
Genomic architecture of human 
neuroanatomical diversity

Roberto Toro1,2,3*, Jean-Baptiste Poline4,5, Guillaume 
Huguet1,2,3, Eva Loth6,7, Vincent Frouin5, Tobias Banaschewski8, 
Gareth J Barker6, Arun Bokde9, Christian Büchel10, Fabiana M 
Carvalho6,7, Patricia Conrod6,11, Mira Fauth-Bühler16, Herta 
Flor12, Jürgen Gallinat13, Hugh Garavan9,14, Penny Gowland14, 
Andreas Heinz13, Bernd Ittermann15, Claire Lawrence20, Hervé 
Lemaître17,18, Karl Mann16, Frauke Nees12, Tomáš Paus19-21, 
Zdenka Pausova22, Marcella Rietschel23, Trevor Robbins24, Mi-
chael N Smolka25,26, Andreas Ströhle13, Gunter Schumann6,7†, 
Thomas Bourgeron1,2,3† and the IMAGEN consortium 
(www.imagen-europe.com)1

Human brain anatomy is strikingly diverse and highly
inheritable: genetic factors may explain up to 80% of
its variability. Prior studies have tried to detect ge-
netic variants with a large effect on neuroanatomical
diversity,  but  those currently  identified  account  for
<5% of  the variance. Here  we show,  based on our
analyses of neuroimaging and whole-genome geno-
typing data from 1,765 subjects, that  up to 54% of
this  heritability  is  captured by  large  numbers of
single  nucleotide  polymorphisms  of  small  effect
spread  throughout  the  genome,  especially  within
genes  and  close  regulatory  regions.  The  genetic
bases of neuroanatomical  diversity appear to be rel-
atively  independent  of  those  of  body  size  (height),
but shared with those of  verbal  intelligence scores.
The study of this genomic architecture should help
us better understand brain evolution and disease.
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INTRODUCTION

Family studies show that a large part of the variability of differ-
ent  human brain structures  is  determined by genetic  factors.
Because we know a priori  the degree of genetic relationship
between monozygotic and dizygotic twins, or between mem-
bers of a family, we can decompose the variability of a pheno-
type into genetic and environmental components. Various stud-
ies have demonstrated in this way that neuroanatomical pheno-
types, such as brain volume or cortical surface, are highly in-
heritable, with genetic factors accounting for up to 80% of their
variability (Winkler et al., 2010; Stein et al., 2012; Blokland, de
Zubicaray, McMahon, & Wright, 2012). These results are par-
ticularly important for psychiatric research. Different psychiat-
ric disorders have been associated with characteristic changes
in brain anatomy, such as a higher incidence of macrocephaly
and increases of white matter volume in autism (Amaral, Schu-
mann,  & Nordahl,  2008),  or  reduced  hippocampal  and  total
brain volumes in  schizophrenia  (Steen et  al.,  2012).  If  these
characteristic changes are  modulated by the subject's  genetic
background,  then  this  background  may  act  as  a  protective
factor  or  as  a  risk factor  for  the development  of  psychiatric
conditions.

Whereas family studies can inform us about the heritability of a
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trait,  different approaches are required to determine the nature
of the genetic factors involved. Various efforts have been made
to  go  deeper  into  the  genetics  of  neuroanatomical  diversity
through candidate-gene approaches or through agnostic,  gen-
ome-wide association studies  (Bis  et  al.,  2012;  Ikram et  al.,
2012; Stein et al., 2012). These approaches have provided im-
portant  insights  on the genetic  bases  of  neuroanatomical  di-
versity, however, for the moment they account for only a small
proportion of the phenotypic variance.

Here we used a recently developed approach (Yang et al., 2010,
2011),  were  the  combined  effect  of  hundreds  of  thousands
SNPs is considered in a single test – instead of the massive uni-
variate  testing  approach  of  classic  genome-wide  association
studies (GWAS).  We studied a large cohort of 1,765 adoles-
cents from the IMAGEN project  (Schumann et al., 2010), for
whom neuroimaging,  whole-genome genotyping  and  behavi-
oural data was available. As in twin and family studies, we es-
timated the amount of  phenotypic  variance explained by ge-
netic relationships among subjects. By contrast, instead of  us-
ing  expected relationships based on  pedigree, we used a gen-
ome-wide  average  of  the  difference  in  genotyping  at  each
single nucleotide polymorphism (SNP) between unrelated sub-
jects. By using different sets of SNPs to compute genetic rela-
tionships, we were able to partition neuroanatomical variance
into different SNP sets and investigate the genomic architecture
of neuroanatomical diversity at a level of granularity intermedi-
ate between that of family studies and candidate-gene or gen-
ome-wide association studies. Finally, we used simulated phen-
otypes to estimate the minimum number of causal SNPs likely
to produce our observed results.

RESULTS AND DISCUSSION

Brain scans were obtained from a cohort of 2,089 adolescents
(14.5±0.4 years old, 51% females)  from the IMAGEN project
(http://imagen-europe.com)  using magnetic resonance imaging
in 8 European centres. We measured intracranial volume (ICV),
total brain volume (BV), as well as the volume of the hippo-
campus (Hip), thalamus (Th), caudate nucleus (Ca), putamen
(Pu),  globus pallidus  (Pa),  amygdala (Amy) and nucleus ac-
cumbens  (Acc)  using  validated  automatic  segmentation  pro-
grams (Buckner et al., 2004; Cox, 1996; Jenkinson, Bannister,
Brady, & Smith, 2002; Patenaude, Smith, Kennedy, & Jenkin-
son, 2011; Smith et al., 2004; Zhang, Brady, & Smith, 2001)
(Figure 1a, Supplementary Figure 1, Supplementary Table 1).
Individuals were whole-genome genotyped using Illumina 610-
Quad  and  Illumina  660W-Quad  chips.  After  various  quality
control filters, we conserved 269,308 informative, relatively in-
dependent  (R2<0.9)  SNPs in a cohort of 1,765 unrelated sub-
jects.

First,  we estimated the proportion of the phenotypic variance
explained by all SNPs with a linear mixed-effects model  with
the genetic relationship matrix as the structure of the covari-
ance between subjects using GCTA (Yang et al., 2010). We es-
timated through simulation that we had >50% statistical power
to find heritability values >45%, and >70% statistical power to
find heritability values >55% (see Methods section). In all our
analyses we included age, sex, and scanning centre as fixed ef-
fects.  To account for population structure effects,  we  also  in-
cluded  the  first  10  principal  components  (PCs)  of  the  iden-
tity-by-state (IBS)  matrix  as  covariates  (A.  L.  Price  et  al.,
2006). Figure 1b shows the estimated proportion of the pheno-
typic variance attributable to genetic variance (VG/VP) for the
neuroanatomical  structures under study (Supplementary Table
2). The figure includes  also  estimates of  VG/VP for height, as
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well as measurements of verbal intellectual quotient (VIQ) and
performance intellectual quotient (PIQ) based on the Wechsler
Intelligence  Scale  for  Children.  Our  estimates  for  height
(VG/VP=56%, P=0.0069), VIQ (VG/VP=56%, P=0.013) and PIQ
(VG/VP=52%, P=0.02) were statistically significant, and consist-
ent with those obtained previously in larger populations (Dav-
ies et al., 2011; Yang et al., 2010). A total of 12 statistical tests
were performed. Because of the correlation among phenotypes
a simple Bonferroni correction would be too conservative. In-
deed, a global test shows that there is a statistically significant
(P=0.0011) excess of P-values <0.05 (Methods section).

We found that a large proportion of the variance of neuroana-
tomical phenotypes was explained by the additive effect of gen-
otyped SNPs — for example, 44% (P=0.031) of the variance in
total brain volume (BV), 53% (P=0.01) of the variance in hip-
pocampal volume (Hip) and 54% (P=0.011) of the variance in
intracranial volume (ICV). Combined, the largest genome-wide
association studies to date for BV (Stein et al., 2012), Hip (Bis
et al.,  2012; Stein et al.,  2012) and ICV  (Ikram et al.,  2012;
Stein et al., 2012) (N~20,000) found 1 SNP associated to Hip
volume and another associated to ICV, each explaining < 0.5%
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Figure 1. a. Brain phenotypes. We measured intracranial volume (not represented), total brain volume (BV, in light grey) and several subcortical
structures, Ca: Caudate nucleus, Acc: Nucleus accumbens, Pu: Putamen, Pa: Pallidum, Amy: Amygdala, Hip: Hippocampus, and Th: Thalamus. b.
Variance captured by SNPs. Percentage of phenotypic variance (VP) due to inter-individual genetic relationships (VG), computed from all genotyped
SNPs. In addition to brain phenotypes, the bar plot includes estimates of VG/VP for height, VIQ and PIQ. c. Effect of covarying body size (height)
from brain phenotypes. The proportion of VG/VP after covarying height (red bars) did not change substantially compared with those in 1b (green
bars), and maintained their statistical significance. d. Effect of covarying VIQ from brain phenotypes. The proportion of VG/VP after covarying VIQ
(red bars) decreased especially for ICV and BV, where the estimates were no longer statistically significant (green bars: raw estimates from 1b). e.
Enrichment of variance captured by genic SNPs. Genic SNPs (gene boundaries ±50kbp) represent 64% of all SNPs. If all SNPs explained a similar
amount of variance, genic SNPs should explain 64% of the total variance explained by SNPs (dashed line, green bars). They explained significantly
more variance than expected for ICV, BV, Th and Pa; significantly less for Amy (red bars, error bars represent test variance). * P<0.05, ** P<0.01,
uncorrected.
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of the variance – of  the same order of magnitude as for  other
quantitative traits,  such as height.  Approximately 50% of the
additive  genetic  factors  affecting  neuroanatomical  variability
may be then  supported by a large number of SNPs,  each of
small effect.

To get an idea of the minimum number of SNPs likely to pro-
duce our  observed  results  we  simulated  10,000  phenotypes
with additive heritability of 50% produced by 1 to 1,000 causal
SNPs  and 10,000 phenotypes produced by 1 to 10,000 SNPs.
Causal SNPs were randomly selected from among the original
518k genotyped SNPs before R2 filtering (i.e., their effect may
be noticeable only  through linkage disequilibrium), and their
effect sizes drawn from a normal distribution  to obtain 50%
heritability.  We performed GWAS for  all our phenotypes,  and
recorded the order of magnitude of the smallest P-value, which
varied from 10-5.1 to  10-6.8  (Table  1). We then did the same for
each of the  20,000 simulated phenotypes.  Figure  2 shows the
proportion of simulations with smallest P-value of the order of
10-5, 10-6, etc., as a function of the number of causal SNPs used.
We observed that 95% of the phenotypes simulated with <220
causal SNPs had P-values  <10-8. By contrast, the order of the
smallest P-value in the GWAS for ICV, for example, was 10-5.95,
and 95% of simulations with smallest P-value <10-5.95 were pro-
duced by <850 causal SNPs. Similarly, the order of the smallest
P-value in the GWAS for BV was 10-6.8, and 95% of the simula-
tions with P-values smaller than that  were produced by <420
causal  SNPs.  If the distribution of effect sizes of causal SNPs

for ICV and BV were similar that used in our simulations, our
phenotypes should likely be produced by hundreds of causal
SNPs and possibly thousands of them.

The variance estimates for different brain structures were het-
erogeneous,  and appeared to  be differently related to  height,
VIQ and PIQ (Supplementary Table 2). For example, whereas
the variance explained by SNPs was high and statistically sig-
nificant for  the hippocampus (VG/VP=53%, P=0.01),  this was
not the case for the caudate nucleus (VG/VP=16%, P=0.25) — a
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Figure 2. Distribution of smallest P-value in the GWAS with simulated phenotypes as a function of the number of causal SNPs used to
generate them. Simulated phenotypes were produced with a number of causal SNPs varying from 1 to 1,000 (a), and from 1 to 10,000 (b). The effect
of causal SNPs were drawn from a normal distribution, and the heritability of the simulated phenotypes was fixed at 50%. Ninety five percent of
simulated phenotypes with <220 causal SNPs had a smallest P-value <10-8. By contrast, simulated phenotypes produced with >500 causal SNPs had
most often a smallest P-value of the order of 10-6 or 10-5. The top plot in (a) and (b) shows the most frequent order of magnitude of the smallest P-
value as a function of the number of causal SNPs.

Table 1. Order of magnitude of the smallest P-value in the 
GWAS for each phenotype.

Phenotype -log10(Smallest P-value)
ICV 5.95
BV 6.75
Hip 5.50
Th 5.72
Ca 5.91
Pu 5.49
Pa 5.67

Amy 5.14
Acc 5.60

Height 5.94
VIQ 5.32
PIQ 5.49
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structure of comparable volume, geometry, and variability, that
presents  a  similar  correlation  with  ICV  (rHip/ICV=0.51,
rCa/ICV=0.52)  and body size (rHip/Height=0.15,  rCa/Height=0.21).  This
shows that the estimates of VG/VP are not merely determined by
the structure’s volume or shape, and could rather reflect a vary-
ing influence of genetic and environmental factors. Our vari-
ance  estimates  were  not  significantly  affected  by  population
structure –  not including the 10 first principal components of
the IBS matrix changed on average the estimates of variance by
less  than  1%  (P=0.93).  The  estimates  of  variance did  not
change significantly either if height or PIQ were covaried (Fig-
ure  1c,  Supplementary  Table 2).  By contrast,  including VIQ
scores as covariate decreased substantially VG/VP estimates for
ICV and BV, but not for subcortical structures (Figure 1d). For
example, ICV has a moderate correlation with height and VIQ
(in our cohort rICV/Height=0.39 and rICV/VIQ=0.18). The estimate of
VG/VP for ICV was not significantly different if height was ad-
ded as a covariate, however, it decreased from 54% to 32% (no
longer statistically significant) if VIQ was included as a covari-
ate.  We performed bivariate  analyses  to  estimate the genetic
correlation between our phenotypes, i.e., the amount of genetic
variance  shared  by  each  pair  of  phenotypes (Supplementary
Table  3). In particular, these analyses showed indeed a strong
genetic  correlation  between  VIQ  and  ICV  (rG=0.95,
P=0.0047), and between VIQ and BV (rG=0.89, P=0.014), but
a small, not statistically significant, genetic correlation between
height and ICV (rG=0.20, P=0.25), and between height and BV
(rG=0.23, P=0.24). Genetic correlation was also weak between

PIQ and  ICV (rG=0.02,  P=0.48)  and  between  PIQ and  BV
(rG=0.02,  P=0.48).  More than 90% of brain volume (BV) is
constituted by the cerebral cortex and its  cortico-cortical  con-
nections. Our results suggest that the genetic bases of ICV and
BV  diversity may be shared to a larger  extent with those of
VIQ than with those of PIQ or body size (height). 

A large proportion of the genetic variance captured by SNPs
could be due to those located within genes and close regulatory
regions. We obtained 20,022 gene boundaries from the UCSC
Genome Browser hg18 assembly. We made a first set with all
SNPs  within  these  boundaries,  and  two further  sets  that  in-
cluded also SNPs 20kbp and 50kbp upstream and downstream
from the 5’ and 3’ untranslated regions of each gene. Next, we
computed genetic relationship matrices  for  those 3 SNP sets
(±0kbp,  ±20kbp  and  ±50kbp  genic  sets),  and  their  comple-
ments. Finally, for each of the 3 sets, we fitted the same linear
mixed-effects model as before (including age, sex, centre and
10  principal  components),  but  using  2  genetic  relationship
matrices instead of 1: the genic matrix and its complementary
nongenic matrix. Genic SNP sets explained up to 98% of the
variance captured by all SNPs (Supplementary Table 4), which
was in many cases significantly larger than what could be ex-
pected from set length alone (Figure 1e, Supplementary Table
5). For ICV, where 54% of the variance can be explained by all
genotyped SNPs (N=273,926),  using only SNPs within gene
boundaries (N=108,339) explained 26% of the phenotypic vari-
ance  (P=0.054),  and  this  proportion  increased  to  45%
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Figure 3.  VG/VP versus gene set length. The amount of variance captured by SNPs increased with the number of SNPs used to compute genetic-
relationship matrices. In most cases, this was only the case for genic SNPs (Ref.Seq.±50kpb). * P<0.01, ** P<0.001, *** P<0.0001, uncorrected.
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(P=0.0065)  when  the  boundaries  were  expanded  to ±20kbp
(N=146,431),  and  to  49%  (P=0.0058)  when  the  boundaries
were expanded to ±50kbp (N=174,334). The genic ±50kbp set
contained 64% of all genotyped SNPs, but explained 91% of
the variance of ICV attributable  to  SNPs,  significantly more
than what we would expect from its length alone (P=0.014).

Previous reports  have suggested that  causal SNPs for height
and  IQ  are  relatively  homogeneously  distributed  across  the
genome, and then, that increasing the number of SNPs used to
create a genetic-relationship matrix increases proportionally the
amount of phenotypic variance captured. We observed the same
trend for our neuroanatomical phenotypes. We partitioned the
genome into  non-overlapping  sets  with  different  numbers  of
SNPs, and observed a strong correlation between set length and
VG/VP (r=0.62 on average). The correlation was the same when
only genic  SNPs were selected (r=0.62),  but smaller,  and in
most  cases  not  statistically  significant  when  only  nongenic
SNPs were selected (Figure 3).

Finally,  we  partitioned  VG/VP based  on functional  annotation
(SNPs within genes involved in central nervous system func-
tion  (Lee  et  al.,  2012;  Raychaudhuri,  Korn,  &  McCarroll,
2010)), and relative minor-allele frequency. We did not observe
statistically  significant  differences in  the amount  of  variance
explained by these different SNP sets compared with the ex-
pectations based on their length (Supplementary Methods, Sup-
plementary Tables 6, 7).

In conclusion, our analyses indicate that a significant propor-
tion of the heritability of neuroanatomical phenotypes may res-
ult from the additive effect of  hundreds of small-effect SNPs
spread genome-wide.  Such SNPs seemed to be largely inde-
pendent from those related to body size (height) or reflecting
population  structure  in  our  cohort.  They  were  shared  to  a
greater extent, however, with those associated with VIQ in the
case of ICV and BV. An especially important role in determin-
ing neuroanatomical diversity appeared to be played by SNPs

within genes and close regulatory regions.

Even if our variance estimates are large, they are still far from
the estimates of additive genetic variance  from pedigree stud-
ies:  ~80% of the variance of various brain structures has been
attributed to additive genetic factors  (Stein et al., 2012). This
difference  may  be  due  to  a  weak  linkage  disequilibrium
between the genotyped SNPs and the real causative variants, to
rare alleles with larger effect sizes or  to  common alleles with
even smaller effect sizes. In any case, further progress will re-
quire cohorts  of maybe hundreds of thousands of individuals,
underlining the  necessity for international efforts such as the
ENIGMA and CHARGE consortia.

Recent studies have highlighted the importance of the additive
effect  of  SNPs  in  determining  anatomical  and  cognitive  di-
versity in humans, but also their role in psychiatric disorders. In
addition to the clear role of rare mutations in the susceptibility
to psychiatric disorders (Cook Jr & Scherer, 2008), whole-gen-
ome analyses  of  variance  have shown that  commonly  geno-
typed SNPs capture 23% of the risk to schizophrenia  (Cross-
Disorder  Group  of  the  Psychiatric  Genomics  Consortium,
2013; Lee et al., 2012), 24% of the risk to Alzheimer’s disease
(Lee et al., 2013), and from 17% to 60% of the risk to autism
spectrum disorders  (Cross-Disorder  Group of  the Psychiatric
Genomics  Consortium,  2013;  Klei  et  al.,  2012).  Due  to  the
small individual effect of these SNPs, GWAS will require very
large cohorts to explain any sizeable proportion of the trait’s
genetic  variance  (Park  et  al.,  2010).  Various  structural  and
functional  neuroimaging endophenotypes,  on the other  hand,
have  been  frequently  associated  with  psychiatric  disorders
(Meyer-Lindenberg & Weinberger, 2006), and their analysis us-
ing whole-genome regression could inform us about the added
effect of SNPs at a relevant intermediate level, closer to biolo-
gical  processes  than  cognitive  or  psychiatric  tests.  A global
view of the genomic architecture of neuroimaging endopheno-
types should not only allow us to better understand the biolo-
gical bases of the susceptibility to psychiatric disorders – help-
ing us, for example, to target future GWAS to more specific
chromosomal regions and brain structures – but also to improve
our understanding of the biological bases of brain diversity and
evolution in humans.

METHODS

Neuroimaging
Magnetic resonance imaging data were acquired at 8 European
centres,  using  a  standardised  3  Tesla,  T1-weighted  gradient
echo protocol (voxel size=1.1 mm isotropic) based on that from
the  ADNI  initiative
(http://adni.loni.ucla.edu/methods/documents/mri-protocols).
MRI  volumes  were  first  linearly  transformed  to  match  the
MNI152 atlas using FLIRT from FSL (Jenkinson et al., 2002;
Smith  et  al.,  2004)
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT). The inverse of the
determinant of the transformation matrix was used to estimate
intracranial  volume  (Buckner  et  al.,  2004).  Next,  skull  was
stripped  using  3dSkullStrip  from  AFNI  (Cox,  1996)
(http://afni.nimh.nih.gov),  and  the  grey  matter,  white  matter
and  cerebrospinal  fluid  were  automatically  segmented  using
FAST  (Zhang  et  al.,  2001)
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST).  The  skull-stripped
versions  of  the  brain  volumes,  and  the  tissue  segmentations
were visually inspected and manually corrected wherever ne-
cessary. Total brain volume was estimated as the sum of total
grey and white matter volumes. Finally, subcortical structures
were automatically segmented using FIRST (Patenaude et al.,
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Figure 4. Statistical power as a function of heritability.  Estimation
of statistical power obtained through simulation of 10,000 phenotypes
with different heritability values,  supported by a different number of
causal SNPs. We had >50% statistical power to find heritability values
>45%, and >70% statistical power to find heritability values >55%.
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2011) (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST), and their ac-
curacy visually controlled using in-house software. All volumes
were log10 converted. Their distribution is illustrated in Fig. S1.
Despite the differences in average volume (from ~1 cm3 for the
amygdala, to ~1,300 cm3 for total brain volume, Fig. S1), all
structures showed a similar variability – there was a ~1.8-fold
change from the smallest to the largest volume in the cohort.
The correlation matrix for all phenotypes analysed is shown in
Table S1.

Genotyping and quality control
We used  the autosomal  SNPs common to the  Illumina 610-
Quad  and  Illumina  660W-Quad chips,  and  strict  filtering  to
conserve high-quality SNPs only (minor-allele frequency >5%,
genotyping rate >99%, significance threshold for Hardy-Wein-
berg equilibrium test <10-6, subjects missing genotyping <10%,
using  PLINK  (Purcell  et  al.,  2007),
http://pngu.mgh.harvard.edu/~purcell/plink).  We  further  ex-
cluded SNPs in strong linkage disequilibrium (R2>0.9) within a
window of 50 SNPs to prevent colinearity in our analyses. The
final genotyping data consisted of 269,308 SNPs.

Estimation of variance captured by SNPs
The variance of a phenotype attributable to genetic factors is
classically  estimated  by  comparing  the correlation  between
pairs of monozygotic (MZ) and dizygotic (DZ) twins. Pairs of
MZ and DZ twins share a common maternal environment dur-
ing  foetal  life,  but  MZ twins  share  100% of  their  genomes
whereas DZ twins share on average 50% of it. If the variance
of the phenotype is affected by genetic factors, the correlations
between MZ twins will be larger than those observed in DZ
twins. The amount of variance due to genetic factors can be
then estimated using Falconer’s formula  (Falconer,  1965), or
more accurately,  by using the restricted maximum likelihood
method  (Corbeil  &  Searle,  1976) (REML).  The  twin  study
design can be extended to the analysis of more complex family
relationships, by using the levels of relationship expected from
the pedigrees. In neuroscience, this approach has been success-
fully used to show that genetic factors explain an important part
of the variance of several neuroanatomical phenotypes such as
brain  volume  (Stein  et  al.,  2012),  cortical  surface  extension
(Winkler  et  al.,  2010) or white  matter  microstructure  (Ko-
chunov et al., 2010).
Twin and extended pedigrees studies provide important inform-
ation on the role of genetic factors in determining neuroana-
tomical phenotypes, but complementary approaches are needed
to investigate  the nature of these genetic factors. In the recent
years, several research groups have attempted to discover the
genetic bases of the high heritability of neuroanatomical pheno-
types by studying, for example, their association with SNPs in
candidate genes (BDNF  (Pezawas et al., 2004), microcephaly
genes (Rimol et al., 2010), etc.) or through genome-wide asso-
ciation studies (Bis et al., 2012; Ikram et al., 2012; Stein et al.,
2012). Yet these findings explain today only a minute part of
the phenotypic variability.

The  approach that we used  here, implemented by the GCTA
software  (Yang  et  al.,  2010,  2011)
(http://www.complextraitgenomics.com/software/gcta),  estim-
ates the variance captured by a large number of SNPs (mod-
elled as random effects), providing information at a level inter-
mediate  between  twin  studies  and  association  studies.  Like
twin and extended pedigree studies, GCTA estimates the part of
the phenotypic variance due to the matrix of genetic relation-
ships among subjects. But instead of using levels of genetic re-
lationship expected a priori from a pedigree, these levels are
computed from genotyping data  (Lynch & Ritland, 1999; Rit-

land, 1996; Yang et al., 2010). The relationship between pheno-
type variance Var(y), the variance of the additive genetic effects

σg
2

, and the residual variance σe
2

 is formulated as fol-
lows:

Var ( y)=Gσg
2+Iσe

2
,

where  G is the genetic relationship matrix, containing the de-
gree of  genetic  relationship,  and  I is  the identity  matrix.  In
GCTA the level of genetic relationship between each pair of in-
dividuals j and k – the entries of the G matrix – is calculated as
a weighted average across all SNPs:

G jk={ 1
N ∑

i=1

N (xij−2pi)(xik−2pi)
2pi (1− pi)

, if j ≠ k

1+ 1
N
∑
i=1

N xij
2−(1+2pi) xij+2pi

2

2pi(1− pi)
, if j=k

,

where xij equals 0, 1 or 2 depending on whether the genotype of
the i-th SNP of the j-th subjects is AA, AB or BB; pi is the al-
lele frequency of SNP  i; and  N is the number of SNPs con-
sidered in the analysis (in our case,  N=269,308). The level of
genetic relationship between two subjects is then a single value
summarising how similar their genomes are.

GCTA estimates  variance components  using  the Average  In-
formation REML  (Gilmour,  Thompson, & Cullis, 1995) (AI-
REML) method – a variant of the classic REML that provides a
more efficient estimation even if the G matrix is large. The stat-
istical significance of the genetic variance estimates (the P-val-
ues reported here) were computed using a maximum likelihood
ratio test (LRT) comparing the complete model which includes
the  genetic  effect,  to  a  partial  model  which  excludes  it.  In
REML analyses, LRT values are distributed as a 50% mixture
of 0 and a Chi-square with degrees of freedom (df) equal to the
number of genetic relationship matrices being tested. The LRT
values and the corresponding degrees of freedom for the tests
are indicated in the LRT column of Supplementary Tables S2,
S4, S6-7.

Confounding factors
Several confounding factors  could affect  our  variance estim-
ates. For all our analyses we included age, sex and scanning
centre  as  covariates.  Additional  analyses  including Pubertal
Development Scale scores (Carskadon & Acebo, 1993) did not
affect the results and this covariate was no longer  included in
the model. Population structure might also affect neuroanatom-
ical diversity or bias our variance estimates:

1. Our estimates could be affected by cryptic relatedness if our
cohort included subjects distantly related. In that case, pheno-
typic similarity could be partly due to shared environment ef-
fects  or  familial  causal  variants  not  captured by SNPs.  To
prevent this, we excluded subjects with a genetic relationship
> 0.025 (i.e., more related than 3rd or 4th cousins).

2. We used Admixture (Alexander, Novembre, & Lange, 2009)
(http://www.genetics.ucla.edu/  software/admixture  )  to  estim-
ate individual ancestry relative to the reference populations in
HapMap  3  (“The  International  HapMap  Project.,”  2003)
(http://hapmap.ncbi.nlm.nih.gov).  The  result  (Fig.  S2)
showed that individuals in our cohort have a strong European
ancestry component.
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3. It has been shown that including as covariates the first prin-
cipal components of the matrix of identity-by-state (IBS) dis-
tance  between  subjects  efficiently  accounts  for  population
structure effects  (A. L. Price et al., 2006; A. Price, Zaitlen,
Reich, & Patterson, 2010). Usually, the first 4 or 5 principal
components are included. Here, we included the first 10 prin-
cipal components in all our analyses. We observed, however,
that not including them affected only marginally our variance
estimates. On average, the difference between estimates in-
cluding and excluding the first  10 principal components of
the IBS matrix was of 0.6%, not significantly different (2-
tailed t-test, P=0.9346).

4.  Partitioning the variance explained by SNPs between genic
and  nongenic  showed  that  in  many  cases  the  former  ex-
plained significantly more variance than the latter (see bellow
for a description of the method). For example, SNPs within
genes ± 50kbp explain 91% of the total variance of ICV cap-
tured by SNPs. If  our estimates were driven by population
structure effects, we could expect an excess of Ancestry In-
formative Markers (AIMs) within the genic SNP set. We ob-
tained a list of 1,442 AIMs from Tian and collaborators (Tian
et al., 2008), 604 of which were contained in our SNP list.
There was no statistically significant difference in the number
of  AIMs  between  our  genic  and  nongenic  SNP sets  (375
genic  AIM versus  229  nongenic  AIMs,  Fisher's  exact  test
P=0.1723), and if anything, there was a tendency for AIMs to
be underrepresented within the genic SNP set (Fisher's exact
test P=0.0892).

These analyses suggest that population stratification effects did
not play a major role in the determination of neuroanatomical
variability in our cohort (Table S2).

Estimation of statistical power
We simulated 10,000 phenotypes with different heritability val-
ues,  supported by a different number of causal SNPs. We uni-
formly sampled heritability values in the range from 0 to 80%,
and number of causal SNPs from 1 to 10,000. The causal vari-
ants were selected from the non-pruned list  of SNPs (~518k
SNPs), but the genetic relationship matrices were computed us-
ing  only  SNPs  from the  pruned  set  (~270k SNPs).  In  con-
sequence, the effect of some of the causal variants  would be
only  captured  through  their  linkage  disequilibrium  with  the
SNPs retained in the pruned list. Statistical power achieved to
detect a given heritability was estimated as the proportion of
test with P<0.05 (Figure 4).

Correlation between SNP set size and VG/VP

We constructed genetic relationship matrices for 3 sets of non-
overlapping,  randomly selected,  SNPs of small,  medium and
large size. These sets were drawn from all genotyped SNPs, or
only from genic SNPs (Ref. Seq.±50kbp), or nongenic SNPs.
We ensured that small,  medium and large sets contained the
same number of SNPs in all 3 groups by selecting 20%, 30%
and 50% of the total number of nongenic SNPs, the less numer-
ous  group.  We performed  100 repetitions  of  this  procedure,
each  time  randomly  selecting  non-overlapping  sets  of  20%,
30% and 50% (20%+30%+50%=100%) of SNPs from all gen-
otyped SNPs, or only from the genic or nongenic subgroups.
For  each  repetition,  we  computed  the  correlation  between
VG/VP and set size. Correlation coefficients were converted to Z
values using Fisher’s transformation, and the distribution tested
against  the null-hypothesis  of  no correlation (2-tailed  t-test).
The  amount  of  variance  of  ICV,  BV,  subcortical  volumes,
height, VIQ and PIQ explained by the low, medium and long
sets correlated significantly with the size of the SNP set (Figure
2).

Partition of VG/VP

We partitioned VG/VP among non-overlapping sets of SNPs, for
example, genic and nongenic SNPs (2 sets) or SNPs of low,
medium and high minor-allele frequency (MAF, 3 sets), etc. We

computed  a  genetic  relationship  matrix  Gi  for  each  of
these n sets, and used them as random effects in our model. The

variance of  our  phenotypes  Var ( y)  was  therefore  de-
composed as

Var ( y)=∑
i=1

n

G iσgi
2 +I σe

2
,

where the number of sets would be n=2 for the case of a genic
versus nongenic partition, or n=3 in the case of a partition into
low, medium and high MAF.

The LRT columns in  Supplementary  Tables S4, S6-7 indicate
the value of the likelihood ratio test comparing the complete
model (including all genetic relationship matrices) to the partial
model that includes only the residual variance component. The
Pmodel columns indicate the statistical significance of these val-
ues given the number of variance components tested (degrees
of freedom).

As  a posteriori analyses, we tested whether the variance ex-
plained by one of these sets, genic SNPs for example, was lar-
ger than what could be expected given its number of SNPs. The
total genetic variance explained is

V T=∑
i=1

n

V i ;

where  N is the total number of SNPs, and  Ni the number of
SNPs in set i, i=1,...,n. If all SNP sets were equivalent, then the
amount of variance they explain should be simply proportional
to their length, and then

EV i=
N i

N
V T ,

where EVi is the expected amount of variance explained by the
i-th set. We wanted to test whether the difference  Vi-EVi was
significantly larger than 0, so we constructed a Z-score

Z i=
V i−EV i

√V test

,

where

V test=Var (V i−EV i) .

Note that Vi here is the estimated explained variance for group i
– a random variable; whereas  EVi is a fixed value. We com-
pared  the  observed  value  of  Zi with  those  obtained  from
>10,000 random permutations, where  n non-overlapping SNP
sets of size Ni were randomly sampled from all available SNPs
(without replacement).

Partition of VG/VP based on involvement in central nervous 
system function
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We looked at the proportion of VG/VP that could be attributed to
genes preferentially expressed in the central  nervous system,
playing a role in neuronal activity, learning, or involved in syn-
aptic  function.  We  used  the  set  of  2,725  genes  defined  by
Raychaudhuri  and  collaborators  (Raychaudhuri  et  al.,  2010)
and previously used in the SNP-based heritability analyses of
the  susceptibility  to  schizophrenia  by  Lee  and  collaborators
(Lee et al., 2012). We made 3 SNP sets: the 1st set, CNS+, con-
tained all SNPs within ±50 kbp of the 5’ and 3’ UTR of the
gene set (N=61,175, 23% of the total number of SNPs); the 2nd
set, CNS-, contained all the remaining genic SNPs (N=113,160,
42% of the total number of SNPs); and the 3rd set regrouped all
nongenic  SNPs.  As  before,  the  genetic-relationship  matrices
computed using these 3 SNP sets were used in a single linear
mixed model. We found that the amount of variance explained
by the CNS+ set was not significantly different than what we
expected from its size (Table S6).

Partition of VG/VP based on MAF
Allele frequency variations may provide hints about the evolu-
tionary history of a trait. We estimated the proportion of VG/VP

that can be attributed to sets of SNPs with low (5-20%), me-
dium (20-35%) and high (35-50%) minor  allele  frequencies.
SNPs in the low-frequency set were the most numerous, 48%
of all SNPs, followed by medium-frequency SNPs (30%), and
high-frequency alleles (22%). Table S7 shows the result of fit-
ting  a  linear  mixed  model  with  the  3  genetic-relationship
matrices computed using the low, medium and high-frequency,
in addition to the same fixed effects as previously. We could
expect each set to explain a fraction of the variance correspond-
ing to the proportion of the total number of SNPs they repres-
ent. Furthermore, because SNPs of high MAF are individually
more informative than those with low minor-allele frequency,
they could potentially explain more variance (the variance of
the genetic-relationship matrices increased from the low to the
medium to the high frequency set).  However,  the amount of
variance explained by the different sets was not significantly
larger than what we expected from their size.

Global test on P-values
We performed  our  analyses  on  12  correlated  phenotypes  (9
brain regions,  plus  Height,  VIQ and PIQ).  Because of  these
correlations,  a  standard  Bonferroni  correction  would  be  too
conservative.  Indeed,  after  Bonferroni  correction,  just  a  few
results would remain statistically significant. However, under
the null hypothesis we should expect around 5% of these tests
to be significant, but the observed number of  P-values <0.05
was much larger. To test the significance of this excess we con-
structed a statistic S from the list of P-values converted to Z-
values obtained for each phenotype:

S=∑
i=1

m

ISF ( pi) ,

where  m=12 is the number of tests performed and ISF stands
for the inverse survival function of the normal distribution. We
then generated the distribution of  S under the null hypothesis
by drawing from a multivariate Gaussian distribution with a
variance-covariance structure  given by the correlation matrix
across phenotypes (Table S1). The significance of the excess of
P-values was estimated as the proportion of scores under the
null hypothesis that were greater than the observed score. The
result of this global test is indicated at the final row of supple-
mentary tables S2, S4-6.
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