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Summary. Neuropixels probes present exciting new opportunities for neuroscience, but
such large-scale high-density recordings also introduce unprecedented challenges in data
analysis. Neuropixels data usually consist of hundreds or thousands of long stretches of
sequential spiking activities that evolve non-stationarily over time and are often governed
by complex, unknown dynamics. Extracting meaningful information from the Neuropixels
recordings is a non-trial task. Here we introduce a general-purpose, graph-based statisti-
cal framework that, without imposing any parametric assumptions, detects points in time
at which population spiking activity exhibits simultaneous changes as well as changes
that only occur in a subset of the neural population, referred to as “change-points”. The
sequence of change-point events can be interpreted as a footprint of neural population
activities, which allows us to relate behavior to simultaneously recorded high-dimensional
neural activities across multiple brain regions. We demonstrate the effectiveness of our
method with an analysis of Neuropixels recordings during spontaneous behavior of an
awake mouse in darkness. We observe that change-point dynamics in some brain re-
gions display biologically interesting patterns that hint at functional pathways, as well as
temporally-precise coordination with behavioral dynamics. We hypothesize that neural ac-
tivities underlying spontaneous behavior, though distributed brainwide, show evidences for
network modularity. Moreover, we envision the proposed framework to be a useful off-the-
shelf analysis tool to the neuroscience community as new electrophysiological recording
techniques continue to drive an explosive proliferation in the number and size of data sets.

1. Introduction

Electrophysiological recording techniques have become more sophisticated, incorporating
simultaneous spiking data from more neurons across multiple brain regions. In particu-
lar, hair-thin probes densely packed with hundreds of recording sites, called Neuropixels,
can record spiking activity from hundreds or even thousands of cells [1, 2]. The combined
high temporal resolution and broad spatial coverage of these probes offer a new picture of
the coordinated activity in the brain. For example, the International Brain Laboratory,
a collaboration of 21 laboratories, has recently pledged to include Neuropixels as one
of three complementary recording techniques to reveal how and where decision-related
signals change over time and interact across regions as an animal commits to a choice
[3].

Such large-scale, high-density recordings of neural activity pose new analysis chal-
lenges that must be resolved for the effective use of these data in order to answer ques-
tions about how the whole brain works together [4, 5, 6, 7, 8]. Neuropixels probes record
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simultaneously and continuously from thousands of neurons for long stretches of time.
Even though initial processing steps on these data can divide the spike data into ~10
brain regions [2], each brain region in general still contains hundreds of sequences of
spiking activities and these sequences are correlated in a complex way (see Figure 1).
In addition, these high-dimensional spiking sequences evolve non-stationarily over time,
making the understanding of these sequences even more difficult. Currently, there is
no working model that can handle these sequences in all brain regions effectively. Here
we present a new statistical framework that addresses these challenges to help under-
stand and draw scientific conclusions from large-scale neural population recordings with
Neuropixels probes.
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Fig. 1. Eight-probe Neuropixels recordings across nine brain regions in a mouse awake in
darkness during spontaneous behavior. Each row corresponds to one neuron. The neurons
are grouped by brain regions with the number of neurons listed in the parentheses. Three inter-
vals in different brain regions, a, b and c, are used to illustrate our method with details in Figure
2. Brain region labels were provided by Steinmetz et al. at doi.org/10.25378/janelia.7739750.

1.1. Our Contributions

In this work, we provide a practical procedure to process and analyze the Neuropixels
data efficiently. Specifically, we propose a nonparametric framework that identifies the
change-points of a multivariate point process, where a change-point is defined as the time
point when the probabilistic law of the point process abruptly changes (see Figure 2).
To put it in the context of Neuropixels data, an immediate product of the proposed
procedure is a series of time points when the neural activity significantly changes in the
long sequence of spiking activities for each brain region. These time points divide the long
sequence into stationary segments to facilitate more detailed follow-up investigations.
Moreover, the series of change-points for each brain region serves as a fingerprint of
the region, through which we can infer the relationship among the regions, including
clustering regions into different groups.
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Our main contribution is providing a new angle for initial exploratory analysis of
the Neuropixels data. As a compliment to existing exploratory summary statistics such
as the overall firing intensity, peri-stimulus time histogram, correlogram, spike-triggered
average, and low-dimensional Gaussian-process factors [9], we provide the change-points
as a low-dimensional summary of the activities of a large neural population. Because
of the simplicity of the proposed pipeline, change-points can be easily detected using
a computationally-efficient algorithm and require few assumptions. All these are made
possible because of the technical advantages of our proposal as follows.

(i) A statistically-principled nonparametric approach: Our proposed pipeline
builds upon a graph-based change-point detection framework [10, 11], which is
rooted in the statistical theory of detecting lack of homogeneity in a sequence
of observations. Moreover, our method imposes no distributional or parametric
assumptions on the data. The absence of such assumptions makes the proposed
method especially appealing for exploratory analysis of complex neural activity
data, where one may want to avoid artifactual discovery due to implicit assumptions
in the methods.

(ii) Detecting various change types in high dimensions: Event detection is
challenging as the dimensionality increases, commonly known as the curse of di-
mensionality. The proposed pipeline accounts for effects resulting from the curse of
dimensionality to effectively detect various types of change-points for data in high
dimensions (see Figure 2 for an illustration), which makes it suitable for handling
activities of large neural ensembles in Neuropixels recordings.

(iii) An easy-to-use off-the-shelf tool: We provide easy-to-compute summary statis-
tics — the change-points — of neural activities in each brain region over a long record-
ing. As demonstrated in Figure 3, the detected change-points reveals the footprint
of activities in each brain region. Furthermore, the proposed pipeline incurs low
computational cost and has been implemented in a software package. As a result,
the proposed method can be incorporated, at little cost, in the routine of initial
assessment of Neuropixels data.

1.2. Outline

In the following, we discuss in details the proposed method designed for dealing with
long high-dimensional sequences with multiple change-points (Section 2). We apply the
method to a Neuropixels recording collected during spontaneous behavior of an awake
mouse in complete darkness, and the results are presented and discussed in Section 3.
We conclude the paper with discussion in Section 4.

2. Multiple Event Detection in a Long High-Dimensional Sequence

In this section, we first briefly review the graph-based change-point detection framework
developed in [10, 11] in Section 2.1. The existing framework focuses on sequences with
at most one change-point or one changed-interval, which is ill-suited for analyzing Neu-
ropixels data. In Section 2.2, we present an effective way to detect multiple change-points
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Fig. 2. An illustration of the change-point detection method applied to Neuropixels data.
The time interval and brain region corresponding to each panel, a, b and c, in the whole data
sequence are denoted in red bracket in Figure 1. Here, the spike train data are plotted with the
estimated change-point denoted by 7. For each interval, the similarity graph constructed in the
change-point detection method is shown on the right with each dot corresponding to the vector
representing neuron-spiking information of all neurons in that brain region at one time. We
see that the method could detect the overall intensity changes (interval a), it could also detect
the change when the overall intensity is similar while the active neurons change (interval b),
or the covariance matrix of the spiking vector changes (interval c). Detailed description of the
procedure is provided in Section 2, and summary statistics for the three intervals are provided
in Table 1.
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in a high-dimensional sequence. The concrete algorithm that can be directly applied to
the Neuropixels data is stated in Section 2.3.

2.1. Graph-Based Change-Point Detection

Let y1,yo,...,yr be the data sequence, where y; is an n-dimensional vector that we refer
to as one observation in what follows. There possibly exists a time 7 such that y,; has
one distribution for ¢ < 7 and another distribution for ¢ > 7. In these works, the authors
adapted graph-based two-sample tests [12, 13, 14] to the scan statistic framework: Each
t divides the observations into two groups, {y1,...,y:} and {y;t1,...,yr}, and a graph-
based two-sample test is conducted to test whether these two groups of observations are
from the same distribution or not. Then, the maximum of the scan statistics over ¢ is
used as the test statistic.

The graph-based two-sample tests are tests that are based on a similarity graph
constructed on all observations. The similarity graph can be any given graph that
reflects the similarity between observations [15]. More generally, it can be constructed
based on a similarity measure through a certain criterion, such as a minimum spanning
tree (MST) [12], which is a tree connecting all observations with the total distance
across edges minimized, or a nearest neighbor graph where each observation connects to
its nearest neighbor [16, 17]. Let G be the similarity graph on all observations in the
sequence. The graph-based two-sample tests are based on two basic quantities computed
from the graph. Let g;(t) = I;>¢, where I4 is an indicator function that takes value 1 if
event A is true and 0 otherwise. Then the two quantities are:

> Lnw=gw—0 Bot)= > Iyw=gm-1, (1)

(3,9)€G (3,7)€G

where R (t) counts the number of edges connecting observations before time ¢, and Ra(t)
counts the number of edges connecting observations after . A number of scan statistics
were explored in [10, 11]. Here, we focus on the generalized edge-count scan statistic as
it takes into account the curse of dimensionality and works properly and effectively for
high-dimensional data in detecting various types of events [13]:

_( Ri(t) —E@Ri(1) \" w1 [ Ralt) — E(Ri(t)
max S(t), 5“)‘(R§<t>—E<Rl<t>>> ER1<R§<t>—E<Rl<t>>>’ 2)

where r = Var((Ry(t), Ra(t))T). Since there is no distributional assumption for the
data, the expectation and variance are defined on the permutation null distribution,
which places probability 1/7"! on each of the T'! permutations of {y1,y2,...,yr}. Exact
analytic formulas for E(R(t)), E(Ra2(t)) and Var((R(t), Re(t))T) are provided in [11] to
ease the computation of the scan statistics. In addition, the authors provided analytic
formulas to approximate the permutation p-value of the scan statistic, for 1 < Ty < T1 <
T

)

P< max S(t) > ) be /2 / 7 / 7 din’ “V b(i‘j?f(_“’i;ﬂ” dedw, (3)

To<t<Ty 1 —x)



https://doi.org/10.1101/650671
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/650671; this version posted May 27, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

6 Hao Chen, Shizhe Chen, Xinyi Deng

Table 1. Summary statistics of the change-points in Figure 2. Here S(t) is provided in
(2) and p-value is computed through (3), Z1(7) = (R1(7) — E(R1(7)))/+/Var(R: (7)) and
Zy(1) = (Ra(7) — E(R2(7)))/+/Var(Rz(7)) are the standardized edge counts (Z1(7)
and Z () roughly follow the standard normal distribution, respectively). In intervals a
and b, the differences between the vector of the intensity of the neuron’s spiking rate
before and after - dominates the change, causing the observations before  and after
7 well separated in the similarity graph. As a result, the values of Z;(7) and Z5(r) are
both large and S(7) large. In interval a, the overall intensity after 7 increases; while in
interval b, the overall intensity after 7 is similar to that before 7 but the set of neurons
that are active differ. In interval ¢, the covariance matrix of the neuron spiking intensity
before and after 7 dominates the change and the determinant of the covariance matrix
after 7 is larger causing the observations before  are mainly hubs and the observations
after 7 are mainly leafs in the similarity graph. As a result, the value of Z;(7) is large,
the value of Z,(7) is negatively large, and S(r) large.
Region max S(t) p-value Zi(1)  Za(T)

a 125.8 6.1 x 1026 3.0 3.1
b 92.1 8.7x 10719 4.8 4.7
c 90.3 4.7 x 10718 9.2 —5.5

where v(a) = (((12/2‘;21551(/“2/)%2;&?%) with ®(-) and ¢(-) the standard normal cumulative den-

sity function and probability density function, respectively. Based on this analytic ex-
pression, one can easily determine the threshold for the scan statistic at any type I error
rate under the permutation null, allowing fast detection. Furthermore, it is possible to
determine the types of the change-points based on the values of Ry(t) and Ra(t). As
a concrete example, in Table 1, we provide the test statistics and the corresponding
p-values for the three change-points shown in Figure 2.

REMARK 1. One may notice that the permutation null is stronger than the null hy-
pothesis that the spike trains are stationary. In particular, stationarity of point processes
allows the existence of temporal dependence, whereas the permutation null prohibits any
form of dependence in the sequence. In fact, an extension of the presented procedure
that allows for short-term temporal dependence has been developed [18], where the cir-
cular block permutation replaces the plain-vanilla permutation for constructing the null
distribution of test statistics. However, the detection framework using circular block per-
mutation demands much higher computational cost than the presented detection method
using the plain-vanilla permutation. Therefore, in this work, we choose to present the
change-point detection framework using the permutation null that allows for quick explo-
ration of big data such as Neuropixels recordings. We note that, if one desires precise
control of the type I error rate, it is recommended to use the circular block permutation
method to refine the detected change-points.

2.2. Multiple Change-Point Detection

In Neuropixels data, there are in general multiple change-points and the number of
change-points could even be proportional to the duration of recordings. The existing
method is thus infeasible for analyzing long sequences of Neuropixels recordings. In the
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following, we present a set of practical steps to detect multiple change-points in the
sequence effectively.

2.2.1. Finding an Initial Set of Candidate Change-Points

We adapt the binary segmentation approach [19] to find the initial set of candidate
change-points when there are multiple change-points. The procedure is as follows: We
apply the graph-based change-point detection approach to the whole sequence to find
the first change-point. This change-point divides the whole sequence into two parts and
we apply the approach to each sub-sequence. This process keeps going until no more
change-point can be found. Note that this step only gives us an initial set of candidate
change-points and these change-points are refined in the later iterative steps.

There are a few other popular methods for finding multiple change-points, such as
circular binary segmentation [20, 21] and wild binary segmentation [22]. All these ap-
proaches usually give sub-optimal estimates of the change-points when there are multiple
change-points. However, to get the optimal estimates of change-points, one needs to con-
sider all possible choices of the locations of the change-points, that is (Zl) where m is
the true number of change-points, which would be computationally prohibitive when m
is not too small. Here, we choose the practical binary segmentation approach that is
easy and fast to implement, which is essential in analyzing long Neuropixels recordings.

When the length of the sequence T is large, we chop the whole sequence into [7'/c1 ]
sub-sequences, each with length c; + co and consecutive sub-sequences overlapped by
the length of co. We then apply the binary segmentation approach to each of these
sub-sequences. Here, ¢; and ¢y are two constants. The procedure is not sensitive to the
choice of ¢; and co, and a reasonable choice can be ¢; = 1,000 and co = 200. Using
the sub-sequence detection may potentially include more false discoveries, which will be
adjusted in the later refinement steps, but it significantly reduces the time complexity
of the initial detection. Let n be the dimension of the sequence. The time complexity
of applying the binary segment approach to the entire sequence using the graph-based
statistics is typically O(nT?log T') and under the worst-case scenario O(nT?); while with
this extra chopping step, the time complexity becomes O(n(c; + ¢2)3T/c;) = O(nT)
under the worst-case scenario. Hence, without further specification, this chopping step
is employed when T is large.

2.2.2. Change-Point Refinement

Suppose, after it iteration, ©=0,1,2,..., there are K (39 candidate change-points and
we denote them by 1 < tfh) < tg?’” < e < t(1§2> < T. For notation simplicity, we

let t(()j ) =1 and t%)ﬂ =n+ 1, V4. Due to the limitation in the earlier steps, it could
be that the estimated change-point is off from the true change-point. In this step, we
first refine the estimates of the change-points. In particular, for each change-point t,(fn),
ke {1,..., KB}, the graph-based change-point detection approach is applied to the
) (3i+1) ,(30)

interval [t/ ¢,

(3i+1)
.

) to refine the estimate, and the refined change-point is denoted by
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Given that the estimates of the change-points are altered, we further check if there

is any change-point in each sub-interval [tfi“),tgﬁl)), ke {0,...,K®)} with the

threshold b determined by (3) with “T” in the equation replaced by the number of

(3i+1) t,(€3i+1))

observations in this interval (t, 11 and the probability being controlled at

o/ KB where « is a user-defined error rate, such as 0.01. Let K2 be the number
of candidate change-points after the re-searching and we denote these change-points by
1< ¢80 < g3 B

After the previous steps, some of the candidate change-points might correspond to
the same event. We thus prune the change-points, that is, tfiﬂ), ke{l,.. . KG+2}
is kept only if the observations in the time interval [t,(:’_if), t,(iirz)) is significantly non-
homogeneous. In particular, we use the Benjamini-Yekutieli procedure [23] to control

the false discover rate at «.

2.3. Algorithm

Algorithm 1
1: Initialization: use the binary segmentation approach combined with the scan statis-

tic on S to find the initial set of change-points.

while not convergence or reach the maximum number of iterations do
Refine the estimates to the time points of the current set of change-points;
Find possible extra change-points in each sub-interval;
Prune out insignificant change-points with false discovery rate set at «;

end

Compute the significance level for the final set of change-points.

Algorithm 1 summarizes the steps described in Section 2.2. The convergence rule is that
there is no change in the estimated change-points. It may take some time to converge,
and one can set the maximum number of iterations. In practice, twenty iterations
yield reasonably good estimates of the change-points. The computing complexity of the
proposed algorithm is provided in Theorem 1. The proof is deferred to the Appendix.

THEOREM 1. For a sequence of length T' and dimension n, the time complexity of

Algorithm 1 is O(nT) when max; ; (tg.z) - t;izl) = O(1), and is O(nT?) under the worst

scenario when max; (tgi) . ) = O(T). The space complexity of Algorithm 1 is O(nT)

: i—1
when max; (t;z) — tgl_)l) = 0(1), and is O(T max(n,T)) under the worst scenario.

3. Application to Neuropixels Recordings

In this section, we present an analysis of an eight-probe Neuropixels data set recorded
during spontaneous behavior of a mouse awake in darkness [24] using the proposed
change-point detection procedure. The recordings have been spike-sorted and prepro-
cessed by its providers [2]. The data set contains spike trains of 1,462 neurons simul-
taneously recorded for a period of around 20 minutes. These 1,462 neurons have been
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Fig. 3. Change-points detected in the Neuropixels recordings using the proposed pro-
cedure. A, Detected change-points for individual brain regions. Each vertical colored line is a
change-point with the width of the line reflects the significance of the change-point; each row
plots the change-points for an individual brain region. Top insert: Face motion energy is plotted
in pink, calculated as the variances of the top 50 singular values provided by [2]. Change-
point dynamics display similarities among some brain regions and can be visually clustered in
to four modules (colored-coded by blue hues, yellow hues, red, and green, respectively). Blue
hues: thalamus, hippocampal formation, midbrain, superior colliculus. Yellow hues: frontal mo-
tor cortex, somato-motor cortex, V1. Red: caudate putamen. Green: lateral septal nucleus.
Change-point dynamics across modules differ from “internal-pathway driven” (yellow dashed
outline) and “behaviorally aligned” phases (blue dashed outline). B, Brain atlases colored with
the coloring scheme used in panel A. Reference atlases for the sagittal and coronal views of
the mouse brain obtained from http://atlas.brain-map.org/. C, Zoom-in to an example period
(blue dashed outline) where the change-points are alighed across brain regions to face motion
energy (pink background). Here, the height and width of a change-point reflect its significance.
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grouped into 9 brain regions and the full recording has been discretized into 39,053 inter-
vals of 30ms. This data set can be downloaded from https://janelia.figshare.com/
articles/Eight-probe_Neuropixels_recordings_during_spontaneous_behaviors/
7739750. The entire data set is plotted in Figure 1 in Section 1.1. A behavioral data
set, also provided by [2], was recorded concurrently with neural activity and contained
the processed version of a mouse face movie.

We show in panel A of Figure 3 the detected change-points over the full recording
period with false discovery rate o in Algorithm 1 set to be 0.01. The running time
for these 9 brain regions ranges from 10 minutes to 1 hour on a personal laptop (the
Macbook 2015, 1.2 GHz Intel Core M) depending on the number of neurons in the
sequence and how sparse the change-points are. The algorithm could be much expedited
through parallelization for most of its steps, not done in the current implementation.

In the following, we focus on two example time windows, within the full recording
period, where the change-point patterns show biologically interesting dynamics.

Case study 1: Internal pathways hinted by the change-point patterns.
Outlined with yellow dashed lines in panel A of Figure 3, we observe a period where the
patterns of the detected change-points exhibit striking similarity among brain regions,
which suggests possible coordination and/or regulation across brain regions. Recall that
a change-point represents an abrupt change of neural activity. Therefore, the pattern
of change-points reflects the ongoing process in the corresponding brain region. For
instance, a period of dense change-points indicates that the corresponding brain region
is in a highly-dynamic state, whereas the absence of change-points represents that the
neural activity is rather stationary. One notable feature of the change-points within
the yellow dashed lines is that there is clearly a cluster of high density change-points
in thalamus, midbrain, hippocampus, and superior colliculus. The clusters of change-
points onset around the same time in thalamus, midbrain and hippocampus, indicating
that this is either a coordinated response or a result of common input. The clear time
delay in the superior colliculus may indicate that superior colliculus is downstream in the
information flow for this particular event. Furthermore, these clusters of change-points
are followed by a period of high face motion energy. It is likely that the face motion
is a consequence of this coordinated activity. Of note, these four brain regions showing
similar patterns in change-points corroborate known connectivity in the mouse nervous
system (see, among others, [25, 26, 27, 28]).

Case study 2: Behaviorally aligned change-points. Outlined with blue dashed
lines in panel A of Figure 3 with panel C a zoom-in display, we observe a period where
the detected change-points align well with onsets of high face motion energy. Note that
the change-points are temporally-local features; that is, the timing of a change-point
depends locally on the neural activity before and after the change-point. As a result, the
change-point detection has high temporal resolution, which reveal possible connections
between the neural activity and the behavior of the animal as shown in panel C.

It is important to point out that the results above should be interpreted as initial
findings from the proposed change-point detection method. Further investigations are
warranted to understand the underlying mechanisms of the detected change points and
their relationships with behavior.
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4. Discussion

We have introduced a general-purpose, graph-based framework for change-point detec-
tion suitable for long sequences of large-scale neural recordings. We demonstrate the
effectiveness of our method in the analysis of a Neuropixels recording across multiple
brain regions during spontaneous behavior of an awake mouse in complete darkness.
Our analyses show that neural activity underlying spontaneous behavior, though dis-
tributed brainwide [2], suggests evidence for network modularity. Our observations cor-
roborate previous studies on anatomical and functional networks of the mouse brain
[25, 26, 27, 28] and could lead to spatially constrained predictions about brain function
that may be tested in terms of lesions, evoked responses, and dynamic patterns of neural
activities.

An important observation is that the graph-based approach, not only easy and flexible
to implement with low computational complexity, has desirable power when compared
with existing parametric tests in moderate and high dimensions [15, 10, 11]. The pro-
posed procedure provides an off-the-shelf analytical tool that is simple to integrate into
existing neural data analysis pipelines. We envision the proposed framework to be in-
creasingly useful to the neuroscience community as new electrophysiological recording
techniques continue to drive an explosive proliferation in the number and size of data
sets involving large numbers of neurons across multiple brain regions.
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A. Proof of Theorem 1

For the graph-based change-point detection approach applying to a sequence of length
Th and dimension n, its time complexity is bottlenecked by the computation of pair-
wise distances among the observations, i.e., O(nTOZ). The binary segmentation approach
in the initialization step would typically add a factor of log(7p) in time complexity,
but a factor of O(Tp) under the worst-case scenario. After adopting the extra chop-
ping step elaborated in Section 2.2.1, the time complexity for the initialization step
becomes O(nT'). In the refinement step, the time complexity for applying the graph-
based change-point detection approach to time interval [t;,t;+1) is O(n(tj+1 — t5)?).

When max; j (t§i) - téill) = O(1), the time complexity of the refinement step is O(nT).

Note that max,;,j(ty) — tg-izl) can be as large as 7', leading to the worst-case complexity
of O(nT?). For the space complexity, it is bottlenecked by the size of the data O(nT)

or the pairwise distance matrices during the data analysis step, which could be as large
as O(T?) when max; (tgz) - tg.lzl) =0(T).
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