic
cost of sustaining large numbers of neurons and connect-
ing them efficiently [2, 29, 31, 30]. Given the significant
costs associated with large circuits [3], it is clear that some
benefit must offset these costs, but it is currently unclear
whether other inherent tradeoffs constrain network size.
We showed under broad assumptions that there is an up-
per limit to the learning performance of a network which
depends on its size and the intrinsic reliability of synapses.

The neural circuits in animals with large brains were
presumably shaped on an evolutionary timescale by grad-
ual addition of neurons and connections. Expanding a
small neural circuit into a larger one can increase its dy-
namical repertoire, allowing it to generate more complex
behaviours [32, 33]. Less obviously, as we show here, cir-
cuit expansion can also allow a network to learn simpler
tasks more quickly and to greater precision.

By directly analysing the influence of synaptic weight
configurations on task error we derived a quantity we
called ‘local task difficulty’, that determines how easily
an arbitrary network can learn. We found that local task
difficulty always depends implicitly on the number of neu-
rons, and can therefore be decreased by adding neurons
according to relatively unrestrictive constraints. In sim-
ple terms, adding redundancy flattens out the mapping
between synaptic weights and task error, reducing the
local task difficulty on average. This flattening makes
learning faster, and steady-state task error lower because
the resulting error surface is less contorted and easier to
descend using local task error information.

As an analogy, imagine hiking to the base of a moun-
tain without a map, and doing so using intermittent es-
timates of the slope underfoot. A more even slope will
be easier to descend because slope estimates will remain
consistent. An undulating slope will be harder to descend
because the direction of descent necessarily changes with
location. Now consider the same hike in a heavy fog at
dusk. The undulating slope will become far harder to de-
scend. However, if it were possible to somehow smooth
out the undulations (that is, reduce local task difficulty),
the same hike would progress more efficiently. This anal-
ogy shows why larger neural circuits are able to achieve
better learning performance in a given task where error
information is corrupted.

In specific examples we show that adding neurons to
intermediate layers of a multilayer, feedforward network,
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increases the magnitude of the slope (gradient) of the task
error function relative to its curvature. From this we pro-
vide a template for scaling up network architecture such
that both quantities increase approximately equally. This
provides novel hypotheses for the organising principles in
biological circuits which, among other things, predicts a
prevalence of apparently redundant connections in net-
works that need to learn new tasks quickly and to high
accuracy. Recent experimental observations reveal such
apparently redundant connections in a number of brain
areas across species [34, 35, 27, 26].

Even if neurons are added to a network in a way that
obeys the architectural constraints we derive, intrinsic
synaptic noise eventually defeats the benefits conferred to
learning. All synapses are subject to noisy fluctuations
due to their molecular makeup [23, 36, 24, 37, 25, 38].
These sources of noise are distinct from shared noise in
a feedback signal that is used in learning. Such indepen-
dent noise sources accumulate as a network grows in size,
outcompeting the benefit of size on learning performance.
An immediate consequence is an optimal network size for
a given task and level of synaptic noise.

Furthermore, our results show that different noise
sources in nervous systems impact learning in qualita-
tively different ways. Noise in the learning rule as well
as external noise in the task error, which may arise from
sensory noise or fluctuations in the task, can be overcome
in a larger circuit. On the other hand, the impact of in-
trinsic noise in the synaptic connections only worsens as
network size grows.

Our analysis allowed us to predict the optimal size of
a network in theoretical learning tasks where where we
can specify the levels of noise in the learning rule and in
synapses. Figure 5 shows that the optimal network size
decreases rapidly as the intrinsic noise in synapses in-
creases. We speculate that the emergence of large neural
circuits therefore depended on evolutionary modifications
to synapses that reduce intrinsic noise. An intriguing and
challenging goal for future work would be to infer noise
parameters in synapses across different nervous systems
and test whether overall network size obeys the relation-
ships our theory predicts.

Author Affiliations

[a] Department of Engineering, University of Cambridge,
Trumpington Street, CB21PZ.

1 Methods

We test our predictions in simulations of neural network
models. This section describes the details of the models
used. Code is available on request.

1.1 Network architectures

All tested neural networks have fully-connected feedfor-
ward architectures, to enable exact gradient computation.
The simplest considered network is linear. Given an input
u ∈ Ri, this gives an output of the form

y(u) = Wu ∈ Ro,

where W ∈ Roi is a matrix of synaptic weights.

More commonly we consider networks with nonlineari-
ties and hidden layers. In the main text, we refer to these
as nonlinear, feedforward networks. Each neuron in these
networks passes inputs through a sigmoidal nonlinearity
σ : R→ R of the form

σ(x) =
1

1 + exp(−x)
.

We use the notation σ : Rm → Rm to represent the ele-
mentwise application of σ to a vector of arbitrary length
m ∈ N. Let us denote neural activity at the kth layer via
a vector hk. If k > 1, then

hk = σ(W kh̃k−1),

where W k is a matrix of synaptic weights and h̃k−1 is the
concatenation of the vector hk−1 with the scalar −1. This
scalar is known as a bias neuron, and allows for nonzero
hk even when each component of hk−1 is zero. Meanwhile
for k = 1, we have

h1 = σ(W 1u),

where u ∈ Ri is a vector of inputs to the network. Let F
be the final hidden layer of the network. Then network
output y ∈ Ro is taken as

y = σ(W kh̃F ),

which will subsequently be denoted y(w, u). Here w is a
vector that concatenates all entries of each weight matrix
in the network.
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1.2 Details of Learning Tasks

For all training tasks used in simulation, we generate a
random fixed mapping y∗(u), along with a set of inputs
U , consisting of 1000 elements. The mean square error of
the network is given as∑

u∈U

‖y∗(u)− y(w, u)‖22.

This corresponds to the error function F [w] used in the
main text.

We often consider a family of nonlinear neural networks
learning the same task (i.e. the same mapping y∗(u), us-
ing the same set U of inputs). Each network in the family
has the same number of inputs, outputs, and hidden lay-
ers, but the number of hidden layer neurons varies. In
this case, we must ensure a priori that each neural net-
work in the family is capable of learning the task per-
fectly, i.e. exactly recreating the mapping y∗(u). To do
this, we create a ‘teacher’ network with the same archi-
tecture as the smallest network in the family (i.e. the
network with the smallest number of hidden layer neu-
rons). The synaptic weights of the teacher network are
initialised randomly and then fixed, to generate a map-
ping y∗(u) of the form described previously. Specifically,
they are generated from a uniform distribution centred
at 0. The support of the distribution is set at [−a, a],
where a is chosen such that the standard deviation of the
weights is 1√

i
, where i is the number of inputs the network

receives. The weights of the smallest network in the fam-
ily are randomly initialised from the same distribution.
The weights of larger networks in the family are initialised
such that the network’s input-output behaviour exactly
corresponds to the smallest network in the family. This is
achieved by successively adding neurons to the smallest
network in such a way that each addition does not change
the input-output properties of the network. In this way,
the initial task errors F [w] of all networks in the family
are identical.

1.3 Network Training

All training protocols share the same basic template: they
combine task relevant plasticity (i.e. gradient informa-
tion), task-irrelevant plasticity processes, and a white-
noise process at each synapse. The proportions of each of
these three factors are respectively represented by param-
eters γ1, γ2, and γ3. Meanwhile, the direction of plasticity
changes upon reception of sensory feedback, which hap-
pens every T units of time. We refer to each time interval

of length T as a single learning cycle. The exact values
of the γ components will fluctuate between learning cy-
cles (detailed subsequently). We can set a vector γ̄ of
their expected values. The synaptic weight vector is then
updated according to the following formula:

wt+T = wt − T γ̄1∇F̂ [wt] + T γ̄2n̂
t
2 +
√
NTγ̄3n̂

t
3.

N represents the number of synaptic weights, while n̂t3 is a
Gaussian random variable, normalised to ensure ‖n̂t3‖2 =
1. Thus

√
NTγ̄3n̂

t
3 represents per-synapse white noise.

Meanwhile, n̂t2 is the state of a normalised random process
uncorrelated with the task. The dynamics of the unnor-
malised random process satisfy n̂t+1

2 =
√

0.1n̂t2 +
√

0.9ν̂,
where ν is a Gaussian random variable, normalised such
that ‖ν‖2 = 1. So T γ̄2n̂

t
2 represents the effect of partially

systematic, task-irrelevant plasticity processes.
Since

E[〈∇F [w], n̂ti〉 = 0, i ∈ {1, 2}

we have that

E[γi] = γ̄i, i ∈ {1, 2, 3}.

However, on a given learning cycle, the task-irrelevant
components n̂t2 and n̂t3 will have some nonzero correlation
with the gradient of task error. Consequently, the values
of γ on this learning cycle will differ from those of γ̄. For
instance, if the task irrelevant components anti-correlate
with the gradient, then γ1 will increase at the expense of
γ2 and γ3.
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Figure 1: A: Schematic of learning in a neural
network. Information on task error is received by
a learning rule which converts this information into
synaptic changes that decrease task error. Biologi-
cally, the learning rule faces several challenges: it will
be subject to noise and perturbations (blue arrow),
and the synapses themselves may suffer from intrin-
sic noise (red arrow). Error information will only
acquired be intermittently, as shown in the learning
curve on the left, where T specifies the intermittency
of feedback (see main text). B: We analyse the effect
of network size on learning performance by adding re-
dundant neurons and synapses (green) to an existing
network.
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Figure 2: A Learning task: neuronal networks are
trained to learn an input-output mapping using feed-
back error and a gradient-based learning rule to ad-
just synaptic strengths. The feedback is corrupted
with tunable levels of noise (blue), reflecting imper-
fect sensory feedback, imperfect learning rules, and
task-irrelevant changes in synaptic strengths. Synap-
tic strengths are additionally subject to independent
internal noise (red), reflecting their inherent unreli-
ability. B: Network size is increased by adding neu-
rons and synapses to inner layers. C: Three differ-
ently sized networks are trained on the same task,
with the same noise-corrupted learning rule. (Right)
Mean task error after 1000 training cycles, computed
over 12 simulations. Error bars depict ±1 standard
deviation from the mean. (Left) task error over time
for a single simulation of each network. D: As for (C)
but each synapse is subject to internal independent
noise fluctuations in addition to noise in the learning
rule.
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Figure 3: Geometry of error-based learning in ar-
bitrary networks. A: Schematic of task error as a
function of (two) synaptic weights. Learning rule re-
ceives and processes task-relevant feedback to provide
direction for each synapse to move in weight space.
Direction must correlate with steepest descent direc-
tion, resulting in initial improvement of task error.
If no new feedback is received over a long time pe-
riod T , this initially good direction may eventually
go uphill, thus becoming bad. Frequent error feed-
back, a less ‘curvy’ error surface, and a good correla-
tion with the initial steepest descent direction make
learning faster. Local task difficulty captures these
factors. B: Schematic of changes in three weights
over interval [0, T ]. The true weight trajectory w(t)
over time (red line) is summarised by an interpolated,
linear trajectory ω̇T (blue line) between w(0) and
w(T ). We can decompose this interpolated trajec-
tory into task-relevant and task-irrelevant plasticity
components. The former is the initial steepest de-
scent direction −∇F [w(0)], and the latter is the re-
maining orthogonal component.

13

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 31, 2018. ; https://doi.org/10.1101/508994doi: bioRxiv preprint 

https://doi.org/10.1101/508994


time
(learning cycles)

time
(learning cycles)

linear network

linear network

nonlinear network

plot
density

high

low

nonlinear network

measured kmeasured k

pr
ed

ic
te

d 
k

pr
ed

ic
te

d 
k

lo
ca

l t
as

k
di

ffi
cu

lty
er

ro
r

(m
ea

n 
sq

ua
re

)A

B

Figure 4: Numerical validation of learning rate cal-
culations in simulated neural networks. A: Local task
difficulty and MSE over time for a linear network
(left) with quadratic error function, and a nonlinear
network (right). Local task difficulty is low when
the networks are in an untrained state. As perfor-
mance improves, it rises, until reaching some steady
state level (black dotted lines). We can predict this
steady state a priori, exactly for the quadratic error,
and conservatively for the nonlinear error, using (8).
Both networks are trained using a corrupted learning
rule (γ̄ = [0.2, 1, 0], T = 2, see Methods). Network
sizes are 200 synaptic weights (linear) and 220 synap-
tic weights (nonlinear, one hidden layer). B: We use
the same linear (left) and nonlinear (right) networks
as in A. We compare predicted value of the learning
rate kpred (using (7) and γ = γ̄) with the actual value,
under low-noise (top , γ̄ = [1, 0.05, 0.05]) and high-
noise (bottom, γ̄ = [0.2, 0.5, 0.1]) conditions. Dotted
lines represent k = kpred. Density plots of {k, kpred}
are shown. Two sources of discrepancy exist. First,
kpred is calculated from the mean values γ̄ (see Meth-
ods). Transient correlations between task-irrelevant
sources of plasticity and the gradient lead to unbiased
fluctuations of γ around γ̄. This is the only source of
discrepancy in the linear case (left). Thus the density
distributes equally on either side of the dotted line.
In the nonlinear case (right), there is an unknown,
nonzero O(T 2) term ((7)) unaccounted for in calcu-
lation of kpred. This term almost always decreases
learning rate, as kpred now consistently overestimates
k. Thus predicted steady state local task difficulty
(e.g. dotted line, bottom-right panel of (A)) is con-
sistently an overestimate.
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Figure 5: Optimal network size for linear and non-
linear networks in the presence of intrinsic synaptic
noise. A: network expansion for a linear network,
given by a embedding into a larger network, followed
by a rotation of the weight matrix. This corresponds
to transforming inputs u by a projection B and out-
puts y by a semiorthogonal mapping D. B: Plots
show the dependence of Nopt in linear and nonlin-
ear networks using equations (18) and (20). In both
cases the learning rule has γ1 = 0.1. Low task-
irrelevant plasticity corresponds to γ2 = 0.01, while
task-irrelevant plasticity corresponds to γ2 = 1.
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Figure 6: Testing analytic prediction of optimal net-
work size for linear and nonlinear networks. Linear
(A) and nonlinear (B) networks of different sizes are
trained for 1500 learning cycles of length T = 1.
Mean steady state error over 12 repeats is plotted
against network size. Coloured lines represent a pri-
ori predicted optimal network sizes using equations
(18) and (20) for the linear and nonlinear examples
respectively. A: Linear networks all have a 2 : 1 ratio
of inputs to outputs. On each repeat, networks of all
considered sizes learn the same mapping, embedded
in the appropriate input/output dimension (as de-
tailed in SI section ‘Learning in a Linear Network’).
The learning rule uses γ̄ = [0.07, 1, 0.03] (high intrin-
sic noise), γ̄ = [0.06, 1, 0.04] (medium intrinsic noise)
and γ̄ = [0.05, 1, 0.05] (low intrinsic noise). B: Non-
linear networks have sigmoidal nonlinearities at each
neuron and a single hidden layer (see Methods). All
networks have ten input and ten output neurons, and
learn the same task. The number of neurons in the
hidden layer is varied from 5 to 120. The learning
rules all use γ̄1 = 0.04 and γ̄2 = 1.5. The value of γ̄3
is set respectively at 0.03, 0.04, and 0.05, in the low,
medium, and high intrinsic noise cases.
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