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Abstract

Existing techniques to reconstruct tree models of progression for ac-
cumulative processes such as cancer, seek to estimate causation by com-
bining correlation and a frequentist notion of temporal priority. In this
paper we define a novel theoretical framework to reconstruct such models
based on the probabilistic notion of causation defined by Suppes, which
differ fundamentally from that based on correlation. We consider a gen-
eral reconstruction setting complicated by the presence of noise in the
data, owing to the intrinsic variability of biological processes as well as
experimental or measurement errors. To gain immunity to noise in the
reconstruction performance we use a shrinkage estimator. On synthetic
data, we show that our approach outperforms the state-of-the-art and, for
some real cancer datasets, we highlight biologically significant differences
revealed by the reconstructed progressions. Finally, we show that our
method is efficient even with a relatively low number of samples and its
performance quickly converges to its asymptote as the number of samples
increases. Our analysis suggests the applicability of the method on small
datasets of real patients.

∗Equal contributors.
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1 Introduction

Cancer is a disease of evolution. Its initiation and progression are caused by
dynamic somatic alterations to the genome manifested as point mutations, struc-
tural alterations, DNA methylation and histone modification changes [1].

These genomic alterations are generated by random processes, and since
individual tumor cells compete for space and resources, the fittest variants are
naturally selected for. For example, if through some mutations a cell acquires
the ability to ignore anti-growth signals from the body, this cell may thrive and
divide, and its progeny may eventually dominate part of the tumor. This clonal
expansion can be seen as a discrete state of the cancer’s progression, marked
by the acquisition of a set of genetic events. Cancer progression can then be
thought of as a sequence of these discrete steps, where the tumor acquires certain
distinct properties at each state. Different progression sequences are possible,
but some are more common than others, and not every order is viable [2].

In the last two decades, many specific genes and genetic mechanisms that
are involved in different types of cancer have been identified (see e.g. [3, 4] for
an overview of common cancer genes and [5, 6] for specific genetic analyses of
ovarian carcinoma and lung adenocarcinoma, respectively), and targeted thera-
pies that aim to affect the activity of these genes are now being developed at a
fast pace [2]. However, unfortunately, the causal and temporal relations among
the genetic events driving cancer progression remain largely elusive.

The main reason for this state of affairs is that information revealed in the
data is usually obtained only at one (or a few) points in time, rather than over
the course of the disease. Extracting this dynamic information from the avail-
able cross-sectional data is challenging, and the combination of mathematical,
statistical and computational techniques is needed. The results of this research
will have important repercussions for disease diagnosis, prognosis, and therapy.

In recent years, several methods to extract progression models from cross-
sectional data have been developed; starting from the seminal work on single-
path-models by Fearon and Vogelstein [7], up to several models of oncogenetic
trees [8, 9, 10], probabilistic networks [11] and conjunctive bayesian networks
[12, 13]. In their essence some of these models, e.g. [8, 10, 9], use correlation
to identify relations among genetic events. These techniques reconstruct tree
models of progression as independent acyclic paths with branches and no conflu-
ences. More complex models, e.g. [12, 13], extract direct acyclic graphs however,
in these cases, other constraints on the joint occurrence of events are imposed.
Besides, in a slightly different context, temporal models were reconstructed from
time-course gene expression data [14, 15].

In this paper we present a novel theoretical framework to reconstruct cumu-
lative progressive phenomena, such as cancer progression. We base our method
on a notion of probabilistic causation, more suitable than correlation to infer
causal structures1. More specifically, we adopt the notion of causation pro-

1The assumption that correlation proves causation is the well-knonw logical fallacy cum
hoc ergo propter hoc, similarly to the post hoc ergo propter hoc fallacy (i.e. an event that
follows another is necessarily its consequence).
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posed by Suppes in [16]. Its basic intuition is simple: event a causes event
b if (i) a occurs before b and (ii) the occurrence of a raises the probability of
observing b. Probabilistic causation was used in biomedical applications before
(e.g., to find driver genes from CNV data in [17], and to extract causes from
biological time series data in [18]), but, to the best of our knowledge, never to
infer progression models in the absence of direct temporal information.

We assume the problem setting of [8] to define a technique to infer proba-
bilistic progression trees from cross-sectional data, when the input is a set of
pre-selected genetic events such that the presence or the absence of each event
is recorded for each sample. Using the notion of probabilistic causation just
described, we aim to infer a tree which best describes causal structures implicit
in the data.

The problem is complicated by the presence of noise, such as the one provided
by the intrinsic variability of biological processes (e.g., genetic heterogeneity)
and experimental errors. To best deal with this issue we adopt a shrinkage
estimator to measure causation among any pair of events [19]. The intuition of
this type of estimators is to improve a raw estimate α (here probability raising)
with a correction factor β (here a measure of temporal distance among events);
a generic shrinkage estimator is defined as

θ̂ = (1− λ)α(x) + λβ(x)

where 0 ≤ λ ≤ 1 is the shrinkage coefficient, x is the input data and θ̂ is the
estimates that we evaluate. Clearly, θ̂ can be arbitrarily shrank towards α or
β by varying λ, i.e. the estimator can be biased. The power of shrinkage lies
in the possibility of determining an optimal value for λ to balance the effect
of the correction factor on the raw model estimate. This approach is effective
to regularize ill-posed inference problems, and sometimes the optimal λ can be
determined analytically [20].

In our case, however, the performance we are interested in is that of the
reconstruction technique, rather than that of the estimator, usually measured as
mean squared error. Here we define performance in terms of structural similarity
among the reconstructed trees, rather than on their induced distribution as
done, e.g., in [10]. This measure helps to discriminate the optimal model among
those inducing similar distributions, but it can be evaluated only when the target
tree to reconstruct is known, as it happen with synthetic data (cfr. Section 5.1).
On the one hand, structural equivalence is a stronger result than the distribution
analogous, and is also more useful to understand progressive phenomena. On
the other hand, it can not be used to compare topologically different models,
e.g. [10, 12]. Thus, we compare our algorithm to the state-of-the-art method
to reconstruct trees. Here we numerically estimate the global optimal coefficient
value for this performance. Based on synthetic data, we show that our algorithm
outperforms the existing tree reconstruction algorithm of [8]. In particular,
our shrinkage estimator provides, on average, an increased robustness to noise
which ensures it to outperform oncotrees [8]. Finally, we show that the method
works in a very efficient way already with a relatively low number of samples

3

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 25, 2013. ; https://doi.org/10.1101/000919doi: bioRxiv preprint 

https://doi.org/10.1101/000919


and that its performance quickly converges to its asymptote as the number of
samples increases. This outcome hints at the applicability of the algorithm with
relatively small datasets without compromising its efficiency.

This paper is structured as follows. In Section 2 the reconstruction problem
is formally defined. In Section 3 the notion of probability raising, some of its
key properties, and some new results are discussed. In Section 4 we propose our
novel shrinkage estimator and the algorithm for the reconstruction of tree and
forest topologies is presented. In Section 5 we present the numerical estimation
of the optimal shrinkage coefficient, and compare of our algorithm to oncotrees
[8] using synthetic data (in Section 5.3), as well as on actual patient data (in
Section 5.4). We conclude with Section 6.

2 Problem setting

The set-up of the reconstruction problem is as follows. Assuming that we have
a set G of n mutations (events, in probabilistic terminology) and m samples,
we can represent a cross-sectional dataset as an m × n binary matrix. In this
matrix, an entry (k, l) = 1 if the mutation l was observed in sample k, and
0 otherwise. We reemphasize that such a dataset does not provide explicit
information of time. The problem we solve is to extract a set of edges E yielding
a progression tree T = (G∪ {�}, E, �) from this matrix. More precisely, we aim
at reconstructing a rooted tree that satisfies: (i) each node has at most one
incoming edge, (ii) the root has no incoming edges (iii) there are no cycles.
The root of T is modeled using a (special) event � 6∈ G to extract, in principle,
heterogenous progression paths, i.e. forests.

Each progression tree subsumes a distribution of observing a subset of mu-
tations in a cancer sample.

Definition 1 (Tree-induced distribution). Let T be a tree and α : E → [0, 1] a
labeling function denoting the independent probability of each edge, T generates a
distribution where the probability of observing a sample with the set of alterations
G∗ ⊆ G is

P(G∗) =
∏
e∈E′

α(e) ·
∏

(u,v)∈E
u∈G∗,v 6∈G

[
1− α(u, v)

]
(1)

where E′ ⊆ E is the set of edges connecting the root � to the events in G∗.

The temporal priority principle states that all causes must precede their
effects [21]. This distribution subsumes that, for any oriented edge (a → b), a
sample contains alteration b with probability P(a)P(b), that is the probability
of observing a is greater than the probability of observing b.

The notion of tree-induced distribution can be used to state an important
aspect which hardens the reconstruction problem. The input data is a set of sam-
ples generated, ideally, from an unknown distribution induced by an unknown
tree that we aim to reconstruct. However, in some cases it could be that no
tree exists whose induced distribution generates exactly those data. When this
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happens, the set of observed samples slightly diverges from any tree-induced dis-
tribution. To model these situations a notion of noise can be introduced, which
depends on the context in which data are gathered, as we discuss in Section 5.

2.1 The oncotree approach

In [8] Desper et al. developed a method to extract progression trees, named
“oncotrees”, from static CNV data. In these trees, nodes represent CNV events
and edges correspond to possible progressions from one event to the next.

The reconstruction problem is exactly as described above, and each tree is
rooted in the special event �. The choice of which edge to include in a tree is
based on the estimator

wa→b = log

[ P(a)

P(a) + P(b)
· P(a, b)

P(a)P(b)

]
, (2)

which assigns, to each edge a → b, a weight accounting for both the relative
and joint frequencies of the events – thus measuring correlation. The estimator
is evaluated after including � to each sample of the dataset. In this definition
the rightmost term is the (symmetric) likelihood ratio for a and b occurring
together, while the leftmost is the asymmetric temporal priority measured by
rate of occurrence. This implicit form of timing assumes that, if a occurs more
often than b, then it likely occurs earlier, thus satisfying

P(a)

P(a) + P(b)
>

P(b)

P(a) + P(b)
.

An oncotree is the rooted tree whose total weight (i.e. sum of all the weights
of the edges) is maximized, and can be reconstructed in O(|G|2) steps using
Edmond’s algorithm [22]. By construction, the resulting graph is a proper tree
rooted in �: each event occurs only once, confluences are absent, i.e. any event
is caused by at most one other event. The branching trees method has been
used to derive progressions for various cancer datasets e.g., [23, 24, 25]), and
even though several extensions of the method exist (e.g.[9, 10]), to the best of
our knowledge, it is currently the most used method to reconstruct trees and
forests.

3 A probabilistic approach to causation

Before introducing the notion of causation, upon which our algorithm is based,
we briefly review the approach to probabilistic causation. For an extensive
discussion on this topic we refer to [26].

In his seminal work [16], Suppes proposed the following notion.

Definition 2 (Probabilistic causation, [16]). For any two events c and e, oc-
curring respectively at times tc and te, under the mild assumptions that 0 <
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P(c),P(e) < 1, the event c causes the event e if it occurs before the effect and
the cause raises the probability of the effect, i.e.

tc < te and P(e | c) > P(e | c) . (3)

We remark that we consider cross-sectional data where no information about
tc and te is available, so we are restricted to consider solely the probability raising
(pr) property, i.e. P(e | c) > P(e | c). Now we review some its properties.

Proposition 1 (Dependency). Whenever the pr holds between two events a
and b, then the events are statistically dependent in a positive sense, i.e.

P(b | a) > P(b | a) ⇐⇒ P(a, b) > P(a)P(b) . (4)

This and the next proposition are well-known facts of the pr; their deriva-
tion as well as the proofs of all the results we present is in the Supplementary
Material. Notice that the opposite implication holds as well: when the events
a and b are still dependent but in a negative sense, i.e. P(a, b) < P(a)P(b), the
pr does not hold, i.e. P(b | a) < P(b | a).

We would like to use the asymmetry of the pr to determine whether a pair of
events a and b satisfy a causation relation so to place a before b in the progression
tree but, unfortunately, the pr satisfies the following property.

Proposition 2 (Mutual pr). P(b | a) > P(b | a) ⇐⇒ P(a | b) > P(a | b).

That is, if a raises the probability of observing b, then b raises the probability
of observing a too.

Nevertheless, in order to determine causes and effects among the genetic
events, we can use the confidence degree of probability raising to decide the
direction of the causation relationship between pairs of events. In other words,
if a raises the probability of b more than the other way around, then a is a more
likely cause of b than b of a2. As mentioned, the pr is not symmetric, and the
direction of probability raising depends on the relative frequencies of the events.
We make this asymmetry precise in the following proposition.

Proposition 3 (Probability raising and temporal priority). For any two events
a and b such that the probability raising P(a | b) > P(a | b) holds, we have

P(a) > P(b) ⇐⇒ P(b | a)

P(b | a)
>
P(a | b)
P(a | b)

. (5)

That is, given that the pr holds between two events, a raises the probability
of b more than b raises the probability of a, if and only if a is observed more
frequently than b. Notice that we use the ratio to assess the pr inequality. The
proof of this proposition is technical and can be found in the Supplementary

2This is sound as long as each event has at most one cause. Otherwise, frequent late events
with more than one cause, which are rather common in biological progressive phenomena,
should be treated differently.
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Material. From this result it follows that if we measure the timing of an event
by the rate of its occurrence (that is, P(a) > P(b) implies that a happens before
b), this notion of pr subsumes the same notion of temporal priority induced by
a tree (cfr. Section 2). We also remark that this is the temporal priority made
explicit in the coefficients of Desper’s method (cfr. Section 2.1). Given these
results, we define the following notion of causation.

Definition 3. We state that a causes b if a is a probability raiser of b, and it
occurs more frequently: P(b | a) > P(b | a) and P(a) > P(b).

Finally, we recall the conditions for the pr to be computable: every mutation
a should be observed with probability strictly 0 < P(a) < 1. Moreover, we
need each pair of mutations (a, b) to be distinguishable in terms of pr, that
is P(a | b) < 1 or P(b | a) < 1 similarly to the above condition. Any non-
distinguishable pair of events can be merged as a single composite event. From
now on, we will assume these conditions to be verified.

In the next section we will use pr to define a shrinkage estimator and, in
turn, to extract progression trees.

4 Extracting progression trees with probability
raising and a shrinkage estimator

Our reconstruction method is described in Algorithm 1. The algorithm is very
similar in spirit to Desper’s algorithm, with the main difference being an alter-
native weight function based on this shrinkage estimator.

Definition 4 (Shrinkage estimator). We define the shrinkage estimator ma→b
of the confidence in the causation relationship from a to b as

ma→b = (1− λ)αa→b + λβa→b , (6)

where 0 ≤ λ ≤ 1 and

αa→b =
P(b | a)− P(b | a)

P(b | a) + P(b | a)
βa→b =

P(a, b)− P(a)P(b)

P(a, b) + P(a)P(b)
. (7)

This estimator combines a normalized version of the pr, the raw model es-
timate α, with the correction factor β. The shrinkage aims at improving the
performance of the overall reconstruction process, not limited to the perfor-
mance of the estimator itself. In other words, m induces an ordering to the
events reflecting our confidence for their causation. However, this framework
does not imply any performance bound for the, e.g., mean squared error of m.
In Section 5 we show that the shrinkage estimator is an effective way to get
such an ordering when data is noisy. In Algorithm 1 we use a pairwise matrix
version of the estimator.

We now comment on our reconstruction technique by first explaining the
role of the components α and β in m, and then by discussing the use of the
correlation filter.
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Algorithm 1 Tree-alike reconstruction with shrinkage estimator

1: consider a set of genetic events G = {g1, . . . , gn} plus a special event �,
added to each sample of the dataset;

2: define a n× n matrix M where each entry contains the shrinkage estimator

mi→j = (1− λ) · P(j | i)− P(j | i)
P(j | i) + P(j | i) + λ · P(i, j)− P(i)P(j)

P(i, j) + P(i)P(j)

according to the observed probability of the events i and j;
3: [pr causation] define a tree T = (G ∪ {�}, E, �) where (i → j) ∈ E for
i, j ∈ G if and only if:

mi→j > 0 and mi→j > mj→i and ∀i′ ∈ G, mi,j > mi′,j .

4: [Correlation filter] define Gj = {gi ∈ G | P(i) > P(j)}, replace edge (i →
j) ∈ E with edge (� → j) if, for all gw ∈ Gj , it holds

1

1 + P(j)
>

P(w)

P(w) + P(j)

P(w, j)

P(w)P(j)
.

The raw estimator and the correction factor. By considering only the
raw estimator α, we would include an edge (a → b) in the tree consistently in
terms of (i) Definition 3 and (ii) if a is the best probability raiser for b 3. Notice
that this formulation of α is a monotonic normalized version of the pr ratio.

Proposition 4 (Monotonic normalization). For any two events a and b we have

P(a) > P(b) ⇐⇒ P(b | a)

P(b | a)
>
P(a | b)
P(a | b)

⇐⇒ αa→b > αb→a . (8)

This raw model estimator satisfies −1 ≤ αa→b, αb→a ≤ 1: when it tends
to −1 the pair of events appear disjointly (i.e. they show an anti-causation
pattern), when it tends to 0 no causation or anti-causation can be inferred
and the two events are statistically independent and, when it tends to 1, the
causation relationship between the two events is robust. Therefore, α provides a
quantification of the degree of confidence for a given pr causation relationship.

However, α does not provide a general criterion to disambiguate among
groups of candidate parents of a given node. We show a specific case in which α
is not a sufficient estimator. Let us consider, for instance, a causal linear path:
a → b → c. In this case, when evaluating the candidate parents a and b for c
we have: αa→c = αb→c = 1. Accordingly, we can only infer that ta < tc and

3When P(a) = P(b) the events a and b are indistinguishable in terms of temporal priority,
thus α is not sufficient to decide their causal relation, if any. This intrinsic ambiguity becomes
unlikely when we introduce β even if, in principle, it is still possible.
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tb < tc, i.e. a partial ordering, which does not help to disentangle the relation
among a and b with respect to c.

In this case, the β coefficient can be used to determine which of the two
candidate parents occurs earlier. In general, such a correction factor provides
information on the temporal distance between events, in terms of statistical
dependency. In other words, the higher the β coefficient, the closer two events
are. The shrinkage estimator m then results in a shrinkable combination of the
raw pr estimator α and of the β correction factor, which respects the temporal
priority induced by α.

Proposition 5 (Coherence in dependency and temporal priority). The β cor-
rection factor is symmetrical and subsumes the same notion of dependency of
the raw estimator α, that is

P(a, b) > P(a)P(b) ⇔ αa→b > 0⇔ βa→b > 0 and βa→b = βb→a . (9)

The correlation filter. Following Desper’s approach, we add a root � with
P(�) = 1 so to separate different progression paths, i.e. the different sub-trees
rooted in �. Algorithm 1 initially builds a unique tree by using m. Then the
correlation-alike weight between any node j and � is computed as

P(�)
P(�) + P(j)

P(�, j)
P(�)P(j)

=
1

1 + P(j)
.

If this quantity is greater than the weight of j with each upstream connected
element i, we substitute the edge (i→ j) with the edge (� → j). We remark that
here we use a correlation filter because it would make no sense to ask whether
� was a probability raiser for j, besides the technical fact that α is not defined
for events of probability 1 (see Section 3).

Notice that this filter is indeed implying a non-negative threshold for the
shrinkage estimator, when a cause is valid.

Theorem 1 (Independent progressions). Let G∗ = {a1, . . . , ak} ⊂ G a set of
k events which are candidate causes of some b 6∈ G∗, i.e. P(ai) > P(b) and
mai→b > 0 for any ai. There exist 1 < γ < 1/P(ai) and δ > 0 such that b
determines an independent progression tree in the reconstructed forest, i.e. the
edge � → b is picked by Algorithm 1, if, for any ai,

P(ai, b) < γP(ai)P(b) + δ . (10)

The proof of this theorem can be found in the Supplementary Material.
What this theorem suggests is that, in principle, by examining the level of
statistical dependency of each pair of events, it would be possible to determine
how many trees compose the reconstructed forest. Furthermore, this suggests
that Algorithm 1 could be defined by first processing the correlation filter, and
then using m to build the independent progression trees in the forest.

To conclude, the algorithm reconstructs well-defined trees in this sense.
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Theorem 2 (Algorithm correctness). Algorithm 1 reconstructs a well defined
tree T without disconnected components, transitive connections and cycles.

The proof of this Theorem follows immediately from Proposition 3 (see the
Supplementary Material).

5 Performance of the algorithm and estimation
of the optimal shrinkage coefficient

We made substantial use of synthetic data to evaluate the performance of Al-
gorithm 1 as a function of the shrinkage coefficient λ. Many distinct synthetic
datasets were created on this purpose, as explained in Section 5.1. The algo-
rithm performance was measured in terms of Tree Edit Distance (TED, [27]),
i.e. the minimum-cost sequence of node edit operations (relabeling, deletion
and insertion) that transforms the reconstructed trees into the ones generating
the data.

In Section 5.2 we show the empirical estimation of an optimal λ which en-
sures the best reconstruction performance, on average. We show that Algorithm
1 has always better performance than branching trees in Section 5.3 and con-
clude the comparison on real, albeit dated, cancer datasets by showing that our
technique predicts highly-confident progression trees unlike those reconstructed
by branching trees (Section 5.4).

5.1 Synthetic data generation

Synthetic datasets were generated by sampling from various random trees, con-
strained to have depth log(|G|), since wide branches are hard to reconstruct
than straight paths.

Unless differently specified, in all the experiments we used 100 distinct ran-
dom trees (or forests, accordingly to the test to perform) of 20 events each. This
seems a fairly reasonable number of events and is in line with the usual size of
reconstructed trees, e.g. [28, 29, 30, 31]. The scalability of the reconstruction
performance was tested against the number of samples by ranging |G| from 50
to 250, with a step of 50, and by replicating 10 independent datasets for each
parameters setting (see the caption of the figures for details).

We included a form of noise in generating the datasets, in order to account
for (i) the realistic presence of biological noise (such as the one provided by
bystander mutations, genetic heterogeneity, etc.) and (ii) experimental errors.
A noise parameter 0 ≤ ν < 1 denotes the probability that any event assumes a
random value (with uniform probability), after sampling from the tree-induced
distribution4. Clearly, this introduces both false negatives and false positives

4The assumption that noise is uniformly distributed may appear simplistic since some
events may be more robust, or easy to measure, than others. In future works more sophisti-
cated noise distributions could be considered.
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Figure 1: Optimal shrinkage coefficient for reconstruction perfor-
mance. We show here the performance in the reconstruction of trees (TED
surface) with 150 samples as a function of the shrinkage coefficient λ. Notice
the global optimal performance for λ → 0 when ν → 0 and for λ ≈ 1/2 when
ν > 0.

in the datasets. Algorithmically this process generates, on average, |G|ν/2 ran-
dom entries in each sample (e.g. with ν = 0.1 we have, on average, one error
per sample). We wish to assess whether these noisy samples can mislead the
reconstruction process, even for low values of ν.

In what follows, we will refer to datasets generated with ν > 0 as noisy
synthetic dataset. In the experiments, usually ν is discretized by 0.025, (i.e.
2.5% noise).

5.2 Optimal shrinkage coefficient

Given that our events are dependent on the topology to reconstruct, we cannot
determine an optimal value for λ in an analytical way, e.g., by using the stan-
dard results in shrinkage statistics [19]. Therefore, we opted for an empirical
estimation of its optimal value, both in the case of trees and forests.

In Figure 1, we show the variation of the performance of Algorithm 1 as a
function of λ, for datasets with 150 samples generated from tree topologies. The
optimal value (i.e. lowest TED) for noise-free datasets (i.e. ν = 0) is obtained
for λ → 0, whereas for the noisy datasets a series of U-shaped curves suggests
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Figure 2: Optimal λ with datasets of different size. We show the analogous
of Figure 1 with 50 and 250 samples. The estimation of the optimal shrinkage
coefficient λ appears to be irrespective of the sample size.

a unique optimum value for λ → 1/2, regardless of ν. Identical results are ob-
tained when dealing with forests (not shown here). Besides, further experiments
show that the estimation of the optimal λ is not dependent on the number of
samples in the datasets (see Figure 2). We here remark that we limited our
analysis to datasets with the typical sample size that is characteristic of data
currently available.

In other words, if we consider the noise-free case the best performance is
obtained by shrinking m to the pr raw estimate α, i.e.

ma→b
λ→0≈ αa→b (11)

which is obtained by setting λ to a very small value, e.g. 10−2, in order to
consider the contribution of the correction factor too. Conversely, when ν > 0,
the best performance is obtained by averaging the shrinkage effect, i.e.

ma→b
λ=1/2

=
αa→b

2
+
βa→b

2
. (12)

These results suggest that, in general, a unique optimal value for the shrinkage
coefficient can be determined.

5.3 Performance of the algorithm compared to oncotrees

In Figure 3 we compare the performance of Algorithm 1 with oncotrees, for the
case of noise-free synthetic data. In this case, we used the optimal shrinkage
coefficient in equation (11): λ → 0. In Figure 4 we show an example of recon-
structed tree where, for the noise-free case, Algorithm 1 infers the correct tree
while oncotrees mislead a causation relation.

In general, one can observe that the TED of Algorithm 1 is, on average,
always bounded above by the TED of the oncotrees, both in the case of trees
and forests. For trees, with 50 samples the average TED of Algorithm 1 is
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Figure 3: Comparison on noise-free synthetic data. Performance of Algo-
rithm 1 (dashed line) and oncotrees (full line) in average TED when data are
generated by random trees (left) and forests (right). In this case ν = 0, and the
estimator m is shrank by λ→ 0.

around 7, whereas for Desper’s technique is around 13. The performance of both
algorithms improves as long as the number of samples is increased: Algorithm
1 has the best performance (i.e. TED ≈ 0) with 250 samples, while oncotrees
have TED around 6. When forests are considered, the difference between the
performance of the algorithms slightly reduces, but also in this case Algorithm
1 clearly outperforms branching trees.

Notice that the improvement due to the increase in the sample set size seems
to reach a plateau, and the initial TED for our estimator seems rather close
to the plateau value. Thus, this suggests that Algorithm 1 has already good
performances with few samples. This is an indeed important result, particularly
considering the scarcity of available biological data.

In Figure 5 we extend the comparison to noisy datasets. In this case, we
used the optimal shrinkage coefficient in equation (12): λ → 1/2. The results
confirm what observed in the case of noise-free data, as Algorithm 1 outperforms
Desper’s branching trees up to ν = 0.15, for all the sizes of the sample sets. In
the supplementary material we show similar plots for the noise-free case.

5.4 Performance on cancer datasets

The results in the previous sections indicate that our method outperforms on-
cotrees. We test now our algorithm on a real dataset of cancer patients.

To test our reconstruction approach on a real dataset we applied it to the
ovarian cancer dataset made available within the oncotree package [8]. The
data was collected through the public platform SKY/M-FISH [32], used to allow
investigators to share molecular cytogenetic data. The data was obtained by
using the Comparative Genomic Hybridization technique (CGH) on samples
from papillary serous cystadenocarcinoma of the ovary. This technique uses
fluorescent staining to detect CNV data at the resolution of chromosome arms.
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Figure 4: Example of reconstructed trees Example of reconstruction from
a dataset sampled by the left tree (in there, numbers represent the probability
of observing a mutation while generating samples), with ν = 0. The oncotree
misleads the correct causal relation for the double-circled mutation (it evaluates
w = 0 for the real causal edge and w = 0.014 for the wrong one). Algorithm 1
infers the correct tree, the numbers represent the values of the estimator m.

Nowadays this kind of analysis can be done at a higher resolution, making this
dataset rather outdated. Nevertheless, it can still serve as a perfectly good
test-case for our approach. The seven most commonly occurring events are
selected from the 87 samples, and the set of events are the following gains and
losses on chromosomes arms G = {8q+, 3q+, 1q+, 5q−, 4q−, 8p−, Xp−} (e.g.,
4q− denotes a deletion of the q arm of the 4th chromosome).

In Figure 6 we compare the trees reconstructed by the two approaches. Our
technique differs from Desper’s by predicting the causal sequence of alterations

8q+ → 8p− → Xp− .

Notice that all the samples in the dataset are generated by the distribution
induced by the recovered tree, thus allowing to consider this dataset as noise-
free (algorithmically, this allows us to use the estimator for λ→ 0).

At this point, we do not have a biological interpretation for this result.
However, we do know that common cancer genes reside in these regions, e.g.
the tumor suppressor gene Pdgfr on 5q and the oncogene Myc on 8q), and loss
of heterozygosity on the short arm of chromosome 8 is very common5. Recently,
evidence has been reported that 8p contains many cooperating cancer genes [33].

In order to assign a confidence level to these inferences we applied both
parametric and non-parametric bootstrapping methods to our results. Essen-
tially, these tests consists of using the reconstructed trees (in the parametric
case), or the probability observed in the dataset (in the non-parametric case) to
generate new synthetic datasets, and then reconstructs again the progressions
(see, e.g., [34] for an overview of these methods). The confidence is given by
the number of times the trees in Figure 6 are reconstructed from the gener-

5See e.g., http://www.genome.jp/kegg/
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Figure 5: Reconstruction with noisy synthetic data and λ = 1/2. Perfor-
mance of Algorithm 1 and oncotrees as a function of the number of samples and
noise ν. According to Figure 1 the shrinkage coefficient is set to λ = 1/2. The
magnified image shows the convergence to Desper’s performance for ν ≈ 0.1.
The barplot represents the percentage of times the best performance is achieved
at ν = 0.

ated data. A similar approach can be used to estimate the confidence of every
edge separately. For oncotrees the exact tree is obtained 83 times out of 1000
non-parametric resamples, so its estimated confidence is 8.3%. For our algo-
rithm the confidence is 8.6%. In the non-parametric case, the confidence of
oncotrees is 17% while ours is much higher: 32%. For the non-parametric case,
edges confidence is shown in Table 7. Most notably, our algorithm reconstructs
the inference 8q+ → 8p− with high confidence (confidence 62%, and 26% for
5q− → 8p−), while the confidence of the edge 8q+→ 5q− is only 39%, almost
the same as 8p− → 8q+ (confidence 40%).

Analysis of other datasets. We report the differences between the recon-
structed trees also based on datasets of gastrointestinal and oral cancer ([29, 31]
respectively). In the case of gastrointestinal stromal cancer, among the 13 CGH
events considered in [29] (gains on 5p, 5q and 8q, losses on 14q, 1p, 15q, 13q,
21q, 22q, 9p, 9q, 10q and 6q), the branching trees identify the path progression

1p− → 15q− → 13q− → 21q−

while Algorithm 1 reconstructs the branch

1p− → 15q− 1p− → 13q− → 21q − .

In the case of oral cancer, among the 12 CGH events considered in [31] (gains
on 8q, 9q, 11q, 20q, 17p, 7p, 5p, 20p and 18p, losses on 3p, 8p and 18q), the
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Figure 6: Oncotree reconstruction of ovarian cancer progression. Trees
reconstructed by branching trees and with Algorithm 1 (for λ → 0). The set
of CGH events considered are gains on 8q, 3q and 1q and losses on 5q, 4q, 8p
and Xp. Events on chromosomes arms containing the key genes for ovarian
cancer are in bolded circles. In the left tree all edge weights are the observed
probabilities of events. In the right the full edges are the causation inferred
with the pr and the weights represent the normalizes coefficients of Algorithm
1. Weights on dashed lines are as in the left tree.

reconstructed trees differ since oncotrees identifies the path

8q+→ 20q+→ 20p+

while our algorithm reconstructs the path

3p− → 7p+→ 20q+→ 20p+ .

These examples show that Algorithm 1 provides important differences in the
reconstruction compared to the branching trees.

6 Discussion and future works

In this work we have introduced a novel theoretical framework for the recon-
struction of the causal topologies underlying cumulative progressive phenomena,
based on the probability raising notion of causation. Besides such a probabilistic
notion, we also introduced the use of a shrinkage estimator to efficiently unravel
ambiguous causal relations, often present when data are noisy. As a first step
towards the definition of our new framework, we have here presented an effective
novel technique for the reconstruction of tree or, more in general, forest models
of progression which combines probabilistic causation and shrinkage estimation.

We compared this technique with a standard approach based on correlation,
and show that our method outperforms the state-of-the-art on synthetic data,
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Oncotrees (overall confidence 8.3%)
→ 8q+ 3q+ 5q− 4q− 8p− 1q+ Xp−
� .99 .06 .51 .22 .004 .8 .06

8q+ 0 .092 .08 0.16 0.4 .02 .007
3q+ .002 0 .04 0 0 .09 .04
5q− .001 .002 0 .52 .39 .009 .16
4q− 0 0 .27 0 .14 .05 .11
8p− 0 0 .07 .08 0 .004 .59
1q+ 0 0 0 .004 0 0 0
Xp− 0 0 .003 .003 .04 .01 0

Algorithm 1 (overall confidence 8.6%)
→ 8q+ 3q+ 5q− 4q− 8p− 1q+ Xp−
� .99 .06 .51 .22 .004 .8 .06

8q+ 0 .92 .06 .16 .62 .01 .008
3q+ .002 0 .03 .002 0 .09 .04
5q− .001 .002 0 .5 .26 .009 .17
4q− 0 0 .29 0 .09 .05 .12
8p− 0 0 .07 .08 0 .004 .59
1q+ 0 0 0 .004 0 0 0
Xp− 0 .001 .003 .004 .01 .01 0

Figure 7: Estimated confidence for ovarian progression. Frequency of
edge occurrences in the non-parametric bootstrap test, for the trees shown in
Figure 6. Colors represent confidence: light gray is < .4%, mid gray is .4%÷.8%
and dark gray is > .8%. Bold entries are the edges recovered by the algorithms.

also exhibiting a noteworthy efficiency with relatively small datasets. Further-
more, we tested our technique on low-resolution CNV cancer data6. This analy-
sis suggested that our approach can infer, with high confidence, novel causal re-
lationships which would remain unpredictable by correlation-based techniques.
Even if the cancer data that we used is coarse-grained and does not account
for, e.g. small-scale mutations and epigenetic information, we remark that this
technique can be applied to data at any resolution. In fact, it requires an input
set of samples containing some alterations (e.g. cancer mutations), supposed to
be involved in a certain causal process. The results of our technique can be used
not only to describe the progression of the process, but also to classify. In the
case of cancer, for instance, this genome-level classifier could be used to group
patients and to set up a genome-specific therapy design.

Several future research directions are possible. Firstly, more complex models
of progression, e.g. directed acyclic graphs, could be inferred with probability
raising and compared to the standard approaches of [12, 13, 36], as we explained
in the introduction. These models, rather than trees, could explain the common
phenomenon of preferential progression paths in the target process via, e.g.,
confluence among events. In the case of cancer, for instance, these models

6This data is rather dated at this point and we are working to apply our work to more
recent Next Generation Sequencing (NGS) data from which we are extracting CNVs using
publicly available tools in the Galaxy pipeline [35].
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would be certainly more suitable than trees to describe the accumulation of
mutations.

Secondly, the shrinkage estimator itself could be improved by introducing,
for instance, different correction factors. In addiction, an analytical formulation
of the optimal shrinkage coefficient could be investigated by starting from the
hypotheses which apply to our problem setting, along the lines of [20].

Besides, advanced statistical techniques such as bootstrapping [34] could be
used to account for more sophisticated models of noise within data, so to deci-
pher complex causal dependencies. Finally, a further development of the frame-
work could involve the introduction of timed data, so to extend our techniques
to settings where a temporal information on the samples is available.

Acknowledgments. This research was funded by the NSF grants CCF-0836649
and CCF-0926166 and by Regione Lombardia (Italy) under the research projects
RetroNet through the ASTIL [12-4-5148000-40]; U.A 053 and NEDD Project
[ID14546A Rif SAL-7] Fondo Accordi Istituzionali 2009.

References

[1] D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: The next genera-
tion,” Cell, vol. 144, pp. 646–674, 2011.

[2] J. Luo, N. L. Solimini, and S. J. Elledge, “Principles of cancer therapy:
Oncogene and non-oncogene addiction,” Cell, vol. 136, pp. 823–837, Mar.
2009.

[3] B. Vogelstein and K. Kinzler, “Cancer genes and the pathways they con-
trol,” Nature medicine, vol. 10, no. 8, pp. 789–799, 2004.

[4] S. A. Frank, Dynamics of Cancer. Princeton University Press, 2007.

[5] D. Bell, A. Berchuck, M. Birrer, J. Chien, D. Cramer, F. Dao, R. Dhir,
P. DiSaia, H. Gabra, and P. Glenn, “Integrated genomic analyses of ovarian
carcinoma,” 2011.

[6] M. Imielinski et al., “Mapping the hallmarks of lung adenocarcinoma with
massively parallel sequencing,” Cell, vol. 150, no. 6, pp. 1107–1120, 2012.

[7] B. Vogelstein, E. R. Fearon, S. R. Hamilton, S. E. Kern, A. C. Preisinger,
M. Leppert, A. M. Smits, and J. L. Bos, “Genetic alterations dur-
ing colorectal-tumor development,” New England Journal of Medicine,
vol. 319, no. 9, pp. 525–532, 1988.

[8] R. Desper, F. Jiang, O. Kallioniemi, H. Moch, C. Papadimitriou, and
A. Schäffer, “Inferring tree models for oncogenesis from comparative
genome hybridization data,” Journal of Computational Biology, vol. 6,
no. 1, pp. 37–51, 1999.

18

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 25, 2013. ; https://doi.org/10.1101/000919doi: bioRxiv preprint 

https://doi.org/10.1101/000919


[9] R. Desper, F. Jiang, O. Kallioniemi, H. Moch, C. Papadimitriou, and
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A Supplementary Materials

A.1 Proofs

Here the proofs of all the propositions and theorems follow.

Proof of Proposition 1 (Dependency).

Proof. For ⇒ write P(a, b) = P(b)− P(a, b), then write the pr as

P(a, b)

P(a)
>
P(b)− P(a, b)

1− P(a)

and, since 0 < P(a) < 1, the proposition follows by simple algebraic arrange-
ments of P(a, b) · [1 − P(a)] > P(a)P(b) − P(a, b) · P(a). The derivations are
analogous but in reverse order for the implication ⇐.

Proof of Proposition 2 (Mutual probability raising).

Proof. The proof follows by Property 1 and the subsequent implication:

P(b | a) > P(b | a)⇔ P(a, b) > P(a)P(b)⇔ P(a | b) > P(a | b) .

Proof of Proposition 3 (Probability raising and temporal priority).

Proof. We first prove the left-to-right direction ⇒. Let x = P(a, b), y = P(a, b)
and z = P(a, b). We have two assumptions we will use later on:

1. P(a) > P(b) which implies P(a, b) < P(a, b), i.e. x < z.

2. P(a | b) > P(a | b) which, when 0 < x+y < 1, implies by simple algebraic
rearrangements the inequality

y[1− x− y − z] > xz . (13)

We proceed by rewriting P(b | a)/P(b | a) > P(a | b)/P(a | b) as

P(a, b)P(a)

P(a, b)P(a)
>
P(a, b)P(b)

P(a, b)P(b)

which means that

P(b | a)

P(b | a)
>
P(a | b)
P(a | b)

⇐⇒ P(a)

P(a, b)P(a)
>

P(b)

P(a, b)P(b)
(14)

We can rewrite the right side of (14) by using x, y, z where P(a) = P(a, b)+
P(a, b) = y+z and P(b) = P(a, b)+P(a, b) = x+y, and then do some algebraic
manipulations. We have

1− y − z
x(y + z)

>
1− x− y
z(x+ y)

⇐⇒ yz−y2z−xz2−yz2 > xy−x2y−x2z−xy2 (15)
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when x(y + z) 6= 0 and z(x+ y) 6= 0. To check that the right side of (15) holds
we show that

(xy − x2y − x2z − xy2)− (yz − y2z − xz2 − yz2) < 0 .

First, we rearrange it to (x− z)[y − y2 − xz − y(x+ z)] < 0 so to show that

(x− z)[y(1− y − x− z)− zx] < 0 (16)

is always negative. By observing that, by assumption 1 we have z > x and thus
(x− z) < 0, and, by equation (13) we have y(1− y− x− z)− zx > 0, we derive

P(b | a)

P(b | a)
>
P(a | b)
P(a | b)

which concludes the ⇒ direction.
The other direction ⇐ follows immediately by contraposition: assume that

P(a | b) > P(a | b), P(b | a)/P(b | a) > P(a | b)/P(a | b) and P(b) ≤ P(a). We
distinguish two cases:

1. P(b) = P(a), then P(b | a)/P(b | a) = P(a | b)/P(a | b).

2. P(b) < P(a), then by symmetry P(b | a) > P(b | a), and by the ⇒ direc-
tion of the proposition it follows that P(b | a)/P(b | a) < P(a | b)/P(a | b).

In both cases we have a contradiction. This finishes the proof.

Proof of Proposition 4 (Monotonic normalization).

Proof. We prove the left-to-right direction ⇒, the other direction follows by a
similar argument. Let us assume

P(b | a)

P(b | a)
>
P(a | b)
P(a | b)

(17)

then P(b | a)P(a | b) > P(a | b)P(b | a). Now, to show the righthand side of the
implication, we will show that[
P(b | a)−P(b | a)

][
P(a | b)+P(a | b)

]
>
[
P(b | a)+P(b | a)

][
P(a | b)−P(a | b)

]
which reduces to show

P(b | a)P(a | b)− P(b | a)P(a | b) > P(b | a)P(a | b)− P(b | a)P(a | b) .

By (17), two equivalent inequalities hold

P(b | a)P(a | b)− P(b | a)P(a | b) > 0

P(b | a)P(a | b)− P(b | a)P(a | b) < 0

and hence the implication holds.
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Proof of Proposition 5 (Coherence in dependency and temporal pri-
ority).

Proof. We make two assumptions:

1. P(b | a) > P(b | a) which implies αa→b > 0.

2. P(a, b) > P(a)P(b) which implies βa→b > 0.

The proof regarding dependency follows by Property 1 and its implication:

P(b | a) > P(b | a)⇔ P(a, b) > P(a)P(b)⇔ αa→b > 0⇔ βa→b > 0.

Moreover, being β symmetric by definition, the proof regarding temporal prior-
ity follows directly by Property 2

Proof of Theorem 1 (Independent progressions).

Proof. For each candidate cause, αai→b > 0 by definition. According to the
correlation filter, the connection � → b is picked in favor of ak∗ → b, where
k∗ = maxi{mai→b | ai ∈ G∗} if, for any ai, it holds

1

1 + P(b)
>

P(ai)

P(ai) + P(b)

P(ai, b)

P(ai)P(b)

which, with some algebraic manipulations, rewrites as

P(ai, b) <
P(ai) + P(b)

P(ai)[1 + P(b)]
P(ai)P(b) .

In other words, it is required that at least one of the candidate causes ai has a
minimum level of positive statistical dependency with b. Let us define

γ =
P(ai) + P(b)

P(ai)[1 + P(b)]

so to have P(ai, b) = γ[P(ai)P(b)] + δ, with δ ≥ 0. We remark that αai→b > 0
implies γ > 1 by Proposition 1 and that this condition is the same implied
by the correlation filter. Also, since P(ai, b) is bounded above by P(b), by
substituting in γ we find the maximum γ in the limit of δ = 0 to be 1/P(ai).
Therefore, the correlation filter is implying a non-negative threshold to the
shrinkage estimator.

Proof of Theorem 2 (Algorithm correctness).

Proof. It is clear that Algorithm 1 does not create disconnected components
since, to each node in G, a unique parent is attached (either from G or �). For
the same reason, no transitive connections can appear.

The absence of cycles results from Properties 3, 4 and 5. Indeed, suppose
for contradiction that there is a cycle (a1, a2), (a2, a3), . . . , (an, a1) in E, then
by the three propositions we have

P(a1) > P(a2) > . . . > P(an) > P(a1)

which is a contradiction.
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Figure 8: Reconstruction with noisy synthetic data and λ → 0. The
settings of the experiments are the same as those used in Figure 5, but in this
case the estimator is shrank to α by λ → 0, i.e. λ = 0.01. In the magnified
image one can sees that the performance of Algorithm 1 converges to Desper’s
one already for ν ≈ 0.01, hence largely faster than in the case of λ ≈ 1/2 (Fig.
5).

A.2 Further results

We show here the results of the experiments discussed but not presented in the
main text.

Reconstruction of noisy synthetic data with λ→ 0. Although we know
that λ → 0 is not the optimal value of the shrinkage coefficient for noisy data,
we show in Figure 8 the analogue of Figure 5 when the estimator is shrank to
α by λ → 0, i.e. λ = 0.01. When compared to Figure 5 it is clear that a best
performance of Algorithm 1 is obtained with λ ≈ 1/2, as suggested by Figure 1.
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