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Dorsal Hippocampal neurons provide an allocentric map of space1, characterized by three key 
properties. First, their firing is spatially selective1–3, termed a rate code. Second, as animals traverse 
through place fields, neurons sustain elevated firing rates for long periods, however this has received 
little attention. Third the theta-phase of spikes within this sustained activity varies with animal's 
location, termed phase-precession or a temporal code4–10. The precise relationship between these 
properties and the mechanisms governing them are not understood, although distal visual cues (DVC) 
are thought to be sufficient to reliably elicit them2,3. Hence, we measured rat CA1 neurons' activity 
during random foraging in two-dimensional VR—where only DVC provide consistent allocentric 
location information— and compared it with their activity in real world (RW).  Surprisingly, we found 
little spatial selectivity in VR. This is in sharp contrast to robust spatial selectivity commonly seen in 
one-dimensional RW and VR7–11, or two-dimensional RW1–3. Despite this, neurons in VR generated 
approximately two-second long phase precessing spike sequences, termed “hippocampal motifs”. 
Motifs, and “Motif-fields”, an aggregation of all motifs of a neuron, had qualitatively similar 
properties including theta-scale temporal coding in RW and VR, but the motifs were far less spatially 
localized in VR. These results suggest that intrinsic, network mechanisms generate temporally coded 
hippocampal motifs, which can be dissociated from their spatial selectivity. Further, DVC alone are 
insufficient to localize motifs spatially to generate a robust rate code. 

When an animal explores a two-dimensional environment, hippocampal neurons fire in a spatially 
selective fashion to form an allocentric map of space1. The mechanisms governing this selectivity remain 
to be understood. DVC are thought to be the primary factor governing hippocampal spatial selectivity2,3, 
although the contribution of other modalities have not been ruled out12,13. While these uncontrolled 
cues are difficult to eliminate in RW, they can be either removed or made spatially non-informative in 
VR. Hence, rodent hippocampal activity has been recently measured on one-dimensional mazes where 
neurons show comparable spatial selectivity in RW and VR7–9,11. Spatial selectivity on one-dimensional 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 31, 2013. ; https://doi.org/10.1101/001636doi: bioRxiv preprint 

https://doi.org/10.1101/001636


2 
 

VR tracks could arise not only from DVC2,3, but also from self-motion cues9,14,15 or intrinsic network 
mechanisms9,16–19 because these are highly correlated with spatial location. To unequivocally determine 
the contribution of only DVC it is necessary to measure hippocampal activity in a two-dimensional VR 
where rats explore an environment randomly, as commonly done in RW1–3. This ensures that unlike on 
stereotypical trajectories, self-motion or internal cues do not have a fixed relationship with DVC and 
hence they do not provide reliable spatial information.  

We measured hippocampal activity during a random foraging task in RW and VR20,21. In VR rats were 
body fixed with a harness on a floating ball, allowing head movements (see Methods)9,21. The two worlds 
had identical dimensions and DVC (Fig. 1a). In RW, visual and somatosensory cues indicated the platform 
edge. In VR, steps beyond the virtual edge of the platform caused no change in the visual scene. Rats 
quickly learned to avoid or turn away from the virtual edges based entirely on visual cues21. The amount 
of time they spent away from the edges and in the center of the platform was comparable in the two 
worlds, although they ran at somewhat lower speeds in VR (Fig. 1a). We recorded the activity of 585 
(501) neurons in dorsal CA1 from three rats that were active in RW (VR) at mean firing rates above 0.2Hz 
during locomotion at speeds >5cm/s. Only these cells were used for all subsequent analysis unless 
otherwise stated. Neurons fired vigorously in restricted regions of space in RW as expected (Fig. 1b, c, 
Extended Data Fig. 1)1. In contrast they showed little spatial selectivity in VR (Fig. 1b, d, Extended Data 
Fig. 1). 

Across the ensemble, VR neurons had moderately reduced (29%) mean firing rates but the peak firing 
rates were greatly reduced in VR (64%) (Fig. 2a, Extended Data Fig. 2). Spatial information content also 
showed a large 79% reduction in VR (Fig. 2b, Extended Data Fig. 2).  Spatial stability over the period of a 
session (see Methods) of VR ratemaps was also greatly reduced (90%) compared to stable and spatially 
localized RW ratemaps (Fig. 2c); VR ratemap stability was near chance level (Fig. 2c, d, Extended Data 
Fig. 3).  Information content was negatively correlated with mean firing rate in both worlds (Fig. 2e), but 
cells with similar mean rates had much smaller spatial information content and stability in VR compared 
to RW. Also, stability increased with mean rate in RW but not VR (Extended Data Fig. 2).  Thus the loss of 
spatial information and stability in VR was not due solely to the reduced mean firing rates.  

Was there any relationship between the activity of the same neuron in RW and VR?  To address this we 
characterized the activity of 174 neurons recorded in RW and VR on the same day (Fig. 1b). For these 
neurons, the mean firing rates were significantly correlated between RW and VR (Fig. 2f). Of these, only 
37% had a mean firing rate above 0.2Hz, referred to as “active,” in both worlds and were used for 
subsequent same-cell analyses. The spatial information in VR, although much lower, was significantly 
correlated to that in RW (Fig. 2g, Extended Data Fig. 4). Despite this, the precise spatial firing pattern of 
the same cell was uncorrelated between VR and RW (Extended Data Fig. 4).   

Intriguingly, certain spiking characteristics were preserved in VR. In RW, neurons generated long spike-
sequences lasting about two seconds as rats traversed through well-defined place fields (Fig. 3a, 
Extended Data Fig. 1). Surprisingly, even without clearly defined place fields, neurons in VR also fired 
similarly long spike-sequences, appearing as streaks of spikes (Fig. 3b, Extended Data Fig. 1). We term 
these long spike-sequences “hippocampal motifs,” which we identified as time periods in which a 
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neuron achieved a peak firing rate of at least 5Hz, and maintained a firing rate above 10% of that peak 
for 300ms. All individual motifs from a cell were aligned around their center of mass and aggregated 
together to obtain the cell’s motif-field (Fig. 3c, d, see Methods). 

Motif properties were comparable in the two worlds (Extended Data Fig. 5). The mean motif durations 
were comparable in RW and VR (Fig. 3e) and motif durations were much longer than expected by 
chance (Extended Data Fig. 3). Across all cells, mean motif durations displayed small variability (Fig. 3e), 
which suggests that dorsal CA1 neurons share the same motif time scale on the population level. For any 
given cell the motif durations were quite variable in RW which could be due to a varying amount of time 
spent within the place field in each traversal. Curiously, the motif durations were equally variable in VR 
(Fig. 3e) even though there was little spatial selectivity. Further, in both worlds a majority of spikes were 
contained within these motifs (Fig. 3f), far greater than expected by chance (Extended Data Fig. 3). 
Neurons with a larger fraction of spikes within motifs had greater spatial selectivity (Fig. 3f) and mean 
firing rates (Extended Data Fig. 5). This demonstrates a complex relationship between these three 
measures, since information content was in fact inversely correlated with firing rate (Fig. 2e). Spiking 
within motifs, as opposed to isolated spiking, may therefore serve to group otherwise random and non-
informative spikes into more informative clusters.  

Analysis of motif-fields (Fig. 3c, d) showed similar results, with motif-fields having similar durations in VR 
and RW (Fig. 3g). The peak rates within motif-fields were also comparable in the two worlds (Fig. 3g), in 
contrast to the smaller peak rates in spatial ratemaps in VR (Fig. 2a). Neurons active in RW and VR in the 
same day had motif-fields with similar durations and peak firing rates in the two worlds (Fig. 3h). 

We then tested if the motifs showed a temporal code. Hippocampal neurons’ spikes within place fields 
show theta phase precession—where spikes occur at earlier phases of theta rhythm on subsequent 
theta cycles—on one-dimensional tracks in RW4–6 and VR7–9, and in two-dimensional RW 
environments10. Due to the absence of clear place fields in VR we quantified the quality of phase 
precession within motif-fields by computing the circular linear correlation (see Methods) between the 
time spent within the motif-field and theta phase of spikes22. In the RW 87% of neurons showed 
significant phase precession within motif-fields. This number was reduced to 45% in VR, but was still far 
greater than expected by chance (Extended Data Fig. 3, see Methods). For cells with significant 
precession, the quality of phase precession was comparable in both worlds, although slightly reduced in 
VR (Fig. 4b). To further test theta scale temporal coding, and to include the data from all cells, we 
computed the difference between the period of theta modulation of spikes and the LFP theta period 
4,10,23. In both RW and VR this difference was significantly greater than zero (Fig. 4c). Further, a majority 
of cells in RW (95%) and VR (80%) had longer LFP theta period than spike theta period indicative of 
intact temporal coding in VR. This is especially notable because the structure of LFP theta was 
significantly different between the two worlds, with greater peak theta power and reduced theta 
frequency in VR (Extended Data Fig. 6). The preferred theta phase of neurons was significantly different 
and more variable in VR than RW (Fig. 4d). Despite these differences, neurons showed identical degrees 
of theta phase locking in both worlds (Fig. 4e). 
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These results provide the first measurements of hippocampal CA1 neuronal activity in a two-
dimensional environment where only DVC provide reliable spatial information. We found three key 
results: a profound loss of spatial selectivity in VR; comparable motif dynamics in VR and RW; and 
comparable temporal coding within motif fields in both worlds. We hypothesize that intrinsic 
mechanisms within the entorhinal-hippocampal network generate temporally coded motifs that require 
coherent multisensory inputs for spatial localization as follows. 

The large loss of spatial selectivity, stability, and neural activity in VR suggests that DVC alone are 
insufficient to generate spatial selectivity, which is in contrast to the common finding that DVC govern 
the spatial localization of place fields2,3. Inputs from multiple sensory modalities are coherent in RW12,13 
but not in VR, which  could allow the rapid formation of associations via Hebbian synaptic plasticity, thus 
establishing a stable spatial representation24. This can explain why spatial selectivity was intact when the 
rats ran on one-dimensional VR7–9 since self-motion and internal cues were always coherent with DVC, 
which is not the case in two dimensional random foraging in VR. Even in  a two-dimensional RW, a 
change in coherence between self-motion cues and DVC results in a change in spatial activity pattern 
and directionality25. This is also consistent with the observation that maze-cleaning between sessions 
induced place field instability and remapping12. The results are unlikely to arise solely due to diminished 
vestibular inputs in VR because vestibular lesions caused significant behavioral deficits, reduction in 
theta power and unaltered peak firing rates15,26, all of which are in contrast to our data.  

Despite the loss of spatial selectivity in VR, neurons had a comparable tendency to fire long spike-
sequences or motifs, similar to those in RW, supporting an intrinsic, network mechanism of motif 
generation. This is further supported by the small variability in motif durations on a population level 
compared to a neuronal level, together with correlated motif-field properties between worlds.  
Additionally, the fraction of spikes contained within motifs was comparable in RW and VR despite 
reduced spatial selectivity.  

Intact theta scale dynamics in VR motif fields suggests that intrinsic, network mechanisms also govern 
temporal coding. Shifted preferred theta phase and its increased variability could arise via a rate-phase 
transformation and reduced excitatory drive in VR due to lack of coherent multisensory inputs. The 
intact theta scale dynamics without spatial selectivity in VR shows that the hippocampal temporal code 
can exist without the place code.  

Unlike sensory cortices where neurons generate brief responses, motif activity could be an intrinsic 
property of the entorhinal-hippocampal network which could explain their emergence in diverse ways 
including hippocampal place cells7–9, entorhinal cortical grid cells23, episode or time cells during wheel or 
treadmill running16,18, and neural activity during free recall27 and  REM sleep28. 

Motifs could originate from several parts of the entorhinal-hippocampal network. The recurrent CA3 
network offers a potential candidate.  Alternatively, the motifs could arise in the medial entorhinal 
cortex where neurons show motif-like activity lasting a few seconds and robustly driving CA1, even in 
anesthetized or sleeping animals29.  Consistently, sustained spiking in consecutive theta cycles was 
reduced, indicative of diminished motifs, in a transgenic mouse with diminished distal dendritic inputs, 
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which typically originate in the entorhinal cortex30. The motif-field durations along the dorso-ventral axis 
of the entorhinal-hippocampal circuit could also be influenced by the temporal integration properties of 
the h-current along that axis31. We propose that behaviorally relevant patterns of activity may thus be 
constructed as internally generated, temporally coded and cue-localized motifs from spikes occurring at 
much shorter time scales. This could function to help bridge the gap between the rapid dynamics of 
neural and synaptic activations and the longer time scales of behavior6. 

Methods Summary: Three adult male Long-Evans rats were trained to forage for randomly scattered 
rewards in two-dimensional RW and VR environments. The environments had identical dimensions 
(200cm diameter circular platform at the center of a 300x300cm room) and DVC. Electrophysiological 
data from dorsal CA1 were obtained using hyperdrives with 22 independently adjustable tetrodes9.  
Spike extraction and sorting were done offline using custom software. A detailed description of the 
methods and analysis is available in the Methods section. 

References 

1. O’Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit 
activity in the freely-moving rat. Brain Res 34, 171–5. (1971). 

2. O’Keefe, J. & Nadel, L. The hippocampus as a cognitive map. (Clarendon Press, 1978). 
3. Muller, R. U. & Kubie, J. L. The effects of changes in the environment on the spatial firing of 

hippocampal complex-spike cells. J Neurosci 7, 1951–68. (1987). 
4. O’Keefe, J. & Recce, M. L. Phase relationship between hippocampal place units and the EEG theta 

rhythm. Hippocampus 3, 317–30. (1993). 
5. Skaggs, W. E., McNaughton, B. L., Wilson, M. A. & Barnes, C. A. Theta phase precession in 

hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 
149–172 (1996). 

6. Mehta, M. R., Lee, A. K. & Wilson, M. A. Role of experience and oscillations in transforming a rate 
code into a temporal code. Nature 417, 741–6. (2002). 

7. Harvey, C. D., Collman, F., Dombeck, D. A. & Tank, D. W. Intracellular dynamics of hippocampal 
place cells during virtual navigation. Nature 461, 941–946 (2009). 

8. Chen, G., King, J. a, Burgess, N. & O’Keefe, J. How vision and movement combine in the 
hippocampal place code. Proc. Natl. Acad. Sci. U. S. A. 110, 378–83 (2013). 

9. Ravassard, P. et al. Multisensory control of hippocampal spatiotemporal selectivity. Science 340, 
1342–6 (2013). 

10. Huxter, J. R., Senior, T. J., Allen, K. & Csicsvari, J. Theta phase-specific codes for two-dimensional 
position, trajectory and heading in the hippocampus. Nat. Neurosci. 11, 587–94 (2008). 

11. Dombeck, D. A., Harvey, C. D., Tian, L., Looger, L. L. & Tank, D. W. Functional imaging of 
hippocampal place cells at cellular resolution during virtual navigation. Nat Neurosci 13, 1433–
1440 (2011). 

12. Save, E., Nerad, L. & Poucet, B. Contribution of multiple sensory information to place field 
stability in hippocampal place cells. Hippocampus 10, 64–76 (2000). 

13. Battaglia, F. P., Sutherland, G. R. & McNaughton, B. L. Local sensory cues and place cell 
directionality: additional evidence of prospective coding in the hippocampus. J Neurosci 24, 
4541–4550 (2004). 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 31, 2013. ; https://doi.org/10.1101/001636doi: bioRxiv preprint 

https://doi.org/10.1101/001636


6 
 

14. Gothard, K. M., Skaggs, W. E., Moore, K. M. & McNaughton, B. L. Binding of hippocampal CA1 
neural activity to multiple reference frames in a landmark-based navigation task. J Neurosci 16, 
823–35. (1996). 

15. Stackman, R. W., Clark, A. S. & Taube, J. S. Hippocampal spatial representations require vestibular 
input. Hippocampus 12, 291–303 (2002). 

16. Pastalkova, E., Itskov, V., Amarasingham, A. & Buzsáki, G. Internally generated cell assembly 
sequences in the rat hippocampus. Science 321, 1322–7 (2008). 

17. Dragoi, G. & Tonegawa, S. Preplay of future place cell sequences by hippocampal cellular 
assemblies. Nature 469, 397–401 (2011). 

18. MacDonald, C. J., Lepage, K. Q., Eden, U. T. & Eichenbaum, H. Hippocampal “time cells” bridge 
the gap in memory for discontiguous events. Neuron 71, 737–49 (2011). 

19. Cheng, J. & Ji, D. Rigid firing sequences undermine spatial memory codes in a neurodegenerative 
mouse model. Elife 2, e00647 (2013). 

20. Holscher, C., Schnee, A., Dahmen, H., Setia, L. & Mallot, H. A. Rats are able to navigate in virtual 
environments. J Exp Biol 208, 561–569 (2005). 

21. Cushman, J. D. et al. Multisensory Control of Multimodal Behavior: Do the Legs Know What the 
Tongue Is Doing? PLoS One 8, e80465 (2013). 

22. Berens, P. CircStat: A MATLAB Toolbox for Circular Statistics. J. Stat. Softw. 31, 1–21 (2009). 
23. Hafting, T., Fyhn, M., Bonnevie, T., Moser, M. B. & Moser, E. I. Hippocampus-independent phase 

precession in entorhinal grid cells. Nature 453, 1248–1252 (2008). 
24. Mehta, M. R., Quirk, M. C. & Wilson, M. A. Experience-dependent asymmetric shape of 

hippocampal receptive fields. Neuron 25, 707–15. (2000). 
25. Markus, E. J. et al. Interactions between location and task affect the spatial and directional firing 

of hippocampal neurons. J Neurosci 15, 7079–94. (1995). 
26. Russell, N. A., Horii, A., Smith, P. F., Darlington, C. L. & Bilkey, D. K. Lesions of the vestibular 

system disrupt hippocampal theta rhythm in the rat. J. Neurophysiol. 96, 4–14 (2006). 
27. Gelbard-Sagiv, H., Mukamel, R., Harel, M., Malach, R. & Fried, I. Internally generated reactivation 

of single neurons in human hippocampus during free recall. Science 322, 96–101 (2008). 
28. Louie, K. & Wilson, M. A. Temporally structured replay of awake hippocampal ensemble activity 

during rapid eye movement sleep. Neuron 29, 145–56. (2001). 
29. Hahn, T. T. G., McFarland, J. M., Berberich, S., Sakmann, B. & Mehta, M. R. Spontaneous 

persistent activity in entorhinal cortex modulates cortico-hippocampal interaction in vivo. Nat. 
Neurosci. 15, 1531–1538 (2012). 

30. Resnik, E., McFarland, J. M., Sprengel, R., Sakmann, B. & Mehta, M. R. The Effects of GluA1 
Deletion on the Hippocampal Population Code for Position. J. Neurosci. 32, 8952–68 (2012). 

31. Mehta, M. R. Contribution of Ih to LTP, place cells, and grid cells. Cell 147, 968–970  
 
 

Acknowledgements: We thank N. Agarwal for help with electrophysiology, B. Popeney for help 
with behavioral training, F. Quezada for help with behavioral training and spike sorting, B. 
Willers for help with the analyses, P. Ravassard and A. Kees for help with surgeries, and D. 
Aharoni for help with hardware. This work was supported by grants to MRM from: NIH 
5R01MH092925-02 and the W. M. Keck foundation. 
 
 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 31, 2013. ; https://doi.org/10.1101/001636doi: bioRxiv preprint 

https://doi.org/10.1101/001636


7 
 

Figures: 

 

Figure 1 | Similar rat behavior but different neural ratemaps in two-dimensional RW and VR. a) Top 
Left: Top-down view of the VR and RW mazes showing a 200cm diameter elevated platform centered in 
a 300x300cm room with distinct visual cues on the walls. Top right: Mean running speed at the time of 
occurrence of spikes (excluding speeds <5cm/s) was slightly reduced (8%, p<10-10) in VR 
(22.26±3.93cm/s, Red) compared to RW (24.12±4.81cm/s, Blue). Bottom: Percentage of time spent in all 
parts of the maze, averaged across all rats showing that rats spent comparable time away from edges in 
RW (left, blue) and VR (right, red). Numbers indicate range; lighter shades indicate higher values. These 
color conventions (RW, blue shades; VR, red shades; lighter shades, higher values) apply to all 
subsequent plots. b)  Top: Scatterplots of spike amplitudes (grey dots) on one tetrode channel versus 
another in RW and VR. Colored dots are spikes from isolated neurons. Bottom: Position of the rat in RW 
and VR at the time of occurrence of spikes (darker dots) from the corresponding neurons (top) overlaid 
on the trajectory of the rat (lighter trace). c) Spatial ratemaps of four neurons in RW. Numbers indicate 
range (higher rates, hotter colors). d) Same as in panel C but in VR. 
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Figure 2 | Reduced activity, 
spatial selectivity and 
stability of ratemaps in VR. a) 
Peak firing rates of neurons 
were 64% (p<10 -10) smaller in 
VR (2.04±0.06Hz) compared 
to RW (5.72±0.13Hz). b) 
Spatial information content in 
VR (0.21±0.01bits) was 79% 
(p<10-10) lower than in RW 
(1.03±0.03bits). c) Ratemaps 
of a neuron during first and 
second halves of a session in 
RW and VR. d) Stability of 
ratemaps in VR (0.08±0.01) 
was 90% reduced (p<10-10) 
compared to RW (0.76±0.01). 
e) Spatial information was 
negatively correlated with the 
mean firing rate of a cell in 
both worlds (RW r = -0.41, 
p<10-10; VR r = -0.35, p<10-10) 
f) For cells recorded in both 
worlds on the same day mean 
firing rate was correlated 
regardless of minimum firing 
rate (r=0.31, p<10-4). This was 
also true for cells active in 
both environments (purple, 
r=0.36, p<0.05). g) Spatial 
information for cells active in 
both environments was also 
significantly correlated 
(r=0.38, p<10-3). 
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Figure 3 | 
Similar 
hippocampal 
motifs and 
motif-fields 
in VR and 
RW. a) Spike 
positions of 
an example 
motif from a 
cell overlaid 
on a segment 
of the rat’s 
trajectory 
(left) and 
firing 
ratemap 
(right) in RW. 
b) Similar plot 
as A, but in 
VR. c) Left: 
Motif firing 
rate as a 
function of 

time and individual spike times (vertical lines) for the same motif as in A. Right: Motif-field firing rate as 
a function of time. Spikes from individual motifs are depicted in the raster plot, aligned around motifs’ 
centers of mass to form the motif-field. d) Same as C but in VR.  e) Left: The mean motif durations within 
each cell were comparable in RW (2.12±0.04s, n=578) and VR (1.81±0.03 s, n=493) but slightly smaller 
(15%, p<10 -10). The shortest allowed motif duration (dotted vertical black line) was much smaller than 
the ensemble average. Right: The coefficients of variation (CV) of motif durations within each cell were 
comparable in RW (0.68±0.01) and VR (0.62±0.01), but slightly lower in VR (8%, p<10 -10). Both were 
much greater than the CV of the distributions in the left panel (solid vertical lines). f) Left: While a 
majority of spikes were contained within motifs in RW (73.54±0.02%) and VR (62.80±0.03%), there was a 
significant reduction in VR (15%, p<10 -10). Right: In both RW and VR, the percentage of spikes in motifs 
was significantly correlated with spatial information content of a neuron (RW r=0.26, p<10-5; VR r=0.28, 
p<10-5). g) Left: Motif-field durations in VR (1.42±0.02s) were similar but slightly reduced (16%, p<0.05) 
compared to RW (1.68±0.04s). Right: Peak firing rates of motif-fields in VR (10.13±0.14Hz) were slightly 
smaller (p<0.05) than in RW (10.69±0.14Hz). h) Left: For cells active in both environments on the same 
day, motif-field duration was correlated between RW and VR (r=0.30, p<0.05). Right: Motif-field peak 
firing rate had a similar correlation (r=0.42, p<10-3). 
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Figure 4 | Intact 
but variable phase 
coding in VR. a) 
Left: Sample LFP 
theta traces in RW 
(top) and VR 
(bottom) recorded 
from the same 
electrode on the 
same day. Spikes 
from the same cell 
(vertical lines) in 
RW and VR occur at 
earlier phases on 
subsequent theta 
cycles. Right: 
Motif-fields in RW 
and VR show clear 
phase precession. 
b) 87% and 45% of 
the cells showed 
significant phase 
precession in RW 
and VR respectively 
(as shown in bar 
graph). For these, 
the quality of 
phase precession in 
VR cells (0.20±0.01, 
n=227) was 
reduced (37%, 

p<10-5) compared to RW (0.25±0.01, n=516). c) Difference in LFP theta period and spiking theta period, 
computed from the autocorrelation of LFP and of spikes shows comparable, although more variable 
temporal coding in VR (9.49±0.54ms) compared to RW (10.88±0.24ms). d) The preferred theta phase of 
spikes was shifted closer to theta peak (28%, p<10-3) in VR (-77.92±0.01°) and more variable in VR 
(SD=64.04°) compared to RW (-108.29±0.00°, SD=51.25). e) The degree of phase locking (depth of 
modulation) was identical (P>0.05) in VR (0.16±0.11) and RW (0.16±0.09).  
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Online Methods: 
Materials and methods were similar to those described recently 9,21. 

Subjects: Data were collected from three adult male Long-Evans rats (approximately 3.5 months old at 
the start of training), individually housed on a 12 hour light/dark cycle and food restricted (15-20 g of 
food per day) to maintain body weight. They were allowed an unrestricted number of sugared water 
rewards in VR but a restricted amount of water (30-40ml of water per day) after the behavioral session 
to maintain motivation. All experimental procedures were approved by the UCLA Chancellor's Animal 
Research Committee and were conducted in accordance with USA federal guidelines. 

Random Foraging in RW and VR: The experimental room, the VR apparatus, and basic behavioral 
training were identical to those described recently9,21. In RW, a 200cm diameter and 50cm high platform 
was placed at the center of a 300x300cm room with distinct visual cues on the four walls (Fig. 1a). Rats 
were trained to forage for randomly scattered food rewards on the platform. The VR room had identical 
size and DVC, and rats foraged for randomly located rewards on a platform of the same size as in the RW 
room. Rewards in VR were in the form of sugar water dispensed through reward tubes placed directly in 
front of the rats. The reward locations were hidden and 60cm in diameter. Entry into the reward 
locations triggered the appearance of a white dot of the same size on the platform in addition to a 
reward tone and sugar water delivery. At each reward location rats could receive a maximum of five 
sugar water rewards. Motion parallax between the virtual elevated table and the floor underneath 
indicated the virtual edge of the platform. Movement beyond the platform edge resulted in no change 
in visual scene. Rats quickly learned to avoid or turn away from the virtual edges (Fig. 1a). It took about 
three weeks of handling and pre-training and two weeks of VR training for rats to do the random 
foraging task efficiently. Rats were trained on the RW task after implantation. Two rats were run in both 
RW and VR every day. To verify that exposure to both worlds on the same day was not playing a role in 
neural responses, another rat never ran in both RW and VR on the same day. Further, the order of 
running on VR and RW on the same days was randomized. No qualitative differences were found 
between these conditions and hence all data were combined. 

Surgery, Electrophysiology and Spike Sorting: These procedures were identical to those described 
earlier9. Briefly, once the rats reached performance criterion they were anesthetized using isoflurane. 
Custom-made hyperdrives containing up to 22 independently adjustable tetrodes that targeted both left 
and right dorsal CA1 were implanted. Rats were allowed to recover from surgery for one week after 
which the tetrodes were gradually advanced to area CA1, detected online by clear presence of 
sharpwave ripple complexes. Spike and LFP data were recorded at 40Khz. Spikes were extracted and 
sorted into individual units using custom software. Classification of single unit cell type was performed 
using the same methods as previously described9.  When rats ran in both VR and RW on the same day, 
the same cells were identified by overlaying cluster boundaries from both sessions, and identifying clear 
overlaps. If cell identities were unclear due to electrode drift the data were discarded from the same cell 
analysis. 

Statistics: Offline analyses were performed using custom MATLAB codes. Tests of significance between 
linear variables and circular variables were done using the nonparametric Wilcoxon rank-sum test and 
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Kuiper test respectively. Tests of significance for the mean values of distributions being different from 
zero were performed using the nonparametric Wilcoxon signed-rank test. To compute circular statistics, 
CircStat toolbox was used22.All ensemble averages are in the form mean ± SEM unless otherwise stated. 

Quantification of Ratemaps: Theta rhythm is interrupted and behavior is uncontrolled when rats paused 
to consume rewards or to groom. Hence these periods were excluded and only data recorded during 
periods of active locomotion (running speed > 5cm/s) were used. A cell was considered active if its mean 
firing rate exceeded 0.2Hz during locomotion and was thus included in the analysis. Spatial firing rates 
were computed using occupancy and spike histograms with 10x10cm bins smoothed with a 15cm two-
dimensional Gaussian smoothing kernel. Bins with very low occupancy relative to the experimental 
session were excluded to avoid artificially high firing rates. The spatial information content, sparsity and 
coherence of the ratemaps were computed using methods described recently9. To determine the 
stability of ratemaps, firing rates were computed in the first and second halves of the session separately. 
The bin-by-bin correlation between the ratemaps in the two halves provided a measure of ratemap 
stability. To obtain the similarity of ratemaps of the same cell in RW and VR we computed the 
correlation of firing rates and computed statistical significance by comparing it against correlations 
when cell identities were shuffled. 

Detection of Motifs: To detect motifs a method similar to the one used for detecting place fields on a 
one dimensional track was used. We constructed a spike train, a vector of data whose length was equal 
to the period of experimental session by binning the spikes for which the running speed was greater 
than 5cm/s. This spike train was smoothed using a 200ms Gaussian smoothing kernel and transformed 
to firing rate by dividing by the bin duration. Peaks where firing rate exceeded 5Hz were detected and 
marked as candidate motifs. The boundaries of a motif were defined as the points where the firing rate 
first dropped below 10% of the peak rate (within the motif) for at least 250ms (two theta cycles). If the 
time-lag between the first and last spike in the putative motif, called the duration of the motif, exceeded 
300ms, this sequence was considered a valid motif and was included in the analysis.  

Construction of Motif-fields: The center of mass within each motif was computed using the firing rate to 
determine the center of the motif. This value was subtracted from the spike times within the motif to 
center them around zero. This procedure was repeated for all motifs and the centered motifs were 
aligned to obtain a motif-field for a neuron. The firing rate as a function of time within motif-field was 
calculated as the number of spikes within each temporal bin divided by the total amount of time in that 
bin, smoothed by a 200ms Gaussian smoothing kernel. Motif-field duration was defined as twice the 
weighted standard deviation of the motif firing rate, i.e. the width of the distribution.  

Theta Period and Phase Precession: Similar to the methods described previously9, each LFP was filtered 
between 4 and 12 Hz using a 4th order Butterworth filter. Theta period was computed by detecting the 
peak between 50 and 200ms in the filtered LFP autocorrelation for epochs when the running speed was 
above 5cm/s. Spiking theta period was calculated by computing the spike train autocorrelation, 
smoothing it with a 15ms wide Gaussian smoothing kernel, and detecting the peak. Quality of phase 
precession within a motif-field was defined as the circular linear correlation coefficient (CLCC)9 between 
spike phases and latency of spike timing with respect to the motif center. 
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Control Analysis for Motifs: To estimate which motif properties can arise purely by chance, surrogate 
motifs for each neuron were generated as follows. The mean firing rate during locomotion and the 
depth of theta modulation were computed for each neuron. Surrogate activity was generated using a 
Poisson distributed and theta modulated spike train with the same mean firing rate and depth of theta 
modulation as the experimentally measured neuron. Motifs, motif-fields, and their properties were 
computed using procedures described above. This procedure was repeated 50 times for each neuron to 
generate a null distribution. 

Control Analysis for Precession: To determine how much phase precession can occur by chance, for 
each cell its entire spike time series was shifted by a random amount of time between 10 and 20 
seconds, repeated 50 times. This conserves the temporal structure of the spikes but, due to variations in 
theta frequency, randomizes spike phases. Motif-fields were then detected and quality of phase 
precession was quantified as described earlier. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 31, 2013. ; https://doi.org/10.1101/001636doi: bioRxiv preprint 

https://doi.org/10.1101/001636


14 
 

Extended Data Figure 1 |  
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Additional examples of place cells in VR and R. a) Rat trajectory and spike positions for different 
neurons and corresponding firing ratemaps in RW. b) Same as A but in VR, showing long streaks of 
spikes, or putative motifs.  Numbers indicate firing rate range.  
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Extended Data Figure 2 | Reduced mean firing rates, ratemap sparsity, coherence in VR. a) Mean firing 
rates were 29% (p<10-10) lower in VR (0.71±0.02Hz) than in RW (0.99±0.03Hz). b) Ratemap sparsity, a 
measure of spatial selectivity, was also greatly (57%, p<10-10) reduced in VR (0.26±0.01) compared to RW 
(0.60±0.01). c) Ratemap coherence was 35% (p<10-10) reduced in VR (0.49±0.01) compared to RW 
(0.76±0.01). d)  At all mean rates, stability was lower in VR compared to RW. Stability was not correlated 
with mean firing rate in either world (r=0.05, p>0.05 and r=0.08 and p>0.05 in RW and VR respectively).  
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Extended Data Figure 3 | Comparison of spatio-temporal properties of experimental data with chance 
level. Surrogate spike trains with similar mean firing rates and theta modulation index as experimental 
data (see Methods) were generated for each cell in VR and RW. These were repeated 50 times for each 
cell and the mean value of the spatio-temporal property measure computed by averaging the numbers 
of these 50 repetitions. These mean values were subtracted from the numbers obtained for the 
experimental data which yielded the difference between the experimental values and the values 
expected by chance. The values obtained by chance were so small that the difference distribution for all 
measures was nearly identical to the actual experimental measures indicating that all were highly 
significant. In the control analysis for phase precession (see Methods), the number of significant CLCCs 
were computed. 

a) Spatial information content was significantly greater than chance level in VR (0.20±0.01 bits, p<10-10) 
but the difference was greater in RW (1.02±0.03 bits, p<10-10), and the two distributions were 
significantly different (p<10-10). b) Similar to information content, ratemap sparsity was significantly 
greater than chance level in VR (0.22±0.01, p<10-10) but the difference was greater in RW (0.58±0.01, 
p<10-10). These two distributions were significantly different (p<10-10). c) The occurrence of motifs was 
significantly above chance in VR (0.51±0.01, p<10-10) and comparable to RW (0.48±0.01, p<10-10) and the 
two distribution were similar (p>0.05). d) The stability was close to chance level in VR (0.08±0.01, p<10-

10) but significantly above chance in RW (0.76±0.012, p<10-10). e) The mean motif durations were 
significantly longer than the motifs generated from surrogate spike trains in both worlds (0.50±0.03 s, 
p<10-10 and 0.61±0.02 s, p<10-10 in RW and VR respectively). f) In the time-shifted spike trains, there 
were only four significant phase precession CLCCs in RW and none in VR. 
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Extended Data Figure 4 | Comparison of activities of cells active in both VR and RW on the same day. 
a) The peak firing rate of the same cell in RW and VR was reduced but significantly correlated (r=0.30, 
p<0.05). b) Sparsity of the same cell in RW and VR was also reduced but correlated (r=0.37, p<0.01). c) 
Despite positive correlations in peak rate, information content (Fig. 2G) and sparsity, the ratemaps of 
the same cells in RW and VR were uncorrelated (true values, p>0.1) and not different from the 
correlations obtained by shuffling the cell identities (null distribution, p>0.5). 
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Extended Data Figure 5 | Spatio-temporal properties of individual motifs in VR and RW. a) Mean firing 
rates within motifs in VR (5.61±0.02Hz) were slightly smaller (8%, p<10-10) than in RW (6.13±0.02Hz). b) 
Similar reduction (13%, p<10-5) was observed in peak rate within motifs in VR (10.68±0.04Hz) compared 
to RW (12.22±0.06Hz). c) There is significant correlation between mean rate and the percentage of 
spikes that occurred within motifs in RW (r=0.52, p<10-10) and VR (r=0.29, p<10-10). d) Preferred theta 
phase within the motifs in VR (-67.26±76.95°) was shifted towards theta peak and more variable (p<10-3) 
compared to RW (-115.62±69.84°). 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 31, 2013. ; https://doi.org/10.1101/001636doi: bioRxiv preprint 

https://doi.org/10.1101/001636


20 
 

 

Extended Data Figure 6 | Increased Theta Power but Reduced Theta Frequency in VR. To further 
examine the dynamics of LFP theta, we investigated the LFPs recorded from the same electrode on the 
same day in both worlds without any electrode movement in between the two sessions. Analysis was 
further restricted only to data when rats ran at speeds greater than 5cm/s to eliminate contamination 
by variable periods of stopping when theta is reduced. LFP power spectrum was first computed and then 
restricted to the range of 4-20 Hz. In order to compare data from different sessions, power spectrum 
from each electrode was normalized by the mean power on that electrode in VR and RW over the same 
range.  

a) Normalized power between 4-20 Hz, averaged over all the LFP (n=39) in RW and VR shows a clear 
shift in theta power and frequency between the two environments. b) Peak theta power is significantly 
increased in VR (p<10-5). c) Theta frequency is significantly lower in VR (p<10-5). 
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