
Manuscript type: Article 

Recommended MBE section: Methods 

Evaluating the use of ABBA-BABA statistics to locate introgressed loci 

Simon H. Martin‡1, John W. Davey1, Chris D. Jiggins1 

 

1Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK 

‡ Corresponding Author: shm45@cam.ac.uk 

 

 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 2, 2014. ; https://doi.org/10.1101/001347doi: bioRxiv preprint 

https://doi.org/10.1101/001347
http://creativecommons.org/licenses/by/4.0/


ABSTRACT 

 

Several methods have been proposed to test for introgression across genomes. One method tests for a 

genome-wide excess of shared derived alleles between taxa using Patterson’s D statistic, but does not 

establish which loci show such an excess or whether the excess is due to introgression or ancestral 

population structure. Here, we use simulations and whole genome data from Heliconius butterflies to 

investigate the behavior of D when applied to small genomic regions, as has been attempted in several recent 

studies. We find that D is unreliable as it gives inflated values when effective population size is low, causing 

D outliers to cluster in genomic regions of reduced diversity. As an alternative, we propose a related statistic 

fd, a modified version of a statistic originally developed to estimate the genome-wide fraction of admixture. fd 

is not subject to the same biases as D, and is better at identifying introgressed loci. Finally, we show that 

both D and f outliers tend to cluster in regions of low genetic divergence, which can confound analyses 

aimed at differentiating introgression from shared ancestral variation at individual loci. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 2, 2014. ; https://doi.org/10.1101/001347doi: bioRxiv preprint 

https://doi.org/10.1101/001347
http://creativecommons.org/licenses/by/4.0/


INTRODUCTION 

 

Hybridization and gene flow between taxa play a major role in evolution, acting as a force against 

divergence, and as a potential source of adaptive novelty (Abbott et al. 2013). Although identifying gene 

flow between species has been a long-standing problem in population genetics, the issue has received 

considerable recent attention with the analysis of shared ancestry between humans and Neanderthals (for 

example, Yang et al. 2012; Wall et al. 2013). With genomic data sets becoming available in a wide variety of 

other taxonomic groups, there is a need for reliable, computationally tractable methods that identify, quantify 

and date gene flow between species in large data sets. 

 

A sensitive and widely used approach to test for gene flow is to fit coalescent models using maximum-

likelihood or Bayesian methods (Pinho and Hey 2010). However, simulation and model fitting are 

computationally intensive tasks, and are not easily applied on a genomic scale. A simpler and more 

computationally efficient approach that is gaining in popularity is to test for an excess of shared derived 

variants using a four-taxon test (Kulathinal et al. 2009; Green et al. 2010; Durand et al. 2011). The test 

considers ancestral ('A') and derived ('B') alleles, and is based on the prediction that two particular SNP 

patterns, termed 'ABBA' and 'BABA' (see Methods), should be equally frequent under a scenario of 

incomplete lineage sorting without gene flow. An excess of ABBA patterns is indicative of gene flow 

between two of the taxa, and can be detected using Patterson's D statistic (Green et al. 2010; Durand et al. 

2011; see Methods for details). However, an excess of shared derived variants can arise from factors other 

than recent introgression, in particular non-random mating in the ancestral population due to population 

structure (Eriksson and Manica 2012). It is therefore important to make use of additional means to 

distinguish between these alternative hypotheses, for example, by examining the size of introgressed tracts 

(Wall et al. 2013), or the level of absolute divergence in introgressed regions (Smith and Kronforst 2013). 

 

The D statistic was originally designed to be applied on a genome-wide or chromosome-wide scale, with 

block-jackknifing used to overcome the problem of non-independence between loci (Green et al. 2010). 

However, many researchers are interested in identifying particular genomic regions subject to gene flow, 

rather than simply estimating a genome-wide parameter. Theory predicts that the rate of gene flow should 
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vary across the genome, both in the case of secondary contact after isolation (Barton and Gale 1993) as well 

as continuous gene flow during speciation (Wu 2001). Indeed, a maximum likelihood test for speciation with 

gene flow devised by Yang (2010) is based on detecting this underlying heterogeneity. Moreover, adaptive 

introgression might lead to highly localized signals of introgression, limited to the particular loci under 

selection. 

 

Recent genomic studies have used FST to characterize heterogeneity in divergence across the genome, often 

interpreting the variation in FST as indicative of variation in rates of gene flow (for example, Hohenlohe et al. 

2010). However, it is well established that, as a relative measure of divergence, FST is dependent on the 

within-population genetic diversity (Charlesworth 1998), and is therefore an unreliable indicator of how 

migration rates vary across the genome. In particular, heterogeneity in purifying selection and recombination 

rate could confound FST-based studies (Noor et al. 2009, Hahn et al. 2012, Roesti et al. 2012, Cruickshank 

and Hahn, 2014). Several studies have begun to explore new approaches to characterize heterogeneity in 

patterns of introgression among small genomic regions. Green et al. (2010) identified candidate Neanderthal 

introgression regions in human genomes by locating 50 kb windows that showed deep coalescences in 

human populations. On average, these windows showed an excess of Neanderthal alleles, consistent with 

introgression. Garrigan et al. (2012) developed a likelihood ratio test to identify genomic windows that have 

been shared between Drosophila species. Models with and without gene flow were evaluated over 1 and 5 kb 

genomic windows. Windows showing a significantly better fit to the gene flow model were widely 

distributed across the autosomes, but scarce on the Z chromosome. Roux et al. (2013) used an ABC 

framework to fit models of single and variable introgression rates among protein-coding loci in Ciona 

species. Their results indicated strong heterogeneity among loci, and unidirectional introgression consistent 

with multiple incompatibilities between species. 

 

There have also been recent attempts to characterize heterogeneity in patterns of introgression across the 

genome using the D statistic, calculated either in small windows (Smith and Kronforst 2013, Kronforst et al. 

2013) or for individual SNPs (Rheindt et al. 2014). However, it is not clear how reliably D can be used to 

find the location of individual introgressed loci, and what factors might influence it. Any inherent biases of 

the D statistic when applied to specific loci have implications for methods that assume its robustness. For 
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example Smith and Kronforst (2013) made use of the D statistic in a proposed test to distinguish between the 

hypotheses of introgression and shared ancestral variation at wing-patterning loci of Heliconius butterflies. 

Two wing patterning loci are known to show an excess of shared derived alleles between co-mimetic 

populations of Heliconius melpomene and Heliconius timareta (Heliconius Genome Consortium, 2012). At 

one of these loci, phylogenetic evidence and patterns of linkage disequilibrium are consistent with recent 

gene flow (Pardo-Diaz et al. 2012). Nevertheless, Smith and Kronforst (2013) argue that this shared variation 

might represent an ancestral polymorphism that was maintained through the speciation event by balancing 

selection. Conceptually, this is not unlike the population structure argument of Eriksson and Manica (2012), 

except that here structure is limited to one or a few individual loci. 

 

Smith and Kronforst proposed that these alternatives could be distinguished by calculating absolute 

divergence. Introgression should lead to more recent coalescence and reduced divergence at the affected loci, 

while the locus-specific structure hypothesis should lead to an excess of shared derived alleles, but no 

reduction in absolute divergence compared to other loci in the genome. Loci showing evidence of shared 

ancestry were located by calculating the D statistic for each 5 kb window, and identifying outliers using an 

arbitrary cutoff (the 10% of windows with the highest D values). The mean absolute genetic divergence (dXY) 

was then compared between the outliers and non-outliers, and found to be significantly lower in outlier 

windows, consistent with recent introgression (Smith and Kronforst 2013). This method makes two 

assumptions: firstly, that the D statistic can accurately identify regions that carry a significant excess of 

shared variation, and secondly, that D outliers do not have inherent biases leading to their co-occurrence with 

regions of low absolute divergence. 

 

The robustness of the D statistic for detecting a genome-wide excess of shared derived alleles has been 

thoroughly explored (Green et al. 2010; Durand et al. 2011; Yang et al. 2012; Eaton and Ree 2013; Martin et 

al. 2013). However, it has not been established whether D provides a robust and bias-free means to identify 

individual loci that have introgressed. In the present study, we first assess the reliability of the D statistic as a 

means to quantify introgression. Using simulations of small sequence windows, we compare D to a related 

statistic that was developed by Green et al. (2010) specifically for estimating f, the proportion of the genome 

that has been shared, and we propose improvements to this statistic. We then use whole-genome data from 
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several Heliconius species to investigate how these statistics perform on empirical data, and specifically how 

they are influenced by underlying heterogeneity in diversity across the genome. Lastly, we use a large range 

of simulated data sets to test the proposal that recent gene flow can be distinguished from shared ancestral 

variation based on absolute divergence in D outlier regions. 
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RESULTS 

 

The D statistic is not an unbiased estimator of gene flow 

Patterson's D statistic was developed to detect, but not to quantify introgression. To test how sensitive the 

value of D is to various factors apart from the proportion of introgression, we used the derivation of Durand 

et al. (2011, Equation 5) to examine how various factors affect the expected value of D. Here, the proportion 

of introgression (f), corresponds to the proportion of haplotypes in the recipient population (P2) that trace 

their ancestry through the donor population (P3) at the time of gene flow (Figure 1A). The expected D value 

increases with the proportion of introgression (f), but not linearly (Figure 1B). Importantly, expected D 

increases as population size decreases (Figure 1B,C). The split times between populations also have a small 

effect, with a more recent split between P1 and P2 leading to higher expected values of D (Figure 1C). This 

indicates that the value of the D statistic is dependent on several parameters other than the amount of gene 

flow. 

 

Direct estimators of f outperform D on simulated data 

Analysis of simulated data confirmed that the D statistic is not an appropriate measure for quantifying 

introgression over small genomic windows, but that direct estimation of the proportion of introgression (f), 

provides a more robust alternative. The D statistic (Equation 1, Methods) was compared to three related 

estimators of f (Equations 4, 5 and 6, Methods). To compare the utility of these statistics for quantifying 

introgression in small genomic windows, we simulated sequences from four populations: P1, P2 and P3 and 

outgroup O, with a single instantaneous gene flow event, either from P3 to P2 or from P2 to P3. Simulations 

were performed over a range of different values of f (the probability that any particular haplotype is shared 

during the introgression event), and with various window sizes, recombination rates and times of gene flow. 

 

A subset of the results are shown in Figure 2, and full results are provided in Figure S1 A-I. In general, the D 

statistic proved sensitive to the occurrence of introgression, with strongly positive values for any non-zero 

value of f, but a poor estimator of the absolute value of f (Figure 2). Moreover, D values showed dramatic 

variance, particularly at low simulated values of f. Even in the absence of any gene flow, a considerable 

proportion of windows had intermediate D values. This variance decreased only marginally with increasing 
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window size and recombination rate (Figures S1A-I). 

 

We compared D to the f estimator of Green at al. (2010) (Equation 4), which is referred to as fG below, along 

with two proposed modified versions of this statistic (Equations 5 and 6). The first, fhom (Equation 5), is 

similar to fG in that it explicitly assumes unidirectional gene flow from P3 to P2, but makes a further 

assumption that maximal introgression would lead to complete homogenization of allele frequencies in P2 

and P3. This is a conservative assumption, as an extremely high rate of migration would be necessary to 

attain a maximal value of fhom. The second, fd (Equation 6), is dynamic in that it allows for bidirectional 

introgression on a site-by-site basis, setting the donor population at each site as that which has the higher 

frequency of the derived allele. In simulations of gene flow from P3 to P2, all three f estimators gave fairly 

accurate estimates of the simulated f value, provided gene flow was recent (Figures 2, S1A). When gene flow 

occurred further back in time, f estimators tended to give underestimates, but were nevertheless well 

correlated with the simulated f value (Figure S1A). In simulations of gene flow in the opposite direction, 

from P2 to P3, both fG and fhom showed considerable stochasticity, particularly when recombination rates were 

low and gene flow was recent (Figure S1A-I). The absolute size of the window had little effect on this 

behavior (S1A-I), implying that it was not an effect of the number of sites analyzed, but rather the level of 

independence among sites. Unlike these two statistics, fd behaved predictably at all recombination rates and 

times of gene flow, giving estimates that were fairly well correlated with the simulated f, but underestimating 

its absolute value (Figure 2, Figure S1A-I). Generally, the variance in fd was lower than in the other two f 

estimators (Figure S1A-I). Importantly, unlike the D statistic, fd displayed minimal variance at low simulated 

values of f (Figure 2). 

 

Although none of the examined measures was able to accurately quantify both forms of introgression in all 

cases, fd showed some appealing characteristics as a measure to identify introgressed loci in a genome scan 

approach. It had low variance and was not prone to false-positives when gene flow was absent and 

recombination rare. In all cases, it provided estimates that were proportional to the simulated level of 

introgression. Although it tended toward underestimates, genome scans for introgressed loci would primarily 

be interested in relative rates of introgression across the genome, rather than absolute rates. 
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f estimation is robust to variation in nucleotide diversity across the genome 

Analysis of published Heliconius whole-genome data confirmed that Patterson's D statistic was prone to 

extreme values in regions of low diversity, whereas f estimators were not. We re-analyzed published whole-

genome sequence data from two closely-related Heliconius butterfly species, Heliconius melpomene and 

Heliconius timareta, and four outgroup species from the related silvaniform clade. The races H. melpomene 

amaryllis and H. timareta thelxinoe are sympatric in Peru, and show genome-wide evidence of gene flow 

(Martin et al. 2013), with particularly strong signals at two wing-patterning loci: HmB, which controls red 

pattern elements, and HmYb which controls yellow and white pattern elements (Heliconius Genome 

Consortium 2012, Pardo-Diaz et al. 2012). To determine whether heterogeneity in diversity across the 

genome may influence the D and f statistics, these were calculated, along with nucleotide diversity, in non-

overlapping 5 kb windows across the genome. Variance in the D statistic was highest among windows with 

low nucleotide diversity (Figure 3A), and decreased rapidly with increasing diversity (Figure S3). Windows 

from the wing patterning loci were among those with the highest D values, but there were large numbers of 

additional windows with D=1 or thereabouts. By contrast, fd, calculated for all windows with positive D, was 

far less sensitive to the level of diversity, with most outlying windows showing intermediate levels of 

diversity (Figures 3B). Notable exceptions were windows located within the wing-patterning regions, which 

tended to have high fd values and below average diversity. This is consistent with the strong selection known 

to act upon the patterning loci. Most importantly, the vast majority of windows that had the highest D values 

were not among those with the highest f estimates, except for those at the wing patterning loci. Based on the 

simulation results above, we suggest therefore that most of the D outliers were spurious, and that fd provides 

a better measure of whether a locus has been subject to introgression. Finally, we also tested the other two f 

estimators described here: fG and fhom (Equations 4 and 5). Both performed similarly to fd except that both had 

higher variance (Figures S2,S3), and both gave a considerable number of values greater than one, confirming 

that fd was the most conservative and stable statistic.  

 

Taken together, these findings demonstrate that, when small genomic windows are analyzed, a high D value 

alone is not sufficient evidence for introgression. Many of the D outlier loci probably represent statistical 

noise, concentrated in regions of low diversity, whereas fd outliers tend to be less biased.  
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This effect could also be observed on the scale of whole chromosomes. The variance in D among 5 kb 

windows for each chromosome was strongly negatively correlated with the average diversity per 

chromosome (r(19)=-0.936, p<0.001) (Figure 3C). This relationship was most clearly illustrated by the Z 

chromosome: it had the lowest diversity by some margin, as expected given its reduced effective population 

size, and the highest variance among D values for 5 kb windows, despite the fact that previous analyses 

suggest very limited gene flow affecting this chromosome (Martin et al. 2013). By contrast, the variance in 

fd, estimated for all windows with positive D, had a weak positive correlation with the mean diversity per 

chromosome (r(19)=0.440, p<0.05). This was driven by the fact that the Z chromosome had the lowest 

diversity and also the lowest variance in fd, as expected given the reduced gene flow affecting this 

chromosome. When the Z chromosome was excluded, there was no significant relationship between the 

variance in fd values and average diversity (r(18)=0.092, p>0.05). In summary, these data show that extreme 

D values, both positive and negative, occur disproportionately in genomic regions with lower diversity, 

whereas fd values are less biased by underlying heterogeneity in genetic variation. 

 

Inherent biases in the D and f statistics confound a test to distinguish between introgression and 

shared ancestral variation 

The biases associated with the D statistic described above may have important consequences for methods 

that use D to identify candidate introgressed regions. For example, Smith and Kronforst (2013) proposed a 

method to discriminate between gene flow and shared ancestral variation that relies upon D values calculated 

for short genomic windows. Briefly, the Smith and Kronforst test calculated D for all 5 kb windows. 

Absolute divergence (dXY) was then compared between windows that were outliers (top 10%) for the D 

statistic and the remaining non-outlier windows. It makes intuitive sense that introgression between species 

at a specific genomic region should reduce the between-species divergence here as compared to the rest of 

the genome, while shared ancestry due to ancestral population structure would not lead to lower divergence. 

We first confirmed this prediction using simulations, and then assessed whether biases in the D statistic 

might affect the power of the method. 

 

To test the prediction that introgression and ancestral population structure leave distinct footprints in terms of 

absolute divergence, 10 000 sequence windows for three populations and an outgroup were simulated. 9000 
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windows were defined as 'Background', having the topology (((P1,P2),P3),O), without any gene flow or 

population structure. The remaining 1000 windows were defined as 'Alternate' and were subject to either 

gene flow or structure (see Methods for details). Ten percent of windows were defined as Alternate to match 

Smith and Kronforst’s design, wherein the top 10% of D values are taken as outliers. Three different 

Alternate scenarios were considered: gene flow from P2 to P3, gene flow from P3 to P2 and ancestral structure 

leading to shared ancestry between P2 and P3. The ancestral structure scenario is intended to model a region 

of the genome undergoing balancing selection or some other process that maintains polymorphism at 

particular loci prior to the speciation event. This was achieved by setting the topology of the simulated 

Alternate windows to ((P1,(P2,P3)),O) and altering the split times (Figure 4A-D). As a result, gene flow or 

structure in the Alternate windows can be considered to be complete (f=1). For example, under gene flow 

from P2 to P3, all P3 alleles trace their ancestry through P2 at the time of gene flow. This simplified design, 

where gene flow is absent in 90% of the sequences and complete in 10%, although biologically unlikely, 

allowed for the most straight-forward and predictable test of Smith and Kronforst's method; if the logic of 

the method does not follow in this design, it is unlikely to do so in more complex situations. 

 

For each of the three evolutionary scenarios, 120 different permutations of split times and times of gene flow 

or structure were simulated (Table S1). To simplify our comparisons between models, we focused 

specifically on dXY between P2 and P3, the most relevant parameter when testing for introgression between P2 

and P3. As predicted, in simulations using a recombination rate parameter (4Nr) of 0.01, in all models 

simulating gene flow, average dXY between P2 and P3 was significantly lower in Alternate windows compared 

to Background windows (p<4e-05 in all cases, 99% with Bonferroni correction over 240 tests; see Figure 

4E,F for examples). In contrast, in all models simulating ancestral population structure, there was no 

significant difference in P2-P3 dXY between the background and alternate windows, again in agreement with 

predictions (see Figure 4E,F for examples). These findings therefore demonstrate that the intuitive premise 

of Smith and Kronforst's (2013) method is justified. 

 

We then tested whether introgression could be distinguished from shared ancestral variation where loci with 

shared ancestry are not known (as would be the situation with empirical data), but are instead inferred by 

selecting the top 10% of D values (outliers), following the Smith and Kronforst method. We also tested this 
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method using the top 10% of f estimates among windows with positive D (using Equations 4, 5 and 6). Using 

the D statistic to identify outliers, mean dXY between P2 and P3 was significantly reduced in outlier windows 

as compared to non-outlier windows in 239 of 240 gene flow models (p<4e-05, 99% with Bonferroni 

correction over 240 tests; Table S1, Figures 4E,4F,5). The single non-significant case had gene flow from P2 

to P3, the most ancient possible t23 and the most recent possible t12, with D Outliers identifying only 11.9% of 

the Alternate windows (Table S1). Using any of the three f estimators,  mean dXY between P2 and P3 was 

significantly reduced in outlier windows in all 240 gene flow models (for each estimator, p<4e-05, 99% with 

Bonferroni correction over 240 tests; Table S1, Figures 4E,4F,5). 

 

However, mean P2-P3 dXY was also significantly reduced in D and f outliers in many of the 120 models 

simulating ancestral population structure (D: 104 models, fG: 67 models, fhom: 65 models, fd: 70 models, for 

each estimator, significant tests had p<4e-05, 99% significance level with Bonferroni correction over 240 

tests; Table S1, Figures  4G,5). This reduction tended to be much weaker than those under most gene flow 

models (Figures 4G,5), but was nevertheless often significant. This demonstrates that a simple test for 

reduced divergence in P2-P3 dXY among D or f outlier windows would, under a range of ancestral structure 

scenarios, produced results consistent with introgression. The fact that this bias was similar whether D or f 

estimators were used to identify outliers indicates that there is an inherent tendency in all of these statistics 

toward regions with below-average divergence between P2 and P3. To confirm this finding, we analyzed a set 

of simulations using a null model, with no gene flow or structure in any of the 10 000 windows, over 45 

permutations of split times. Outlier windows showed significantly reduced dXY between P2 and P3 in most or 

all of the null models (D: 39 models, fG: 45 models, fhom: 44 models, fd: 44 models, for each estimator, 

significant tests had p<2e-04, 99% significance level with Bonferroni correction over 45 tests; Table S1, 

Figures 4H,5). Finally, we repeated all of these simulations with a lower within-window recombination rate 

parameter (4Nr) of 0.01. This exaggerated the problems, with at most 3 of the ancestral structure models 

showing non-significant drops in P2-P3 dXY for outliers, whether they were defined by any of the statistics (for 

each statistic significant tests had p<4e-05, 99% significance level with Bonferroni correction over 240 tests; 

Table S1, Figures 4K,5). Similarly, 32 of the 45 null models showed significant drops in P2-P3 dXY for D 

outliers and all 45 null models, showed significant drops for outliers defined by the three f estimators (for 

each statistic p<2e-04, 99% significance level with Bonferroni correction over 45 tests; Table S1, Figure 4L). 
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In summary, although shared ancestral variation and introgression can theoretically be distinguished based 

on the fact that only the latter should reduce dXY between P2 and P3, an inherent bias in both the D and f 

statistics makes a simple test for a statistical difference in dXY between outliers and non-outliers problematic. 

Both D and f outliers tended toward windows with lower P2-P3 dXY, regardless of the underlying evolutionary 

history, and particularly when recombination rates were low. There were clear differences in the magnitude 

of the decrease in P2-P3 dXY between outlier and non-outlier windows that could potentially be used to 

distinguish introgression from shared ancestral variation, although a more sophisticated model-fitting 

approach would be necessary. 
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DISCUSSION 

 

With the advent of population genomics, studies of species divergence have moved from simply 

documenting inter-specific gene flow, towards the identification of specific genomic regions that show 

strong signals of either introgression or divergence (Heliconius Genome Consortium, 2012; Garrigan et al. 

2012; Staubach et al. 2012; Roux et al. 2013). This is a useful goal for many reasons. It can permit the 

identification of large-scale trends, such as chromosomal differences, and the fine-scale localization of 

putative targets of adaptive introgression for further characterization. Therefore, simple and easily 

computable statistics that can be used to identify loci with a history of introgression have considerable 

appeal. We have shown here that Patterson's D, which has recently been used for this purpose, is not reliable 

when applied on a small scale. Instead, estimation of f, the proportion of introgression, particularly using our 

proposed statistic fd, provides a better means to identify putatively introgressed regions. Nevertheless, both D 

and fd tend to identify regions of reduced inter-species divergence, even in the absence of gene flow, which 

may confound tests to distinguish between recent introgression and shared ancestral variation based on 

absolute divergence in outlier regions. 

 

Previous studies have explored the behavior of Patterson's D statistic, a test for gene flow based on detecting 

an inequality in the numbers of ABBA and BABA patterns, using whole genome analyses across large 

numbers of informative sites (Green et al. 2010; Yang et al. 2012; Eaton and Ree 2013; Martin et al. 2013; 

Wall et al. 2013). These studies have shown that D is a robust method to test for an excess of shared 

variation on a genome-wide scale. In particular, the non-independence among linked sites can be accounted 

for by block-jackknifing. However, the behavior of D in short genomic regions has not been previously 

investigated. Here, we document two main problems with the D statistic as a means to identify introgressed 

loci. Firstly, it is not an unbiased estimator of the amount of introgression that has occurred. In particular it is 

influenced by effective population size (Ne), leading to more extreme values when Ne is low. Secondly, when 

calculated over small windows, it is highly stochastic, particularly in genomic regions of low diversity and 

low recombination rate, such that D outliers will tend to be clustered within these regions. Local reductions 

in genetic diversity along a chromosome can come about through neutral processes, such as population 

bottlenecks, but also through directional selection. Therefore, these problems may be exacerbated in studies 
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specifically interested in loci that experience strong selective pressures, as this would increase the likelihood 

of detecting chance outliers at such loci. 

 

Direct estimation of f, the proportion of introgression, holds more promise as a robust method for detecting 

introgressed loci. Green et al. (2010) proposed that f could be estimated by comparing the observed 

difference in the number of ABBA and BABA patterns to that which would be expected in the event of 

complete introgression. As this expected value is calculated from the observed data, this method controls for 

differences in the level of standing variation, making it more suitable for application to small regions. In 

Green et al.'s approach, complete introgression from P3 to P2 was taken to mean that P2 would come to 

resemble a subpopulation of lineage P3. Here we make the conservative assumption that complete 

introgression would lead to homogenization of allele frequencies, such that the frequency of the derived 

allele in P2 would be identical to that in P3. Green et al.'s approach assumed unidirectional introgression from 

P3 to P2, but can lead to spurious values when introgression occurs in the opposite direction. We have 

therefore proposed a new, 'dynamic', estimator of f, in which the donor population can differ between sites, 

and is always the population with the higher frequency of the derived allele. Although this conservative 

estimator leads to slight underestimation of the amount of introgression that has occurred, it provides an 

estimate that is roughly proportional to the level of introgression, regardless of the direction. It is therefore a 

more suitable measure for identifying introgressed loci. This is supported by our analysis of whole-genome 

data from Heliconius butterflies, where many 5 kb windows had maximal D values (D=1) , but only a few 

had high fd values, the vast majority of which were located around the wing patterning loci previously 

identified as being shared between these species through adaptive introgression (Heliconius Genome 

Consortium 2012, Pardo-Diaz et al. 2012). 

 

The sensitivity of the D statistic to heterogeneous genomic diversity is likely to affect studies that have 

drawn conclusions from D statistics calculated for particular genome regions. For example, Wall et al. 

(2013) showed that long (8-100kb) haplotypes segregating in human populations showed evidence of a 

Neanderthal origin, as indicated by elevated D statistics. However, it may be that such haplotypes would be 

over-represented in low-recombination regions, which also tend to have reduced diversity in humans and 

many other species (Cutter and Payseur 2013). In another recent Heliconius study, FST was calculated for 5kb 
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windows across the genome. Windows showing increased differentiation between H. melpomene and H. 

pachinus (according to FST) also showed significantly elevated D statistics in a test for introgression between 

the same species pair (Kronforst et al. 2013). This illustrates how the sensitivity of both of the statistics to 

within-species diversity can produce conflicting results. This may especially be the case for studies using 

small genomic regions; at the extreme, Rheindt et al. (2014) calculated D for single SNPs and predicted that 

genes linked to SNPs with outlying D values are more likely to have been introgressed. 

 

In the present study, we asked whether biases in the D statistic could influence a recently proposed method to 

distinguish between introgression and shared ancestral variation (Smith and Kronforst 2013). The premise of 

this test is that introgression should result in an excess of shared derive alleles and a reduction in absolute 

divergence, whereas shared ancestral variation will exhibit the former but not the latter signature. Smith and 

Kronforst identified 5 kb windows that were outliers for D, and compared the absolute divergence (dXY) 

among populations in these outlier windows with dXY at non-outlier windows. In particular, reduced 

divergence between P2 and P3 among the outlier windows would be consistent with gene flow. Our 

simulations confirmed that the intuitive predictions of this method are valid, but also showed that this test 

can be misled by the use of D to identify outliers. Windows that were outliers for D exhibited below average 

dXY between P2 and P3, even in many simulations where gene flow or ancestral population structure were 

absent. Somewhat surprisingly, all three f estimators showed a similar bias, implying that it does not simply 

reflect the more stochastic nature of the D statistic. We hypothesize that D would have additional problems 

in real genomes, where selective constraint leads to a correlation between within-species diversity and 

between-species divergence, causing D outliers to be even more strongly associated with reduced dXY. It is 

notable that the reduction in divergence among D and f outliers was almost always greater in simulations 

with introgression, across a large range of split times and dates of gene flow. There may, therefore, be 

considerable information about the evolutionary history of DNA sequences present in the joint distribution of 

dXY and fd. On the other hand, in real data, levels of divergence can vary dramatically due to heterogeneity in 

selective constraint, mutation rate and recombination rate, which would exaggerate the problems described 

here. 
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Conclusions 

In an era of increasing availability of genomic data, there is a demand for simple summary statistics that can 

reliably identify genomic regions that have been subject to selection, introgression and other evolutionary 

processes. It seems unlikely, however, that any of these processes can be reliably distinguished from the 

genomic variability caused by demography and drift by any single summary statistic. This is most 

convincingly illustrated by the literature on selective sweeps, where ever more complex inferences from 

sequence data are being developed to infer a history of selection (Li et al. 2012). Here we have shown that, 

while Patterson’s D statistic provides a robust signal of shared ancestry across the genome, it should not be 

used for naïve scans to ascribe shared ancestry to small genomic regions, due to its tendency toward extreme 

values in regions of reduced variation. Estimation of f, particularly using fd, provides a better tool for the 

identification of introgressed loci. Analysis of dXY among D and f outliers to distinguish introgression from 

shared ancestral variation can be problematic. However, the joint distribution of dXY and f statistics may be a 

useful summary statistic for model-fitting approaches to distinguish between these evolutionary hypotheses. 
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MATERIAL AND METHODS 

 

Statistics used to detect shared ancestry 

In this study, we focused on an approach to identify an excess of shared derived polymorphisms, indicated 

by the relative abundance of two SNP patterns termed “ABBAs” and “BABAs” (Green et al. 2010). Given 

three populations and an outgroup with the relationship (((P1, P2), P3), O) (Figure 1A), ABBAs are sites at 

which the derived allele “B” is shared between the non-sister taxa P2 and P3, while P1 carries the ancestral 

allele, as defined by the outgroup. Similarly, BABAs are sites at which the derived allele is shared between 

P1 and P3, while P2 carries the ancestral allele. Under a neutral coalescent model, both patterns can only 

result from incomplete lineage sorting or recurrent mutation, and should be equally abundant in the genome 

(Durand et al. 2011). A significant excess of ABBAs over BABAs is indicative either of gene flow between 

P2 and P3, or some form of non-random mating or structure in the population ancestral to P1, P2 and P3. This 

excess can be tested for, using Patterson's D statistic, 

      
   
 
   (1) 

 

where CABBA(i) and CBABA(i) are counts of either 1 or 0, depending on whether or not the specified pattern 

(ABBA or BABA) is observed at site i in the genome. Under the null hypothesis of no gene flow and random 

mating in the ancestral population, D will approach zero, regardless of differences in effective population 

sizes (Durand et al. 2011). Hence, a D significantly greater than zero is indicative of a significant excess of 

shared derived alleles between P2 and P3. 

 

If population samples are used, then rather than binary counts of fixed ABBA and BABA sites, the frequency 

of the derived allele at each site in each population can be used (Green et al. 2010, Durand et al. 2011), 

effectively weighting each segregating site according to its fit to the ABBA or BABA pattern, with 

 

   (2) 
 

   (3) 
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where pij is the frequency of the derived allele at site i in population j. These values are then used in equation 

1 to calculate D (Durand et al. 2011). 

 

Green et al. (2010) also proposed a related method to estimate f, the fraction of the genome shared through 

introgression (Green et al. 2010, Durand et al. 2011). This method makes use of the numerator of equation 1, 

the difference between sums of ABBAs and BABAs, which is called S. In the example described above, with 

((P1,P2),P3),O), the proportion of the genome that has been shared between P2 and P3 subsequent to the split 

between P1 and P2 can be estimated by comparing the observed value of S to a value estimated under a 

scenario of complete introgression from P3 to P2. P2 would then resemble a lineage of the P3 taxon, and so the 

denominator of equation 1 can be estimated by replacing P2 in equations 2 and 3 with a second lineage 

sampled from P3, or by splitting the P3 sample into two, 

 

   (4) 
 

 

where P3a and P3b are the two lineages sampled from P3. Splitting P3 arbitrarily in this way may lead to 

stochastic errors at individual sites, particularly with small sample sizes. These should be negligible when 

whole-genome data are analyzed but could easily lead to erroneous values of f (including f>1) when small 

genomic windows are analyzed, as in the present study. We therefore used a more conservative version, in 

which we assume that complete introgression from P3 to P2 would lead to complete homogenization of allele 

frequencies. Hence, in the denominator, P3a and P3b are both substituted by P3: 

 

  (5) 

 

While this conservative assumption may lead to underestimation of the proportion of sites shared, it also 

reduces the rate of stochastic error. Moreover, in the present study, we are less concerned with the absolute 

value of f, and more with the relative values of f between genomic regions. 
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The f statistic assumes unidirectional gene flow from P3 to P2 (i.e. P3 is the donor and P2 is the recipient). 

Since the branch leading to P3 is longer than that leading to P2 (Figure 1A), gene flow in the opposite 

direction (P2 to P3) is likely to generate fewer ABBAs. Thus, in the presence of gene flow from P2 to P3, or in 

both directions, the f equation should lead to an underestimate. However, when small genomic windows are 

analyzed, the assumption of unidirectional gene flow could lead to overestimates, because any region in 

which derived alleles are present in both P2 and P3, but happen to be at higher frequency in P2, will yield f 

estimates that are greater than 1. Thus, we propose a dynamic estimator in which the denominator is 

calculated by defining a donor population (PD) for each site independently. For each site, PD is the population 

(either P2 or P3) that has the higher frequency of the derived allele, thus maximizing the denominator and 

eliminating f estimates greater than 1: 

     
 
   (6) 

 

 

Assessing the ability of D and f estimators to quantify introgression in small sequence windows 

To assess how reliably Patterson's D statistic, and other estimators of f are able to quantify the actual rate of 

introgression, we simulated sequence datasets with differing rates of introgression using ms (Hudson 2002). 

For each dataset, we simulated 100 sequence windows for 8 haplotypes each from four populations with the 

relationship (((P1,P2),P3),O). The split times t12 and t23 (as on Figure 1A) were set to 1 × 4N generations and 2 

× 4N generations ago, respectively, and the root was set to × 4N generations ago. An instantaneous, 

unidirectional admixture event, either from P3 to P2 or from P2 to P3, was simulated at a time tGF with a value 

f, which determines the probability that each haplotype is shared. We tested two different values for tGF: 0.1 

and 0.5 × 4N generations ago. For each direction of gene flow and each tGF, 11 simulated datasets were 

produced, with f values ranging from 0 (no gene flow) to 1 (all haplotypes are shared). Finally, the entire set 

of simulations was repeated with three different window sizes: 1, 5 and 10 kb, and with three different 

recombination rates: 0.001, 0.01 and 0.1, in units of 4Nr, the population recombination rate. DNA sequences 

were generated from the simulated trees using Seq-Gen (Rambaut & Grass 1997), with the HKY substitution 

model and a branch scaling factor of 0.01. Simulations were run using the compare_f_estimators.r, which 
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generates the ms and Seq-Gen commands automatically. An example set of commands to simulate a single 

5kb sequence using the split times mentioned above, with gene flow from P3 to P2 at tGF = 0.1 and f = 0.2, 

and with a recombination rate parameter of 0.01 would be: 

 

ms 32 1 -I 4 8 8 8 8 -ej 1 2 1 -ej 2 3 1 -ej 3 4 1 -es 0.1 2 1 -ej 0.1 5 3 -r 50 5000 -T | tail -n +4 | grep -v // > 

treefile 

partitions=($(wc -l treefile)) 

seq-gen -mHKY -l 5000 -s 0.01 -p $partitions <treefile >seqfile 

 

We then compared the mean and standard error for D (Equation 1) and the three f estimators (Equations 4, 5 

and 6), calculated for all 100 windows in each dataset. 

  

Analysis of Heliconius whole genome sequence data 

To investigate how the D and f statistics are affected by underlying diversity in a given window, we re-

analyzed whole genome data from Martin et al. (2013). For ABBA BABA analyses, populations were 

defined as follows: P1 = Heliconius melpomene aglaope (4 diploid samples), P2 = Heliconius melpomene 

amaryllis (4), P3 = Heliconius timareta thelxinoe (4), O=Heliconius hecale (1), Heliconius ethilla (1), 

Heliconius pardalinus sergestus (1), and Heliconius pardalinus sp. Nov. (1). Patterson's D (Equation 1) and 

the three f estimators (Equations 4,5,6) were calculated, along with nucleotide diversity (π) and absolute 

divergence (dXY), for non-overlapping 5 kb windows across the genome. Both π and dXY were calculated as 

the mean number of differences between each pair of individuals, sampled either from the same population 

(π), or from separate populations (dXY). Sites with missing data were excluded in a pairwise manner, and 

each pair of individuals contributed equally to the mean. Windows were restricted to single scaffolds and 

windows for which fewer than 3000 sites had genotype calls for at least half of the individuals were 

discarded. To calculate D and the f estimators only bi-allelic sites were considered. The ancestral state was 

inferred using the outgroup taxa, except when the four outgroup taxa were not fixed for the same allele, in 

which case the most common allele overall was taken as ancestral. The HmB locus was defined as postions 

300 000 to 450 000 on scaffold HE670865 and the HmYb locus as positions 650 000 to 900 000 on scaffold 

HE667780. We also analyzed windows from each of the 21 chromosomes of the H. m. melpomene genome 
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sequence separately. Scaffolds were assigned to chromosomes according to the Heliconius Genome 

Consortium (2012), and incorporating the improved assignment of Z-linked scaffolds by Martin et al. (2013) 

(details available in Dryad repositories http://dx.doi.org/10.5061/dryad.m27qq and 

http://dx.doi.org/10.5061/dryad.dk712). This analysis was performed using egglib_sliding_windows.py, and 

figures were generated using Figures_3_S2_S3.R. 

 

Assessing a test to distinguish introgression from shared ancestral variation based on absolute 

divergence 

Smith and Kronforst (2013) proposed a simple test to distinguish between the hypotheses of pre- and post-

speciation shared ancestry based on absolute divergence. To assess this method on data of known history, we 

generated a large range of sequence datasets using ms (Hudson 2002) and Seq-Gen (Rambaut & Grass 

1997). For the simplest ('null') model 10 000 5kb sequence windows were simulated for 8 haplotypes each 

from three populations and an outgroup, with the relationship (((P1,P2),P3),O), without gene flow or 

population structure. To approximate a scenario in which a subset of the genome has a distinct phylogenetic 

history, either due to gene flow or genomically-localized ancestral population structure, we used a combined 

model approach. This entailed combining 9000 5kb windows from the null model (90% “Background” 

windows), with 1000 5kb windows simulated under with the topology ((P1,(P2,P3)),O), consistent with shared 

ancestry between P2 and P3 (10% “Alternate” windows). By altering the split times, three distinct scenarios 

were emulated: Gene flow from P2 to P3, gene flow from P3 to P2, and ancestral structure (Figure 4A-D). 

Using entirely distinct topologies in this way is equivalent to making the probability of gene flow (or 

structure) equal to one in the 1000 Alternate windows. While this approach of partitioning each dataset into 

two somewhat arbitrarily-sized subsets with evolutionary histories at two extremes is biologically unrealistic, 

it provided a simple and powerful framework in which to evaluate Smith and Kronforst's approach, with 

clear expectations. Model combination datasets were generated using run_model_combinations.py and 

shared_ancestry_simulator.R, which generates the ms and Seq-Gen commands automatically, in a similar 

form to those given above. For example if t12 = 1, t23 = 2, 4Nr = 0.01 and gene flow from P3 to P2 at tGF = 0.2, 

the ms calls for Background and Alternate models, respectively, would be: 

ms 32 1 -I 4 8 8 8 8 -ej 1 2 1 -ej 2 3 1 -ej 3 4 1 -r 50 5000 -T  
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ms 32 1 -I 4 8 8 8 8 -ej 0.2 2 3 -ej 2 3 1 -ej 3 4 1 -r 50 5000 -T  

 

We calculated Patterson's D (Equation 1) and the three f estimators (Equations 4,5,6) for all windows, and 

identified the top 1000 'outliers' (10%) with the most extreme values. For D, only positive values were 

included as outliers, as negative values indicate an excess of BABAs, consistent with introgression between 

P1 and P3. Similarly, for f estimators, only windows with D≥0 were considered, as these values only give 

meaningful quantification of introgression when there is an excess of ABBAs. To compare P2-P3 divergence 

between the Background and Alternate windows, or between outlier and non-outlier windows, we calculated 

dXY for each window as described above, for each pair of populations. Average dXY was compared between 

subsets of windows using a Wilcoxon rank-sum test, as values tended to be non-normally distributed 

(confirmed with Bonferroni-corrected Shapiro-Wilk tests). 

 

These tests were repeated over a large range of split times. In all cases the root was set to 3.0 × 4N 

generations ago, and the other splits ranged from 0.2 to 2.0. Times of gene flow and structure also varied 

same scale. In total this gave 45 null models and 120 models each for the two gene flow scenarios and 

ancestral structure (405 overall). The analyzed models therefore covered a vast range of biologically relevant 

scales. In all cases, the Seq-Gen branch scaling factor was set to 0.01. Full parameters for all models are 

provided in Table S1. Finally, to examine the effects of recombination rate, the entire simulation study was 

repeated using population recombination rate (4Nr) values of 0.01 and 0.001. Summary statistics for all 

models were compiled using generate_summary_statistics.R.  

 

Software 

Code and data for this manuscript will be made available as a Data Dryad repository on acceptance. Most 

files, with instructions for running scripts to generate the results, are currently available on GitHub at 

https://github.com/johnomics/Martin_Davey_Jiggins_evaluating_introgression_statistics. Large data sets can 

be made available on request and will be made publicly available after review. This work was made possible 

by the free, open source software packages EggLib (De Mita and Siol 2012), phyclust (Chen 2011), R (R 

Core Team 2013), ggplot2 (Wickham 2009), plyr (Wickham 2011), reshape (Wickham 2007) and Inkscape 
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(http://www.inkscape.org). 
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FIGURES 

Figure 1. Expected value of the D statistic 

 
A. This derivation from Durand et al. (2011), of the expected value of Patterson's D statistic E[D], depends 

on the two split times, t12 and t23, separating populations P1, P2 and P3. It assumes a single instantaneous 

admixture event from P3 to P2 at tGF, after which a proportion f of P2 individuals trace their ancestry through 

P3. The effective population size, Ne, is constant through time and the same in all populations. B. The 

expected value of D as a function of f, the proportion of introgression, at three different effective population 

sizes: 0.5, 1 and 2 million. Split times are fixed at 1 million generations for t12 and 2 million generations for 

t23. C. The expected value of D as a function of Ne, showing the effect of varying t12. In all three cases, t23 is 

set at 2 million generations ago, and f is set to 0.1. 

 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 2, 2014. ; https://doi.org/10.1101/001347doi: bioRxiv preprint 

https://doi.org/10.1101/001347
http://creativecommons.org/licenses/by/4.0/


Figure 2. Comparing statistics to detect and quantify introgression 

 
Results from a subset of the simulations: window size 5kb, time of gene flow (tGF) 0.1 × 4N generations ago, 

and population recombination rate 0.01. See Figures S1A-I for full results. Plots show means and standard 

deviations for D and fd, calculated over 100 simulated sequences (See Methods for details). Simulations 

covered 11 different values of f, the proportion of introgression. Gene flow was simulated either from P3 to 

P2 (conventional model) (left-hand column) or from P2 to P3 (right-hand column). Dashed diagonal lines 

show the expectation of a perfect estimator of f. 
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Figure 3. Effects of genetic diversity on the D and fd in Heliconius whole genome data 

 
A,B. Values of D and fd for non-overlapping 5 kb windows across the genome, plotted against nucleotide 

diversity. f values are only plotted for windows with D≥0. Data from Martin et al. 2013. Taxa used are as 

follows, P1: Heliconius melpomene aglaope, P2: Heliconius melpomene amaryllis, P3: Heliconius timareta 

thelxinoe, O: four Heliconius species from the silvaniform clade. Colored points show windows located 

within the wing patterning loci HmB (red) and HmYb (yellow), see Methods. C. The variance among D and 

fd values for each chromosome, plotted against the mean nucleotide diversity from all windows for each 

chromosome. 
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Figure 4. Simulations to evaluate a method to distinguish introgression from shared ancestral 

variation 

 
A-C. Combined models were made up of 9000 sequence windows simulated under the “Background” 

topology (brown outline) and 1000 windows simulated under an “Alternate” topology (colored line). Three 

distinct evolutionary scenarios were simulated by varying the split times t12, t23, tGF and tSTR; A, E, I: gene 

flow from P2 to P3, B, F, J: gene flow from P3 to P2, C, G, K: ancestral structure. D, H, L. Null models were 

made up of 10 000 sequences simulated under the Background topology only. E-L. Example data from a 

single simulated dataset for each of the four types of models. Split times (in units of 4N generations) were as 

follows: t12 = 0.6 in all four cases, t23 = 0.8 in all four cases, tGF = 0.4 in both gene flow models and tSTR = 1.0. 

Points show mean and standard deviation for P2-P3 dXY calculated over subsets of trees: simulated 

Background and Alternate trees (brown and colored points) or non-outliers and outliers (gray and black 

points) identified using the D and fd statistics. A significant reduction in P2-P3 dXY for the Alternate compared 

to Background windows, or for outliers compared to non-outliers, is indicated by astrices. E-H show results 

of simulations with a population recombination rate (4Nr) of 0.01. I-L show results for the same models, but 

with a population recombination rate (4Nr) of 0.001.  
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Figure 5. Mean dXY between P2 and P3 in outlier windows as a percentage of P2-P3 dXY in non-outlier 

windows. 
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 Outlier windows defined by Alternate or Background topology (Simulation) or by outlying D and f values, 

as per Figure 4. Model types shown in color (gene flow from P2 to P3, green; gene flow from P3 to P2, blue; 

ancestral structure, red; null model, brown). Results for two different recombination rates are shown 

(4Nr=0.01, left; 4Nr=0.001, right). 
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