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Abstract

We propose a negative feedback architecture that regulates activity of artificial genes, or

“genelets”, to meet their output downstream demand, achieving robustness with respect to

uncertain open-loop output production rates. In particular, we consider the case where the

outputs of two genelets interact to form a single assembled product. We show with analysis

and experiments that negative autoregulation matches the production and demand of the out-

puts: the magnitude of the regulatory signal is proportional to the “error” between the circuit

output concentration and its actual demand. This two-device system is experimentally imple-

mented using in vitro transcriptional networks, where reactions are systematically designed
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by optimizing nucleic acid sequences with publicly available software packages. We build a

predictive ordinary differential equation (ODE) model that captures the dynamics of the sys-

tem, and can be used to numerically assess the scalability of this architecture to larger sets of

interconnected genes. Finally, with numerical simulations we contrast our negative autoregu-

lation scheme with a cross-activation architecture, which is less scalable and results in slower

response times.
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Figure 1: A: Schematic of our negative feedback scheme and its implementation using synthetic
transcriptional ”genelets”. B: Experimental data showing that activity levels of the genelets are
matched, achieving balanced production and demand of the RNA species forming product P.

1 Introduction

Our increased understanding of biological parts enables their use in a variety of new applications1

of growing complexity, ranging from nanofabrication to drug production and delivery. When a

large number of molecular devices are required to operate together within a system to achieve an

overall functionality, it is essential that the output of each device is automatically tuned to meet its

demand. For instance, poorly regulated production of an exogenous protein in a synthetic circuit

may cause lethal host overloading;2–4 similarly, mismatched concentrations of RNA species form-

ing a self-assembled structure, where simultaneous stoichiometric transcription of components is

required, may result in the formation of undesired complexes and incorrect assemblies, both in

vitro5 and in vivo.6 In other words, the functionality of a large scale synthetic system may de-
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teriorate if the input/output behavior of individual synthetic genes or pathways characterized in

isolation does not automatically meet specifications in its network context. Rather than fine tuning

a device to fit a range of contingent network demands, it is desirable to identify design principles

that would automatically ensure a demand-adaptive operation.

In traditional engineering fields, the challenge of adapting the output behavior of a device to

reach the desired operating point is met by routinely employing negative feedback at a variety of

scales (from individual transistors to layered network control systems). Consider, for instance, a

device S whose output y is required to track a reference r (Figure 2 A). A negative feedback loop

causes the input to the regulated process S to be proportional with opposite sign to the error e

between the output y and the (possibly changing) reference value r. Thus, the system’s response is

always driven by an input with opposite trend relative to the error e. If, for instance, y exceeds r

the error is positive, but the input to S is negative and drives “down” the response of S. In addition

to maintaining a desired output level, negative feedback generally gives us the ability to redesign

the dynamics of a system, and improve its robustness with respect to parametric uncertainty.7

y +_

e=(y-r)

S
A B

y

e=(y-y•L)

L
y•LS

y > L

r

-1

Figure 2: A: General structure of a negative feedback loop, where the system input counteracts the
error between the desired and actual system output. B: Negative feedback scheme for a molecular
system, where an excess production of y is used to downregulate the “activity” of the system.

Negative feedback is ubiquitous in biomolecular networks. For example, negative autoreg-

ulation is a motif present in over 40% of genes in E. coli.8,9 This mechanism is associated with

proteins that are generally in low demand,10,11 and reduces noise12–14 and mutation rates15 in gene

expression profiles. In the context of synthetic biology, negative autoregulation has been used to

achieve faster response speed16 and to improve robustness.12,15 The development of novel, tunable

repression mechanisms promises to improve our ability to control dynamics and manage noise of

3

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2013. ; https://doi.org/10.1101/000430doi: bioRxiv preprint 

https://doi.org/10.1101/000430
http://creativecommons.org/licenses/by-nc-nd/4.0/


increasingly complex molecular circuits both in cellular hosts17,18 and in cell-free systems.19–21

However, the use of negative feedback to match production and demand within a biochemical

reaction network has, to our knowledge, not been demonstrated.

In this paper we propose to use negative feedback to accurately regulate activity of components

so they can meet their output downstream demand, achieving robustness with respect to uncertain

open-loop (i. e. in the absence of feedback) output production rates. Figure 2 B shows a scheme

of this feedback architecture, which closely mimics the structure of a typical negative feedback

circuit in electrical or mechanical systems. The output y of component S binds to a downstream

target L, which represents the demand for y; we design a negative feedback pathway to use excess

y (not bound to L) to reduce its own production rate: thus, the magnitude of the regulatory signal is

proportional to the “error” between the circuit output concentration and its actual demand. If in turn

L is the output of another circuit, it is conceivable that a negative feedback loop in each individual

circuit would help matching production and demand in the overall system. With analysis and

experiments we show that negative autoregulation yields matching output fluxes for both circuits.

The two-circuit system is implemented using in vitro transcriptional networks,19,22,23 a ver-

satile toolbox to program and implement dynamic behaviors in nucleic acid reaction networks.

Within the general context of cell-free systems,24 this platform allows to rapidly engineer molec-

ular functions in a controlled environment with reduced uncertainty. We designed two synthetic

genes to transcribe RNA outputs that bind to form a complex; each RNA species is also designed to

downregulate its own production through promoter displacement.19 Thus, excess of either species

modulates the genes’ activity and achieves matched promoter activity levels. The product forma-

tion reaction and the inhibitory pathways are systematically engineered by optimizing nucleic acid

sequence complementarity domains, using publicly available software packages.25,26 We build a

predictive ordinary differential equation (ODE) model that captures the dynamics of the system,

and can be used to numerically assess the scalability of this architecture to larger sets of intercon-

nected genes. Finally, with numerical simulations we contrast the performance of our negative au-
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toregulation scheme with the behavior of a cross-activation architecture, which is less scalable and

results in slower response times. This work builds on preliminary numerical analysis and experi-

ments on transcription matching synthetic systems.27–30 We foresee that systematic use of similar

negative feedback architectures will play a major role in the scalability of in vitro biomolecular

systems, including logic,31 dynamic,23 and self-assembly networks.5,32

2 Results

2.1 Negative feedback can modulate activity to meet downstream demand

We begin by considering a simple model problem: a molecule R is produced by species T , and

binds to a target L:

T
β−−⇀ T +R, R+L k−−⇀ R ·L.

These reactions may represent, for instance, RNA or protein production followed by binding of the

product to a downstream binding site or ligand. In the absence of any regulatory pathway feeding

back to T information regarding the effective “consumption” of R by the target L, the production

and demand of R are not automatically matched: thus, an excess of unused R may accumulate in

solution for regimes where the demand does not exceed maximum production rates. However, if

we program a reaction

T +R δ−−⇀ T ∗,

whereby species T bound to R becomes an inactive species T ∗, we introduce a negative feed-

back mechanism that is proportional to the unused amount of [R]∝ [Rtot ]− [R ·L], thus proportional

to the error between production and demand. The scheme is represented in Figure 3 A. Assuming

that the concentration of the “demand” species L is constant, that the total amount of T is constant

([T ]+[T ∗] = [T tot ]), and finally that inactive T ∗ spontaneously reverts to its active state at a certain
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Figure 3: A: Scheme of negative feedback where output R not bound to the target load L is used to
downregulate its production. B: The steady state fraction ([R f ree]/[Rtot ]) of unused R as a function
of the downstream load is reduced using a high negative feedback rate δ . In Panels B and D, we
considered δ = 0,5,50,5 ·102,5 ·103,5 ·104,5 ·105/M/s. In Panel D, the nominal concentration of
[T tot ] is 100 nM, and the load was varied as [L] = 1,10,102,103,104 nM

.
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rate α , T ∗ α−−⇀ T , the system is described by the following set of ODEs:

d[T ]
dt

= α([T tot ]− [T ])−δ [T ][R] (1)

d[R]
dt

= β [T ]−δ [T ][R]− k[L][R]. (2)

For illustrative purposes we numerically simulate these differential equations, choosing nominal

parameters [T tot ] =100 nM, α = 3 · 10−4/s, β = 0.1/s, k = 2 · 10−3/M/s, δ = 5 · 102/M/s; these

concentrations and rates are within a realistic range for in vitro reaction systems.23,24 In Figure 3

we explore the steady state behavior of the system as a function of the feedback parameter δ , the

total amount of load L, and the total concentration of generating species T . First, as shown in

Figure 3B, we note that a suitably high feedback rate δ reduces the steady state fraction of unused

output [R]/[Rtot ] (output not bound to its load): this means waste in the system is reduced. In

addition, for a given, large δ , a significant variation in load results in a moderate variation in the

fraction of unused output: this behavior is consistent with the role of high feedback in reducing

load sensitivity in retroactivity theory.33 In Figure 3C we observe that in the presence of feedback

the activity of the generating species, defined as [T ]/[T tot ], is modulated by the demand L. Finally,

Figure 3D shows that the presence of negative feedback yields closed loop activity levels that

(given a certain demand) are robust with respect to uncertainty in [T tot ], which is a simple open

loop knob to scale the production rate of R.

2.2 Matching output fluxes in interconnected devices

T1 T2
R1

R2

Figure 4: Our two-device
negative feedback architec-
ture

In many practical cases, several molecular species in a network

bind stoichiometrically to form an overall product. For instance,

these species could be RNA strands5 or proteins34 self-assembling

in a nanostructure. To avoid excess production and accumulation of

any participating species we can use the negative feedback scheme
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described above. For simplicity, we begin by considering a net-

work where two generating species T1 and T2 produce assembling outputs that self-inhibit accord-

ing to the following reactions:

T1
β1−−⇀ T1 +R1

δ1−−⇀ T ∗1 , T2
β2−−⇀ T2 +R2

δ2−−⇀ T ∗2 , R1 +R2
k−−⇀ P,

where P is an assembled product, and again we assume that the total amount of the generating

species is conserved, [T tot
i ] = Ti +T ∗i , i = 1,2. The dynamics of [T1] and [T2] are thus described by

ODEs identical to equation (1), while the dynamics of [Ri] become:

d[Ri]

dt
= βi [Ti]−δi [Ri][Ti]− k [Ri][R j], i = 1,2.

Example solutions to these ODEs are shown in Figure 5 A, where we chose identical parameters for

the two subsystems consistent with our previous simulations at Figure 3 (α1 = α2 = α = 3 ·10−4/s,

and similarly defined β = 0.1/s, k = 2 ·10−3/M/s, δ = 5 ·102/M/s).

Expressions for the nullclines of the system are derived in Section 2.1 of the Supplementary

Information (SI), and the equilibria (intersections of the nullclines) are numerically evaluated as a

function of the negative feedback reaction as shown in Figure 5B. At steady state, the concentration

of active T1 is nearly identical to the active concentration of T2. Figure 5 C, however, shows that

this property breaks down when the negative feedback rate δ is too low; while a high δ guarantees

matched activity levels, it also causes an overall lower activity level for the system and pushes

down the production of P = R1 ·R2 complex.

We also ask if, at a stationary regime, the dynamic behaviors of R1 and R2 is similar. We find

that the flux of both outputs are identical when the active concentrations [T̄1] and [T̄2] are related as

follows (cf. Section 2.1 of the SI):

T̄2 = T̄1 +
α

α +β
(T tot

2 −T tot
1 ), (3)
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Figure 5: A: Numerical simulations showing example trajectories for the two-component negative
feedback architecture. From top to bottom: time course of active T1 and T2; time course of total
produced outputs R1 and R2; time course of unbound R1 and R2; time course for the flux mismatch
in the production of total R1 and R2. B: Nullclines for T1 and T2 for a range of values of δ , and flux
matching condition in equation (3) (orange). C: Steady state activity of T1 and T2 as a function of
the negative feedback parameter δ . D: Mismatch in the flux of R1 and R2 as a function of δ . The
dark circle in panels C and D marks the nominal conditions used for the time courses plotted in
panel A.
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where for simplicity we assumed α1 = α2 = α , β1 = β2 = β , and δ1 = δ2 = δ . Thus, when β is

sufficiently large relative to α , the flux of the two outputs is matched (orange line in Figure 5 B).

Numerically, we observe again that flux matching is lost for low values of δ (Figure 5 D).

2.2.1 Experimental results: Negative autoregulation balances RNA transcription rates in a

two-gene artificial network

We implemented experimentally the two-species model problem described above using in vitro

transcriptional circuits.19 A sketch of the reactions for subsystem 1 is in Figure 6, where we high-

light the regulatory domains of nucleic acid species, the main chemical reactions occurring, and

the simple model pathways they correspond to. Two short, linear genetic switches, or genelets,

correspond to species T1 and T2, whose RNA transcripts are the outputs R1 and R2. Transcription

is carried out by T7 RNA polymerase. The transcripts are designed to bind and form an inert RNA

complex P. (Since the focus of this work is the investigation of the effects of feedback, the structure

of P and its functionality as a stand alone complex are neglected.) Genelets have a nicked T7 bac-

teriophage promoter sequence which can be displaced by toehold-mediated branch migration.35

We design the RNA output of each genelet to be complementary to the portion of the promoter that

can be displaced (activator strand Ai): therefore, free RNA in solution displaces the activator and

self-inhibits its own production bringing the genelet in an “off” state. Degradation in the system

is introduced by RNase H, which hydrolizes RNA in DNA/RNA complexes. DNA strands were

systematically designed by thermodynamic analysis using the Winfree lab DNA design toolbox for

MATLAB, Nupack,26 and Mfold.36 Sequences were optimized to yield free energy gains favoring

the desired reactions, and to avoid unwanted secondary structures and crosstalk. For example, we

ensured that the R1R2 complex formation reaction be more favorable than the self-inhibition reac-

tion: because roughly twice as many base-pairs are complementary in the R1R2 complex relative

to the RiAi (inhibition) complex, the ∆G of formation of R1R2 is ≈−110 kcal/mol, twice as large

(in absolute value) as the ∆G of formation of RiAi, which is ≈ −41 kcal/mol. Strand sequences
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and complete reaction schematics are in Section 1 of the SI.
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Figure 6: Summary scheme of DNA species and enzymes used to implement experimentally our
negative feedback system for RNA production matching. Only subsystem 1 is represented (sub-
system 2 is specular to subsystem 1). Complementary domains are indicated with the same color.
RNA species R1 and R2, transcribed by active genelets T1 and T2, are designed to be complementary
(dark red and dark blue domains), but also to function as self-inhibiting species. The orange-dark
red domains in R1 indicate complementarity to the nicked portion of the promoter, activator A1,
which is displaced by free R1 (in excess with respect to R2) through toehold-mediated branch mi-
gration. The complex R1A1 is degraded by RNAse H, which releases in solution A1; thus, A1 and T1
bind, recovering the genelet activity. Genelet activity can be tracked using a fluorophore-quencher
pair (green and black dot positioned on T1 and A1). Gray boxes map the main pathways in this
system to the simplified reactions of our model problem.

We expect the feedback scheme to downregulate the production of either RNA species when

in excess with respect to the other. For instance, if the concentration of genelet 1 is twice the

concentration of genelet 2, in the absence of regulation the concentration of R1 produced will

clearly exceed that of R2. However, in the presence of negative feedback, we expect to observe

downregulation of the active gene 1 to achieve concentrations close to the active concentration

of gene 2. This expectation is quantitatively plausible, since the promoters used in both genelets

are identical and their activity is thus similar. We can easily verify this hypothesis by labeling

the 5’ end of the non-template strand of each genelet with a fluorescent dye, and by labeling the

corresponding activator strand with a quencher on the 3’ end. Inactive templates will emit a high
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fluorescence signal, while the signal of active templates will be quenched (Figure 6, green and

black dots respectively represent fluorophores and quenchers). For instance, when A1 is stripped

off active T1, the T1 fluorescence signal will increase. However, fluorescence traces reported here

are processed to show a high measured signal in correspondence to a high genelet activity. In our

experiments the total amount of activators is stoichiometric to the total amount of templates; for

brevity we will just indicate the total concentration of T tot , with the understanding that [Atot
i ] =

[T tot
i ].

Figure 7 A shows the behavior of the system in the scenario described above, i.e. when the total

concentration of the two genelets is in a 2:1 ratio. As soon as enzymes are added in solution and

transcription is initiated, the formation of complex R1R2 is limited by the lower production rate of

gene 2 (present in a lower amount). Thus, excess R1 reduces its own production by displacing its

activator from the genelet, and balances the active concentration of the two genes to be practically

identical. Thus, the steady state ratio of active genelets is close to one. Dashed lines in the figure

are numerical traces generated by a detailed model comprised of several differential equations,

whose parameters were fitted to the collected data.

We repeated this experiment for a variety of genelet ratios, keeping the concentration of one of

the genelets constant and varying the concentration of the other gene. The steady state ratio of the

active genelets was close to one in all cases (our complete data sets are in Section 1.6 of the SI).

Figure 7 B summarizes this experimental assay and shows that our negative autoregulation scheme

guarantees matched production and demand in a wide range of conditions.

When the concentration of genelets varies over time, the negative feedback scheme handles

a change in demand by automatically adapting the amount of each active genelet. Figure 8 A

shows that abrupt changes in the total concentration of one of the genelets are followed by an

adjustment in the concentration of the excess species to guarantee a matched flux of the RNA

products. We estimated the total amount of each RNA species produced during this experiment by

gel electrophoresis, verifying that their production rate is adapted and their concentration is in a
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Figure 7: A: Experimental fluorimetry data showing a typical time course of our system. Ex-
periments were run in triplicates. Once activators are added, both genelets become fully active.
Addition of enzymes initiates production of R1 and R2, which rapidly form a complex; excess of
either species is expected to downregulate its own genelet activity. In this case, [T tot

1 ] is present in
solution at a concentration which is twice that of [T tot

2 ]: as expected, excess R1 inactivates T1 to
activity levels comparable to [T tot

2 ]. B: We screened the outcome of various time courses (panel A),
where we varied the total concentration of genelets and measured the steady state activity of each
genelet. This plot summarizes our results, showing that in a wide range of conditions the steady
state activity of the genelets always achieves a 1:1 ratio, thus matching production and demand of
the RNA outputs.
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Figure 8: A: We varied the total concentration of genelets over time, maintaining activators and
templates stoichiometric. Experiments were run in triplicates. The system shows adaptation: when
the concentration [T tot

2 ] is increased to 100 nM, we observe an increase in the activity level for T1,
which was previously half-repressed. Further increase in the concentration [T tot

1 ], however, only
marginally changes the activity levels, because the activity of T2 is nearly at maximal levels. B:
We sampled our time course experiments over time, and estimated the concentration of R1 and
R2 through gel electrophoresis. The two concentrations remain comparable despite the changes in
total genelet concentrations, further supporting our hypothesis that this negative feedback scheme
matches production and demand by regulating genelet activity.

2.2.2 Mathematical modeling

We built a model for the in vitro two-gene flux matching system, starting from a complete list of

reactions involving the nucleic acid and enzyme species. Using the law of mass action, we derived

a set of ordinary differential equations (ODEs) which were numerically solved using MATLAB.

The list of reactions (reported in Section 2.2 of the SI) includes both the designed interactions

among species, and some of the expected undesired reactions. Specifically, we include reactions

of (weak) transcription for genelets in an off state. In addition, our design specifications result in an

undesired binding domain between Ti and Rj, which is considered a further off state of the genelet.

Such complex is a substrate for RNase H and the RNA strand is degraded by the enzyme, releasing
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the genelet activation domain. The transcription efficiency of an RNA-DNA promoter complex is

very low.23 We are aware of other sources of uncertainty when modeling genelet systems, includ-

ing transcription bursting and RNA polymerase activity decay phenomena, abortive transcription,

and partial RNase H mediated degradation of RNA-DNA hybrids (resulting in the accumulation

of short RNA species). We found that these events play an important role in complex dynami-

cal systems such as oscillators,22,23 whose temporal behavior is highly sensitive to variations in

the enzyme characteristics (which change from batch to batch) and notoriously difficult to model

quantitatively. However, the experimental outcomes of our negative autoregulation system were

satisfactorily captured by a detailed model that did not include the aforementioned phenomena.

2.3 Scalability and alternative architectures

The size of synthetic biological circuits, from metabolic networks37 to molecular computers,31,38

is rapidly increasing to include hundreds of components. Thus, we ask if our negative feeback

scheme is scalable to a larger number of interconnected components. For instance, our two-gene

circuit, where two RNA outputs interact to form a complex, could be extended to n genes whose

outputs assemble in a single product. From a practical perspective, formation of co-transcriptional

self-assembled RNA structures have been demonstrated5 in the absence of any regulatory pathways

for transcription; the introduction of feedback could improve the stoichiometry of RNA compo-

nents, and thus improve the yield of correctly assembled structures.

We also ask if alternative feedback mechanisms can achieve production and demand matching

in molecular devices. Positive feedback can easily generate instability in conventional engineered

systems, and is thus carefully avoided by systems and control engineers. In contrast, positive

feedback is commonly found in biology, in particular in gene networks9 in the context of autoreg-

ulation10 or within more complex motifs.39,40 Motivated by Savageau’s theory of positive autoreg-

ulation being common for proteins in high demand,10,11 we consider an alternative architecture for

matching production and demand that is based on cross activation.
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2.3.1 Scalability

To investigate how the performance of negative autoregulation would scale in the context of a

network composed by n molecular devices, we identified three canonical topologies for the out-

put interactions. We say that two devices are interconnected if their outputs bind or assemble to

form one or more products. Our two-gene network can immediately be scaled up to what we can

call a “single product” topology (Figure 9 A) with n participating species. When more than one

assembled products is generated, we identify two limit cases: the output of each device partic-

ipates in at most two products, creating a “neighbor” topology (Figure 9 B); the output of each

device participates in n− 1 products, generating a “handshake” topology (Figure 9 C). From an

input/output perspective, we expect that the neighbor and handshake topologies can be rendered

equivalent to the single product architecture, by designing appropriate downstream interactions

among the network complexes. For example, complexes created by interacting pairs of outputs

(neighbor topology) may further interact with one another and generate a single output assembly

(single product).

...

... ... ...

A B C
T1 T2 T3 Tn T1

T2
T3

Tn

T1

T2 T3

TnR1
R2

R3 Rn
R1

R2

R1 Rn

R2 R3
R1

R2

R1 R3

R1 Rn

R2 R3

Figure 9: We explore the scalability of our two-device network by looking at three limit cases
where n devices are interconnected through their binding outputs. A: Single product interconnec-
tion. B: Neighbor interconnection. C: Handshake interconnection.

We ask if, in all these possible topologies, our negative autoregulation scheme can still help

modulating the activity of each device in order to match production and demand of each output.

With numerical simulations we explored the behavior of up to four-component networks for each

of the topologies described above. The simple model of ODEs (1)-(2) can be straightforwardly

modified to model each topology, as reported in Section 3.1 of the SI.

Simulation results show that negative feedback is still effective in regulating the devices ac-
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tivity: it reduces both steady state activity of Ti and the mean flow mismatch. The evolution over

time of each species is very similar to the one shown in Figure 5 A for the case of two molecular

devices; example time trajectories for n = 4 are reported Section 3.1 of the SI.

From a network design perspective, it is interesting to explore the performance of different

interconnection topologies as a function of key parameters such as the feedback strength, δ , and

the rate of spontaneous gene activation, α . For illustrative purposes, in Figure 10 we compare the

performance of our three feedback topologies for n = 4 within a range of values for δ and α . In

each panel, a pink square marks the system behavior in nominal conditions, ki j = 2 ·103 /M/s for

the handshake/neighbor topology, k = 6 ·103/M/s for the single product topology, δi = 5 ·103 /M/s,

αi = 3 · 10−4 /s, βi = 1 · 10−2 /s. An imbalance in the production rates of Ri is created by setting

[Ti](0) = [T tot
i ], while [Ri](0) = 0, choosing [T tot

1 ] = 100 nM, [T tot
2 ] = 200 nM, [T tot

3 ] = 300 nM,

[T tot
4 ] = 150 nM. We report the percent steady state activity level of Ti, defined as [Ti]/[T tot

i ] ·100,

and the flux mismatch for each pair of outputs: each point in these graphs corresponds to the

behavior of each subsystem averaged over the last hour (stationary behavior) of a 10 hour numerical

simulation. We also report the response time of Ti, computed as the time it takes for the active Ti

trajectory to go from [Ti(0)]−10%∆ to [Ti(0)]−90%∆, where ∆ is the difference between its initial

value [Ti(0)] and its steady state value.

Referring to Figure 10, we can see that the steady state activity of Ti is higher for neighbor

(Figure 10 B) and handshake (Figure 10 C) topologies; nevertheless, for all topologies the steady

state activity of Ti decreases when δ increases, and it increases when α increases. The sensitivity of

steady state Ti with respect to α is lowest in the single product topology: this may be regarded as a

benefit or a flaw of the system, depending on the overall product complex (P = ∏i Ri) downstream

demand. The flux mismatch is most significantly reduced as a function of δ in the single product

topology (Figure 10 A). However, this topology yields a much slower response time for Ti, relative

to the neighbor and handshake structures. The response time generally decreases in all topologies

with large spontaneous gene activation rate α . However, the response time increases in the single
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Figure 10: Sensitivity of Ti percent activity, Ti response time, and flux mismatch between pairs
of outputs Ri, with respect to the negative feedback rate δ and the spontaneous reactivation α . A:
Single product interconnection. B: Neighbor interconnection. C: Handshake interconnection. Pink
squares mark the system behavior in nominal conditions.
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product topology. Thus, while the single product topology is more effective in matching production

and demand of each output Ri, its response time is large relative to other topologies, and more

sensitive to α .

2.3.2 An alternative positive feedback architecture

We explore numerically the performance of a two-device system where excess outputs cross-

activate their production, rather than self-inhibit. This scheme is expected to increase the overall

network output production rate, due to mutual activation of the generating species. Figure 11 A

shows a sketch of the system we consider. Two generating species T1 and T2 create outputs R1 and

R2, which bind to form a product P = R1 ·R2. Free molecules of Ri, not incorporated in P, generate

a positive loop by binding to inactive Tj and activating it:

Ri +T∗j
δi j−−⇀ Tj, Ti

αi−−⇀ T∗i ,

where again T ∗i is an inactive complex and [T tot
i ] = [Ti]+ [T ∗i ]. The total amount of Ri is [Rtot

i ] =

[Ri] + [Tj] + [P]. We now assume that Ti naturally reverts to its inactive state with rate αi. The

corresponding differential equations are:

d[Ti]

dt
=−αi [Ti]+δ ji [R j]([T tot

i ]− [Ti]),

d[Ri]

dt
= βi [Ti]− k [Ri][R j]−δi j [Ri]([T tot

j ]− [Tj]). (4)

The above differential equations were solved numerically. For illustrative purposes, our choice

of parameters is consistent with the numerical study of the negative feedback circuit: α1 = α2 =

3 · 10−4 /s, β1 = β2 = 0.01 /s, δ1 = δ2 = 5 · 102 /M/s, and k = 2 · 103/M/s. The total amount of

templates was chosen as [T tot
1 ] = 100 nM, [T tot

2 ] = 200 nM. The initial conditions of active [Ti]

are set as [T1](0) = 0 nM and [T2](0) = 200 nM, while [R1](0) = [R2](0) = 0. As a function of
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the positive feedback strength (for simplicity we picked δ = δ1 = δ2), the steady state amount of

active Ti clearly increases (we define our steady state as the mean active [Ti] during the last hour

of a 10 hours trajectory simulation), as shown in Figure 11 C. We compute flux of Ri again as the

derivative of the total amount of [Rtot
i ] = [Ri] + [RiTj] + [P]. The flux mismatch between R1 and

R2 is defined again as the absolute value of the difference between the two fluxes; the average flux

mismatch over the last hour of a 10–hour simulation is plotted as a function of δ in Figure 11 D.

Unlike the negative feedback architecture (cf. Figure 5 D), the flux mismatch is not monotonically

decreasing as a function of δ ; however, a sufficiently large positive feedback yields matching fluxes

and, as expected, higher activity levels relative to the negative feedback scheme (Figure 11 C and

D).
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Figure 11: A: Positive feedback architecture to match production and demand of interconnected
devices. B: Numerical simulation showing the time course of T1 and T2. C: Steady state activity
of T1 and T2 as a function of the positive feedback parameter δ . D: Mismatch in the flux of R1 and
R2 as a function of δ . The dark circle in panels C and D marks the nominal conditions used for the
time course plotted in panel B.

We examined the nullclines and derived flux matching conditions for the positive feedback

architecture as done for the negative feedback scheme; the complete derivations are in Section 4.1

of the SI. Again, we find that the circuit has, for a certain range of parameters, the ability to match
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the flux of outputs Ri by upregulating the production of output in lack. Because the production rate

of Ri is limited by the finite maximal amount of activatable Ti (whose maximal active concentration

equals [T tot
i ]), the positive feedback loops cannot yield instability (i. e. uncontrolled increase) in

the amount of unbound Ri. However, we observed that an overall upregulation of Ti activity results

in slower response time for the circuit.

We explored the performance of the cross-activation scheme in the context of the larger-scale

interconnection schemes considered in the previous section (Figure 9). First, we have to remark

that a cross-activation scheme scales poorly with the number of devices in the network. The num-

ber of required regulatory reactions nreg is equal to the product of three factors: the number of

devices n, the number nP of complexes generated by each device, and the number nr of reactions

required to form each product (nreg = nnP nr). Thus, n(n− 1) regulatory reactions are required

in the single product and handshake topologies, while 2n reactions are required in the neighbor

topology. In contrast, the negative autoregulation scheme requires n regulatory reactions regard-

less of the chosen output interconnection topology. Nevertheless, we evaluated the performance

of this scheme for a 3–devices network, for which handshake and neighbor topologies coincide.

In Section 5.4 of the SI we report a steady state analysis with respect to δ and α which mir-

rors the analysis done for the negative feedback architecture. We find that increasing the positive

feedback rate δ increases the percent activity of each Ti in all topologies; interestingly, for the

handshake/neighbor topologies the flux mismatch is worsened with a large δ . The response time

for each Ti is generally large (above 30–50 minutes), and improves for large α and δ .

This positive feedback architecture may be implemented using transcriptional circuits as done

for the negative feedback system. We propose a plausible design scheme in Section 4.2 of the SI,

together with numerical simulations listing all the expected reactions. While plausible, this design

suffers from undesired self-inhibition pathways unavoidable with the proposed design. Preliminary

experiments on this system30 (not reported in this manuscript) highlight the need for improved

reaction mechanisms with tighter control over such undesired reactions.
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3 Conclusions and Discussion

We have described the use of negative feedback as a mechanism to match production and demand

in biochemical networks, and we provided an experimental demonstration of its effectiveness us-

ing synthetic transcriptional system in vitro.19,22,23 We identified “demand” as a target ligand or

binding site that sequesters the output of a molecular device: in the context of our implementation,

we considered artificial “genelets” whose RNA outputs bind to downstream target RNA species.

In the absence of regulation, uncertainty in the demand or in the production rate of the molecular

device output can cause imbalances between the concentration of available and consumed output.

This imbalance can in turn result in accumulation of undesired reactants in a network, and result

in malfunction of a device otherwise performing well in isolation. We show that negative autoreg-

ulation provides several advantages, in particular minimization of unused output of a device and

robustness of its activity level relative to uncertainty in the output production rate. We also find

that negative feedback helps reducing the sensitivity of the available output fraction with respect

to uncertain downstream “load” (demand) concentration: these results are consistent with the role

of negative feedback in retroactivity theory.33 However, unlike the typical retroactivity theory set-

ting, we consider a “consumptive” load binding mechanism (i. e. the load binds irreversibly to the

output), and we do not include an output amplification “gain” as part of our feedback scheme.

The ability of negative feedback to automatically tune activity as a function of downstream

demand is particularly relevant when the outputs of multiple devices interact to create possibly

complex functionalities or assemblies. Uncertainty and variability of molecular demand would be

significant challenges that careful open-loop tuning of each device would not address. We consid-

ered a minimal, two-elements network where the outputs interact to form a product, and excess

of either output is designed to downregulate its own production. We designed a transcriptional

network where the RNA transcripts of two synthetic genes are complementary and bind to form an

inert product; however, excess of either RNA species self-inhibits by promoter displacement. Our
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assays show that, as expected, negative feedback balances production and demand in the synthetic

genes, leveling their activity to comparable levels. Finally, through numerical analysis we exam-

ined the scalability of our system to networks of n devices, identifying three possible topologies of

output interconnection. Negative autoregulation still guarantees a matched flux of outputs for all

topologies, although topologies with a larger number of interconnections achieve faster response

times, and stationary activity and relative flux mismatch are more easily tunable for each device as

a function of the negative feedback reaction rates.

Through numerical simulations we contrasted negative autoregulation with a cross-activation

scheme. Our analysis suggests that this positive feedback scheme is effective in matching and

maximizing production rates within a network, and it would be thus appropriate for products in

high demand.10 However, its experimental implementation using transcriptional networks is chal-

lenging (as discussed in Section 4.2 of the SI) due to the presence of undesired self-inhibitory inter-

actions not easily avoidable by design; these unwanted reactions may be eliminated using “transla-

tor” DNA gates.41,42 Again through simulations, we showed that our cross-activation scheme can

achieve matched production and demand in larger networks, but the number of required regulatory

pathways scales poorly with the number of devices. In addition, our analysis for networks with 2

and 3 interconnected devices highlights that positive feedback slows down the network response

time (relative to a negative autoregulation-based network with consistent parameters). This ob-

servation agrees with the slow response time introduced by positive feedback in transcriptional

control of gene expression,43 and on the delay-inducing behavior of feedforward loops.43

Our experimental implementation using transcriptional circuits shows the viability of the nega-

tive autoregulation scheme in the context of in vitro networks.24 Transcriptional circuits have been

used as a toolbox to build a variety of devices including toggle switches,19 memory elements,44

oscillators,22,23 and a variety of other network motifs.45,46 These circuits are easily programmable

and expandible: regulatory interactions are designed through nucleic acid strand displacement

and hybridization cascades, whose thermodynamics and kinetics can be predictably tuned by opti-
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mizing their base pair content47 with a variety of software toolboxes.25,26 Rationally programmed

nucleic acid networks can be easily interfaced with an array of ligands and physical signals through

aptamers.48,49 Thus, the significance of our experimental implementation goes beyond the proof of

a principle: systematic use of negative autoregulation in the context of complex synthetic in vitro

DNA networks will improve their robustness and adaptability to uncertainty in the environment.

In particular, our scheme may be immediately used in the context of regulated, cotranscriptional

production of RNA self-assembled structures,5,6 where mismatched production and demand of

components can favor the formation of incorrect complexes.

The bottom-up construction of dynamic molecular devices is a tremendous opportunity to both

improve our understanding of natural biological functions and create new, artificial biotechnolo-

gies. Negative feedback has been widely used to design and tune the dynamics of synthetic in vitro

devices such as oscillators and bistable systems.19,22,23,50 We envision that negative feedback will

also be needed to guarantee functionality when multiple devices are integrated in large scale net-

works, possibly requiring hyerarchical, layered feedback loops akin to modern networked control

systems.7 Negative autoregulation mechanisms similar to the architecture described in this work

will be useful not only to automatically match production and demand of individual biochemi-

cal production processes, but also to guarantee modular and adaptive input-output behaviors of

components within a complex interconnected system.

4 Materials and Methods

4.1 DNA oligonucleotides and enzymes

All the strands were purchased from Integrated DNA Technologies, Coralville, IA. Genelets were

labeled with TAMRA and Texas Red at the 5’ and of their non-template strands; activators were

labeled with the IOWA black RQ quencher at the 3′ end. For transcription experiments we used
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the T7 Megashortscript kit (#1354), Ambion, Austin, TX which includes a proprietary T7 RNA

polymerase enzyme mix. E. coli RNase H was purchased from Ambion (#2292).

4.2 Oligonucleotide sequences

Sequences are reported in section 1.2 of the SI file.

4.3 Transcription

Genelet templates were annealed with 10% (v/v) 10× transcription buffer - part of the T7 Megashort-

script kit (#1354) - from 90◦C to 37◦C for 1 h 30 min at a concentration 5–10× the target con-

centration. The DNA activators were added to the annealed templates from a higher concentration

stock, in a solution with 10% (v/v), 10× transcription buffer, 7.5 mM each NTP, 4% (v/v) T7 RNA

polymerase, and .44% (v/v) E. coli RNase H. Each transcription experiment for fluorescence spec-

troscopy was prepared for a total target volume of 70 µl. Samples for gel studies were quenched

using a denaturing dye (80% formamide, 10 mM EDTA, 0.01g XCFF).

4.4 Data acquisition

The fluorescence was measured at 37◦C every two minutes with a Horiba/Jobin Yvon Fluorolog 3

system. Excitation and emission maxima for TAMRA were set to 559 nm and 583 nm, respectively,

according to the IDT recommendation; for Texas Red the maxima for the spectrum were set to 598–

617 nm. Raw fluorescence data Φ(t) were converted to estimated switch activity by normalizing

with respect to maximum fluorescence Φmax (measured before adding activators and enzymes) and

to minimum fluorescence Φmin (measured after adding activators and before adding enzymes):

[TiAi](t) = [T tot
i ] ·

(
1− Φ(t)−Φmin

Φmax−Φmin

)
.
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For the adaptation experiments, normalization was done by measuring maximum and minimum

fluorescence levels at the beginning of the experiment, and assuming that the maximum fluores-

cence level scales linearly with the change in total fluorescently labeled strands, while the mini-

mum is not significantly affected by that variation. We used the formula:

[TiAi](t) = α[T tot
i ] ·

(
1− Φ(t)−Φmin

αΦmax−Φmin

)
,

where α is a factor that scales the total amount of template as it varies in the experiment.

Denaturing polyacrylamide gels (8% 19:1 acrylamide:bis and 7 M urea in TBE buffer, 100

mM Tris, 90 mM boric acid, 1 mM EDTA) were run at 67◦C for 45 min with 10 V/cm in TBE

buffer. Samples were loaded using Xylene Cyanol FF dye. For quantitation, denaturing gels

were stained with SYBR Gold (Molecular Probes, Eugene, OR; #S-11494). As a reference, we

used a 10-base DNA ladder (Invitrogen, Carlsbad, CA; #1082-015). Gels were scanned using

the Molecular Imager FX (Biorad, Hercules, CA) and analyzed using the Quantity One software

(Biorad, Hercules, CA).

4.5 Numerical simulations

Numerical simulations were run using MATLAB (The MathWorks). Ordinary differential equa-

tions were integrated using the ode23 routine. Data fitting was performed using the fmincon

routine. Details on the data fitting procedure are in Section 1.6.4 of the SI.
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tional Academy of Sciences 2009, 106, 5123–5128.

(15) Denby, C. M.; Im, J. H.; Richard, C. Y.; Pesce, C. G.; Brem, R. B. Proceedings of the National

Academy of Sciences 2012, 109, 3874–3878.

(16) Rosenfeld, N.; Elowitz, M. B.; Alon, U. Journal of Molecular Biology 2002, 323, 785–793.

(17) Deans, T. L.; Cantor, C. R.; Collins, J. J. Cell 2007, 130, 363–372.

(18) Shimoga, V.; White, J. T.; Li, Y.; Sontag, E.; Bleris, L. Molecular systems biology 2013, 9, –.

(19) Kim, J.; White, K. S.; Winfree, E. Molecular Systems Biology 2006, 1, 68.

(20) Karig, D. K.; Iyer, S.; Simpson, M. L.; Doktycz, M. J. Nucleic acids research 2012, 40,

3763–3774.

(21) Mori, Y.; Nakamura, Y.; Ohuchi, S. Biochemical and Biophysical Research Communications

2012, 420, 440–443.

(22) Kim, J.; Winfree, E. Molecular Systems Biology 2011, 7, 465.

(23) Franco, E.; Friedrichs, E.; Kim, J.; Jungmann, R.; Murray, R.; Winfree, E.; Simmel, F. C.

Proceedings of the National Academy of Sciences 2011, 108, E784–E793.

(24) Hockenberry, A. J.; Jewett, M. C. Current Opinion in Chemical Biology 2012, 16, 253–259.

(25) Markham, N. R.; Zuker, M. Methods in Molecular Biology 2008, 453, 3–31.

(26) Zadeh, J. N.; Steenberg, C. D.; Bois, J. S.; Wolfe, B. R.; Pierce, M. B.; Khan, A. R.;

Dirks, R. M.; Pierce, N. A. Journal of Computational Chemistry 2011, 32, 170–173.

(27) Franco, E.; Forsberg, P.-O.; Murray, R. M. Design, modeling and synthesis of an in vitro

transcription rate regulatory circuit. Proceedings of the American Control Conference, 2008.

28

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2013. ; https://doi.org/10.1101/000430doi: bioRxiv preprint 

https://doi.org/10.1101/000430
http://creativecommons.org/licenses/by-nc-nd/4.0/


(28) Franco, E.; Murray, R. M. Design and performance of in vitro transcription rate regulatory

circuits. Proceedings of the IEEE Conference on Decision and Control, 2008.

(29) Giordano, G.; Franco, E.; Murray, R. M. Feedback architectures to regulate flux of compo-

nents in artificial gene networks. Proceedings of the American Control Conference, 2013.

(30) Franco, E. Ph.D. thesis, California Institute of Technology, 2012.

(31) Qian, L.; Winfree, E. Science 2011, 3, 1196–1201.

(32) Zhang, D. Y.; Hariadi, R. F.; Choi, H. M.; Winfree, E. Nature communications 2013, 4, –.

(33) Del Vecchio, D.; Ninfa, A.; Sontag, E. Molecular Systems Biology 2008, 4, 161.

(34) Bonacci, W.; Teng, P. K.; Afonso, B.; Niederholtmeyer, H.; Grob, P.; Silver, P. A.; Sav-

age, D. F. Proceedings of the National Academy of Sciences 2012, 109, 478–483.

(35) Yurke, B.; Mills, A. P. Genetic Programming and Evolvable Machines 2003, 4, 111–122.

(36) Zuker, M.; Stiegler, P. Nucleic Acids Research 1981, 9, 133–148.

(37) Lee, S. K.; Chou, H.; Ham, T. S.; Lee, T. S.; Keasling, J. D. Current Opinion in Biotechnology

2008, 19, 556–563.

(38) Xie, Z.; Liu, S. J.; Bleris, L.; Benenson, Y. Nucleic Acids Research 2010, 38, 2692–2701.

(39) Kaplan, S.; Bren, A.; Dekel, E.; Alon, U. Molecular Systems Biology 2008, 4, –.

(40) Mangan, S.; Zaslaver, A.; Alon, U. Journal of Molecular Biology 2003, 334, 197–204.

(41) Soloveichik, D.; Seelig, G.; Winfree, E. Proceedings of the National Academy of Sciences

2010, 107, 5393–5398.

(42) Chen, Y.-J.; Dalchau, N.; Srinivas, N.; Phillips, A.; Cardelli, L.; Soloveichik, D.; Seelig, G.

Nature Nanotechnology 2013, advance online publication, –.

29

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2013. ; https://doi.org/10.1101/000430doi: bioRxiv preprint 

https://doi.org/10.1101/000430
http://creativecommons.org/licenses/by-nc-nd/4.0/


(43) Alon, U. Nature Reviews Genetics 2007, 8, 450–461.

(44) Subsoontorn, P.; Kim, J.; Winfree, E. ACS synthetic biology 2012, 1, 299–316.

(45) Kim, J.; Murray, R. M. Analysis and design of a synthetic transcriptional network for exact

adaptation. Biomedical Circuits and Systems Conference (BioCAS), 2011 IEEE, 2011; pp

345–348.

(46) Bishop, J. D.; Klavins, E. Characterization of a biomolecular fuel delivery device under load.

Decision and Control (CDC), 2012 IEEE 51st Annual Conference on, 2012; pp 3589–3594.

(47) Zhang, D. Y.; Seelig, G. Nature Chemistry 2011, 3, 103–113.

(48) Stoltenburg, R.; Reinemann, C.; Strehlitz, B. Biomolecular Engineering 2007, 24, 381 – 403.

(49) Ellington, A. D.; Szostak, J. W. Nature 1990, 346, 818–822.

(50) Montagne, K.; Plasson, R.; Sakai, Y.; Fujii, T.; Rondelez, Y. Molecular systems biology 2011,

7, –.

30

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2013. ; https://doi.org/10.1101/000430doi: bioRxiv preprint 

https://doi.org/10.1101/000430
http://creativecommons.org/licenses/by-nc-nd/4.0/

