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Summary 9 

The cognitive map is often assumed to be a Euclidean map that isometrically 10 

represents the real world (i.e. the Euclidean distance between any two locations in 11 

the physical world should be preserved on the cognitive map). However, 12 

accumulating evidence suggests that environmental boundaries can distort the 13 

mental representations of a physical space. For example, the distance between two 14 

locations can be remembered as longer than the true physical distance if the 15 

locations are separated by a boundary. While this overestimation is observed under 16 

different experimental conditions, even when the boundary is formed by flat surface 17 

cues, its physiological basis is not well understood. We examined the neural 18 

representation of flat surface cue boundaries, and of the space segregated by these 19 

boundaries, by recording place cell activity from dorsal CA1 and CA3 while rats 20 

foraged on a circular track or square platform with inhomogeneous surface textures. 21 

About 40% of the place field edges concentrated near the surface cue boundaries on 22 

the circular track (significantly above the chance level 33%). Similarly, the place field 23 

edges were more prevalent near the boundaries on the platforms than expected by 24 

chance. In both 1-dimensional and 2-dimensional environments, the population 25 

vectors of place cell activity changed more abruptly with distance between locations 26 

that crossed cue boundaries than between locations within a bounded region. These 27 

results show that the locations of surface boundaries were evident as enhanced 28 

decorrelations of the neural representations of locations to either side of the 29 

boundaries. This enhancement might underlie the cognitive phenomenon of 30 

overestimation of distances across boundaries. 31 

Keywords: Hippocampus, spatial cognition, boundaries, spatial segmentation, single 32 

units, place fields, CA1, CA3 33 
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Introduction 35 

Real-world space has a universal metric (at least on the local scale of everyday 36 

experience), with distance varying regularly along each of 3 dimensions (i.e., a meter 37 

measured at each location along the x dimension is equal to a meter along the y and 38 

z dimensions). Psychological space, however, can be much more complex [1-3]. For 39 

example, compartmentalization of an environment can result in perceptual 40 

distortions of the Euclidean space [4-9], such as increasing the mental distance 41 

between two locations separated by a boundary [7-9]. 42 

 43 

The physiological mechanisms underlying such distorted representations of 44 

space are not well understood. Tolman suggested that an internal representation of 45 

the environment—a “cognitive map”—is used by an organism to devise flexible 46 

solutions to various cognitive tasks [10]. The subsequent discoveries of place cells 47 

[11,12], grid cells [13], head direction cells [14,15] and boundary cells [16-18] in 48 

rodents and primates [19-23] provided strong evidence that this map is instantiated 49 

in the hippocampus and related structures. The map is generated by an interaction 50 

between two major types of neural computation: path integration, the integration of 51 

a velocity vector over time to continually update a position estimate based on 52 

self-motion, and landmark navigation, the use of allothetic spatial cues to estimate 53 

position based on triangulation [24-26]. These systems continuously reinforce each 54 

other, as allothetic cues (especially boundaries and distal landmarks) correct path 55 

integration errors and path integration provides a universal metric to construct a 56 

framework upon which spatial landmarks can be organized to produce a map [26]. 57 

 58 

Since spatial locations can be represented by the population activity of place 59 

cells, distortion of the mental representation of space might occur if the neural 60 

mechanisms that incorporate the allothetic cues onto the map create 61 

inhomogeneities in the distribution of place fields. Two-dimensional surface cues 62 

often serve as demarcations that segregate the environment into distinct 63 

compartments. For example, different tiling on the floor may define the realm of a 64 

kitchen and distinguish it from an abutting dining area. Place cells are known to 65 

overrepresent apparatus boundaries [27,28] and goal locations [29,30], providing 66 

evidence of inhomogeneity of the place field map. However, it is not known whether 67 

two-dimensional surface cues, which provide no impediment to movement or 68 

navigation but which can create a conceptual spatial segmentation of the 69 

environment, can also produce inhomogeneity in the map. 70 

 71 

To address this question, we trained rats to forage on surfaces with distinct 72 

regions demarcated by floor textures or tape line markings. The edges of place fields 73 

recorded from dorsal CA1 and CA3 concentrated near the boundaries, resulting in a 74 

steeper change in the population vectors of firing rates for locations that cross 75 

boundaries compared to locations that do not cross boundaries. 76 

  77 
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Results 78 

Place field edges coincided with the local cue boundaries  79 

We recorded single-unit activity simultaneously from multiple neurons of the 80 

CA1 and CA3 pyramidal cell layers of the hippocampus while rats moved clockwise 81 

around a circular track in a double rotation, cue-mismatch task (Figure 1A). The 82 

quadrants of the track surface were covered by different texture patches (local cues), 83 

and objects were placed on the surrounding curtains or on the floor (global cues) 84 

[31]. For both standard (STD) and cue-mismatch (MIS) sessions, place fields covered 85 

the entire track with no strong tendency to concentrate at specific locations (Figure 86 

1B; Figure S1). 87 

 88 

Although many place fields crossed local-cue boundaries or fired at a distance 89 

from them, there appeared to be a disproportionate number of fields with edges 90 

near the local-cue boundaries (Figure 1C). To illustrate this phenomenon, we 91 

constructed cross-correlograms of the population vectors (PVs) of firing rates (Figure 92 

1D). The width of the diagonal band reflects the distance the animal must travel 93 

before two locations are represented by uncorrelated population activity [32]. The 94 

diagonal bands became narrower near the locations of the local-cue boundaries 95 

(especially in CA3), indicating a more rapid change in the population activity near the 96 

boundaries. 97 

 98 

 99 
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 100 
Figure 1. Local-cue boundaries modulated the locations of place field edges. 101 
(A) (i) Top-down schematics of the double rotation experiment sessions. Local textures on 102 
the circular track are denoted by the different patterns of the inner ring. Global cues are 103 
denoted by shapes on the black outer ring representing the black curtains surrounding the 104 
track. In this example, 180° (session 2) and 45° (session 4) mismatch (MIS) sessions were 105 
interleaved with 3 standard (STD) sessions. (ii) Photograph of the textured, double-rotation 106 
track. (B) Sorted firing-rate maps of all the place fields included in the analyses. The abscissa 107 
of the map is the track angle and each row of the map is the firing-rate map of a unit. The 108 
locations of the local-cue boundaries are denoted by the green lines. The rate maps were 109 
normalized by the peak firing rates of each unit and were sorted by the centers of mass of 110 
the fields. The same rate map is included in the figure multiple times if the place cell had 111 
multiple place fields. (C) Examples of place fields observed in CA1 (cells 1–4) and CA3 (cells 112 
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5–8). Some fields confined within a texture quadrant (cells 1 and 5) or crossing a local-cue 113 
boundary (cells 2 and 6) had no edges close to any of the local-cue boundaries. However, 114 
other fields had one edge near a boundary (cells 3 and 7) or had both of their edges near the 115 
boundaries (cells 4 and 8). Fields that had one or more edges near a boundary could be 116 
contained within a single texture quadrant or could span across multiple quadrants. For each 117 
cell the trajectory-spike plot (left) and the linearized firing-rate map (right) are presented. 118 
The blue-shaded areas represent the range of the place field, and all rate maps are 119 
duplicated and concatenated in order to show fields crossing 0°. The local-cue boundaries 120 
are labeled by green lines in both plots. (D) The cross-correlograms of the PVs. The narrow 121 
pinch points of the diagonal band near the local cue-boundaries (dashed lines) show that the 122 
PVs changed more rapidly across the boundaries than across similar distances within a 123 
texture quadrant. The firing-rate maps were normalized by the peak firing rates before 124 
constructing the cross-correlograms; similar results were obtained with nonnormalized 125 
matrices (not shown). See also Figure S1 and Figure S7. 126 

 127 

 128 
 129 

 130 
Figure S1. Related to Figure 1; Population firing rates did not change robustly near the 131 
local-cue boundaries 132 
(A) The population firing-rate maps. The smoothed firing-rate maps of different units were 133 
normalized by the peak firing rate of each unit and stacked together. The mean firing rates 134 
across units were calculated and denoted by the thick black curves, and the standard errors 135 
were denoted by the thin black curves. The abscissa of the map is the track angle. The gray 136 
lines indicate the locations of the local-cue boundaries. There is no clear evidence of changes 137 
in mean firing rates at the local-cue boundaries. (B) Local population firing-rate maps near 138 
the local-cue boundaries. To further examine whether the population firing rates consistently 139 
increased or decreased near the local-cue boundaries, we collapsed the data for each cell 140 
across the 4 local-cue boundaries. The behavior and spike data were binned based on their 141 
relative locations to the closest boundaries, and the mean firing rates were calculated. The 142 
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abscissa of the map is the relative location to the local-cue boundary, and the means and the 143 
standard errors of firing rates were denoted as in (A). The gray lines label position 0. 144 

 145 

To statistically determine whether more place field edges than expected by chance 146 

were located near the local-cue boundaries, we created histograms of the locations 147 

of the field edges (Figure 2, left column). The proportions of field edges located ± 15° 148 

from the local-cue boundaries were significantly greater than shuffled distributions 149 

(Figure 2, middle column, significant for all session types, with significance level α = 150 

0.05, two-tailed test with Bonferroni correction). To provide further support, we 151 

performed a bootstrap analysis on the data sample by randomly resampling, with 152 

replacement, the same number of place fields that constituted the data set. The field 153 

edges of the resampled fields were used to calculate the field edge proportion for 154 

each of 1,000 bootstrap trials. Since the local-cue windows occupied 1/3 of the track 155 

circumference, we expected to see bootstrapped distributions centered near 0.33 156 

under the null hypothesis of a homogeneous distribution. However, all the 157 

bootstrapped field edge proportions were greater than 0.33 (Figure 2, right column, 158 

 159 

 160 
Figure 2. Place field edges coincided with local-cue boundaries.  161 
(Left) The distributions of place field edges peaked near the local-cue boundaries (denoted 162 
by the black lines). The abscissa of the map is the track angle and the ordinate is the number 163 
of field edges observed within the corresponding spatial bin. (Middle, Right) The random 164 
shuffling control distributions (middle column) and the bootstrapped distributions (right 165 
column) of the proportion of field edges observed within the local-cue windows. The 166 
experimentally observed values are denoted by the thick black lines, the 95% confidence 167 
intervals of the shuffled distributions by the dotted lines, and the chance level (0.33) by the 168 
dashed lines. *, significant at α = 0.05, Bonferroni corrected for 4 comparisons. See also 169 
Figure S2, Figure S3 and Figure S4(A). 170 

 171 
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bootstrap confidence intervals with significance level α = 0.05, with Bonferroni 172 

correction: CA1-STD, [0.338, 0.396]; CA1-MIS, [0.352, 0.396]; CA3-STD, [0.353, 173 

0.438]; CA3-MIS, [0.371, 0.436]). Both starting and ending edges of place fields 174 

revealed a tendency to concentrate near local-cue boundaries (Figure S2A, B), but 175 

statistical significance was not reached in all recording conditions (unlike the 176 

combined analysis presented in Figure 2). In contrast to the local-cue boundaries, 177 

field edges did not appear to concentrate near the global-cue boundaries (Figure 178 

S2C). The concentration of place field edges does not appear to be an artifact caused 179 

by behavioral biases (Figure S3) or by overrepresentation of place field centers of 180 

mass (Figure S4A). 181 

 182 
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Figure S2. Related to Figure 2; Place fields tended to start and/or end near the local cue 184 
boundaries but not the global cue boundaries. 185 
(A) (Left) The distributions of the starting edges of the place fields with respect to the 186 
local-cue boundaries. (Middle) Shuffling tests were significant at familywise p < 0.05 for all 187 
but the CA1-STD session (two-tailed, Bonferroni corrected). (Right) Bootstrap confidence 188 
intervals with significance level α = 0.05, Bonferroni corrected: CA1-STD, [0.329, 0.411]; 189 
CA1-MIS, [0.357, 0.420]; CA3-STD, [0.350, 0.482]; CA3-MIS, [0.333, 0.432]. Although not all 190 
distributions met the stringent Bonferonni-corrected alpha (0.0125 for each distribution), 191 
they were all showed the same strong trend. (B) (Left) The distributions of the ending edges 192 
of the place fields with respect to the local-cue boundaries. Although the ending edges 193 
showed a trend to be preferentially located at the local-cue boundaries, in most cases this 194 
tendency did not survive the Bonferonni-corrected statistical tests. (Middle) Shuffling test, 195 
significant result for CA3-MIS, with α = 0.05, two-tailed with Bonferroni correction. (Right) 196 
bootstrap confidence intervals with significance level α = 0.05 with Bonferroni correction: 197 
CA1-STD, [0.326, 0.410]; CA1-MIS, [0.327, 0.391]; CA3-STD, [0.307, 0.435]; CA3-MIS, [0.376, 198 
0.482]. As with the starting edge analysis (A), all distributions showed the same strong trend. 199 
(C) (Left) The distributions of the place field edges (start and end) with respect to the 200 
global-cue boundaries (i.e., the locations on the track that correspond to the radial angle of 201 
the center of each global cue). The solid lines denote the locations of the global-cue 202 
boundaries (two local cues were also positioned at 45° and 135°). (Middle) Shuffling tests 203 
were not significant at familywise α < 0.05, two-tailed with Bonferroni correction. The 204 
chance level is ~0.42 for this analysis since there were 5 global cues and the global cue 205 
windows occupied about 42% of the track surface. Note that the observed proportions are 206 
almost significantly less than the shuffled distributions for the CA1-STD and CA3-MIS 207 
sessions; this result is likely explained by the tendency of the peaks to be in the locations of 208 
the local cues instead of the global cues. (Right) Bootstrap confidence intervals with 209 
familywise α < 0.05 with Bonferroni correction: CA1-STD, [0.368, 0.420]; CA1-MIS, [0.395, 210 
0.441]; CA3-STD, [0.374, 0.461]; CA3-MIS, [0.351, 0.422]. Note that the global cues were 211 
large objects distant from the track, and thus the global cue boundaries as defined here were 212 
markedly different from the unambiguously defined local cue boundaries. It is thus possible 213 
that the global cues had an effect on the place field edges that we were unable to detect in 214 
our analyses. 215 
 216 
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 217 
Figure S3. Related to Figure 2; The prevalence of place field edges near local-cue 218 
boundaries was not a speed-related artifact. 219 
Some rats tended to slow down or pause at the texture edges, a tendency that introduces a 220 
potentially confounding variable. It is known that place field firing rates can be modulated by 221 
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the animal’s momentary running speed, which could affect the precise locations where place 222 
field edges were calculated. Two control analyses were performed to address whether 223 
inhomogeneities in running speed accounted for the main results on the circular track. (A) 224 
The distributions of the place field edges based on the raw data that were not 225 
velocity-filtered. Standard practice in the place cell literature is to remove from analysis 226 
spikes and position samples that occur when a rat is moving below a threshold speed, in 227 
order to discard potential nonspatial firing of cells when a rat is immobile and the 228 
hippocampus is in the large irregular activity (LIA) state of EEG. Selective removal of these 229 
data points at the local cue boundaries might have artifactually produced the local cue 230 
boundary effect on place field edges. To test this, we reanalyzed the data without the speed 231 
threshold filtering. For all session types, the shuffling test results and the bootstrap results 232 
were still significant with α = 0.05, two-tailed with Bonferroni correction; the bootstrap 233 
confidence intervals with significance level α = 0.05, Bonferroni corrected for 4 comparisons: 234 
CA1-STD, [0.354, 0.408]; CA1-MIS, [0.351, 0.402]; CA3-STD, [0.342, 0.439]; CA3-MIS, [0.351, 235 
0.423]. (B) The distributions of the place field edges after excluding the data segments in 236 
which the rat paused their forward movements. Some rats tended to pause and produce 237 
“head scanning” behaviors at the local cue boundaries, a behavior that might have altered 238 
the firing of the cells in the place field.  To test for this potential confound, we deleted from 239 
analysis all traversals across the local cue boundaries in which the rat paused or performed a 240 
head scan (see Methods). For all but the CA3-STD sessions, the shuffling and bootstrap 241 
results were significant with α = 0.05, two-tailed with Bonferroni correction; the bootstrap 242 
confidence intervals: CA1-STD, [0.336, 0.393]; CA1-MIS, [0.358, 0.405]; CA3-STD, [0.327, 243 
0.425]; CA3-MIS, [0.348, 0.420]. These results suggested that the concentration of the field 244 
edges near the local-cue boundaries was not an artifact of the tendency of the animal to 245 
slow down or pause near the local cue boundaries. The figure formats are as described in 246 
Figure 2. 247 
 248 
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 249 
Figure S4. Related to Figure 2 and Figure 5. Surface-cue boundaries were not 250 
over-represented by place field centers of mass (CoMs). 251 
(A) (Left) The distributions of the place field CoMs on the double cue-rotation track. (Middle, 252 
Right) We performed the same shuffling and bootstrap tests as described previously. In 253 
contrast to the field edge effects, the observed proportions were significantly fewer than the 254 
shuffling results (or trended in that direction) (middle, significant for CA1-MIS and CA3-STD 255 
with α = 0.05, two-tailed, with Bonferroni correction) or the uniform distribution chance 256 
level (right, bootstrap confidence intervals with significance level α = 0.05, with Bonferroni 257 
correction: CA1-STD, [0.265, 0.343]; CA1-MIS, [0.259, 0.319]; CA3-STD, [0.197, 0.312]; 258 
CA3-MIS, [0.241, 0.339]). This underrepresentation of field COMs near the local-cue 259 
boundaries might be explained by the sizes of place fields. Given that 70% of the CA1 and 260 
CA3 place fields were 33°-103° in length and the local-cue boundaries were at 90° intervals, 261 
most fields that started or ended near the local-cue boundaries would have their COMs away 262 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 10, 2019. ; https://doi.org/10.1101/764282doi: bioRxiv preprint 

https://doi.org/10.1101/764282
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

from the local-cue boundaries. The greater-than-chance prevalence of place fields with 263 
edges near the local-cue boundaries would therefore lead to a low prevalence of COMs near 264 
the boundaries. (B) The distributions of place field CoMs on the simple boards. Each dot 265 
represents the CoM of a field. The proportions of fields that had CoMs within the boundary 266 
zones on the simple boards were not significantly different from the plain-board control 267 
(two-tailed χ2 test with d.f.=1: leather-standard, χ2= 0.900, p=0.343 (n.s.); leather-shift, χ2= 268 
2.118, p=0.146 (n.s.); tape-standard, χ2= 1.500, p=0.221 (n.s.); tape-shift, χ2= 0.144, p=0.704 269 
(n.s.). α=0.05 with Bonferroni correction for 4 comparisons.) (C) A permutation test suggests 270 
the cue boundaries were not over-represented by place field CoMs. The proportions of place 271 
fields with their CoMs located within the boundary zones were calculated, and a 272 
permutation test as performed in Figure 5B was used to compare the field proportion 273 
differences between the simple boards and the plain board control. In all cases the data fell 274 
within the 95% confidence intervals of the permutation distributions. The denotations are as 275 
described in Figure 2. 276 
 277 

Firing rate maps modulated by cue boundaries in 2-dimensional 278 

environments  279 

Place field properties can be different when rats run stereotyped trajectories on 280 

one-dimensional (1-D) circular or linear tracks, compared to when they perform 281 

more irregular foraging in two-dimensional (2-D) open fields or platforms [33]. We 282 

thus examined whether place field edges concentrated near surface texture 283 

boundaries in 2-D environments. We first trained 6 rats to forage on a complex board 284 

with a complicated surface pattern composed of geometric shapes constructed from 285 

different texture patches and tape lines (Figure 3A). CA1 place cell recordings from 5 286 

rats show that some place field edges were aligned with a subset of the cue 287 

boundaries and corners (Figure 3B). These examples provide compelling visual 288 

demonstrations that the place field edges respect the local texture boundaries on 289 

the platform, similar to the circular track. A number of place fields crossed some 290 

boundaries, even as they were aligned to other boundaries; thus, as on the circular 291 

track, the fields were not always contained within a single bounded region. However, 292 

the complexity and heterogeneity of place field edges relative to the complex 293 

geometric patterns on the board precluded a detailed quantitative analysis.  294 

 295 

To quantify place field alignment to 2-D boundaries, we collected further data 296 

from 3 rats foraging on simple boards with a single cue boundary. The simple board 297 

experiments contained two types of boards. The leather boards contained a cue 298 

boundary formed by the contrast between a leather surface patch and a wooden 299 

texture; the tape boards contained a white tape line that divided the board into two 300 

sections (Figure 4A). The surface patterns of the leather and the tape boards were 301 

180°-rotated, mirror images of each other. Therefore, any possible field edge 302 

concentration effect observed for the latter board could not easily be explained by 303 

the effect generated for the preceding board. The experiments consisted of 2 304 

consecutive sessions with the texture boundary in a standard location, a shift session 305 

in which the boundary was moved to a new location, and a final standard session. 306 

Place fields were distributed over the entire surface of the simple boards and a 307 

subset of the fields appeared to be modulated by the boundaries (Figure 4B). 308 
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 309 
Figure 3. Place field edges modulated by surface boundaries on the complex board. 310 
(A) Photo of the complex board. (B) Examples of CA1 place fields modulated by the surface 311 
boundaries. For each cell the trajectory-spike plot (left), the smoothed firing-rate map 312 
(middle), and the smoothed firing-rate map with superimposed cue boundaries (right) are 313 
presented. The cue boundaries appeared to modulate the edges of the place fields: Cells 1-6 314 
occupied one or multiple geometric shapes defined by the cue boundaries, and they 315 
developed triangular, rectangular, or complex-shaped fields. Cells 7-8 fired along one or 316 
more cue boundaries and had elongated, stripe-like fields. The cue boundaries also appeared 317 
to affect the number and locations of the place fields. For example, cell 9 developed 3 fields 318 
at the vertices of the brown triangle and cell 10 fired at the corresponding corners of the 319 
black triangles. Cells 11 and 12 developed complicated firing patterns. The field of cell 11 320 
filled in the black area, with some “bleeding” into the lower-left of the textured area, and 321 
the field of cell 12 occupied the rectangular area near the bottom but also extended along 322 
the diagonal boundary. 323 

 324 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 10, 2019. ; https://doi.org/10.1101/764282doi: bioRxiv preprint 

https://doi.org/10.1101/764282
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 
 325 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 10, 2019. ; https://doi.org/10.1101/764282doi: bioRxiv preprint 

https://doi.org/10.1101/764282
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

Figure 4. Place field edges modulated by surface boundaries on the simple boards. 326 
(A) Photos of the simple boards and schematics of the simple board foraging task protocol. 327 
(B) Examples of CA1 place fields modulated by the cue boundaries. The figure format is as 328 
described in Figure 3. Similar to the complex board, we observed place fields that occupied 329 
geometric shapes defined by the cue boundary and the edges of the experiment board (cells 330 
1-4), as well as elongated fields extending along the cue boundary (cells 5-7). Some of the 331 
neural correlates near the cue boundary were similar to those near walls or other 332 
traditionally defined boundaries reported in previous studies. Cell 8-9 resembled boundary 333 
cells in that they developed multiple fields at corresponding locations with respect to the 334 
cue boundary and the board edge. However, for cell 9 the two fields were different in size, 335 
which might reflect the reset of cell activity at the cue boundary, or imply that the cell has 336 
one large field that was split by the boundary. Similarly, cell 10 seemed to have two fields 337 
that were intersected by the boundary, as if its firing activity was inhibited by the cue 338 
boundary. Only a small number of cells had firing patterns similar to cells 8-10. (C) 339 
Schematics of the cross-correlogram construction process for the simple boards. (i) The 340 
spatial binning of the simple board. The firing-rate map was constructed based on binning 341 
(denoted by the yellow grid) aligned with the surface boundary. (ii)(iii) The construction of 342 
the cross-correlogram. Assuming there were only three cells (denoted by the squares in (ii)), 343 
the firing rates of the third columns of the grids from each cell (the purple, cyan, and green 344 
stripes in (ii)) were stacked together and formed the third PVM (M3 in (iii)), and the 8th 345 
columns (the red, pink, and orange stripes in (ii)) formed M8, etc. For each element of the 346 
cross-correlogram, the Pearson’s product-moment correlation coefficients were calculated 347 
between the corresponding columns of the selected PVMs, and the mean correlation was 348 
calculated across the columns. (D) The cross-correlograms of the PVs. Along the direction 349 
perpendicular to the surface boundary, the correlation dropped more abruptly near the 350 
surface boundaries (denoted by the white dashed lines) for the leather boards. The 351 
firing-rate maps were normalized by the peak firing rates before constructing the 352 
cross-correlograms. See also Figure S5 and Figure S7. 353 

 354 

To visualize whether the field edges were modulated by the cue boundaries at 355 

the population level, we partitioned the simple board into 42 equally-spaced stripes 356 

parallel to the cue boundary and calculated the similarities between the population 357 

activity vectors of the stripes (Figure 4C). The widths of the diagonal band (warm 358 

colors) of the normalized cross-correlograms decreased near the cue boundary 359 

locations for the leather-standard board (similar to the narrowing at the texture 360 

boundaries of the circular track in Figure 1B), but they remained relatively 361 

homogeneous along the diagonal lines for the tape-standard board (Figure 4D). 362 

Similar results were obtained for the nonnormalized correlograms, although some 363 

inhomogeneity of the diagonal band width started to appear for the tape-standard 364 

board (data not shown). When the cue boundary changed location, many place fields 365 

remapped between the standard and shift sessions (Figure S5). Nonetheless, the 366 

diagonal bands were narrowed at the cue boundaries for the leather-shift board. 367 

These results indicated that the place cell population activity for the leather boards 368 

changed more abruptly for two locations across the cue boundaries than for 369 

equivalent distances within a texture, while the effect was much weaker for the tape 370 

boards. 371 

 372 
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 373 
Figure S5. Related to Figure 4; Shift of cue boundary triggered place cell remapping 374 
(A) Examples of corresponding place field changes when the cue boundary was shifted to a 375 
new location. Each row represents the data collected from the same cell in the shift session 376 
(right) and the preceding standard session (left). Upon the manipulation, there were fields 377 
with their edges following the boundary (cells 1-4), fields separated by the cue boundary 378 
merging into one field (cell 5), or fields flipping along the cue boundary (cell 6). (B) 379 
Remapping was observed between the standard and the shift session for the leather board. 380 
(Top) the distributions of the correlations between firing-rate maps from different sessions. 381 
The standard vs. standard correlation coefficients are denoted by the white bars, and the 382 
standard vs. shift correlation coefficients by the black bars. The median of the standard vs. 383 
standard correlation coefficients was significantly larger than standard vs. shift (n = 34; 384 
two-tailed Wilcoxon signed-rank test: T = 102.000, p = 0.001; with significance level α = 0.05, 385 
with Bonferroni correction for 2 comparisons). (Bottom) The scatter plots of the correlation 386 
coefficient pairs. The abscissa of the scatter plot is the correlation coefficient between two 387 
standard sessions and the ordinate is the correlation coefficient between the standard and 388 
the shift session. Most points were below the diagonal line, which indicated that for most 389 
units the correlation coefficients were larger when comparing between the standard 390 
sessions than comparing between the standard and the shift session. (C) Remapping was 391 
observed between the standard and the shift session for the tape board. The figure formats 392 
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are as described in (B). The correlation coefficients were larger when comparing between 393 
the standard sessions than comparing between the standard and the shift session (n = 20; 394 
two-tailed Wilcoxon signed-rank test: T = 33.000, p = 0.008; with significance level α = 0.05, 395 
with Bonferroni correction for 2 comparisons). 396 
 397 

 398 
Figure 5. Place field edges concentrated near the surface boundaries. 399 
(A) The place field edge density maps of the simple boards (top) and the control plain board 400 
with zone markings from the corresponding simple boards (bottom). The rim of the platform 401 
and the cue boundary are labeled by thick lines, and the boundary and non-boundary zones 402 
used in the analyses are labeled by thin lines. (B) The bootstrapped distributions (top) and 403 
the permutation distributions (bottom) of the BPI differences. The figure formats are as 404 
described in Figure 2. See also Figure S4(B). 405 

Place field edges concentrated near the boundaries on the simple 406 

boards 407 

To determine statistically whether place field edges concentrated at the leather 408 

or tape boundaries, similar to the texture-cue boundaries on the circular track 409 

(Figure 2), we created 2-D field-edge density maps for the 4 types of boards. Hot 410 

spots along the cue boundaries were observed for all the boards (although much 411 

weaker on the tape-shift board) (Figure 5A), demonstrating a trend for the field 412 

edges to concentrate near the cue boundaries (as well as near the perimeters of the 413 

boards). We calculated boundary preference indices (BPIs) to quantify whether high 414 

field-edge densities were more frequently observed in the “boundary zone” (i.e. 415 
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locations that were ≤ 10 cm from the cue boundary), than in the “nonboundary 416 

zone” (i.e. locations that were > 10 cm from both the cue boundary and from the 417 

periphery of the board). 418 

 419 

For each board we randomly resampled the place field identifiers with 420 

replacement to create 1000 bootstrapped samples of place field subsets, from which 421 

a BPI was calculated for each place field subset. Concurrently, we projected the 422 

boundary and nonboundary zone partitions of the simple board onto a control board 423 

with a plain surface and calculated the BPI of the data collected from the plain board 424 

accordingly. By randomly pairing observed and control bootstrapped samples, we 425 

calculated the BPI difference between the selected samples (leather/tape board – 426 

plain board control). 427 

 428 

The BPI differences were significantly larger than zero for all boards (Figure 5B; a 429 

one-tailed test was used because we had a strong, a priori prediction based on the 430 

results of the circular track experiment; one-tailed cut-off value of the bootstrapped 431 

distribution with significance level α = 0.05, with Bonferroni correction: 432 

leather-standard, 0.030; leather-shift, 0.061; tape-standard, 0.000; tape-shift, 0.056). 433 

This result implied that, for all conditions, the field edges were more concentrated 434 

near the cue boundaries than could be expected by chance. A permutation test 435 

showed similar trends, although only the leather-shift board attained statistical 436 

significance (significance level α = 0.05, one-tailed, with Bonferroni correction). 437 

Adjacent place fields extended along the cue boundaries 438 

The field edge concentration effect can be a result of (a) a disproportionate 439 

number of fields neighboring the cue boundary, (b) elongated field edges along the 440 

cue boundary, or (c) a combination of these possibilities (Figure 6A). For all simple 441 

boards, the proportions of place fields that overlapped completely or partially with 442 

the boundary zone were not different from the plain board (Figure 6B), and the cue 443 

boundaries were not overrepresented by the place field centers of mass (Figure S4B, 444 

C). On the other hand, the field edge lengths within the boundary zones, defined as 445 

the number of spatial bins within the boundary zones containing the edge of a 446 

specific field, were on average significantly greater than the plain-board control for 447 

the leather boards (Figure 6C, top row). The edge length analysis excluded place 448 

fields that did not overlap with the boundary zones. Similar results were obtained 449 

with a permutation test (Figure 6C, bottom row). Thus, for the standard boards, we 450 

observed higher field-edge density differences than expected by chance because the 451 

place fields close to the cue boundaries tended to extend along the boundaries, 452 

thereby increasing the length of the field edge aligned with the cue boundaries. 453 

 454 
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 455 
Figure 6. Adjacent fields extending along the surface boundaries. 456 
(A) Schematics of different hypotheses explaining why the BPI difference was larger on the 457 
experiment boards than on the plain board. Hypothesis 1 suggests that a higher proportion 458 
of place fields were observed within the boundary zone on the simple boards than on the 459 
plain board. Hypothesis 2 suggests that place fields tended to extend along the cue 460 
boundary on the simple boards, and thus the average length of field edges observed within 461 
the boundary zone was larger on the simple boards than on the plain board. The place fields 462 
are denoted by colored circles, and the red fields increase the field edge density within the 463 
boundary zone. (B) The permutation test of the field proportion difference (no boards pass 464 
significance test at α = 0.05, two-tailed, with Bonferroni correction). The denotations are as 465 
described in Figure 2. (C) Longer field edges were found near the surface boundaries on the 466 
leather boards than on the plain board. (Top) The distributions of the field edge lengths 467 
within the boundary zone. The distributions of the field edge lengths collected from the 468 
simple boards are represented by black bars, with the median values denoted by the solid 469 
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lines; and the distributions of the plain board control are represented by white bars, with the 470 
median values denoted by the dash lines. The field edge length of the leather boards were 471 
significantly larger than the plain board control (two-tailed Mann-Whitney U test, n is the 472 
number of fields, and m is the median of the contour lengths: leather-standard, ntexture = 59, 473 
nplain = 54, mtexture = 21.53, mplain = 14.27, U = 1099.0, p = 0.002*; leather-shift, ntexture = 33, 474 
nplain = 51, mtexture = 21.93, mplain = 12.06, U = 397.0, p < 0.001*; tape-standard, ntexture = 54, 475 
nplain = 50, mtexture = 12.94, mplain = 12.92, U = 1142.5, p =0.089; tape-shift, ntexture = 21, nplain = 476 
44, mtexture = 15.22, mplain = 13.07, U=381.0, p = 0.129; α = 0.05 with Bonferroni correction). 477 
(Bottom) The permutation test of the edge length difference. The denotations are as 478 
described in Figure 2. 479 
 480 

 481 
Figure S6. Related to Figure 7; Interpolation of PV 482 
A linear approximation method was used to interpolate the PV differences. On the 483 
experiment platform (represented by the x-y plane at the bottom), the PV can be empirically 484 
calculated for any spatial bin. The PVs are discrete samplings of the continuous function r(x, 485 
y) (the orange surface) which defines the PVs at arbitrary locations. However, these 486 
Cartesian bins limit the calculation of PV differences to 8 directions (i.e., the difference 487 
between a bin and the 8 surrounding bins).  In order to examine the differences between 488 
PVs in directions more fine-scaled than the Cartesian bins allow, for every spatial bin, we 489 
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computed the tangent plane T(x, y) (the green plane) of r(x, y) and interpolated the PV for 490 
arbitrary locations. The red and blue angles denote two orthogonal movement directions in 491 
the physical world, and their corresponding PV changes in the neural space. D1 and D2 are the 492 
resulting PV differences (defined as the Euclidean distances) for these two different 493 
movement directions. See Methods for more details. 494 

 495 

 496 

 497 
Figure 7. Population activity changes more abruptly across, not along, the surface 498 
boundary. 499 
(A) Visualizations of the directions along which the PVs changed most abruptly. Red 500 
represents the direction parallel to the surface boundary and blue represents the direction 501 
perpendicular to the boundary. The denotations of the lines are as described in Figure 2. (B) 502 
The Rayleigh plot of the directions observed within the boundary zone (red) and the 503 
non-boundary zone (blue). The movement direction ranged from 0° to 180°, 0° when parallel 504 
with the cue boundary and 90° when perpendicular to the cue boundary. (C) The bootstrap 505 
distributions of the MVL differences. (D) The bootstrap distributions of the spatial bin 506 
proportion difference. The denotations of (C) and (D) are as described in Figure 2. See also 507 
Figure S6 and Figure S7. 508 

 509 
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Population activity changes more abruptly across, not along, the 510 

boundary 511 

The structures of the place field edge distributions described in the previous 512 

section suggested that the PVs at adjacent locations would be more similar when the 513 

locations were both within a texture area than when the locations were across a 514 

texture boundary. To examine this hypothesis, for each location we calculated the 515 

direction along which the PVs changed most (Figure 7A; Figure S6; see Methods). For 516 

all but the tape-shift board, the changes in PVs were the largest in the direction 517 

perpendicular (or near perpendicular) to the cue boundaries for most locations 518 

within the boundary zone; for the nonboundary zone, the directions were more 519 

divergent (Figure 7B). To test this difference statistically, we first examined whether 520 

the directions of maximal PV difference were more concentrated in the boundary 521 

zone than in the nonboundary zone. We computed the difference between the mean 522 

vector lengths (MVL) of the direction distributions of the two zones. When the rate 523 

maps were normalized by the peak firing rates before the construction of the PVs, 524 

bootstrapped distributions were significantly larger than zero for all but the 525 

tape-shift board (Figure 7C, bootstrap confidence intervals with significance level α = 526 

0.05, with Bonferroni correction: leather-standard, [0.275, 0.619]; leather-shift, 527 

[0.357, 0.697]; tape-standard, [0.125, 0.518]; tape-shift, [-0.045, 0.161]). Similar 528 

results were obtained when the PVs were constructed based on the raw firing-rate 529 

maps (data not shown). 530 

 531 

To determine whether the direction bias was preferentially perpendicular to the 532 

direction of the cue boundary, we calculated the proportion of spatial bins in which 533 

the directions were ±15° from the angle perpendicular to the cue boundary. 534 

Bootstrapped distributions of the difference in this proportion between the 535 

boundary and nonboundary zones were significantly larger than zero for the leather 536 

boards; a similar trend was observed for the tape-standard board but was not 537 

significant (Figure 7D, bootstrap confidence intervals with significance level α = 0.05, 538 

with Bonferroni correction: leather-standard, [0.134, 0.426]; leather-shift, [0.099, 539 

0.352]; tape-standard, [-0.030, 0.147]; tape-shift, [-0.047, 0.070]). When the PVs 540 

were constructed based on the raw firing-rate maps, the bootstrapped distribution 541 

was significantly larger than 0 for the tape-standard board as well (data not shown). 542 

These results suggest that for the leather boards (and weakly for the tape-standard 543 

board), the directions of maximal population decorrelation were significantly more 544 

consistent and perpendicular to the cue boundaries when the animals were near the 545 

boundaries than when the animals were away from the boundaries. 546 

Discussion 547 

In the current study, we showed that the edges of place fields tended to 548 

concentrate near internal surface boundaries when rats foraged on an apparatus 549 

covered by inhomogeneous surface patterns. The field edge concentration 550 

phenomenon was observed on both a 1-D circular track and 2-D open platforms, and 551 
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it could be elicited either by boundaries between different surface textures or 552 

(weakly) by a tape line. These results demonstrate that rats not only use surface 553 

texture cues as reference points to anchor the orientation of the cognitive map, as 554 

shown in previous studies [31,34-36], but they also encode the locations of the 555 

surface texture cue boundaries. The tendency for individual place cells to switch on 556 

or off near the cue boundaries sharpened the differences between the population 557 

vectors (PVs) of firing rates across a cue boundary and differentiated the 558 

representations on either side of the boundary. 559 

Representation of spatial segmentation in the cognitive map 560 

The present study can be contrasted with prior studies of hippocampal 561 

correlates of spatial segmentation that have investigated how place cells distinguish 562 

similar, connected environments [37-43]. In these studies, a significant number of 563 

place cells repeated their firing patterns in geometrically corresponding locations 564 

across perceptually similar compartments with high walls oriented in the same 565 

direction. Analogous repeating firing patterns were also seen in grid cell maps when 566 

rats ran through a hairpin maze [44] or on early exposure to an environment 567 

consisting of two visually identical boxes connected by an external corridor [45]. In 568 

these experiments, the compartments were perceptually and geometrically similar 569 

and repetitive. Therefore, it is perhaps not surprising that similar sensory inputs 570 

within each compartment would trigger the same units of the cognitive map to fire 571 

at corresponding locations [46-48]. Although path integration could, in principle, 572 

have provided overriding input to distinguish the compartments, this influence 573 

appears to have fostered differences in firing rates of the place fields across 574 

compartments rather than creating completely new representations. However, when 575 

the compartments were oriented differently, place cells were able to distinguish the 576 

compartments and did not repeat their firing fields, presumably because the head 577 

direction cell system was able to discriminate the orientation of the boundaries 578 

across the compartments [39]. 579 

 580 

The experiments in the present paper are similar to these prior experiments in 581 

that we investigated how the hippocampus represents geometrically segregated 582 

segments of a larger space. Our experiments differ, however, in that the spatial 583 

segments were defined not by high-walled boundaries but by changes in the texture 584 

of the surface upon which the rat moved. Unlike the high-walled environments, 585 

unique views of the global environment were attained from different textured 586 

segments. In this case, only a few cells had multiple place fields that appeared to be 587 

located in geometrically similar subareas (Figure 4, cell 8-9). Nonetheless, spatial 588 

segmentation could still be deciphered by examining the locations of the place field 589 

edges. 590 

The “geometric module”: Dissociation between spatial segmentation 591 

and reorientation 592 

Another series of studies relevant to the current work is the investigation of the 593 
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“geometric module” in rodents and humans. When asked to find hidden rewards in a 594 

high-walled rectangular environment, human children tend to search at both the 595 

correct and the geometrically equivalent locations even when these two locations 596 

can be distinguished by non-geometric features [4950] (but see [51]). These results 597 

suggest that human children used the geometry of a space to solve the task. Similar 598 

results have been observed in rodents (in which the phenomenon was first 599 

described) [52-54], birds [55,56], and fish [57]. When the walls were replaced by 600 

small curbs, the boundaries (i.e. curbs) no longer defined the perceptually and 601 

navigationally available environment. Nonetheless, human children and birds still 602 

used the geometry of the segment to solve the task [50-56], suggesting that the 603 

spatial segment was recognized as an isolated part of the environment and 604 

possessed geometric features. 605 

 606 

However, not all internal boundaries provide geometric information for 607 

reorientation purposes. When the environments were segregated by a luminance 608 

contrast on the floor (e.g., a black rectangle painted on a white floor), human 609 

children and chickens no longer made systematic errors at the geometrically 610 

equivalent location [50-56], and imaging of the parahippocampal place area and 611 

retrosplenial cortex showed weaker responses compared to boundaries that 612 

extended into the z axis [58]. One might conclude that these flat surface boundaries 613 

were undetected by the cognitive mapping system, thereby precluding the influence 614 

of the geometric module. Our results demonstrated, however, that even when the 615 

spatial compartments were segregated by flat surface cues, the demarcation 616 

information was present in the cognitive map (although perhaps inaccessible to the 617 

spatial orientation system). Thus, information about the presence of geometric 618 

boundaries may be dissociated from the use of this geometric information for 619 

orientation. Although the influence of environmental geometry on head direction 620 

cell tuning is influenced by complex factors [59-61], it is nonetheless possible that 621 

the geometry-controlled reorientation phenomenon is caused in large part by 622 

geometric control over these cells. In turn, the head direction cells can reorient 623 

downstream grid cells and place cells by virtue of their close coupling [62-64]. 624 

Alternatively, the reorientation may be largely dependent on boundary-selective 625 

neurons [16-18,65], which may not respond to the floor texture boundaries of the 626 

present study (although Figure 4 shows two examples of cells that are similar to a 627 

boundary/border cell). In any case, the reported inability of organisms to reorient to 628 

geometric boundaries defined by flat surfaces does not necessarily imply that the 629 

spatial representations of these shapes are not encoded.  630 

Concentration of field edges may elongate the mental distance across a 631 

boundary 632 

These results may help explain certain phenomena from the human literature 633 

regarding distorted representations of space. When requested to memorize the 634 

locations of objects or landmarks in a compartmented environment, people tend to 635 

underestimate distances between targets within the same spatial compartment and 636 

overestimate distances between targets in different compartments [4,6-9,66]. 637 
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Similarly, judgment errors in relative spatial relationships increase when two objects 638 

are located in different spatial compartments [5,67]. Even when there are not explicit 639 

boundaries (i.e., physical barriers, markings, or discrete transitions in context) in an 640 

environment, subjects tend to exaggerate the distance between two locations if the 641 

locations are in two conceptually distinct regions connected by a smooth transition 642 

(e.g. a woods gradually changing into a field) [4,6]. The systematic errors in 643 

estimating angles or distance suggest that the psychological representation of space 644 

is not isomorphic to physical space, and our results might provide insight into the 645 

underlying physiological mechanisms instantiating local distortions of the mental 646 

representation. 647 

 648 

There are a number of well-studied neural coding schemes that the 649 

hippocampus might have used to represent the surface texture boundaries in our 650 

experiments. First, the hippocampus might have overrepresented the boundary by 651 

developing a larger number of place fields along the boundary, similar to the 652 

overrepresentation previously shown for the peripheral borders of an environment 653 

[27,28], starting sites [68,69], or goal locations [29,30]. However, our analyses of 654 

place field locations provided little evidence for a disproportionate number of place 655 

fields located at the texture boundaries. Second, the place cells might have fired at a 656 

higher or lower mean rate at the boundaries than in the middle of the textures. 657 

Again, our analyses showed little evidence of such rate coding of the boundaries. 658 

Instead, the surface texture boundaries appeared to be encoded at the population 659 

level by a more abrupt decorrelation of the ensemble representation of space as the 660 

rat crossed the boundary, compared to when it moved an equivalent distance in the 661 

center of a texture segment or along a boundary. A downstream structure able to 662 

decode the rate of change of the neural representation would thus be able to detect 663 

the presence of the boundary. 664 

 665 

At a local scale, the magnitude of correlation between the neural 666 

representations of different locations reflects the physical distance between the 667 

locations. In an environment where the place fields are homogeneously distributed, 668 

if two locations are not farther than the average size of place fields (i.e., the spatial 669 

scale factor), the distance between them would be negatively correlated with the 670 

similarities between their neural representations [70]. However, if the distribution of 671 

place fields is inhomogeneous, such that the correlation between PVs of neighboring 672 

locations can vary, the mental distance between these locations might vary 673 

accordingly. In our data, the surface cue boundaries were encoded by a 674 

concentration of place field edges, and this representation decreased the correlation 675 

between the PVs across the boundaries. We therefore hypothesize that a ‘mental 676 

gap’ would be inserted in the animal’s perception of distance traveled whenever an 677 

animal moved across or mentally traversed through the boundary (Figure S7). 678 

 679 

The insertion of mental gaps may also elongate the perceived distance between 680 

locations at a more global scale. When two locations are sufficiently far apart, such 681 

that there is no longer any overlap in the population of place cells encoding the 682 

locations, the representations are maximally decorrelated with no further 683 

relationship to longer distances. However, the brain may estimate distance between 684 
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two remote locations by integrating distances between neighboring points 685 

connecting these locations. The mental distance between any two locations across 686 

the surface texture boundary may thus be elongated, since they would be connected 687 

by paths including the mental gap. It has been shown in other sensory systems that a 688 

local change near the boundary can elicit a global perceptual effect. For example, the 689 

Cornsweet Illusion [71] demonstrates that when two areas of equal brightness are 690 

separated by two local illumination gradients at the border, the entire areas are 691 

perceived as having different brightnesses defined by the strong contrast that exists 692 

only at the border. The perception of spatial segregation might similarly be mediated 693 

by neural mechanisms that can extend the mental gaps generated at the boundaries 694 

to regions farther from the border, creating a global percept of greater distance 695 

across the entire environment. 696 

 697 

 698 
Figure S7. Related to Figure 1 and Figure 4; A global perceptual effect can be triggered by a 699 
local boundary 700 
A schematic of the hypothesized relationship between the actual distance traveled by a rat 701 
and the corresponding perceived distance based on the mental gap hypothesis. On a linear 702 
track (denoted by the rectangle on the top) covered by two different surface textures 703 
(represented by the black and the white areas), a mental gap is hypothesized to be inserted 704 
when the rat crosses the texture boundary, and the perceived travel distance would thus be 705 
longer than its physical length. Although the exaggeration of perceived distance occurs only 706 
locally near the boundary (between point B and C), the distortion of distance perception can 707 
be a global effect (perceived distance is also elongated between point A and D) 708 

 709 
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 710 

Methods 711 

Subjects and surgery 712 

A total of 49 adult male Long-Evans rats were used in this study: 41 rats 713 

participated in the double rotation task, 6 rats in the complex-board forage task, and 714 

3 rats in the simple-board forage task (see below for task descriptions). Separate 715 

groups of rats were used in different tasks except for one rat that underwent both 716 

the complex-board forage task and the simple-board forage task. The double 717 

rotation data were previously collected and published for other purposes [72-79]. 718 

The rats were housed individually on a 12/12-h light/dark cycle and all experiments 719 

took place during the dark phase of the cycle. The rats had free access to water but 720 

were food restricted such that their body weights were maintained at 80-90% of the 721 

ad libitum level. 722 

 723 

For surgical implantation of a microdrive array, the rat was injected with 724 

ketamine (60 mg/kg) and xylazine (8 mg/kg), followed by isoflurane inhalation to 725 

produce a surgical level of anesthesia. A craniotomy was made on the right 726 

hemisphere, and the microdrive array was placed at the center of the craniotomy 727 

targeting the dorsal hippocampus. For post-operative analgesia, the rat was 728 

administered ketoprofen (5 mg/kg) or meloxicam (1 mg/kg) subcutaneously, or 1 cc 729 

of oral acetaminophen (Children’s Tylenol liquid suspension, 160 mg) right after the 730 

surgery. Further analgesia was either provided on the following two days by 731 

meloxicam administered orally or blended in food (Metacam, 1~2 mg/kg), or 732 

provided on the following day by a second injection of ketoprofen or by access to 733 

diluted acetaminophen in drinking water as needed. All implanted rats received 0.15 734 

ml of enrofloxacin (Baytril, 2.27%) and 30 mg of tetracycline blended in food daily 735 

until termination. All animal procedures complied with U.S. National Institutes of 736 

Health guidelines and were approved by the Institutional Animal Care and Use 737 

Committee at Johns Hopkins University or the University of Texas Health Science 738 

Center at Houston. 739 

Electrophysiology and recording electronics 740 

Microdrive arrays that contained 6-20 independently adjustable tetrodes were 741 

built for extracellular recordings. Each tetrode was composed of four 12 or 17 μm 742 

nichrome wires, or four 17 μm platinum-iridium wires, twisted together. The tips of 743 

the nichrome wires were individually gold-plated to reach 200-500 kΩ impedance 744 

measured at 1 kHz. After at least four days of recovery from surgery, each tetrode 745 

was advanced gradually per day over 20-40 days until its tip arrived at the 746 

hippocampal CA1 or CA3 layers and activities of pyramidal cells were observed while 747 

the rat rested on a pedestal. 748 

 749 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 10, 2019. ; https://doi.org/10.1101/764282doi: bioRxiv preprint 

https://doi.org/10.1101/764282
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 

 

During recording, the neural signal was buffered by a unity-gain preamplifier 750 

and filtered between 600 Hz and 6 kHz by the data acquisition system (Neuralynx, 751 

Bozeman, MT). Whenever the electrophysiological signal passed a threshold 752 

between 50-70 µV, a 1 ms segment was extracted at 32 kHz and stored as a spike 753 

waveform. To track position, the head stage was equipped with protruding arms 754 

extending backwards or to the sides of its head. Red and green light emitting diodes 755 

(LEDs) were attached to the arms to track head position and direction, captured at 756 

30-60 Hz by cameras mounted on the ceiling. 757 

Single-unit isolation 758 

Single units were isolated offline with customized spike-sorting software 759 

(Winclust, J. Knierim). For each tetrode, the putative spikes were displayed as points 760 

in a multidimensional waveform parameter space, and the points were manually 761 

clustered primarily based on the relative spike amplitudes and energy simultaneously 762 

recorded from individual wires of the tetrode. The isolation quality was subjectively 763 

rated on a scale of 1 (very good) to 5 (poor), representing the extent to which a spike 764 

cluster could be separated from other clusters and noise. The ratings were 765 

completely independent of any spatial or behavioral correlates of the unit. Units 766 

categorized as 4 (marginal) or 5 (poor) were excluded from analyses. 767 

 768 

To ensure that we did not artificially inflate the sample size by repetitively 769 

sampling the same units across multiple sessions, for each tetrode we only included 770 

the day with the largest number of place fields recorded. When the same types of 771 

sessions were presented in the same day, we only included the cell-session with the 772 

highest within-field mean firing rate of the day in our analyses. 773 

Histology 774 

After the experiments were complete, the rats were anesthetized with 1 cc of 775 

Euthasol and were transcardially perfused with saline followed by 4% formalin. In 776 

some rats, a subset of tetrodes was selected to pass current and create marker 777 

lesions 24 h before perfusion. After perfusion, the cranium was partially opened and 778 

the brain was exposed to formalin for at least 4 h with the tetrodes in place to 779 

preserve the tracks of the tetrodes. The brain was extracted and soaked in formalin 780 

for 12 h before transfer to a 30% sucrose formalin solution (wt/vol). After the brain 781 

was frozen, it was sectioned at 40 μm in the coronal plane and stained with 0.1% 782 

cresyl violet. Recording locations of the tetrodes were assigned by matching the 783 

identified tetrode tracks on the brain slices against the known configurations of the 784 

microarrays and marker lesions, if any. For the tetrodes targeting the CA1 and CA3 785 

layers on different recording days, depth reconstruction of the tetrode tracks was 786 

performed for each recording session to identify the brain region from which the 787 

units were recorded. 788 

 789 
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Double rotation task 790 

Protocol 791 

Rats were trained to run clockwise on a circular track (76 cm O.D., 10 cm wide) 792 

to collect food pellet rewards placed at arbitrary locations on the track. On average, 793 

the rats obtained ~2 rewards/lap, but this varied across rats and sessions as needed 794 

to promote good performance. The recording sessions started after the rats learned 795 

to continuously run on the track with few pauses (~1-2 weeks of pretraining). Before 796 

the recording session, the rat was disoriented (by being placed in a covered box and 797 

walked a number of cycles around the apparatus) and placed at an arbitrary starting 798 

location on the track. The same food reward schedule was used as in the training 799 

sessions and the session ended after the rat finished ~15 laps around the track. In 800 

both training and recording stages, whenever the rat turned around and moved 801 

counterclockwise, the experimenter would block its path with a piece of cardboard 802 

until it turned back and resumed the clockwise movement. The experimenter also 803 

discouraged grooming behavior by snapping fingers or activating a hand-held clicker 804 

when the rat paused to groom. 805 

 806 

The quadrants of the circular track were covered by differently textured 807 

surfaces which served as local cues, starting from 12 o’clock and in the clockwise 808 

direction: gray duct tape with white tape stripes, brown medium-grit sandpaper, a 809 

gray rubber mat with a pebbled surface, and beige carpet pad material [31]. The 810 

track was placed in a circular, curtained environment (2.7-m diameter) in which six 811 

distinct objects were present either on the floor or on the curtain as global cues. For 812 

the standard (STD) sessions, the local and global cue configuration was maintained as 813 

during training. For the mismatch (MIS) sessions, the global and local cues were 814 

rotated clockwise and counterclockwise, respectively, to achieve total cue 815 

mismatches of 45°, 90°, 135° or 180°. Each day of recording consisted of either 5 816 

sessions, with three STD sessions interleaved with two MIS sessions, or 6 sessions, 817 

identical with the 5-session day except for an additional STD session at the start. The 818 

mismatch angle for each MIS session was pseudo-randomly selected such that each 819 

angle was experienced once during the first 2 days and once again during the second 820 

2 days. For most of the rats there were four days of recording, but for a small 821 

proportion of rats there were over 10 recording days. We used only the first four 822 

days of recording of each rat to balance the data. 823 

Spatial cell filtering 824 

 A linear classifier based on the average firing rate and spike waveform width 825 

was applied to units with isolation qualities in category 1 to 3 to select and exclude 826 

the putative interneurons, which have narrower waveforms and higher mean firing 827 

rates than principal cells. Units that were identified as interneurons by the 828 

experimenter during spike sorting were also excluded. The remaining cells were 829 

classified as putative pyramidal cells, and they were included in quantitative analyses 830 

if they fired at least 30 spikes during forward movement. For all analyses (unless 831 
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noted otherwise), data were discarded when the rat was not running forwards (i.e. 832 

when its speed was less than 10°/s, when its head protruded beyond the track edge, 833 

and when a lateral head-scanning movement or pausing behavior was detected [78]), 834 

in order to prevent contamination of the results by nonspatial firing that occurs 835 

during immobility. 836 

 837 

The standard Skaggs spatial information measure [80] tended to produce false 838 

negative errors when applied to 1-D data [78], and thus we also incorporated the 839 

Olypher spatial information score [81] to compensate for the Skaggs measure [78]. 840 

The statistical significance of both Skaggs and Olypher measures were computed by 841 

temporally shifting the spike trains to construct the control distribution. Since the 842 

rats were trained to run continuously on a circular track, the temporal sequences of 843 

the rat positions were quasiperiodic, and thus we additionally reversed the spike 844 

trains before the time-shifting procedure to break the regularity and prevent creating 845 

false negative results [78]. For the putative pyramidal cells with enough spikes, cells 846 

were analyzed if the Skaggs score was larger than 1.0 bits per spike or the Olypher 847 

score was larger than 0.4 bits, and the score was > 99% of the scores from the 848 

shuffled data. 849 

Place field detection 850 

Place fields were visualized by creating trajectory-spike plots and firing rate 851 

maps. The trajectory-spike plot shows the trajectories of the animal (denoted by 852 

black curves), and the locations of the animal when a spike was detected (denoted 853 

by circles). The running spikes were denoted by red circles while the spikes excluded 854 

by the velocity filter were denoted by gray circles. The average firing rates were 855 

calculated as the spike counts divided by the occupancy durations within each 856 

track-angle bin (1°), and the firing rate vectors were circularly smoothed with a 857 

Gaussian kernel with standard deviation 4.3°. Putative place fields were isolated by 858 

thresholding the smoothed firing-rate vectors at 10% of the unit’s maximum firing 859 

rate and grouping the contiguous bins with firing rates larger than the threshold. 860 

Putative fields separated by only 1 track-angle bin were merged. After merging, the 861 

fields that had maximum firing rate > 1.5 Hz and that were ≤330° long were included 862 

in the following analyses. The large upper bound was chosen based on the 863 

observation that a small number of putative pyramidal cells fired almost all over the 864 

track but they were silent within a small gap. The median place field size was 60° 865 

with interquartile range (IQR) 38° for CA1 fields, and was 73° with IQR 62° for CA3 866 

fields; only two fields were larger than 270° (Fig 1 (b)). The starting and ending edge 867 

location of the place fields were defined as the starting and ending track angle bins, 868 

respectively. 869 

Cross-correlograms 870 

We constructed population firing rate cross-correlograms to visualize the 871 

similarities between the place cell population activity recorded at different track 872 

locations. Place cells were identified and their firing-rate vectors were calculated and 873 
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smoothed as described in the 1-D place field construction section. Vertically stacking 874 

the transposed firing-rate vectors formed an N x 360 population firing rate matrix, 875 

where N is the number of units used to construct the matrix. The ith row of the 876 

matrix was the firing-rate vector of the ith unit, and the jth column of the matrix was 877 

the population vector (PV) of firing rates at the jth track-angle bin. The 878 

cross-correlogram was constructed by calculating the Pearson correlation coefficients 879 

between pairs of PVs. The (ith,jth) element of the cross-correlogram was the 880 

correlation between the ith and jth column of the population firing rate matrix [73,82]. 881 

To balance the activity strengths across different units, we reported the normalized 882 

cross-correlograms in which the firing-rate vectors of individual units were divided by 883 

their maximum firing rates before being stacked together.  884 

Place field edge distribution 885 

To examine whether the place field edges concentrated near the local-cue 886 

boundaries, we defined 30° wide zones centered on the local cue boundaries as the 887 

local-cue windows and calculated the proportions of place field edges located within 888 

the windows. Both field shuffling and bootstrap techniques were used to test 889 

whether the proportions were significantly higher than chance level. 890 

 891 

For the shuffling test, the place field locations were randomly rotated while the 892 

field sizes remained the same. For each field the rotation angle was randomly 893 

selected from [0°, 360°) and the in-window field edge proportion was calculated 894 

based on the rotated field edge locations across the population. This shuffling 895 

procedure was performed 1000 times. The distributions of the shuffled in-window 896 

field edge proportions simulate the expected distributions assuming the fields were 897 

randomly scattered on the track. The result was significant if the percentage of the 898 

shuffled samples that were larger than or equal to the observed in-window field 899 

edge proportion was smaller than 0.00625 (significance level α = 0.05, two tailed 900 

with Bonferroni correction for 4 comparisons). 901 

 902 

To bootstrap the data, we randomly resampled with replacement the same 903 

number of place fields as the original set 1000 times. In each trial the bootstrapped 904 

in-window field edge proportion was calculated to construct the bootstrap 905 

distributions. The observed in-window field edge proportions were then compared 906 

against the confidence intervals of the bootstrap distributions. 907 

Control for head-scanning and pausing behavior 908 

To verify that the field edge concentration effect was not a result of 909 

head-scanning or pausing behavior interfering with the place field detection 910 

algorithm, we ran a separate control analysis (Figure S3) that excluded a larger range 911 

of data when a scan or pause was detected (see [78]) near or within a place field. For 912 

each place field, a window which was 15° wider than the field on both sides was 913 

defined. If a scan or pause started within the window, we removed the behavior and 914 

spiking data of that traversal through the window. After the same removal process 915 
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was performed on every field, we excluded the cell-sessions if, for any part of the 916 

track, no data were left after the deletion. We detected place fields and constructed 917 

the field edge distributions based on the filtered data following the same procedures 918 

described in the previous sections. 919 

Complex and simple board tasks 920 

Complex board protocol 921 

Five rats were trained to search for chocolate pellets placed at arbitrary 922 

locations on an open field with a homogeneous surface texture. The recording 923 

experiments started after the rats learned to continuously run on the platform with 924 

few pauses. In each recording session, either a textured board with a complex 925 

surface pattern (the complex board) or a plain board with a uniform surface texture 926 

(the plain board) was placed at the center of a circular, curtained environment with 927 

no deliberate salient global cues. The rats performed the same foraging task for 20 928 

min on the board. For three of the rats, 1-3 complex board sessions were performed 929 

each day, followed by one plain board session in some cases. The other two rats 930 

experienced two plain board sessions followed by one complex board session per 931 

day. There was a minimum of two days of recording for each rat. 932 

 933 

The complex board was 1 x 1 m and its surface was composed of a complex 934 

combination of geometric shapes demarcated by different texture patches and tapes 935 

(Figure 3A). The upper left half of the platform was covered by different surface 936 

textures: a grey rubber mat with a pebbled surface shaped as a rectangle and a small 937 

triangle, white sandpaper shaped as a square and brown cork mat shaped as a large 938 

triangle. The lower right half of the platform was uniformly painted black with yellow 939 

tape labeling borders 180° rotationally symmetric to the upper left half. The complex 940 

board was novel to the rats on the first day of recording. The plain board was a 1.1 x 941 

1.1 m wooden board and its surface was uniformly painted black. 942 

Simple board protocol 943 

The same training procedure as describd in the complex board protocol section 944 

was used to train three rats to forage in an open field. For each 20 min recording 945 

session, the rats performed the same foraging task on a textured board with a 946 

slanted linear boundary crossing the surface. The board was placed at the center of a 947 

circular, curtained environment with no deliberate salient global cues. 948 

 949 

Four different boards were used in the simple board forage task: 950 

leather-standard, leather-shift, tape-standard, and tape-shift. The brown smooth 951 

wooden surface of each leather board was partially covered by a black, synthetic 952 

leather patch, and the boundary between the two surface textures was an oblique 953 

line crossing the board. For the leather-standard board, the separation line passed 954 

the bottom edge of the board at the center, and the top edge at 25 cm from the 955 

top-right corner. For the leather-shift board, the separation line shifted 20 cm to the 956 
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left. The brown wooden surface of each tape board was labeled by an oblique white 957 

tape line crossing the board. The geometric patterns of the tape boards were 90° 958 

rotated mirror images of the leather boards. Furthermore, while wooden surfaces 959 

were present on both the leather and tape boards, the textures of the surfaces were 960 

different, in that the leather board had a smoother wooden texture than the tape 961 

board (Figure 4A). These features reduced the possibility that a place cell would fire 962 

at the same location across different boards. 963 

 964 

There were two days of recording for each rat, and the rats foraged on the 965 

leather boards for one day and on the tape boards for the other day. For two out of 966 

three rats the leather boards came first. During each recording day, the rat 967 

experienced two standard sessions, followed by a shift session and back to the 968 

standard session. The rat was brought out of the experiment room for 5-10 min 969 

between sessions to rest and was provided access to water on a pedestal. All four 970 

boards were novel to the rats before the first recording session of the board, and for 971 

two rats the simple boards were the first experiment apparatus with inhomogeneous 972 

surfaces (the other rat performed the complex board foraging task before the simple 973 

board foraging task). The data collected from the plain board (See Complex board 974 

protocol) were used as the control data for the simple board forage task. 975 

Firing-rate map construction 976 

The experiment boards were divided into small spatial bins and the average 977 

firing rate at each bin was smoothed to construct the firing rate map. We binned the 978 

experiment boards in different ways as described in the corresponding sections 979 

depending on the purposes of the analyses. The average firing rates were calculated 980 

as the spike counts divided by the occupancy duration within each spatial bin. Only 981 

running activities with velocity > 5.76 cm/sec (to match the velocity filter used in our 982 

double rotation task) were included in spatial cell analyses. 983 

 984 

A Gaussian kernel with standard deviation 3 cm was applied to the average 985 

firing rates, and the smoothed firing-rate maps were then used in the quantitative 986 

analyses. Similar results were obtained when an edge preserving smoothing 987 

algorithm, which adopted both Kuwahara [83] and median [84] smoothing filters, 988 

was used (results not shown). 989 

Spatial cell filtering 990 

The isolated units were scrutinized as described above to exclude putative 991 

interneurons. The spike trains of the units were considered reliable only if the 992 

isolation quality was at category 3 or better, and there were at least 50 running 993 

spikes recorded in the session. The Skaggs spatial information scores were calculated 994 

for the qualified cell-sessions to examine whether their firing activities were spatially 995 

tuned. For each cell-session, an area extending 30 cm beyond each side of the 996 

experiment board (to capture firing when the rat's head was off the board) was 997 

partitioned into a matrix of 2 x 2 cm spatial bins. The smoothed average firing rate 998 
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for each bin was calculated as described in the Firing-rate map construction section, 999 

and the spatial information and the p value were calculated based on the smoothed 1000 

firing-rate maps. To pass the spatial-cell criteria, the cell-session must have spatial 1001 

information ≥ 0.6, at a significance level of 0.01.  1002 

Cross-correlograms 1003 

In order to compare the population neural activities of the place cells across the 1004 

cue boundaries, we binned the simple boards with grids that were aligned with the 1005 

cue boundaries (not orthogonal to the board edges) (Figure 4Ci). To maximize 1006 

available data without including the out-of-platform area, a rotated square area 1007 

inscribed in the platform rim was used for the analysis. The rotated square was ~ 1008 

82.5 x 82.5 cm2 and was divided into a 42 x 42 matrix with each bin ~ 4 cm2. 1009 

 1010 

For each cell-session, the averaged firing rates of the spatial bins were 1011 

calculated as the spike counts divided by the occupancy durations, and the firing-rate 1012 

maps were smoothed as described in the Firing-rate maps construction section. Each 1013 

column of the firing-rate map corresponded to a band parallel to the cue boundaries 1014 

(Figure 4Cii). The mth columns of the firing-rate maps from different units were 1015 

stacked to construct the population firing-rate matrix of the mth parallel band (Figure 1016 

4Ciii). For the normalized correlograms, the firing-rate vectors of individual units 1017 

were divided by the maximum firing rates before being stacked. 1018 

 1019 

The correlograms were composed of the averaged correlation between pairs of 1020 

population firing-rate matrices. The Pearson correlation was calculated between the 1021 

same columns from the ith and jth population firing-rate matrices, and the 1022 

correlations from each column were averaged and became the (ith, jth) element of the 1023 

correlogram (Figure 4Ciii). Each bin of the correlograms represented the averaged 1024 

correlation between two parallel band areas. 1025 

Place field detection 1026 

For each cell-session collected in the simple board or the plain board sessions 1027 

that passed the spatial cell filter (see the Spatial cell filtering section), place field 1028 

edges were detected for an area extending 30 cm beyond each side of the 1029 

experiment board. These detection areas were 1.6 x 1.6 m for the simple boards and 1030 

1.7 x 1.7 m for the plain board. To construct the place fields, each area was 1031 

partitioned into a matrix of 2 x 2 cm spatial bins, and the smoothed average firing 1032 

rate for each bin was calculated as described in the Firing rate map construction 1033 

section. 1034 

 1035 

We binarized the firing-rate maps with floor-thresholds that were 1036 

independently calculated for each cell-session. The spatial bins with firing rates larger 1037 

than the thresholds were selected, and each connected group of bins was classified 1038 

as a putative place field. The thresholds were set to maximize the differences 1039 

between the mean firing rates within and outside of the place field(s), to minimize 1040 
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the variance of the firing rates outside of the place field(s), and to minimize the total 1041 

size of the place field(s) (this last term was required to prevent all bins being included 1042 

in the place field). In practice, we defined an error function of the threshold and 1043 

optimized the error function with the minimize_scalar function under the Scipy 1044 

optimize package [85] to find the best threshold θ that minimized the error function. 1045 

The tolerance level was set at 10-7. 1046 

 1047 

The error function was empirically defined as 1048 

 1049 

𝑒𝑟𝑟(𝜃) = [𝑚𝑏𝑒𝑙𝑜𝑤(𝜃) − 0.1 ∙ 𝑚𝑎𝑏𝑜𝑣𝑒(𝜃)] + 10 ∙ 𝑣𝑏𝑒𝑙𝑜𝑤(𝜃) − 1.3 ∙ 𝑎𝑏𝑒𝑙𝑜𝑤(𝜃), 1050 

 1051 

where 𝑚𝑏𝑒𝑙𝑜𝑤(𝜃) was the mean firing rate of the bins with non-zero firing rates ≤ 1052 

the current threshold 𝜃, 𝑚𝑎𝑏𝑜𝑣𝑒(𝜃) was the mean firing rate of the bins with firing 1053 

rates > 𝜃, 𝑣𝑏𝑒𝑙𝑜𝑤(𝜃) was the firing rate variance of the bins with non-zero firing 1054 

rates ≤ 𝜃, and 𝑎𝑏𝑒𝑙𝑜𝑤(𝜃) was the number of bins with non-zero firing rates ≤ 𝜃, 1055 

divided by the number of bins with non-zero firing rates. The search range for 𝜃 1056 

was limited to positive numbers ≤ the peak firing rate of the cell-session. 1057 

 1058 

Since the same error function was used for different cell-sessions, some 1059 

normalization for the means and variances of the firing rates across cell-sessions was 1060 

necessary. For each cell-session, we first removed the firing rate outliers by 1061 

calculating the quartiles and the interquartile range (𝐼𝑄𝑅) of the non-zero firing 1062 

rates, and truncated the firing-rate map at 𝑄1 − 𝐼𝑄𝑅 and 𝑄3 + 𝐼𝑄𝑅, where 𝑄1 1063 

and 𝑄3 were the first and third quartiles of the non-zero firing rates. For any 1064 

element of the firing-rate map with non-zero value smaller than 𝑄1 − 𝐼𝑄𝑅 or larger 1065 

than 𝑄3 + 𝐼𝑄𝑅, the firing rate was re-assigned as 𝑄1 − 𝐼𝑄𝑅 or 𝑄3 + 𝐼𝑄𝑅, 1066 

respectively. We then normalized the truncated firing-rate map with the following 1067 

rules: for the bins with non-zero firing rates, the truncated firing rates were 1068 

transformed into standard scores, and the normalized firing rates were defined as 1069 

the standard scores + 5; for the bins with zero firing rates, the normalized firing rates 1070 

were still zero. The constant term (+5) was included to artificially differentiate the 1071 

silent bins and the bins with non-zero firing rates. This preprocessing procedure was 1072 

taken before optimizing the error function. Once the thresholds were determined 1073 

based on the preprocessed firing-rate maps, the preprocessing procedure was 1074 

reversed to recover the threshold, and the place fields were detected by binarizing 1075 

the original firing-rate maps at the recovered threshold. 1076 

 1077 

The connected bins with firing rates above threshold were grouped as putative 1078 

place fields, and the contours of the putative place fields were then smoothed by 1079 

opening and closing operations used in image processing [86]. An opening operator 1080 

with a 3 x 3 bin square kernel (a 3 x 3 matrix with all 1s) was first applied to the 1081 

putative fields to trowel small protrusions, followed by a closing operator with the 1082 

same kernel to grout the small dents, and finished with a second opening operator 1083 

with a cross-shaped kernel (a 4 x 4 matrix with 0s at the four corners and 1s at other 1084 

locations) to eliminate any artificial protrusions created during the closing operation. 1085 

After smoothing, the grouping of bins and putative field assignments were updated 1086 

as above. Putative fields smaller than 35 bins, with peak firing rate < 0.1 Hz, or with 1087 
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no more than 30 in-field running spikes, were discarded, and the remaining qualified 1088 

putative fields were labeled as place fields. For each spatial bin within a place field, 1089 

we examined whether any of its adjacent bins (the bins above, below, to the left of, 1090 

or to the right of the bin of interest) did not belong to the place field. If so the bin 1091 

was labeled as belonging to the contour of the place field. 1092 

Boundary preference index (BPI) analyses 1093 

The spatial binning of the experiment boards and the construction of place field 1094 

edges were described in the Place field detection section. For each simple board we 1095 

examined whether spatial bins with high field edge occurrence were observed near 1096 

the cue boundaries more often than expected by chance, by comparing the 1097 

cumulative distribution functions (CDFs) of field edge occurrence. The differences 1098 

between the area-under-curve (AUC) of the CDFs near and far away from the cue 1099 

boundaries were computed and compared to the control data collected from the 1100 

plain board. 1101 

 1102 

To calculate the field edge occurrence, the simple boards were partitioned into 1103 

the boundary zones and the non-boundary zones based on the distance to the 1104 

boundary. The boundary zones were bands aligned with the cue boundaries, 1105 

extended to the board edges and expanded 10 cm wide on each side of the cue 1106 

boundaries (Figure 5A). For each spatial bin within the boundary or nonboundary 1107 

zone and far from the board edges, the occurrence was defined as the number of 1108 

fields with edges that overlapped with the bin. The zone boundaries were defined by 1109 

linear equations, and a spatial bin could thus partially belong to the boundary and 1110 

nonboundary zones simultaneously. For the spatial bin segregated by the zone 1111 

boundaries, the bin would be assigned to the zone containing the larger proportion 1112 

of the bin area. Since the place fields would be forced to end near the board edges, 1113 

we excluded any spatial bin with center less than 10 cm from any of the board edges 1114 

to avoid including place field edges that were not meaningful contributors to the 1115 

analyses of surface cue boundary effects. 1116 

 1117 

We calculated the boundary preference index (BPI) 𝑎𝑏 − 𝑎𝑛𝑏 for each simple 1118 

board, where 𝑎𝑏 was the AUC of the field edge occurrences within the boundary 1119 

zone and 𝑎𝑛𝑏 was the AUC within the nonboundary zone. The chance level of the 1120 

AUC difference was determined by projecting the boundary and nonboundary zone 1121 

demarcations from the simple boards onto the plain board and calculating the AUC 1122 

difference of the data collected from the plain board accordingly. For all four simple 1123 

boards, the same plain board and the same set of data recordings were used to 1124 

calculate the control BPI. The plain board (1.1 x 1.1 m) was slightly larger than the 1125 

simple boards (1 x 1 m), and therefore we rescaled the plain board data to fit the 1126 

sizes of the simple boards. 1127 

 1128 

To test whether the observed BPI was significantly higher than the control BPI, 1129 

we separately and independently bootstrapped the place fields collected from the 1130 

simple boards and the plain board 1,000 times. Each time N place fields were 1131 

randomly resampled from the specified board with replacement, where N was the 1132 
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number of actual place fields collected from the board. The BPIs were calculated, and 1133 

the difference between the observed and the control BPI (observed - control) was 1134 

recorded in each trial. Based on the results obtained from the double rotation and 1135 

the complex board data, we designed the simple board foraging task with the a priori 1136 

prediction that field edges would concentrate near the cue boundaries, thus 1137 

producing an observed BPI larger than the control BPI. The statistical significance was 1138 

thus obtained by examining whether 95% of the bootstrapped BPIs was greater than 1139 

0 (i.e., a one-tailed test). 1140 

 1141 

We also performed a permutation test to examine whether the BPI difference 1142 

was significant. For each trial, the source labels of the place fields were shuffled and 1143 

the fields were randomly reassigned to the simple board or the plain board. The BPI 1144 

difference was calculated based on the shuffled field labels and the same process 1145 

repeated 1,000 times. The observed BPI was considered significantly larger than the 1146 

control BPI if the observed BPI difference was larger than or equal to the 1.25 1147 

percentile (significance level α = 0.05, one-tailed and Bonferroni corrected for 4 1148 

comparisons) of the shuffled distribution of the BPI difference. 1149 

Population vector direction of change analyses 1150 

For each location, we sought to determine which direction produced the 1151 

maximum change in the population vector (PV) of firing rates between neighboring 1152 

locations. The experiment boards were binned and the smoothed mean firing rate at 1153 

each spatial bin was calculated as described in the Firing-rate map construction 1154 

section. Since the binned rate maps allow calculation of movement angles in only 8 1155 

directions, none of which necessarily corresponded to the angle of the cue boundary, 1156 

interpolation of the PV difference at arbitrary directions was necessary (Figure S6). 1157 

The PV representing an arbitrary location (not restricted by the empirical binning) 1158 

can be depicted by a continuous multivariate function 𝑟(𝑥, 𝑦) which can be 1159 

complex and implicit. Nevertheless, the tangent plane of 𝑟(𝑥, 𝑦) can be estimated 1160 

based on the binned rate maps even though 𝑟(𝑥, 𝑦) itself is unknown. Taking each 1161 

spatial bin as the reference point, we linearly approximated 𝑟(𝑥, 𝑦) by its tangent 1162 

plane 𝑇(𝑥, 𝑦) and calculated the change of PV from the reference point to any 1163 

neighboring locations. We quantified the difference between two PVs by the 1164 

Euclidean distance between them and computed the direction 𝜔 with the largest 1165 

PV difference (see Appendix for mathematical derivation of this procedure). 1166 

 1167 

There are some noteworthy implicit rules applied to the searching of 𝜔 based 1168 

on the linearity of the tangent plane. First, if the maximum PV difference was 1169 

perceived at direction 𝜔, the same amount of change would be observed at 1170 

direction 𝜔+180°. We therefore restricted 𝜔 to range from 0° to 180° while 1171 

theoretically 𝜔 can range from 0° to 360° (0° is defined as parallel with the cue 1172 

boundary for simplicity). Second, if the PV difference is only observed in the x (y) 1173 

direction on the empirical binned rate map,  𝜔 would be the x (y) direction; if the 1174 

PV difference is also observed in the y (x) direction, 𝜔 diverges from the x (y) 1175 

direction. That is, the direction with the largest change would be perpendicular to 1176 

the direction with the minimum change.  1177 
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 1178 

After the direction 𝜔 was calculated for each spatial bin, the direction vectors 1179 

(unit vector with angle 𝜔) within the boundary zone (or nonboundary zone) were 1180 

concatenated and the length of the resulting vector was divided by the cell number 1181 

to construct the mean direction vector of the boundary zone (or nonboundary zone). 1182 

The mean vector length was then defined as the length of the mean direction vector.  1183 
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Appendix 1200 

The firing rates of different place cells formed the population vector of firing 1201 

rate 𝑟, defined as a function of the physical location of the animal, 1202 

 1203 

𝑟(𝑥, 𝑦) = [𝑟1(𝑥, 𝑦), 𝑟2(𝑥, 𝑦),⋯ 𝑟𝑛(𝑥, 𝑦)]𝑇, 1204 

 1205 

where 𝑟𝑖(𝑥, 𝑦) is the smoothed mean firing rate of the 𝑖𝑡ℎ place cell. When the 1206 

animal moves from (𝑥0, 𝑦0) to (𝑥1, 𝑦1) on the experiment board, there is a 1207 

corresponding change in the population vector, 1208 

 1209 

∆𝑟 = [𝑟1(𝑥1, 𝑦1), 𝑟2(𝑥1, 𝑦1),⋯ 𝑟𝑛(𝑥1, 𝑦1)]
𝑇 − [𝑟1(𝑥0, 𝑦0), 𝑟2(𝑥0, 𝑦0),⋯ 𝑟𝑛(𝑥0, 𝑦0)]

𝑇 1211 

      = [𝑟1(𝑥1, 𝑦1) − 𝑟1(𝑥0, 𝑦0), 𝑟2(𝑥1, 𝑦1) − 𝑟2(𝑥0, 𝑦0),⋯ 𝑟𝑛(𝑥1, 𝑦1) − 𝑟𝑛(𝑥0, 𝑦0) ]
𝑇 . 1212 

 1210 

For any point (𝑥, 𝑦) close to (𝑥0, 𝑦0), 𝑟(𝑥, 𝑦) can be linearly approximated by 1213 
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its tangent plane 𝑇(𝑥, 𝑦) at (𝑥0, 𝑦0). Thus, ∆𝑟 can be approximated by the 1214 

corresponding change on the tangent plane: 1215 

 1216 

∆𝑟 ≈ ∆𝑇 = 𝑇(𝑥, 𝑦) − 𝑇(𝑥0, 𝑦0). 1218 

 1217 

In order to compute 𝑇(𝑥, 𝑦), for each spatial bin we calculated the Jacobian 1219 

matrix, 1220 

 1221 

J(𝑥, 𝑦) =

[
 
 
 
 
𝜕𝑟1
𝜕𝑥

𝜕𝑟1
𝜕𝑦

⋮ ⋮
𝜕𝑟𝑛
𝜕𝑥

𝜕𝑟𝑛
𝜕𝑦 ]

 
 
 
 

. 1223 

 1222 

The Jacobian matrix at (𝑥0, 𝑦0) transforms a point close to (𝑥0, 𝑦0) to its 1224 

corresponding location on the tangent plane 𝑇(𝑥, 𝑦). In other words, we can linearly 1225 

approximate 𝑟(𝑥, 𝑦) near (𝑥0, 𝑦0) by using the Jacobian matrix 𝐽(𝑥0, 𝑦0) to 1226 

calculate the tangent plane,  1227 

 1228 

𝑇(𝑥, 𝑦) = 𝐽(𝑥0, 𝑦0) ∙ [
𝑥 − 𝑥0

𝑦 − 𝑦0
] + 𝑇(𝑥0, 𝑦0), 1230 

 1229 

and, therefore, the change in population firing rate vectors, 1231 

 1232 

∆𝑟 ≈ 𝐽(𝑥0, 𝑦0) ∙ [
𝑥 − 𝑥0

𝑦 − 𝑦0
] . 1234 

 1233 

We quantified the magnitude of ∆𝑟 as its Euclidean vector norm, ‖∆𝑟‖. The 1235 

heading direction on the x-y plane that produces the largest change in the 1236 

population vector of firing rates would thus also maximize displacement along the 1237 

tangent plane. In other words, we searched for the heading direction [𝑥 − 𝑥0, 𝑦 −1238 

𝑦0]
𝑇 = [cos𝜔 , sin𝜔]𝑇 that maximized ‖∆𝑟‖, i.e., argmax

𝜔
 ‖∆𝑟‖, by equivalently 1239 

solving 1240 

 1241 

argmax
𝜔

‖𝐽(𝑥0, 𝑦0) ∙ [
cos𝜔
sin𝜔

]‖ . 1243 

 1242 

The maximal heading 𝜔 may theoretically range from 0° to 360°. However, the 1244 

linearity of function ∆𝑇 and the symmetry of the vector norm combine to produce 1245 

equivalent rate changes for shifts of 180º, 1246 

 1247 

‖∆𝑇(cos(𝜔 + 𝜋) , sin(𝜔 + 𝜋))‖ 1250 

= ‖∆𝑇(−cos𝜔 ,−sin𝜔)‖ = ‖−∆𝑇(cos𝜔 , sin𝜔)‖ = ‖∆𝑇(cos𝜔 , sin𝜔)‖. 1251 

 1248 

Thus, we restricted solutions for the maximal heading 𝜔 to the range [0°, 180°]. 1249 

  1252 
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