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Abstract

Large-scale neural recordings are becoming increasingly better at providing a window
into functional neural networks in the living organism. Interpreting such rich data sets, how-
ever, poses fundamental statistical challenges. The neural �eld models of Wilson, Cowan and
colleagues remain the mainstay of mathematical population modeling owing to their inter-
pretable, mechanistic parameters and amenability to mathematical analysis. We developed a
method based on moment closure to interpret neural �eld models as latent state-space point-
process models, making mean �eld models amenable to statistical inference. We demonstrate
that this approach can infer latent neural states, such as active and refractory neurons, in large
populations. After validating this approach with synthetic data, we apply it to high-density
recordings of spiking activity in the developing mouse retina. This con�rms the essential role
of a long lasting refractory state in shaping spatio-temporal properties of neonatal retinal
waves. This conceptual and methodological advance opens up new theoretical connections
between mathematical theory and point-process state-space models in neural data analysis.

Signi�cance Developing statistical tools to connect single-neuron activity to emergent collec-
tive dynamics is vital for building interpretable models of neural activity. Neural �eld models
relate single-neuron activity to emergent collective dynamics in neural populations, but inte-
grating them with data remains challenging. Recently, latent state-space models have emerged
as a powerful tool for constructing phenomenological models of neural population activity. The
advent of high-density multi-electrode array recordings now enables us to examine large-scale
collective neural activity. We show that classical neural �eld approaches can yield latent state-
space equations and demonstrate inference for a neural �eld model of excitatory spatiotemporal
waves that emerge in the developing retina.

1 Introduction
Neurons communicate with each other using electrical impulses, or spikes. Understanding the
dynamics and physiology of collective spiking in large networks of neurons is a central challenge
in modern neuroscience, with immense translational and clinical potential. Modern technologies
such as high-density multi-electrode arrays (HDMEA) enable the simultaneous recording of the
electrical activity of thousands of interconnected neurons, promising to o�er invaluable insights
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into neural dynamics at the network level. However, the resulting data is high-dimensional and
frequently exhibits complex, non-linear dynamics, presenting formidable statistical challenges.

Due to the high complexity of the data, most analyses of neuronal population activity take
a descriptive approach, adopting methods from statistical signal processing such as state space
models (SSM; Paninski et al. 2010; Zhao and Park 2016, 2017; Sussillo et al. 2016; Aghagolzadeh
and Truccolo 2016a; Linderman et al. 2016; Gao et al. 2016) or autoregressive generalized-linear
point-process models (PP-GLM; Paninski 2004; Pillow et al. 2008; Truccolo et al. 2005; Truccolo
2016). Such methods are e�ective in capturing the population statistics of the system, but fail to
provide mechanistic explanations of the underlying neural dynamics. While this phenomenolog-
ical description is valuable and can aid many investigations, the inability to relate microscopic
single-neuron activity to emergent collective dynamics severely limits the scope of these models
to extract biological insights from these large population recordings.

Connecting single-neuron dynamics with population behavior has been the central focus of
research within the theoretical neuroscience community over the last four decades. Neural �eld
models (Amari, 1977; Wilson et al., 1972; Cowan, 2014; Bresslo�, 2012) have been crucial in un-
derstanding how macroscopic �ring dynamics in populations of neurons emerge from the micro-
scopic state of individual neurons. Such models have found diverse applications including work-
ing memory (numerous studies, see Durstewitz et al. 2000 for a review), epilepsy (e.g. Zhang and
Xiao 2018; Proix et al. 2018; González-Ramírez et al. 2015; Martinet et al. 2017), and hallucinations
(e.g. Ermentrout and Cowan 1979; Bresslo� et al. 2001; Rule et al. 2011), and have been success-
fully related to neuroimaging data such as Electroencepelography (EEG; Moran et al. 2013; Bojak
et al. 2010; Pinotsis et al. 2012), Magnetoencephelography (MEG; Moran et al. 2013), electromyo-
graphy (EMG; Nazarpour et al. 2012), and Functional Magnetic Resonance Imaging (fMRI; Bojak
et al. 2010), which measure average signals from millions of neurons. Nevertheless, using neural
�eld models to directly model HDMEA spiking data remains an open statistical problem: HDMEA
recordings provide su�cient detail to allow modeling of individual neurons, yet the large number
of neurons present prevents the adoption of standard approaches to non-linear data assimilation
such as likelihood free inference.

In this paper, we bridge the data-model divide by developing a statistical framework for
Bayesian modeling in neural �eld models. We build on recent advances in stochastic spatiotem-
poral modeling, in particular a recent result by Schnoerr et al. (2016) which showed that a spa-
tiotemporal agent-based model of reaction-di�usion type, similar to the ones underpinning many
neural �eld models, can be statistically approximated by a spatiotemporal point process with
a de�ned intensity evolution equation. Subsequently, Rule and Sanguinetti (2018) illustrated a
moment-closure approach for mapping stochastic models of neuronal spiking onto latent state-
space models, preserving the essential coarse-timescale dynamics. Here, we demonstrate that a
similar approach can yield state-space models for neural �elds derived directly from a mecha-
nistic microscopic description. This enables us to leverage large-scale spatiotemporal inference
techniques (Cseke et al., 2016; Zammit-Mangion et al., 2012) to e�ciently estimate an approxi-
mate likelihood, providing a measure of �t of the model to the data that can be exploited for data
assimilation. Our approach is in spirit similar to latent variable models such as the Poisson Lin-
ear Dynamical System (PLDS; Macke et al. 2011; Aghagolzadeh and Truccolo 2016b; Smith and
Brown 2003; Zammit-Mangion et al. 2011), with the important di�erence that the dynamics of the
latent variables is non-linear and emerges directly from a stochastic description of single-neuron
activity.
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We apply this approach to HDMEA recordings of spontaneous activity from ganglion cells
in the developing mouse retina (Maccione et al., 2014), showing that the calibrated model ef-
fectively captures the non-linear excitable phenomenon of coordinated, wave-like patterns of
spiking (Meister et al., 1991) that have been considered in both discrete (Hennig et al., 2009a) and
�eld-theoretic models before (Lansdell et al., 2014).

2 Results

2.1 Neural �eld models for refractoriness-mediated retinal waves
Most classical neural �eld models (Wilson and Cowan, 1972, 1973) consider two neuron states:
neurons may be either actively spiking (A state), or quiescent (Q state), and any refractory e�ects
are absorbed into the coarse-grained dynamics. In contrast, developmental retinal waves exhibit
slow afterhyperpolarization (sAHP) potentials that mediate the long-timescale refractory e�ects
underlying developmental retinal waves (Hennig et al., 2009b). To address this, we consider mod-
els that explicitly incorporate additional refractory (R) states (e.g. Buice and Cowan 2007a, 2009;
Figure 1) into our neural �eld model.

e

Figure 1: 3-state Quiescent-Active-Refractory (QAR) neural-�eld model. Cells in the de-
veloping retina are modeled as having three activity states. Active cells (A; red) �re bursts of
action potentials, before becoming refractory (R; green) for an extended period of time. Quies-
cent (Q ; blue) cells may burst spontaneously, or may be recruited into a wave by other active
cells. These three states are proposed to underlie critical multi-scale wave dynamics (Hennig
et al., 2009b).

To develop a state-space formalism for inference and data assimilation in neural �eld mod-
els of retinal waves, we �rst use a master-equation approach (Buice and Cowan, 2007a; Ohira
and Cowan, 1993; Bresslo�, 2009) to de�ne a three-state stochastic neural �eld model. We then
outline a moment-closure approach (Schnoerr et al., 2017; Rule and Sanguinetti, 2018) to close
a series expansion of network interactions in terms of higher moments (Buice et al., 2010), and
obtain a second-order neural �eld model with �eld equations for both mean and covariance. We
illustrate that a Langevin approximation (Riedler and Buckwar, 2013) of this model recapitulates
spatiotemporal wave phenomena when sampled. Finally, to integrate this with spiking observa-
tions, we interpret the second-order neural �eld states as moments of a Gaussian process estimate
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of latent neural activity driving conditionally Poisson spiking.

2.2 A stochastic three-state neural mass model
We consider a neural �eld model with three states as a generic model of a spiking neuron (Figure
1). In this model, the neuron is either actively spiking (A state), refractory (R state), or quies-
cent (Q state). We assume spontaneous, Poisson transitions between neural states, with a single
quadratic pairwise interaction wherein active (A) cells excite nearby quiescent (Q) cells. Such a
quadratic interaction can be viewed more generally as a locally-quadratic approximation of pair-
wise nonlinear excitatory interaction (Rule and Sanguinetti, 2018; Ale et al., 2013). Consider the
following four state transitions of neurons:

Q
ρq−−→ A Q +A

ρe−→ A +A

A
ρa−−→ R R

ρr−→ Q
(1)

Quiescent neurons may spike spontaneously with rate ρq , entering the active state; active neu-
rons excite quiescent neurons with rate ρe , and active neurons become refractory with rate ρa .
Refractory neurons become quiescent with rate ρr .

For illustration, consider the dynamics of a local (as opposed to spatially-extended) population
of neurons. We may describe the fraction of neurons in each state in terms of a probability
distribution Pr(Q,A,R) (Figure 2A), where we slightly abuse notation and use Q , A and R both as
symbols for the neuron states and as variables counting the neurons in the corresponding states,
i.e. non-negative integers. The time evolution of this probability distribution captures stochastic
collective population dynamics, and is given by a master equation that describes the change in
density for a given state {Q,A,R} in terms of the probability of entering, minus the probability
of leaving, said state:

∂t Pr(Q,A,R) = Pr(Q,A+1,R−1)ρa(A+1) (transition A→R)
+ Pr(Q−1,A,R+1)ρr(R+1) (transition R→Q)
+ Pr(Q+1,A−1,R)

[
ρq + ρe(A−1)

]
(Q+1) (Q→A and A+Q→A+A)

− Pr(Q,A,R)
[
(ρeA + ρq)Q + ρaA + ρrR

]
(outgoing transitions)

(2)
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Figure 2: Summarizing estimated neural state as population moments. A The activity
within a local spatial region (encircled, left) can be summarized by the fraction of cells in the
quiescent (blue), active (red), and refractory (green) states (Q,A,R, right). B An estimate of the
population state can be summarized as a probability distribution Pr(Q,A,R) over the possible
proportions of neurons in each state. A Gaussian moment-closure approximates this distribution
as Gaussian, with given mean and covariance (orange crosshairs).

Even in this simpli�ed non-spatial scenario, no analytic solutions are known for the master
equation. However, from Eq. 2 one can derive equations for the mean and covariance of the
process. Due to the nonlinear excitatory interaction Q+A

ρe−→A+A, the evolution of the means is
coupled to the covariance ΣAQ , and the evolution of the covariance to the third moment. The
moment equations are therefore not closed. We use Gaussian moment closure (Figure 2B) to ap-
proximate Pr(Q,A,R) with a multivariate normal distribution at each time-point, thereby replac-
ing counts of neurons with continuous variables. The Gaussian moment closure approximation
sets all cumulants beyond the variance to zero, yielding an expression for the third moment in
terms of the �rst and second moments of Eq. 2 and giving closed ordinary di�erential equations
for the means and covariances (Schnoerr et al., 2017; Rule and Sanguinetti, 2018). The evolution
of the �rst moment (mean concentrations) is as follows:

∂t 〈Q〉 = rrq − rqa
∂t 〈A〉 = rqa − rar
∂t 〈R〉 = rar − rrq

rqa = ρq 〈Q〉 + ρe
(
〈A〉 〈Q〉 + ΣAQ

)
rar = ρa 〈A〉
rrq = ρr 〈R〉 ,

(3)

where the rate variables r(·)(·) describe the population rates of each state transition, and 〈·〉 de-
notes the expectation w.r.t. to Pr(Q,A,R). In the Gaussian moment-closure, the covariance of the
estimated state distribution evolves as

∂tΣ = JΣ + ΣJT + Σnoise,

Σnoise =


rqa + rrq −rqa −rrq
−rqa rqa + rar −rar
−rrq −rar rar + rqa


(4)

where J is the Jacobian of the equations for the deterministic means in Eq. 3, and the Σnoise
�uctuations are Poisson and therefore proportional to the mean reactions rates (Eq. 3). Together,
equations 3 and 4 provide approximate equations for the evolution of the �rst two moments of
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the master equation (Eq. 2), expressed in terms of ordinary di�erential equations governing the
mean and covariance of a multivariate Gaussian distribution. Here, we have illustrated equations
for a 3-state system, but the approach is general and can be applied to any system composed of
spontaneous and pairwise state transitions.

2.3 Generalization to spatial (neural �eld) system
So far we have considered a single local population. For a two-dimensional spatial system,
the mean concentrations become density functions (�elds) that depend on spatial coordinates
x = (x1,x2), e.g. 〈Q〉 becomes 〈Q(x)〉. Similarly, the covariances become two-point correlation
functions, e.g. ΣQA(x, x′) denotes the covariance between the number of neurons in the quiescent
state at location x and the number of neurons in the active state at location x′. We introduce spa-
tial interactions as an integral taken over nonlocal excitatory couplings, weighted by a Gaussian
kernel that depends on the distance | |∆x| | with standard deviation σe :

k(∆x) ∝ exp(−||∆x| |2/2σ 2
e ). (5)

With this coupling, the transition rate (compare to Eq. 3) from the quiescent to active state at
position x is given by the integral:

rqa(x) = ρq 〈Q(x)〉 +ρe
∫

k(x−x′) 〈Q(x)A(x′)〉 dx′

〈Q(x)A(x′)〉 = 〈Q(x)〉 〈A(x′)〉 +ΣQA(x, x′)
(6)

This kernel thus constitutes an e�ective coupling in the network, which could in principle re-
�ect synaptic interactions, di�using neurotransmitters, gap junction coupling, or combinations
thereof. Equation 6 gives rise to integro-di�erential equations for the means and covariances of
neural states (Methods: Moment closure for the spatial system). We verify that sampling from the
spatially-extended system (Methods: Langevin equations and sampling) exhibits self-organized
multi-scale wave phenomena (Figure 3).

2.4 Neural �eld models as latent-variable state-space models
The equations for the mean-�elds and correlations can be integrated forward in time and used as
a state-space model to explain population spiking activity (Figure 4; Methods: Bayesian �ltering).
In HDMEA recordings, we do not directly observe the intensity functions 〈Q(x)〉, 〈A(x)〉, and
〈R(x)〉. Instead, we observe the spikes that neurons emit, represented as a spatiotemporal point
process y(x, t), where each spike has an associated time t and spatial location x. We use a linear
Poisson likelihood for which the point-process intensity

λ(x, t) = γ (x)A(x, t) + β(x) (7)

depends linearly on the number of active neurons A(x, t)with gainγ and bias β . The combination
of this Poisson observation model with the moment-closure state-space model yields a hidden
Markov model for the latent neural �eld states (Figure 4). Given a spatiotemporal point-process of
observed spikes, the latent neural �eld states and correlations can then be inferred using Bayesian
�ltering (Methods: Bayesian �ltering).
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Figure 3: Spatial 3-state neural-�eldmodel exhibits self-organizedmulti-scale wave phe-
nomena. Simulated example states at selected time-points on a [0, 1]2 unit interval using 20×20
grid with e�ective population density of ρ=50 cells per simulation area, and rate parameters
σ=7.5e-2, ρa=4e-1, ρr=3.2e-3, ρe=2.8e-2, and ρq=2.5e-1 (Methods: Langevin equations and sam-
pling). As, for instance, in neonatal retinal waves, spontaneous excitation of quiescent cells (blue)
lead to propagating waves of activity (red), which establish localized patches in which cells are
refractory (green) to subsequent wave propagation. Over time, this leads to diverse patterns of
waves at a range of spatial scales.

Figure 4: Hidden Markov model for latent neural �elds. For all time-points T , state transi-
tion parameters θ=(ρq, ρa, ρr , ρe ,σ ) dictate the evolution of a multivariate Gaussian model µ, Σ of
latent �eldsQ,A,R. The observation model (β,γ ) is a linear map with adjustable gain and thresh-
old, and re�ects how �eld A couples to �ring intensity λ. Point-process observations (spikes) y
are Poisson with intensity λ.

The state-space formulation of the neural �eld model allows the latent states to be inferred
from spiking point-process observations, as in a SSM framework. This in turn provides access to
unobserved physiological states of neurons. To verify this SSM approach, we sampled ground-
truth simulations using a Langevin approximation to the stochastic neural �eld equations (Meth-
ods: Langevin equations and sampling), and inferred latent neural states and con�dence intervals
via Bayesian �ltering, using known parameters. In the example simulation (Figure 5), we used
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a gain of γ=15 spikes/second per simulation area, corresponding to a relatively low spike rate,
indicating that state inference can recover latent states in the presence of limited measurement
information.
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Figure 5: State inference via �ltering: ground-truth simulation. Filtering recovers latent
states in ground-truth simulated data. Spatially averaged state occupancy (Q, A, and R) (y-axis)
is plotted over time (x-axis). Solid lines represent true values sampled from the model, and shaded
regions represent the 95% con�dence interval estimated by �ltering. The active (A) state density
has been scaled up by a factor of 25 for visualization. Colored plots (below) show the qualitative
spatial organization of quiescent (blue), active (red), and refractory (green) neurons is recovered
by �ltering during example wave events. Model parameters are the same as Figure 3, with the
exception of the spatial resolution, which has been reduced to a 9×9 grid. Conditionally-Poisson
spikes were sampled with bias β=0 and gain γ=15 spikes/second per simulation area.

3 Application to retinal wave datasets
Having developed an interpretation of neural �eld equations as a latent-variable state-space
model, we next applied this model to the analysis of spatiotemporal spiking data from sponta-
neous traveling wave activity occurring in the neonatal vertebrate retina (e.g. Figure 7; Sernagor
et al. 2003; Hennig et al. 2009a; Blankenship et al. 2009; Meister et al. 1991; Zhou and Zhao 2000;
Feller et al. 1996; Maccione et al. 2014).
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Figure 6: Illustration of inner retina and recording setup. Spontaneous retinal waves are
generated in the inner retina via laterally interacting bipolar (blue) and amacrine (red) cells, de-
pending on the developmental age. These waves activate Retinal Ganglion Cells (RGCs; yellow),
the output cells of the retina. RGC electrical activity is recorded from the neonatal mouse retina
via a 64×64 4096-electrode array with 42 µm spacing.

3.1 State inference in developmental retinal waves
During retinal development, the cell types that participate in wave generation change (Maccione
et al., 2014; Sernagor et al., 2003; Zhou and Zhao, 2000), but the three-state model globally de-
scribes dynamics in the inner retina at all developmental stages (Figure 6). The Active (A) state de-
scribes a sustained bursting state, such as the depolarization characteristic of starburst amacrine
cells (Figure 6) during cholinergic early-stage (Stage 2) waves between P0 and P9 (Feller et al.,
1996; Zhou and Zhao, 2000), and late-stage (Stage 3) glutamate-dependent waves (Bansal et al.,
2000; Zhou and Zhao, 2000). For example, Figure 7 illustrates spontaneous retinal wave activity
recorded from a postnatal day 6 mouse pup (Stage 2). In addition, at least for cholinergic waves,
the slow refractory state R is essential for restricting wave propagation into previously active
areas (Zheng et al., 2006). We note that the multi-scale wave activity exhibited in the three-
state neural �eld model (e.g. Figure 3) recapitulates the phenomenology of retinal wave activity
explored in the discrete three-state model of Hennig et al. (2009b).
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Figure 7: Developmental retinal waves. Example neonatal mouse retinal waves recorded on
a 4096-electrode array on postnatal day 6. Recorded spikes were binned at 100 ms resolution,
and assigned to 10×10 spatial regions for analysis. A Average �ring rate from RGCs recorded
across the retina (the central region devoid of recorded spikes is the optic disc). B Spatial regions
with spiking activity detected for further analysis C Distribution of wave durations. To segment
waves, spiking activity on each channel was segmented into "up" states (during wave activity)
and "down" states (quiescent) using a two-state hidden Markov model with Poisson observations.
D Average inter-wave interval. E Example wave event, traveling across multiple spatial regions
and lasting for a duration of 16-20 seconds.

Using RGC spikes recorded with a 4,096 channel HDMEA (Figure 6), we demonstrate the prac-
ticality of latent-state inference using heuristically initialized rate parameters and illustrate an ex-
ample of inference for a retinal wave dataset from postnatal day 11 (Stage 3) (Figure 8). For retinal
wave inference, we employ a population-size normalized model (Methods: System-size scaling),
so that the gain and bias may be set independently in normalized units, rather than depending
on the local neuronal population size. Model parameters were initialized heuristically based on
observed timescales at ρe=ρa=15, ρr=0.15, and σ=0.15. As in Lansdell et al. (2014), lateral inter-
actions in our model re�ect an e�ective coupling that combines both excitatory synaptic interac-
tions and the putative e�ect of di�using excitatory neurotransmitters, which has been shown to
promote late-stage glutamatergic wave propagation (Blankenship et al., 2009). The spontaneous
excitation rate ρq was set to zero, such that the spontaneous wave-initiation events are captured
by the system as an extrinsic noise source. The Poisson noise was re-scaled to re�ect an e�ective
population size of 16 neurons/mm2, signi�cantly smaller than the true population density (Jeon
et al., 1998). However, due to the recurrent architecture and correlated neuronal �ring, the ef-
fective population size is expected to be smaller than the true population size. Equivalently, this
amounts to assuming supra-Poisson scaling of �uctuations for the neural population responsible
for retinal waves.

Bayesian �ltering recovers the expected features of the retinal waves (Figure 8): the excito-
excitatory transition Q+A→A+A and the onset of refractoriness A→R are rapid compared to the
slow refractory dynamics, and therefore the A state is brie�y occupied and mediates an e�ective
Q→R transition during wave events. The second-order structure provided by the covariance
is essential, as it allows us to model posterior variance (shaded regions in Figure 8), while also
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capturing strong anti-correlations due to the conservation of reacting agents, and the e�ect of
correlated �uctuations on the evolution of the means. Furthermore, spatial correlations allow
localized RGC spiking events to be interpreted as evidence of regional (spatially-extended) latent
neuronal activity.
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Figure 8: State inference via �ltering: retinal datasets. Filtering of spontaneous retinal waves
(postnatal day 11). Solid lines indicate inferred means, shaded regions the 95% con�dence bound.
The magnitude of theA state and the counts have been scaled up by a factor of 5 for visualization.
Grey vertical lines indicate example time slices, which are shown in the colored plots below. Col-
ored plots are the same as in Figure 5, with red, green, and blue re�ecting (normalized) densities
of active, refractory, and quiescent cells, respectively.

3.2 Open challenges in model identi�cation
So far, we have demonstrated good recovery of states when the true rate parameters are known
(Figure 5), and also shown that plausible latent-states can also be inferred from neural point-
process datasets using heuristically initialized parameters (Figure 8). A natural question then is
whether one can use the Bayesian state-space framework to estimate a posterior likelihood on the
rate parameter values, and infer model parameters directly from data. At present, model inference
remains very challenging for four reasons: under-constrained parameters, computational time
complexity, numerical errors from successive approximations, and non-convexity in the joint
posterior. It is worth reviewing these open challenges as they relate to open problems in machine
learning and data assimilation.

First, the e�ective population size, the typical fraction of units in quiescent vs. refractory
states, and the gain parameter mapping latent activations to spiking, are all essential to setting
appropriate rates, and are not accessible from observation of RGC spiking alone. Without di-
rect measurement or appropriate physiological priors on parameter values, one cannot recover a
physiologically-realistic model. In e�ect, this means that a large number of equivalent systems
can explain the observed RGC spiking activity, a phenomenon that has been termed "sloppiness"
in biological systems (Transtrum et al., 2015; Panas et al., 2015). Indeed, Hennig et al. (2011)
show that developmental waves are robust to pharmacological perturbations, suggesting that the
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retina itself can use di�erent con�gurations to achieve similar wave patterns. Second, although
state inference is computationally feasible, parameter inference requires many thousands of state-
inference evaluations. A Matlab implementation of state-inference running on a 2.9 GHz 8-core
Xeon CPU can process ∼85 samples/s for a 3-state system on a 10×10 spatial basis. For a thirty-
minute recording of retinal wave activity, state inference is feasible, but repeated state inference
for parameter inference is impractical. Third, model likelihood must be computed recursively,
and is subject to well-known loss of numerical accuracy due to back-propagation through time
(Pascanu et al., 2013; Bengio et al., 1994; Hochreiter et al., 2001). For early-stage retinal waves, the
large separation of timescales between the refractory e�ects, and the fast-timescale excitation,
also makes it di�cult to estimate gradients for the slow-timescale parameters. Furthermore, the
inferred likelihood approximated as the product of a large number of high-dimensional Laplace
approximations (or similar Gaussian approximations, e.g. variational), which makes the inferred
likelihood numerically unstable. Fourth and �nally, the overall likelihood surface is not, in gen-
eral, convex, and may contain multiple local optima. In addition, regions of parameters space can
exhibit vanishing gradient for one or model parameters.

Overall, parameter inference via Bayesian �ltering presents a formidable technical challenge
that hinges upon several open problems for e�cient model inference in high-dimensional spa-
tiotemporal point process models undergoing latent, nonlinear dynamics. At present, it would
seem that traditional parameter identi�cation methods, based on mathematical expertise and
matching observable physical quantities (e.g. wavefront speed, c.f. Lansdell et al. 2014), remain
the best-available approach to model estimation. Nevertheless, the state-space formulation of
neural �eld models enables Bayesian state inference from candidate neural �eld models, and
opens the possibility of likelihood-based parameter inference in the future.

4 Discussion
In this work, we have demonstrated that classical neural-�eld models can be interpreted as state-
space models. This is achieved by interpreting a second-order neural �eld model as de�ning
equations on the �rst two moments of a latent-variable process that is coupled to spiking ob-
servations. In the state-space model interpretation, latent neural �eld states can be recovered
from Bayesian �ltering. This allows inferring the internal states of individual neurons in large
networks based solely on recorded spiking activity, information that can experimentally only
be obtained with whole cell recordings. We demonstrated successful state inference for simu-
lated data, where the correct model and parameters were known. Next, we applied the model
to large-scale recordings of developmental retinal waves. Here the correct latent state model is
unknown, but a relatively simple three-state model with slow refractoriness is well motivated by
experimental observations (Zheng et al., 2006). Consistent with previous work (Feller et al., 1997;
Zheng et al., 2006; Godfrey and Swindale, 2007; Hennig et al., 2009a), the state inference revealed
that activity-dependent refractoriness restricts the spatial spreading of waves.

In contrast to phenomenological latent state-space models, the latent states here are motivated
by an (albeit simpli�ed) description of single-neuron dynamics, and the state-space equations
arise directly from considering the evolution of collective activity as a stochastic process.

In the example explored here, we use Gaussian moment-closure to arrive at a second-order
approximation of the distribution of latent states and their evolution. In principle, other distri-
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butional assumptions may also be used to close the moment expansion. Other mathematical ap-
proaches that yield second-order models could also be employed, for example the linear noise ap-
proximation (Van Kampen, 1992) or diagrammatic perturbation (Buice and Cowan, 2007b; Ocker
et al., 2017). The approach applied here to a three-state system can generally be applied to sys-
tems composed of linear and quadratic state transitions. Importantly, systems with only linear
and pairwise (quadratic) interactions can be viewed as a locally-quadratic approximation of a
more general smooth nonlinear system (Ale et al., 2013), and Gaussian moment closure therefore
provides a general approach to deriving approximate state-space models in neural population
dynamics.

The state-space interpretation of neural �eld models opens up future work to leverage the al-
gorithmic tools of SSM estimation for data assimilation with spiking point-process datasets. How-
ever, challenges remain regarding the retinal waves explored here, and future work is needed to
address these challenges. Model likelihood estimation is especially challenging. Despite this, the
connection between neural-�eld models and state-space models derived here will allow neural
�eld modeling to incorporate future advances in estimating recursive, nonlinear, spatiotemporal
models. We also emphasize that some of the numerical challenges inherent to high-dimensional
spatially extended neural �eld models do not apply to simpler, low-dimensional neural mass mod-
els, and the moment-closure framework may therefore provide a practical avenue to parameter
inference in such models.

In summary, this report connects neural �eld models, which are grounded in models of stochas-
tic population dynamics, to latent state-space models for population spiking activity. This con-
nection opens up new approaches to �tting neural �eld models to spiking data. We hope that this
interpretation is a step toward the design of coarse-grained models of neural activity that have
physically interpretable parameters, have physically measurable states, and retain an explicit
connection between microscopic activity and emergent collective dynamics. Such models will be
essential for building models of collective dynamics that can predict the e�ects of manipulations
on single-cells on emergent population activity.

Acknowledgements: Funding provided by EPSRC EP/L027208/1 Large scale spatio-temporal
point processes: novel machine learning methodologies and application to neural multi-electrode
arrays. We thank Gerrit Hilgen for important discussions in establishing biologically-plausible
parameter regimes for the three-state model. We thank Evelyne Sernagor for the retinal wave
datasets, as well as ongoing advice and invaluable feedback on the manuscript.

5 Methods

5.1 Data acquisition and preparation
Example retinal wave datasets are taken from Maccione et al. (2014). For analysis, spikes were
binned in time at a 100 ms resolution. Spiking activity over time at each region was segmented
into wave-like and quiescent states using a two-state hidden Markov model with a Poisson ob-
servations. Regions without spiking observations were excluded. To address heterogeneity in the
Retinal Ganglion Cell (RGC) outputs, the observation model was adapted to each spatial region
based on �ring rates. Background activity was used to establish per-region biases, de�ned as the
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mean activity in a region in quiescent periods. The scaling between latent state and �ring rate
(gain) was adjusted locally based on the mean �ring rate during wave events. The overall (global)
gain for the observation model was then adjusted so that 99% of wave events on all channels
correspond to an expected A-state fraction no greater than one.

5.2 Moment closure for the spatial system
To extend the moment equations (Eq. 3, 4) to the spatial system, we denote the intensity �elds
as Q, A, and R, which are now vectors with spatial indices (in continuum: scalar functions of
coordinates x). In contrast to the non-spatial system, the number of active (bursting) neurons A
is replaced by a weighted sum over the number of active neurons in a local neighborhood. This is
modeled by a distance-dependent coupling kernel K(∆x) (Eq. 6). Denote the convolution integral
in equation 6 as a linear operator K such that

KA = K(∆x) ∗A(x). (8)

Using the notation of Eq. 8, the excitatory reaction rate mediated by the interaction between
active and quiescent cells is given by the product ρe(KA) ◦ Q, where ◦ denotes element-wise (in
continuum: function) multiplication. For the time evolution of the �rst moment (mean intensity)
of Q in the spatial system, one therefore considers the expectation

〈
KAQ>

〉
, as opposed to 〈AQ〉

in the non-spatial system. Since K is a linear operator, and the extension of the Gaussian state-
space model over the spatial domain x is a Gaussian process, the second moment of the nonlocal
interactions KA with Q can be obtained in the same way as one obtains the correlation for a
linear projection of a multivariate Gaussian:

〈KAQ>〉 = K〈AQ>〉
= K

(
ΣA,Q + 〈A〉 〈Q〉>

) (9)

The resulting equations for the spatial means are similar to the nonspatial system (Eq. 3), with the
exception of the rate at which quiescent cells enter the active state, which now includes spatial
coupling terms:

rqa = ρq 〈Q〉 + ρe Diag
[
〈KAQ>〉

]
= ρq 〈Q〉 + ρe Diag

[
K

(
ΣA,Q + K 〈A〉 〈Q〉>

) ]
= ρq 〈Q〉 + ρe

[
Diag

(
KΣA,Q

)
+ K 〈A〉 ◦ 〈Q〉

]
,

(10)

The linear reactions remain local, and so the linear contribution to the Jacobian (Eq. 4) is similar to
the non-spatial case. Nonlocal interaction terms, however, emerge in the nonlinear contribution
to the Jacobian:

Jnonlinear = ρe


−Diag (K 〈A〉) −Diag (〈Q〉 K) 0

Diag (K 〈A〉) Diag (〈Q〉 K) 0
0 0 0

 (11)

5.3 Basis projection
The continuous neural �eld equations are simulated by projection onto a �nite spatial basis B.
Each basis element is an integral over a spatial volume. Means for each basis element are de�ned
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as an integral over said volume, and correlations are de�ned as a double integral. For example,
consider the number of quiescent neurons associated with the ith basis function, Qi . The mean
〈Qi〉 and covariance ΣijQA between the quiescent and active states are given by the projections:

〈Qi〉 =
∫

Bi(x)Q(x)dx

ΣijQA =

∬
Bi(x)Bj(x′)ΣQA(x, x′)dxdx′,

(12)

where x and x′ range over spatial coordinates as in Eq. 5 and 6. When selecting a basis B,
assumptions must be made about the minimum spatial scale to model. A natural choice is the
radius of lateral (i.e. spatially nonlocal) interactions in the model σe (Eq. 5), as structure below
this scale is attenuated by the averaging over many nearby neurons in the dendritic inputs.

5.4 Langevin equations and sampling
For ground-truth stimulations, we sample from a hybrid stochastic model derived from a Langevin
approximation to the three-state neural �eld equation. In the Langevin approximation, the de-
terministic evolution of the state is given by the mean-�eld equations (Eq. 3 for local reactions,
Eq. 10 for spatial excitation), and the (continuous) stochastic noise for Poisson state transitions
is given by second-order terms (using local noise as in Eq. 4; see Schnoerr et al. 2017 for further
details). Spontaneous wave initiation events are too rare to approximate as Gaussian, and instead
are sampled as Poisson (shot) noise:

rq(t) ∼ Poisson(ρq · dt) · δ (t), (13)
where δ (t) is a Dirac delta (impulse). To avoid uniform spontaneous excitation, the excito-
excitatory reaction rate is adjusted by a small �nite threshold ϑ , i.e. rqa←max(0, rqa−ϑ ) in Eq.
10. For our simulations (e.g. Figure 3), we let ϑ=8e-3. For the nonspatial system, the hybrid
stochastic di�erential equation equation is:

dQ
dA
dR

 = ©­«

−rq(t) 0 ρr
rq(t) −ρa 0
0 ρa −ρr



Q
A
R

 + ρe

−QA
QA
0

ª®¬dt + Σ1/2
noisedW , (14)

where Σnoise is the �uctuation noise covariance as in Equation 4 (with ρq excluded, as it is ad-
dressed by the shot noise, Equation 13), and dW is the derivative of a multidimensional standard
Wiener process, i.e. a spherical (white) Gaussian noise source. The deterministic component of
the Langevin equation can be compared to Equation 3 for the means of the nonspatial system in
the moment-closure system (without the covariance terms).

The stochastic di�erential equation for the spatial system is similar, amounting to a collection
of local populations coupled through a spatial interaction kernel K, and follows the same deriva-
tion used when extending the moment-closure to the spatial case (Equation 6 and Methods: Mo-
ment closure for the spatial system, Equations 9-11). Note that �uctuations are scaled by

√
dt ∆x

in the spatiotemporal implementation of the Euler-Maruyama method, where ∆x is the volume
of the spatial basis functions used to approximate the spatial system (See Methods: System-size
scaling for further detail). When sampling from such systems using the Euler-Maruyama algo-
rithm, the issue of negative intensities can be handled by the complex chemical Langevin equation
(Schnoerr et al., 2014).
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5.5 Bayesian �ltering
Having established an approach to approximate moments and sample trajectories, we now dis-
cuss the Bayesian �ltering methodology which allows us to incorporate observations in the es-
timation of the latent states. Suppose we have measurements y0, . . . ,yN of the latent state x
at time t0, . . . , tN , given by a measurement process Pr(yi |xti ), which in our case is given by the
point-process likelihood in Eq. 7. Bayesian �ltering allows us to recursively estimate the �ltering
distribution Pr(xti |yi , . . . ,y0) at time ti , i.e. the posterior state probability at time ti given the
current and all previous observations. The procedure works by the following iterative scheme:
i) suppose we know the �ltering distribution Pr(xti |yi , . . . ,y0) at time ti . Solving the dynamics
forward in time up to ti+1 gives the predictive distribution Pr(xt |yi , . . . ,y0) for all times ti<t≤tt+1.
ii) at the time ti+1 the measurement yi+1 needs to be taken into account which can be done by
means of the Bayes update:

Pr(xi+1 |yi+1, . . . ,y0) =
Pr(yi+1 |xi+1) Pr(xi+1 |yi , . . . ,y0)

Pr(yi+1 |yi , . . . ,y0)
, (15)

where we have used the Markov property and Pr(yi+1 |xi+1,yi , . . . ,y0) = Pr(yi+1 |xi+1) to obtain
the right hand side. Eq. (15) gives the �ltering Pr(xti+1 |yi+1, . . . ,y0) at time ti+1 which serves as
the input of the next i step. Performing steps i) and ii) iteratively hence provides the �ltering
distribution for all times t0 ≤ t ≤ tn.

For our neural �eld model we have to compute both steps approximately: to obtain the predic-
tive distribution in step i) we integrate forward the di�erential equations for mean and covariance
derived from moment-closure (Eq. (3), (4) and Methods: Moment closure for the spatial system). In
practice, we convert the continuous-time model to discrete time. If F∂t denotes the local lineariza-
tion of the mean dynamics in continuous time such that ∂tµ(t) = F∂tµ(t), then the approximated
discrete-time forward operator is

F∆t = exp(F∂t∆t) ≈ I + F∂t∆t . (16)

We update the covariance using this discrete-time forward operator, combined with an Euler
integration step for the Poisson �uctuations. A small constant diagonal regularization term Σreg
can be added, if needed, to improve stability. The resulting equations read:

µt+∆|t = F∆tµt

Σt+∆|t = F∆tΣtF
T
∆t+Σ

noise
t · ∆t + Σreg.

(17)

This form is similar to the update for a discrete-time Kalman �lter (Kalman et al., 1960; Kalman
and Bucy, 1961), the main di�erence being that the dynamics between observation times are
non-linear and obey the nonlinear moment equations.

Consider next the measurement update of step ii) in Eq. (15). Since the Gaussian model
for the latent states x is not conjugate with the Poisson distribution for observations y, we ap-
proximate the posterior Pr(xi+1 |yi+1, . . . ,y0) using the Laplace approximation (e.g. Paninski et al.
2010; Macke et al. 2011). The Laplace-approximated measurement update is computed using a
Newton-Raphson algorithm. The measurement update is constrained to avoid negative values
in the latent �elds by adding a ε/x potential (compare to the log-barrier approach; Nazarpour
et al. 2012), which ensures that the objective function gradient points away from this constraint
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boundary, where x is the intensity of any of the three �elds. The gradients and Hessian for the
posterior measurement log-likelihood lnL are

− lnL = 1
2 (x − µ)

TΣ−1(x − µ) +v(γx + β) − y ln(γx + β)

−∂ lnL
∂x

= Σ−1(x − µ) +vγ − y
(

γ

γx + β

)
−∂

2 lnL
∂x2

= Σ−1 + y

(
γ

γx + β

)2
,

(18)

where x is the latent state with prior mean µ and covariance Σ, and couples to point-process
observations y linearly with gain γ and bias β as in Eq. 7. The parameter v=∆x2·∆t is the spa-
tiotemporal volume of the basis function of spatial region over which counts are observed.

5.6 System-size scaling
For clarity, the derivations in this paper are presented for a population of neurons with a known,
�nite size, such that the �elds Q(x), A(x), and R(x) have units of neurons. In practice, the popula-
tion size Ω of neurons is not known, and it becomes expedient to work in normalized intensities,
where Q(x), A(x), and R(x) represent the fraction of neurons in a given state between 0 and 1,
and Q(x) +A(x) + R(x)=1. In this normalized model for population size Ω, quadratic interaction
parameters (like ρe ) as well as the gain are multiplied by Ω, to re�ect the rescaled population. In
contrast, noise variance should be divided by Ω to account for the fact that the coe�cient of vari-
ation decreases as population size increases. The in�nitesimal neural-�eld limit for the second-
order model, however, is ill-de�ned. This is because, while the mean-�eld equations scale with
the population size O(Ω), the standard deviation of Poisson �uctuations scales with the square
root of the population size O(

√
Ω). The ratio of �uctuations to the mean (coe�cient of variation)

therefore scales as O(1/
√
Ω), which diverges as Ω→0.

This divergence is not an issue in practice as all numerical simulations are implemented on
a set of basis functions with �nite nonzero volumes, associated with �nite nonzero population
sizes. Even in the limit where �uctuations would begin to diverge, one can treat the neural �eld
equations as if de�ned over a continuous set of overlapping basis functions with nonzero vol-
ume. In this approach, adjacent spatial areas also experience correlated �uctuations. Consider
Poisson �uctuations as entering with some rate-density σ 2(x). The observed noise variances and
covariances, projected onto basis functions Bi(x) and Bj(x), are:

Σnoise
i,j =

∫
Bi(x)Bj(x)σ 2(x)dx (19)

In e�ect, one de�nes a population density ρ(x). The e�ective population size for a given basis
function is then

Ωi =

∫
Bi(x)ρ(x)dx (20)

If the population density is uniform, and if basis functions have a constant volume v , we can
write this more simply as Ω = vρ. Therefore, when normalizing the model for system size, the
contributions of basis function volume cancel and the noise should be scaled simply as 1/ρ.
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