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Abstract

The Drosophila mushroom body exhibits dopamine (DA) dependent synaptic plasticity that un-

derlies the acquisition and retrieval of associative memories. Classic studies have recorded DA

activity in this system and identified signals related to external reinforcement such as reward and

punishment. However, recent studies have found that other factors including locomotion, novelty,

reward expectation, and internal state also modulate DA neurons. This heterogeneous activity is

at odds with typical modeling approaches in which DA neurons are assumed to encode a global,

scalar error signal. How can DA signals support appropriate synaptic plasticity in the presence

of this heterogeneity? We develop a modeling approach that infers a pattern of DA activity that

is sufficient to solve a defined set of behavioral tasks, given architectural constraints informed by

knowledge of mushroom body circuitry. Model DA neurons exhibit diverse tuning to task parame-

ters while nonetheless producing coherent learned behaviors. Our results provide a mechanistic

framework that accounts for the heterogeneity of DA signals observed during learning and behav-

ior.

Introduction

Dopamine (DA) release modulates synaptic plasticity and learning across vertebrate and inverte-

brate species (Perisse et al., 2013; Watabe-Uchida et al., 2017). A standard view of DA activity, pro-

posed on the basis of recordings in the mammalian midbrain dopaminergic system, holds that DA

1

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 18, 2019. ; https://doi.org/10.1101/737064doi: bioRxiv preprint 

https://doi.org/10.1101/737064


neuron firing represents a “reward prediction error” (RPE), the difference between reward received

and predicted reward (Schultz et al., 1997). This view is consistent with models of classical condi-

tioning experiments and with reinforcement learning algorithms that choose sequences of actions

to maximize reward received (Sutton and Barto, 1998). A standard assumption in these models is

that the scalar RPE signal is globally broadcast to and gates the modification of synaptic connec-

tions involved in learning. However, recent studies in both vertebrates and invertebrates suggest

that DA neuron activity is modulated by other variables in addition to RPE, and that this modulation

is heterogeneous across populations of DA neurons (Watabe-Uchida and Uchida, 2019).

In the Drosophila mushroom body (MB), Kenyon cells (KCs) conveying sensory information, pre-

dominantly odor-related signals, send parallel fibers that contact the dendrites of output neurons

(MBONs). The activation of specific MBONs can bias the organism toward particular actions (Aso

et al., 2014a). MBON dendrites define discrete anatomical regions, known as “compartments,”

each of which is innervated by distinct classes of dopaminergic neurons (DANs; we use the term

DAN to refer specifically to mushroom body dopaminergic neurons). If the KCs and DANs that

project to a given MBON are both active within a particular time window, KC-to-MBON synapses

are strengthened or weakened depending on the relative timing of KC and DAN activation (Hige

et al., 2015a; Aso and Rubin, 2016; Handler et al., 2019). The resulting synaptic modifications

permit flies to learn and update associations between stimuli and reinforcement.

Early studies identified DAN activity in the MB related to reward and punishment, although whether

this activity reflects prediction errors is unclear (Schwaerzel et al., 2003; Kim et al., 2007; Aso

et al., 2010, 2012; Burke et al., 2012). More recently DANs have been shown to encode addi-

tional variables, including novelty (Hattori et al., 2017), reward prediction (Felsenberg et al., 2017,

2018), and locomotion-related signals (Cohn et al., 2015). DA signals related to movement, nov-

elty and salience, and separate pathways for rewards and punishment have also been identified

in mammalian midbrain regions (Steinfels et al., 1983; Ljungberg et al., 1992; Horvitz et al., 1997;

Rebec et al., 1997; Lak et al., 2016; Bromberg-Martin et al., 2010; Menegas et al., 2017; Howe and

Dombeck, 2016; Engelhard et al., 2019; Watabe-Uchida and Uchida, 2019). These observations

call for extensions of classic models that assume DA neurons are globally tuned to RPE. How can

DA signals gate appropriate synaptic plasticity and learning if their responses are modulated by

mixed sources of information?

2

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 18, 2019. ; https://doi.org/10.1101/737064doi: bioRxiv preprint 

https://doi.org/10.1101/737064


To address this question, we develop a modeling approach that constructs a recurrent network

that produces DA signals suited to learning a particular class of tasks. The network is constrained

by the well-characterized anatomy of the MB and knowledge of the DA-dependent synaptic plas-

ticity rules that modify its connections (Aso et al., 2014b; Handler et al., 2019). Comprehensive

synapse-level wiring diagrams for the output circuitry of the MB will soon be available, which will

allow the connectivity of models constructed with our approach to be further constrained by data

(Eichler et al., 2017; Takemura et al., 2017; Zheng et al., 2018; Eschbach et al., 2019). The models

we construct can solve complex behavioral tasks and generalize to novel stimuli while using only

experimentally constrained plasticity rules. They can form associations based on limited numbers

of stimulus/reinforcement pairings and are capable of continual learning, which are often challeng-

ing for artificial neural networks (Finn et al., 2017; Kirkpatrick et al., 2017). We use these models

to predict DAN activity patterns that are suitable for learning the tasks we consider and find that

different model DANs exhibit diverse tuning to task-related variables. Our approach uncovers the

mechanisms behind the observed heterogeneity of DA signals in the MB and suggests that the

“error” signals that support associative learning may be more distributed than is often assumed.

Results

Modeling recurrent mushroom body output circuitry

The diversity of DAN activity challenges models of MB learning that assume DANs convey global

reward or punishment signals. Part of this discrepancy is likely due to the intricate connectivity

among MBONs, DANs, and other neurons that form synapses with them (Aso et al., 2014b; Es-

chbach et al., 2019). We therefore modeled these neurons and their connections, which we refer to

collectively as the MB “output circuitry,” as a recurrent neural network (Fig. 1A). Recurrent connec-

tions within this network are defined by a matrix of synaptic weights Wrecur. Synapses from KCs onto

MBONs provide the network with sensory information and are represented by WKC→MBON. Sep-

arate pathways convey signals such as reward or punishment from external regions, via weights

Wext. The objective of the network is to generate a desired pattern of activity in a readout that rep-

resents the behavioral bias produced by the MB. The readout decodes this desired output through

weights Wreadout.

Recurrent network modeling approaches in neuroscience typically fix all of these synaptic weight
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Figure 1: Diagram of the mushroom body (MB) model. (A) Kenyon cells (KCs) respond to stimuli and project to mush-
room body output neurons (MBONs) via weights WKC→MBON. These connections are dynamic variables that are modified
according to a synaptic plasticity rule gated by dopamine neurons (DANs). MBONs and DANs are organized into com-
partments (dotted rectangles). External signals convey, e.g., reward, punishment, or context to the MB output circuitry
according to weights Wext. A linear readout of the output circuitry with weights Wreadout is used to determine the be-
havioral output of the system. Connections among MBONs, DANs, and feedback neurons (gray) are determined by
weights Wrecur. (B) The form of the DAN-gated synaptic plasticity rule operative at KC-to-MBON synapses. ΔT is the
time difference between KC activation and DAN activation. (C) Illustration of the change in KC-to-MBON synaptic weight
ΔW following forward and backward pairings of KC and DAN activity.

matrices after optimizing them to produce a desired behavior. However, connections between KCs

and MBONs are known to exhibit DA-gated synaptic plasticity. This plasticity is dependent on the

relative timing of KC and DAN activation (notably, it does not appear to depend on the postsynaptic

MBON firing rate; Hige et al., 2015a) and can drive substantial changes in evoked MBON activity

even after brief KC-DAN pairings (Handler et al., 2019). We modeled this plasticity by assuming

that each element w of WKC→MBON is a dynamic quantity that is modified according to the following

update rule:

dw
dt = α (̄rDAN(t)rKC(t)− r̄KC(t)rDAN(t)) , (1)

where rKC and rDAN are the firing rates of the KC and the DAN that innervate the corresponding

compartment, r̄KC and r̄DAN are synaptic eligibility traces constructed by low-pass filtering rKC and

rDAN, and α is a constant that determines the magnitude of synaptic plasticity. The time constants

of the low-pass filters used to generate the eligibility traces determine the time window within which

pairings of KC and DAN activity elicit appreciable changes of w. When KC and DAN firing rates are

modeled as pulses separated by a time lag ΔT, the dependence of the change in w on ΔT takes

the form of a biphasic timing-dependent function (Fig. 1B,C), consistent with a recent experimental

characterization (Handler et al., 2019). The seconds-long timescale of this curve is compatible with
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the use of continuous firing rates rather than discrete spike timing to model KC-to-MBON plasticity,

as we have done in Eq. 1.

Importantly, the weight update rule in Eq. 1 is a smooth function of network firing rates, allowing

networks with this update rule to be constructed using standard gradient descent algorithms used in

machine learning. Such an approach has been recently used to augment networks with adjustable

connections (“fast weights”; Ba et al., 2016), although plasticity rules of the form of Eq. 1 have not

been examined. To construct our networks, we use gradient descent to modify Wrecur, Wext, and

Wreadout (the connections describing the MB output circuitry) to optimize the performance of the

network on a given set of behavioral tasks. We refer to the gradient descent modification of these

weights as the “optimization” phase of constructing our networks. This optimization represents the

evolutionary and developmental processes that produce a network capable of efficiently learning

new associations (Zador, 2019). After this optimization is complete, the output circuitry is fixed but

KC-to-MBON weights are subject to synaptic plasticity according to Eq. 1. To begin, we assume

that KC-to-MBON weights are set to their baseline values at the beginning of each trial in which new

assocations are formed. Later, we will consider the case of continual learning of many associations.

Models of associative conditioning

We begin by considering models of classical conditioning, which involve the formation of associ-

ations between a conditioned stimulus (CS) and unconditioned stimulus (US) such as reward or

punishment. A one-dimensional readout of the MBON population is taken to represent the stimulus

valence, which measures whether the organism prefers (valence > 0) or avoids (valence < 0) the

CS. In the model, CS are encoded by the activation of a random ensembles of KCs. Rewards and

punishments are encoded by external inputs to the network.

To construct the model, we optimized the MB output circuitry to produce a target valence in the

readout during presentation of CS+ that have been paired with US (first-order conditioning; Fig.

2A,B, top). After optimization, the valence of the associated US is reported for CS+ but not uncon-

ditioned stimulus (CS-) presentations. The activities of subsets of model MBONs are suppressed

following conditioning, indicating that the network learns to modify its responses for CS+ but not

CS- responses (Fig. 2A,B, bottom) This form of classical conditioning requires an appropriate

mapping from US pathways to DANs, but recurrent MB output circuitry is not required; networks
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Figure 2: Behavior of network during reward conditioning paradigms. (A) Behavior of MBONs during first-order con-
ditioning. During training, a CS+ (blue) is presented, followed by a US (green). Top: The network is optimized so that
a readout of the MBON activity during the second CS+ presentation encodes the valence of the conditioned stimulus
(gray curve). Black curve represents the target valence and overlaps with the readout. Bottom: Example responses of
MBONs. (B) Same as A, but for a CS- presentation without US. (C) Same as A, but for extinction, in which a second
presentation of the CS+ without the US partially extinguishes the association. (D) Same as A, but for second-order
conditioning, in which a second stimulus (CS2) is paired with a conditioned stimulus (CS1). (E) Error rate averaged
across networks in different paradigms. An error is defined as a difference between reported and target valence with
magnitude greater than 0.2 during the test period. Networks optimized with recurrent MB output circuitry (control; black)
are compared to networks without recurrence (no recur.; red).

without recurrence also produce the target valence (Fig. 2E, top). We therefore considered a more

complex set of tasks. Networks were optimized to perform first-order conditioning, to extinguish

associations upon repeated presentation of a CS+ without US, and also to perform second-order

conditioning.

During extinction, the omission of a US following a previously conditioned CS+ reduces the strength

of the learned association (Fig. 2C). In second-order conditioning, a CS (CS1) is first paired with

a reward or punishment (Fig. 2D, left), and then a second CS (CS2) is paired with CS1 (Fig.

2D, middle). Because CS2 now predicts CS1 which in turn predicts reward or punishment, the

learned valence of CS1 is transferred to CS2 (Fig. 2D, right). In both extinction and second-order

conditioning, a previously learned association must be used to instruct either the modification of an

existing association (in the case of extinction) or the formation of a new association (in the case of

second-order conditioning). We hypothesized that recurrent output circuitry would be required in

these cases. Indeed, non-recurrent MB networks are unable to solve these tasks, while recurrent

networks are (Fig. 2E, middle, bottom). Thus, for complex relationships between stimuli beyond
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first-order conditioning, recurrent output circuitry provides a substantial benefit.

Comparison to networks without plasticity
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Figure 3: Comparison to networks without DA-gated plasticity. (A) Behavior during first-order conditioning, similar to
Fig. 2A, but for a non-plastic network. Because of the need for non-plastic networks to maintain information using
persistent activity, performance degrades with longer delays between training and testing phases. We therefore chose
this delay to be shorter than in Fig. 2A. (B) Same as A, but for a trial in which a CS-US pairing is followed by the
presentation of a neutral CS. (C) Difference in response (reported valence) for CS+ and CS- as a function of the number
of CS+ associations. Each CS+ is associated with either a positive or negative US. A difference of 0 corresponds
to overgeneralization of the CS+ valence to neutral CS-. For comparison, the corresponding response difference for
networks with DA-gated plasticity is shown in blue.

Standard recurrent neural networks can maintain stimulus information over time through persistent

neural activity, without modification of synaptic weights. This raises the question of whether the

DA-gated plasticity we implemented is necessary to recall CS-US associations, or if recurrent MB

output circuitry alone is sufficient. We therefore compared the networks described above to net-

works lacking this plasticity. For non-plastic networks, connections from KCs to MBONs are set to

fixed, random values (reflecting the fact that these weights are not specialized to specific odors;
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Hige et al., 2015b). Networks are optimized to associate a limited number of CS+ with either a

positive or negative valence US, while not responding to CS-.

Non-plastic networks can form CS-US associations (Fig. 3A). Compared to networks with DA-

gated plasticity (Fig. 2A), MBONs exhibit stronger persistent activity following a CS-US pairing.

This activity retains information about the learned association as an “attractor” of neural activity

(Hopfield, 1982). However, non-plastic networks exhibit a high degree of overgeneralization of

learned associations to neutral CS- stimuli (Fig. 3B). This likely reflects a difficulty in constructing

a large number of attractors, corresponding to each possible CS-US pairing, that do not overlap

with patterns of activity evoked by other CS- stimuli. Consistent with this, as the number of CS+

increases, the difference between the reported valence for CS+ and CS- decreases, reflecting

increasing overgeneralization (Fig. 2C). Networks with DA-gated plasticity do not suffer from such

overgeneralization, as they can store and update the identities of stimuli in plastic weights.

In total, the comparison between plastic and non-plastic networks demonstrates that the addition of

DA-gated plasticity at KC-to-MBON synapses improves capacity and reduces overgeneralization.

Furthermore, plastic networks need not rely solely on persistent activity in order to store associa-

tions (compare Fig. 2A and Fig. 3A), likely prolonging the timescale over which information can be

stored without being disrupted by ongoing activity.

Distributed representations across DANs

We next examined the responses of DANs to neutral, unconditioned, and conditioned stimuli in

the networks we constructed, to examine the “error” signals responsible for learning (Fig. 4A).

DANs exhibited heterogeneity in their responses. We performed hierarchical clustering to identify

groups of DANs with similar response properties (Fig. 4B, gray). This procedure identified two

broad groups of DANs—one that responds to positive-valence US and another that responds to

negative-valence US—as well as more subtle features in the population response.

While some DANs increase their firing only for US, most also respond to conditioned CS. In some

cases, this response includes a decrease in firing rate in response to the omission of a predicted US

that would otherwise cause an increase in rate, consistent with a reward prediction error. In other

cases, neurons respond only with increases in firing rate for US of a particular valence, and for
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Figure 4: Population analysis of DAN activity. Principal components analysis of DAN population responses during
presentation of neutral CS. (A) Responses are shown for CS+ conditioning with a US of positive (left) or negative
(valence), followed by a test presentation of the conditioned CS+ without US. (B) Responses of model DANs from a single
network. DANs are sorted according to hierarchical clustering (illustrated with gray dendrogram) of their responses. (C)
Principal components analysis (PCA) of DAN population activity. Left: Response to a neutral CS. Middle: Response to
a positive (green) or negative (red) valence US. Right: Response to a previously conditioned US.

omitted US of the opposite valence, consistent with cross-compartmental interactions supporting

the prediction of valence (Felsenberg et al., 2017). The presence of both reward prediction error-like

responses and valence-specific omission responses suggests that multiple learning mechanisms

are employed by the network to perform tasks such as extinction and second-order conditioning.

Our examination of DAN responses demonstrates that DANs in our models are diversely tuned to

CS and US valence. This tuning implies that KC-to-MBON synapses change in a heterogeneous

manner in response to CS and US presentations, but that these changes are sufficient to produce

an appropriate behavioral response collectively. Consistent with this idea, principal components

analysis (PCA) of DAN responses identified modes of activity with interpretable, task-relevant dy-

namics. The first principal component (PC1; Fig. 4C) reflected US valence and predicted CS+

valence, while rapidly changing sign upon US omission, consistent with a reward prediction error.

Subsequent PCs included components that responded to CS and US of both valences (PC2) or

tuned primarily to a single stimulus, such as a positive valence CS+ (PC4).
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To further explore how DAN responses depend on the task being learned, we extended the model

to require encoding of novelty and familiarity, inspired by a recent study that showed that the MB is

required for learning and expressing an alerting behavior driven by novel CS (Hattori et al., 2017).

We added a second readout that reports CS novelty, in addition to the readout of valence described

previously. Networks optimized to report both variables exhibit enhanced CS responses and a

large novelty-selective component in the population response identified by PCA (Supplemental

Fig. 1), compared to networks that only report valence (Fig. 4B). These results suggest that DANs

collectively respond to any variables relevant to the task for which the output circuitry is optimized,

which may include variables distinct from reward prediction. Furthermore, the distributed nature of

this representation implies that individual variables may be more readily decoded from populations

of DANs than from single DANs.

Continual learning of associations
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Figure 5: Model behavior for long sequences of associations. (A) Illustration of non-specific potentiation following DAN
activity (compare with Fig. 1C). (B) Histogram of synaptic weights after a long sequence of CS and US presentations
for networks with (black) and without (red) non-specific potentiation. Weights are normalized to their maximum value.
(C) Top: Example sequence of positive and negative associations between two odors CS+ and CS2+ and US. Neutral
gray odors (CS-) are also presented randomly. Bottom: DAN responses for the sequence of CS and US presentations.
(C) Same as C, but for a network without non-specific potentiation. Such networks are less likely to report the correct
valence for conditioned CS+ and also exhibit a higher rate of false positive responses to CS-. (E) Error rate (defined as a
difference between reported and target valence with magnitude greater than 0.5 during a CS presentation) for networks
with (black) and without (red) non-specific potentiation.

In the previous sections, we modeled the dynamics of networks during individual trials containing
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a limited number of associations. We next ask whether these networks are capable of continual

learning, in which long sequences of associations are formed, with recent associations potentially

overwriting older ones. Such learning is often challenging, particularly when synaptic weights

have a bounded range, due to the tendency of weights to saturate at their minimum or maximum

value after many associations are formed (Fusi and Abbott, 2007). To combat this, a homeostasic

process that prevents such saturation is typically required. We therefore if our optimized networks

can implement such homeostasis.

In certain compartments of the MB, it has been shown that the activation of DANs in the absence

of KC activity leads to potentiation of KC-to-MBON synapses (Aso and Rubin, 2016). This provides

a mechanism for the erasure of memories formed following synaptic depression. We hypothesized

that this non-specific potentiation could implement a form of homeostasis that prevents widespread

synaptic depression after many associations are formed. We therefore augmented our DA-gated

synaptic plasticity rule (Fig. 1C) with such potentiation (Fig. 5A). The new synaptic plasticity rule

is given by:

dw
dt = α (̄rDAN(t)rKC(t)− r̄KC(t)rDAN(t)) + βr̄DAN(t), (2)

where β represents the rate of non-specific potentiation (compare with Eq. 1). We allowed β to be

optimized by gradient descent individually for each compartment.

We modeled long sequences of associations in which CS+, CS-, and US are presented randomly

(Fig. 5B). We then examined the distribution of KC-to-MBON synaptic weights after such se-

quences. Without non-specific potentiation, most synaptic weights are clustered near 0 (Fig. 5C,

red). However, the addition of this potentiation substantially changes the synaptic weight distribu-

tion, with many weights remaining potentiated even after thousands of CS and US presentations

(Fig. 5C, black).

We also examined performance and DAN responses in the two types of networks. Without non-

specific potentiation, DAN responses are weaker and the reported valence less accurately tracks

the target valence, compared to networks with such potentiation (Fig. 5D,E). In total, we find that

our approach can construct models that robustly implement continual learning if provided with

homeostatic mechanisms that can maintain a stable distribution of synaptic weights.
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Figure 6: (A) Diagram of a network whose activity transitions between a sequence of discrete states. Brief pulse inputs
to the network signal that a switch to a new state should occur. (B) Top: A linear readout of MBON activity can be used
to decode the network state. Bottom: DAN activity exhibits state-dependent fluctuations. (C) Decoding of stimuli that
predict state transitions. Heatmap illustrates the correlation between MBON population responses to the presentation
of different stimuli that had previously been presented prior to a state transition. Stimuli are ordered based on the state
transitions that follow their first presentation. Blue blocks indicate that stimuli that predict the same state transition evoke
similar MBON activity.

In the previous sections, we focused on networks whose DANs exhibited transient responses to the

presentation of relevant external cues. Recent studies have found that DANs also exhibit continu-

ous fluctuations that track the state of the fly, even in the absence of overt external reinforcement.

These fluctuations are correlated with transitions between, for example, movement and quiescence

(Cohn et al., 2015), or hunger and satiation (Krashes et al., 2009). Understanding the functional

role of these DAN fluctuations is a major challenge for models of DA-dependent learning. We hy-

pothesized that such activity could permit the association of stimuli with the internal state of the

organism. This could allow downstream networks to read out whether a stimulus has previously

been experienced in conjuction with a particular change in state, which might inform an appropriate

behavioral response to that stimulus.

To test this hypothesis, we constructed a network that transitioned between a set of three discrete

states, triggered on input pulses that signal the identity of the next state (Fig. 6A). This input

represents signals from other brain areas that drive state transitions. We optimized the output

circuitry to continuously maintain a state representation, quantified by the ability of a linear readout

of MBON activity to decode the current state (Fig. 6B, top). This led to widespread state-dependent
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activity throughout the network, including among DANs (Fig. 6B, bottom).

We next examined MBON responses to the presentation of stimuli that had previously preceded a

transition to some state. If a transition to a given state reliably evokes a particular pattern of DAN

activity, then KC-to-MBON synapses that are activated by any stimulus preceding such a transition

will experience a similar pattern of depression or potentiation. Consistent with this prediction, the

pattern of MBON activity evoked by a stimulus that predicts a transition to state S1 is more similar

to the corresponding activity for other stimuli that predict the same state than any other state S2

(Fig. 6C). The representations of state-transition-predictive stimuli are thus “imprinted” with the

identity of the predicted state. This could allow circuits downstream of the MB to consistently

produce a desired behavior that depends on the internal state, instead of or in addition to the

external reinforcement, that is predicted by a stimulus. Our model thus provides a hypothesis for

the functional role of state-dependent DAN activity.

Mixed encoding of reward and movement in models of navigation

We also examined models of dynamic, goal directed behaviors. An important function of olfactory

associations in Drosophila is to enable navigation to the sources of reward-predicting odor cues,

such as food odors (Gaudry et al., 2012). We therefore optimized networks to control the forward

and angular velocity of a simulated organism in a two-dimensional environment. The environment

contains multiple odor sources that produce odor plumes that the the organism encounters as it

moves. The organism is first presented with a CS+/reward pairing and then is placed in the two-

dimensional environment and must navigate to the rewarded odor (Fig. 7A, top). This is a complex

behavior that requires storing the identity of the rewarded odor, identifying the upwind direction

for that odor, moving toward the odor source using concentration information, and ignoring neutral

odors. We assumed that the MB output circuitry supports these computations by integrating odor

concentration input from KCs and information from other brain areas about wind direction relative

to the organism’s orientation (Fig. 7A, bottom; Suver et al., 2019).

The simulated organism can successfully navigate to the rewarded odor source (Fig. 7B), and suc-

cessful navigation requires plasticity during conditioning that encodes the CS+/US pairing (Supple-

mental Fig. 2). We wondered whether DA-gated plasticity might also be operative during naviga-

tion, based on recent findings that recorded ongoing DAN fluctuations correlated with movement
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Figure 7: (A) Top: Schematic of navigation task. After conditioning, the simulated organism uses odor concentration
input (blue) and information about wind direction w relative to its heading h. Bottom: Diagram of a network that uses
these signals to compute forward and angular velocity signals for navigation. Velocity signals are read out from other
neurons in the MB output circuitry (gray), rather than MBONs. (B) Position of the simulated organism as a function
of time during navigation. Black: Simulation with intact DA-gated plasticity during navigation; Red: Simulation with
plasticity blocked. Arrowheads indicate direction of movement. In the top left plot, the starting location (gray circle) is
indicated. (C) Position error (mean-squared distance from rewarded odor source at the end of navigation) for control
networks and networks without DA-gated plasticity. (D) Forward (top) and angular (bottom) velocity as a function of time
during one example navigation trial. (E) DAN activity during the same trial as in D.

(Cohn et al., 2015). We asked whether such plasticity during navigation is important for the behav-

ior of the model by examining the performance of networks in which this plasticity is blocked after

the networks are optimized. Blocking plasticity during navigation impairs performance, suggesting

that it contributes to the computation being performed by the MB output circuitry (Fig. 7C). In par-

ticular, networks lacking plasticity often exhibit decreased forward velocity after entering a plume

corresponding to a rewarded odor (Fig. 7B), suggesting that ongoing plasticity may reinforce salient

odors as they are encountered and promote odor-seeking.

We also examined the relationship of DAN activity with movement variables during navigation. The
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simulated organism exhibits increased forward velocity and turning upon the encounter of an odor,

with greater increases for rewarded than neutral odors (Fig. 7D). Model DANs exhibit activity during

navigation that correlates with movement (Fig. 7E). Many of the same DANs also exhibit reward-

related activity, demonstrating that they multiplex reward and movement-related signals. Thus, our

model accounts for DAN tuning to these two types of signals, a feature present in recordings that

traditional modeling approaches do not capture (Cohn et al., 2015).

Discussion

We have developed models of the MB that use a biologically plausible form of DA-gated synap-

tic plasticity to solve a variety of learning tasks. By optimizing the MB output circuitry for task

performance, these models generate patterns of DAN activity sufficient to produce the desired

behaviors. Model DAN responses are distributed, tuned to multiple task-relevant variables, and

exhibit rich temporal fluctuations. This diversity is a result of optimizing our models only for task

performance rather than assuming that DANs uniformly represent a particular quantity of interest,

such as a global reward prediction error signal (Schultz et al., 1997). Our results predict that in-

dividual DANs may exhibit diverse tuning while producing coherent activity at the population level.

They also provide the first unified modeling framework that can account for valence and reward

prediction (Fig. 4), novelty (Supplemental Fig. 1), and movement-related (Fig. 7) DAN responses

that have been recorded in experiments.

Relationship to other modeling approaches

To construct our MB models, we took advantage of recent advances in recurrent neural network

optimization to augment standard network architectures with DA-gated plasticity. Our approach can

be viewed as a form of “meta-learning” (Finn et al., 2017), or “learning to learn,” in which a network

learns through gradient descent to use a differentiable form of synaptic plasticity (Eq. 1) to solve

a set of tasks. As we have shown, this meta-learning approach allows us to construct networks

that exhibit continual learning and can form associations based on single CS-US pairings (Fig.

5). Recent studies have modeled networks with other forms of differentiable plasticity, including

Hebbian plasticity (Ba et al., 2016; Miconi et al., 2018; Orhan and Ma, 2019). In our case, detailed

knowledge of the site and functional form of plasticity (Handler et al., 2019) allowed us to investigate
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specific predictions about DAN responses. Similar approaches may be effective for modeling other

brain areas in which the neurons responsible for conveying “error” signals can be identified, such

as the cerebellum or basal ganglia (Ito et al., 1982; Watabe-Uchida et al., 2017).

Another recent study used a meta-learning approach to model DA activity and activity in the pre-

frontal cortex (PFC) of mammals (Wang et al., 2018). Unlike our study, in which the “slow” opti-

mization is taken to represent evolutionary and developmental processes that determine the MB

output circuitry, in this study the slow component of learning involved DA-dependent optimization

of recurrent connections in PFC. This process relied on gradient descent in a recurrent network of

long short-term memory (LSTM) units, leaving open the biological implementation of such a learn-

ing process. Like in actor-critic models of the basal ganglia (Barto, 1995), DA was modeled as a

global RPE signal.

Heterogeneity of DA signaling in mammals

Numerous recent studies have described heterogeneity in DA signals of the mammalian midbrain

dopaminergic system reminiscent of the heterogeneity across DANs in the MB (Watabe-Uchida and

Uchida, 2019). These include reports detailing distinct subtypes of DA neurons that convey posi-

tive or negative valence signals or respond to salient signals of multiple valences (Matsumoto and

Hikosaka, 2009; Bromberg-Martin et al., 2010), novelty responses (Steinfels et al., 1983; Ljung-

berg et al., 1992; Horvitz et al., 1997; Rebec et al., 1997; Lak et al., 2016; Menegas et al., 2017),

responses to threat (Menegas et al., 2018), and modulation of DA neurons by movement (Howe

and Dombeck, 2016; Engelhard et al., 2019). In many cases, these subtypes are defined by their

striatal projection targets, suggesting a compartmentalization of function similar to that of the MB

(Watabe-Uchida and Uchida, 2019). However, the logic of this compartmentalization is not yet

clear.

Standard reinforcement learning models of the basal ganglia, such as actor-critic models, assume

that DA neurons are globally tuned to reward prediction error (RPE) signals (Barto, 1995). Propos-

als have been made to account for heterogeneous DA responses, including that different regions

produce sensory prediction errors based on access to distinct state information (Lau et al., 2017),

or that DA neurons implement an algorithm for learning the statistics of transitions between states

(Gardner et al., 2018). Our results are compatible with these theories, but different in that our
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model does not assume that all DANs encode prediction errors. Instead, prediction error coding

by particular modes of population activity emerges in our model as a consequence of optimizing

for task performance (Fig. 4).

Connecting mushroom body architecture and function

The identification of groups of DANs that respond to positive and negative valence US (Schwaerzel

et al., 2003), MBONs whose activity promotes approach or avoidance (Aso et al., 2014a), and DA-

gated plasticity of KC-to-MBON synapses (Aso and Rubin, 2016; Handler et al., 2019) has led to

effective models of first-order appetitive and aversive conditioning in Drosophila. A minimal model

of such learning requires only two compartments of opposing valence and no recurrence among

MBONs or DANs. The presence of extensive recurrence (Aso et al., 2014b; Eschbach et al., 2019)

and DANs that are modulated by other variables (Cohn et al., 2015; Hattori et al., 2017; Felsenberg

et al., 2017, 2018) suggests that the MB modulates learning and behavior along multiple axes.

The architecture of our model reflects the connectivity between KCs and MBONs, compartmental-

ization among MBONs and DANs, and recurrence of the MB output circuitry. While the identities

of MBONs and DANs have been mapped anatomically (Aso et al., 2014b), the feedback pathways

have not, so the feedback neurons in our model (gray neurons in Fig. 1A) represent any neu-

rons that participate in recurrent loops involving the MB, which may involve paths through other

brain areas. As electron-microscopy reconstructions of these pathways become available, effec-

tive interactions among compartments in our model may be compared to anatomical connections,

and additional constraints may be placed on model connectivity. By modifying its architecture, our

model could be used to test the role of other types of interactions, such as recurrence among KCs,

connections between KCs and DANs (Eichler et al., 2017), or direct depolarizing or hyperpolarizing

effects of DA on MBONs (Takemura et al., 2017). There is evidence that DA-gated synaptic plas-

ticity rules are heterogeneous across compartments, which could also be incorporated into future

models (Hige et al., 2015a; Aso and Rubin, 2016). While we have primarily focused on the formation

of associations over short timescales because the detailed parameters of compartment-specific

learning rules have not been described, such heterogeneity will likely be particularly important in

models of long-term memory (Trannoy et al., 2011; Aso et al., 2012).

It is unlikely that purely anatomical information, even at the level of a synaptic wiring diagram,
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will be sufficient to infer how the MB functions (Bargmann and Marder, 2013). We have used

anatomical information and parameterized synaptic plasticity rules along with hypotheses about

which behaviors the MB supports to build “task-optimized” models, related to approaches that have

been applied to sensory systems (Yamins and DiCarlo, 2016). The success of these approaches

for explaining neural data relies on the availability of complex tasks that challenge and constrain

the computations performed by the models. Therefore, experiments that probe the axes of fly

behavior that the MB supports, including behaviors that cannot be described within the framework

of classical conditioning, will be a crucial complement to connectivity mapping efforts as models of

this system are refined.
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Methods

Network dynamics

The networks consist of 20 mushroom body ouput neurons (MBONs), 20 dopamine neurons (DANs),

and 60 feedback neurons (FBNs), which we collectively refer to as the MB output circuitry. Stim-

ulus input is provided by 200 Kenyon cells (KCs). The behavior of neuron i belonging to the MB

output circuitry is given by:

τdri
dt = −ri(t) +

∑
j

Wrecur
ij rj(t) + bi + Ii(t)


+

, (3)

where [·]+ represents (elementwise) positive rectification. For computational efficiency and ease

of training, we assume τ = 1 s and simulated the system with a timestep of Δt = 0.5 s, but our

results do not depend strongly on these parameters. The bias bi determines the excitability of

neuron i, while Ii(t) represents its external input. We do not constrain Wrecur
ij , except that entries

corresponding to connections from DANs to MBONs are set to zero, based on the assumption that

these connections modulate plasticity of KC-to-MBON synapses rather than MBON firing directly

(see Discussion).

If neuron i is an MBON, then Ii(t) =
∑

k WKC→MBON
ik rKC

k , representing input from KCs. If neuron i is

a FBN, then Ii(t) =
∑

k Wext
ik rext

k , representing reinforcement, context, or state-dependent input from

other brain regions. For DANs, Ii(t) = 0. For tasks in which the predicted valence of a stimulus

is read out, the activity of the readout is given by
∑

i W
readout
i ri, where Wreadout

i is nonzero only for

MBONs. Readouts for other tasks are described below.

Aside from KC-to-MBON synaptic weights WKC→MBON, other model parameters, specifically Wrecur,

b, Wext, and Wreadout are optimized using gradient descent. For KC-to-MBON synapses, each

weight is initially set to its maximum value of 0.05 and subsequently updated according to Eq. 1,

with the updates of WKC→MBON low-pass filtered with a timescale of τW = 5 s to account for the

timescale of LTD or LTP. KC-to-MBON weights are constrained to lie between 0 and 0.05.

20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 18, 2019. ; https://doi.org/10.1101/737064doi: bioRxiv preprint 

https://doi.org/10.1101/737064


Optimization

Parameters are optimized using PyTorch with the RMSprop optimizer (www.pytorch.org) with a

learning rate of 0.001 and batch size of 30. The cost to be minimized is equal to the squared

distance between the actual and target PI averaged over timesteps, plus a regularization term for

DAN activity. The regularization term equals αDAN
∑

t,i∈DAN[ri(t) − 0.1]2+, which penalizes DAN

activity that exceeds a baseline level of 0.1.

All optimized weights are initialized as zero mean Gaussian variables. To initialize Wrecur, weights

from a neuron belonging to neuron type X (where X = MBON, DAN, or FBN) have 0 mean and

variance equal to 1√
2NX

, where NX equals the number of neurons of type X. For Wreadout, the

variance is 1/NMBON while for Wext, the variance is 1. Bias parameters are initialized at 0.1. At the

beginning of each trial ri(t) is 0 for MBONs and 0.1 for DANs or FBNs, to permit these neurons to

exhibit low levels of baseline activity.

Conditioning tasks

For conditioning tasks in which the predicted valence of a conditioned stimulus (CS) is reported

(such as first- and second-order conditioning and extinction), each CS is encoded by setting 10%

of the entries of rKC to 1 and the rest to 0. Unconditioned stimuli (US) are encoded by rext which

is two-dimensional, with entries equal to 0 or 1 based on on the presence or absence of positive

or negative-valence US. CS and US are presented for 2 s. Tasks are split into 30 s intervals

(for example conditioning and test intervals; see Fig. 2). Stimulus presentation occurs randomly

between 5 s and 15 s within these intervals. Firing rates are reset at the beginning of each interval,

which prevents networks from using persistent activity to maintain associations.

When optimizing networks in Fig. 2, random extinction and second-order conditioning trials were

drawn. For half of these trials, CS or US are randomly omitted (and the target valence updated

accordingly) in order to prevent the networks from overgeneralizing to unconditioned CS. Opti-

mization progressed for 5000 epochs for networks trained to perform extinction and second-order

conditioning. For networks trained only for first-order conditioning, (Fig. 2E, top; Fig. 3), only

first-order conditioning trials were drawn, and optimization progressed for 2000 epochs.
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Principal components of DAN activity (Fig. 4) were estimated using 50 randomly chosen trials of

extinction and second-order conditioning in previously optimized networks. To order DANs based

on their response similarity (Fig. 4A), hierarchical clustering was performed using the Euclidean

distance between the vector of firing rates corresponding to pairs of DANs during these trials.

For networks also trained to report stimulus novelty (Supplemental Fig. 1), an additional readout

dimension that is active for the first presentation of a given CS and inactive otherwise is added.

Adding this additional readout does not significantly impact the performance of the networks for

classical conditioning tasks.

Networks without DA-gated plasticity

For networks without DA-gated plasticity, KC-to-MBON synaptic weights are drawn randomly from

a uniform distribution between 0 and 0.05 and then fixed. The time of CS+ presentation is chosen

uniformly between 5 s and 15 s, and the second CS presentation occurrs uniformly between 20

s and 30 s. Networks are optimized to perform first-order conditioning with positive and negative

valence US for a fixed set of CS+ stimuli numbering between 1 and 10 (2 to 20 possible associ-

ations). On half of the trials, a random CS is presented instead of the second CS+ presentation

(Fig. 3B) and networks are optimized to not respond to this CS.

Continual learning

To model continual learning (Fig. 5), networks were augmented with non-specific potentiation gated

by DAN activity according to Eq. 2. The potentiation parameter β is compartment-specific and

updated through gradient descent. Each parameter is initialized at 0.01 and constrained to be

positive.

Trials consist of 200 s intervals, during which two CS+ and two CS- odors are presented randomly.

For each CS, the number of presentations in this interval is chosen from a Poisson distribution with

a mean of 2 presentations. Unlike other networks, for these networks the values of WKC→MBON

at the end of one trial are used as the initial condition for the next trial. To prevent weights from
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saturating early in optimization, the weights at the beginning of trial t are set equal to:

wt = (1 − x)w0 + xwt−1, (4)

where w0 = 0.05 corresponds to the initial weight at the beginning of optimization, and x increases

linearly from 0 to 1 during the first 2500 epochs of optimization. Networks were optimized for a

total of 5000 epochs.

Networks that encode changes in state

For networks that encode changes in state (Fig. 6), a three-dimensional readout of MBON activity is

optimized to encode the state (at each moment in time, the target is equal to 1 readout dimension

and 0 for the others). The external input rext is three-dimensional and signals state transitions

using input pulses of length 2 s. The length of time between pulses ΔTstate is a random variable

distributed according to ΔTstate ∼ 10 s · (1 + Exp(1)). For these networks, we did not impose a

penalty on DA neuron firing rates (αDAN = 0). Networks were optimized for 500 epochs.

To test how state-dependent DAN dynamics affect stimulus encoding, a CS is presented for 2 s,

beginning 8 s prior to the second state change of a 300 s trial. Afterward, the same CS is presented

for 5 s. This was repeated for 50 CS, and the correlation coefficient between MBON responses

during the second 5 s presentation was calculated (Fig. 6C).

Models of navigation

To model navigation toward a rewarded odor source (Fig. 7), a CS+/US pairing is presented at

t = 2 s in a 20 s training interval with a US strength of rext
i = 0.1. This is followed by a 200 s interval

during which the model organism navigates in a two-dimensional environment.

During navigation, two odor sources are present, one CS+ and one neutral CS. The sources are

randomly placed at x = ±1 m and y chosen uniformly between 0 m and 2 m, with a minimum

spacing of 0.5 m. Associated with each odor source is a wind stream that produces an odor plume

that the model organism encounters as it navigates. These are assumed to be parallel to the x axis

and oriented so that the odor plume diffuses toward the origin, with a height of 0.5 m and centered
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on the y position of each odor source. For locations within these plumes and downwind of an odor

source, the concentration of the odor is given by:

c(Δx, Δy) = 1
1 + 0.5Δx exp

(
−(Δy)2/(0.1Δx)

)
, (5)

where Δx and Δy are the x and y displacements from the odor source in meters. This equation

expresses a Gaussian odor plume with a width that increases and magnitude that decreases with

distance from the odor source.

During navigation, when the model organism encounters an odor plume, KC activity is assumed to

be proportional to the pattern of activity evoked by an odor (a random pattern that activates 10%

of KCs) scaled by c(Δx, Δy). The network further receives 4-dimensional wind direction input via

Wext. Each input is given by [w · hi]+, where w is a unit vector representing wind direction and hi

for i = 1 . . . 4 is a unit vector pointing in the anterior, posterior, or lateral directions with respect to

the model organism.

The organism is initially placed at the origin and at an angle distributed uniformly on The range

[π
2 (1−γ), π

2 (1+γ)], with γ increasing linearly from 0 to 0.5 during the optimization. The movement

of the organism is given by two readouts of the FBNs. The first determines the forward velocity

v(t) = Softplus(Wv ·r(t)+bv), and the second determines the angular velocity ω(t) = Wω ·r(t)+bω.

The weights and bias parameters of these readouts are optimized using gradient descent. For

these networks, we did not impose a penalty on DA neuron firing rates (αDAN = 0). For each trial,

the loss is determined by the Euclidean distance of the model organism from the rewarded odor

source at the end of the navigation interval. Networks were optimized for 500 epochs.
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