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ABSTRACT

The corpus callosum — the main pathway for long-distance
inter-hemispheric integration in the human brain — has been
frequently reported to be smaller among autistic patients
compared with non-autistic controls. We performed a meta-
analysis of the literature which suggested a statistically
significant difference, however, we observed that on average
the studies were heavily underpowered: only 20% power to
detect differences of 0.3 standard deviations. This makes it
difficult to establish the reality of such a difference. We
therefore studied the size of the corpus callosum among 694
subjects (328 patients, 366 controls) from the Abide cohort.
Despite having achieved 99% power to detect statistically
significant differences of 0.3 standard deviations at 0.05 level,
we did not observe any. To better understand the
neuroanatomical diversity of the corpus callosum, and the
possible reasons for the previous findings, we analysed the
relationship between its size, the size of the brain, intracranial
volume and intelligence scores. The corpus callosum appeared
to scale non-linearly with brain size, with large brains having a
proportionally smaller corpus callosum. Additionally,
intelligence scores correlated significantly with brain volume
among controls but the correlation was significantly weaker
among patients. We used simulations to determine to which
extent these two effects could lead to artifactual differences in
corpus callosum size within populations. We observed that,
were there a difference in brain volume between cases and
controls, normalising corpus callosum size by brain volume did
not eliminate the brain volume effect, but adding brain volume
as a covariate in a linear model did. Finally, we observed that
because of the weaker correlation of intelligence scores and
brain volume among patients, matching populations by
intelligence scores could result in a bias towards including
more patients with large brain volumes, inducing an artificial
difference. Overall, our results highlight the necessity for open
data sharing efforts such as Abide to provide a more solid

ground for the discovery of neuroimaging biomarkers, within
the context of the wide human neuroanatomical diversity.

INTRODUCTION

Autism Spectrum Disorders (ASD) are pervasive
developmental disorders with qualitative impairments in social
interaction and communication, along with restricted,
repetitive, and stereotyped patterns of behaviour. Several
cognitive studies have suggested that difficulty integrating
multiple sources of stimulation may be a common
characteristic of ASD, which has lead for example to the
influential “Weak central coherence” hypothesis (1). The neural
basis of these difficulties have been hypothesised to be an
imbalance between local and distant connections: a local over-
connectivity combined with a long-distance under-connectivity
(2, 3). The connectivity hypothesis has been a major subject of
study and discussion in ASD research (4, 5).

The corpus callosum — the largest commissure connecting the
left and right hemispheres of the brain — appeared then as a
natural candidate to look for evidence of connectivity
abnormalities. The corpus callosum exists exclusively within
eutherian mammals (kangaroos and other marsupials lack a
corpus callosum), and it has been suggested that it plays an
important role in the evolution of functional lateralisation. The
number of callosal axons appears to be proportionally smaller
in mammals with large brains (like humans) compared with
mammals with small brains (like mice). It has been proposed
that a proportionally smaller number of callosal fibres, and
their increased length, could hinder the formation of
interhemispheric synchronous neuronal populations, thus
facilitating local recruitment, and possibly leading to the
lateralisation of function (language being a classic example)
(6-8). The corpus callosum has been in consequence one of the
most studied white matter tracts in ASD. Numerous reports
have indeed described a statistically significantly smaller CC
among ASD patients compared with controls, and a series of
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studies have suggested a higher incidence of ASD within cases
of CC agenesis or callosotomy patients (9, 10).

However, many of these analyses have relied on small samples
sizes (in the order of 30 patients versus 30 controls), not having
enough statistical power to find medium effect sizes of 0.5
standard deviation between groups. Despite this lack of
statistical power, studies often report statistically significant
differences. A solution to the methodological problems
associated with small sample sizes has been recently proposed
by the “Autism Brain Imaging Data Exchange” project, Abide
(11). Large sample sizes are difficult to gather and analyse by
any single research group. The Abide project provides open
access to behavioural data and neuroimaging data (anatomical
and functional) for almost 600 patients and 600 age, sex and 1Q
matched controls
research groups. In addition to providing the research
community with the statistical power necessary to detect even
small differences in case/control designs, this open dataset
allows us also to use more sophisticated analysis strategies and
have a wider perspective on neuroanatomical diversity within
ASD patients and controls.

from an international consortium of 17

In this article we first present a review of previous studies of
size differences in the corpus callosum between ASD patients
and controls. We observed a general lack of statistical power
(only 20% power to detect 2-sided differences of 0.3 standard
deviations), which contrasted with the frequent report of
significant findings (12 out of 17 studies). Next, we present our
analysis of the diversity of the corpus callosum in the Abide
cohort, differences among scanning sites, differences related to
age, sex brain size polymorphism and diagnostic group. Even
though previous studies have reported diagnostic group
differences as large as 0.3-0.7 standard deviations, and despite
having analysed a number of subjects comparable to the sum of
all previously studied, we did not find any significant
difference between ASD patients and controls. Finally, we
discuss possible ways in which analysis strategies such as the
normalisation of corpus callosum size by total volume, or the
matching of subjects by IQ scores, could lead to artifactual
differences in brain volume and corpus callosum size between
ASD patients and controls.

METHODS

1. Meta-analysis

We included all studies from the recent review on corpus
callosum size by Frazier et al (12), and we searched PubMed
(http://www.ncbi.nlm.nih.gov/pubmed/) for additional human
neuroimaging studies reporting differences in corpus callosum
volume between ASD population and a healthy population
using the terms: (autism OR PDD OR “pervasive
developmental disorder””) AND “corpus callosum”.

From these studies we excluded those that did not report
measurements of corpus callosum size and standard deviation
for patients and controls. We did not exclude studies because of
demographic (for example, gender), clinical (for example, low
or high functioning) or methodological characteristics (for
example, number of corpus callosum segments analysed).

Studies have used different approaches to the segmentation of
the corpus callosum, either measuring it as a single object, or
dividing it into 3, 5 or 7 segments. For the sake of comparison,
when a global measure of corpus callosum size was not
available we combined the mean and standard deviation values
for each segment to produce a single estimate. For a corpus
callosum segmented into k parts, the mean size was calculated
as

k
Mean(CC)ZZMean(CCi).
i=1

We estimated the global standard deviation of the corpus
callosum by assuming (based on our own data) that the size of
the region's segments were correlated with @ =0.5, and
used the formula:

k k
Var(CC)ZZ Var(CCI.)+pz z Var(CC,) Var(CCj).
i=1 i=1 i#j

The standard deviation O is then
o=+Var(CC).

For each article we computed the effect size as a Cohen’s d:

_ Mean (CCASD)—Mean(CCO,.,)

OPuoled

d

>

where O pyoleq is the pooled standard deviation of ASD and
Control subjects computed as:

o :\/(NASD_l)GASD"'(NC:rJ_l)ocm
Focled N aspt N crl ™ 2 .

We used G*Power (v3.1,http:/ www.psycho.uni-
duesseldorf.de/abteilungen/aap/gpower3) to compute for each
article the achieved statistical power (for a 2-sided t-test), and
their power to detect a priori a relatively small effect size of
0.3 standard deviation (2-sided). We used the R (http:/www.r-
project.org) package Meta to estimate global effect size,
heterogeneity and publication bias.
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Figure 1. Segmentation of the corpus callosum. The corpus
callosum was segmented into 5 regions, from genu to splenium:
anterior, mid-anterior, central, mid-posterior and posterior.

2. Analysis of the Abide project cohort

We analysed the size of the corpus callosum in the Abide
cohort (http:/fcon_1000.projects.nitrc.org/indi/abide) . We
processed the 1102 subjects with T1-weighted MRI data
available using FreeSurfer v5.1. Statistical analyses were
performed using JMP Pro 10.0.2 (http://www.jmp.com), R,
iPython (http:/ipython.org) and G*Power.

MRI data in Abide is labelled with 20 different "Site" levels,
corresponding to 17 different scanning sites. Indeed, some sites
contributed with more than 1 subject sample (for example,
UCLA 1 and UCLA 2, or UM _1 and UM _2). In all cases,
however, subjects were scanned using the same scanner and the
same parameters, so we combined these site labels into a single
one (for example, UCLA or UM).

We developed an open online tool to visually control the
accuracy of the segmentations (http://siphonophore.org/gccc).
Based on this quality control we excluded 380 subjects. Most
of them (N=331) were excluded because the middle segment of
the corpus callosum was incorrectly labelled, and included
parts of the fornix (Fig. 1). A total of 722 subjects passed the
quality control.

The age range of these subjects was from 6.4 years to 64 years.
We only included the 694 subjects with ages from 7.5 to 40
years. Tissue segmentation may be unreliable in younger
subjects (N=10) because of the ongoing myelination, and brain
anatomy may start showing signs of ageing in the older
subjects (N=19). The mean age of the retained subsample was
16.8+£7.1 years, without statistically significant differences in
age distribution between ASD patients and controls (P=0.80,
Kolmogorov-Smirnov asymptotic test).

Among the 694 subjects included in our analyses, 328 were
ASD patients (290 males, 38 females) and 366 were controls
(304 males, 62 females). This sample size provided us 99%

Table 1. Description per scanning site of the subjects from the Abide project retained for analysis.

Site Institution Nasp/Total | Nctri/Total | Ageasp(range) | Ageciri(range)
Caltech  |Caltech Institute of Technology, USA 7/19 8/19 26.3(20-39) 25.2(20-39)
CMU Carnegie Mellon University, USA 6/14 5/13 27.5(22-31) 31.2(25-40)
KKI Kennedy Krieger Institute, USA 20/22 32/33 9.9(8-13) 10.2(8-13)
Leuven University of Leuven, Belgium 27/29 28/35 17.4(12-29) 17.7(12-28)
MaxMun |Ludwig Maximilians University Munich, Germany 11/24 22/33 21.2(8-35) 25.4(10-35)
NYU New York University Langone Medical Center, USA 54/79 75/105 14.7(8-39) 16.3(8-32)
OHSU Oregon Health and Science University, USA 11/13 11/15 11.1(8-14) 9.9(8-12)
Olin Olin, Institute of Living at Hartford Hospital, USA 16/20 14/16 17.4(12-24) 16.9(10-23)
Pitt University of Pittsburg, School of Medicine, USA 30/30 27127 18.9(9-35) 18.9(9-33)
SBL Social Brain Lab, BCN NIC UMC Groningen and 7/15 8/15 30.7(27-35) 32.9(26-39)
Netherlands Institute for Neurosciences, Netherlands
SDSU San Diego State University, USA 8/14 12/22 15.2(12-17) 14.3(12-17)
Stanford |Stanford University, USA 8/20 520 9.6(8-12) 11.2(8-12)
Trinity Trinity Centre for Health Sciences, Ireland 9/24 11/25 18.2(14-23) 17.6(12-26)
UCLA University of California, Los Angeles, USA 32/62 35/47 13.3(8-18) 12.9(10-18)
UM University of Michigan, USA 23/68 27177 12.8(9-19) 14.8(9-29)
USM University of Utah, School of Medicine, USA 42/58 26/43 22.0(11-38) 22.9(9-39)
Yale Yale Child Study Center, USA 17/28 20/28 13.1(9-18) 12.9(8-18)
Total 328 366 16.6(8-39) 17.0(8-40)
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power to detect 2-sided differences larger than Cohen's d=0.3.
Because the number of females was statistically significantly
larger among the control group (P=0.051, Fisher’s exact test, 2-
sided), we also performed our analyses using only males
(N=594; 290 patients, 304 controls). Using this male-only sub-
sample, we had 95.4% power to detect 2-sided differences
larger than Cohen's d=0.3.

Intelligence Quotients (IQ) were available for 672 of these
subjects. Full IQ (FIQ) was available for 590 subjects, and
Verbal 1Q (VIQ) and Performance 1Q (PIQ) were available for
538 subjects. Therefore, there were 82 subjects for whom we
had VIQ and PIQ data, but not FIQ data. For those 82 subjects
we used a linear model to estimate FIQ based on VIQ and PIQ.
This model used data from the 705 subjects that had FIQ, VIQ
and PIQ in the complete original cohort. The resulting model —
which explained 98% of the variance of FIQ — was:

FIQ=—11.611+0.551 VIQ+0.566 PIQ.

Table 1 provides a decomposition per scanning site of the group
of subjects we retained for analysis.

3. Analysis of neuroanatomical diversity: allometric scaling

We used allometric scaling to study the way in which the size
of the corpus callosum changes relative to total brain volume.
The allometric scaling relationship between 2 variables X and
Y is formulated as

Y=a X"

It results from the solution of a growth model where fractional
changes in Y are proportional to fractional changes in X:
dY/Y=dX/X. Taking logarithms, the allometric scaling
relationship can be written as:

log(Y)=o+plog(X).

The value B can be then estimated as the slope of the
regression line of log(Y) on log(X). If ﬁ =1 then Y changes
proportionally to X (isometry). On the contrary, if [3 <1 then
the proportion of Y/X decreases as X increases (negative
allometry), and if B >1 then the proportion Y/X increases as X
increases (positive allometry).

RESULTS
A. Meta-analysis

On October 8th, 2013, our PubMed query returned 183 articles,
among which 17 fulfilled our inclusion criteria. Combined,
these articles provided data on a total of 980 subjects, 521
subjects diagnosed with ASD and 459 controls. Only 77
subjects were females. The mean age was of 14.8 years. Out of
the 17 studies, 5 included low-functioning (LF) and high-
functioning (HF) subjects, 2 out of 17 included LF only, and 8
out of 17 included HF subjects only. The size of the corpus
callosum correlates with total brain volume, and 5 out of 17
studies used the strategy of normalising (divide) CC size by
total brain volume, whereas 9 out of 17 used brain volume as a

Table 2. Characteristics of the population represented by the studies reviewed. Matching strategy “Relative”: Differences in
brain volume were accounted by dividing CC by BV. Matching strategy “GLM”: Differences in brain volume were accounted by
including BV as a covariate in a general linear model. Matching strategy “IQ Match”: Differences in 1Q were accounted for by

matching groups by intelligence scores.

Matching strategy
Reference Age ASD/Ctrl IQlevel Nisp(Females) Ncwi(Females) Relative GLM 1Q Match
(LF/HF)
1 Gaftney 1987 (34) 114£5/1245 LF/HF 13(3) 35(14) No No No
2 Egaas 1995 (35) 16+10/16£10 LF/HF 51(6) 51(6) No No No
3 Piven 1996 (36) 18+5/20+4 LF/HF 35(6) 36(16) No Yes No
4 Elial999 (37) 11+4/11£3 LF 22(0) 11(0) No No No
5 Manes 1999 (38) 14+7/12+£5 LF 27(5) 17(6) Yes No Yes
6 Rice 2005 (39) 12+4/13+4 HF/LF 12() 80 No Yes No
7 Vidal 2006 (40) 10£3/1143 HF 24(0) 26(0) Yes Yes Yes
8 Boger 2006 (41) 4+0.3/4+0.5 - 45(7) 26(8) Yes Yes No
9 Alexander 2007 (42)  16+7/16+6 HF 43(-) 34(-) No Yes Yes
10 Just 2007 (3) 27+12/25+10 HF 18(1) 18(3) Yes No Yes
11 Hardan 2009 (43) 11£1/11£1 HF 22(0) 23(0) Yes No Yes
12 Freitag 2009 (44) 18+4/19+1 HF 15(2) 15(2) No Yes Yes
13 Keary 2009 (45) 20£10/19+9 HF 32(2) 34(2) No Yes Yes
14 Anderson 2011 (46)  22+7/21+7 HF/LF 53(0) 39(0) No No Yes
15 Hong 2011 (47) 942/10+£2 HF 18(0) 16(0) No Yes Yes
16 Frazier 2012 (48) 11(8-12)/11(7-13) HF 23(0) 23() No Yes No
17 Prigge 2013 (49) 14+8/15+7 HF/HF 68(0) 47(0) No Yes Yes
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Table 3. Size of the corpus callosum in the studies reviewed, group differences and statistical power. SD: Standard
Deviation. P-value in bold are <0.05 (uncorrected). The units from the different studies were scaled to cm2 (provided for
reference, as our meta-analysis was performed on standardised values).

Study MeanssptSD  Meancrri£SD Pooled SD  Effect P-Value  Achieved Power to
(cm?) (cm?) (cm?) Size (2-sided) power detect SD=0.3
(2-sided) (2-sided)

1 Gaffney 1987 (34) 5.89+1.04 6.24+1.37 1.31 -0.27 0.070 14.6% 17.3%
2 Egaas 1995 (35) 5.57+0.99 5.89+0.91 0.95 -0.33  0.0011 38.2% 32.3%
3 Piven 1996 (36) 6.15+0.83 6.40+0.38 0.64 -0.39 0.0017 36.9% 24.1%
4  Elial999 (37) 5.26+1.00 5.41+0.64 0.91 -0.16 0.36 6.4% 12.7%
5 Manes 1999 (38) 4.64+0.99 5.71£0.97 0.99 -1.07 <0.0001  93.6% 16.2%
6  Rice 2005 (39) 7.34+1.11 7.75+1.14 1.15 -0.35 0.13 11.4% 9.3%

7 Vidal 2006 (40) 6.06+1.15 6.68+0.79 0.99 -0.62 <0.0001  57.7% 17.9%
8  Boger 2006 (41) 4.59+0.67 4.99+0.72 0.70 -0.57 <0.0001  67.6% 24.1%
9  Alexander 2007 (42)  7.87+1.99 9.32+1.70 1.88 -0.77 <0.0001 91.4% 25.2%
10 Just 2007 (3) 6.40+0.88 7.1+0.88 0.89 -0.78 <0.0001  62.8% 13.9%
11 Hardan 2009 (43) 5.74+1.13 6.58+1.04 1.10 -0.76 <0.0001  69.8% 16.2%
12 Freitag 2009 (44) 6.22+0.45 6.54+1.24 0.96 -0.34 0.071 14.6% 12.2%
13 Keary 2009 (45) 6.19+1.09 6.76£1.10 1.11 -0.51 <0.0001  54.0% 22.4%
14 Anderson 2011 (46)  6.54+1.20 7.05+0.90 1.09 -0.46 <0.0001  59.4% 29.6%
15 Hong 2011 (47) 8.14+1.31 8.27+1.27 1.31 -0.10 0.58 4.6% 13.3%
16  Frazier 2012 (48) 6.30+1.11 6.78+1.08 1.11 -0.43  0.005 29.9% 16.7%
17  Prigge 2013 (49) 5.74+0.91 6.24+0.89 0.91 -0.55 <0.0001  83.7% 36.0%

covariate in a linear model. Finally, 8 out of 17 studies matched
the ASD and control groups by IQ (Table 2).

Table 3 summarises the mean sizes and standard deviation of
the CC in the ASD and control groups. The different values
were scaled to provided measurements in cm? (This scaling
does not affect our meta-analysis, which was performed on
standardised mean differences). The standardised effect sizes
(mean differences) were not found to be heterogeneous ( 2
<0.0001, H=1, I’=0%, Q=9.96), and the fixed and random
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effect meta-analyses provided the same estimates of the mean
effect size, ES=-0.51 (95% confidence interval=[-0.63,-0.38],
7=-7.642, P<0.0001, Fig. 2).

A classic test for publication bias estimates the presence of a
correlation between the effect size and the standard error of
each study (13). A correlation could be detected if small studies
were more likely to be published when the effect size is large
and then more likely to produce a statistically significant
finding. Large studies, which approximate better the true effect

Hardan 2009
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Anderson 2011
Hong 2011
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Figure 2. Standardised mean difference in CC size between ASD patients and controls in the articles analysed. Our meta-
analysis showed a mean difference of 0.5 standard deviations, smaller in the ASD groups. For each study, the size of the square
corresponds with the sample size. The standardised mean difference is shown by diamonds (the estimation was the same for the

fixed and random effect models).
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Figure 3. Standard error versus standard mean difference.
The funnel plot does not show a bias among articles with small
sample sizes (large standard errors) to over-estimate the
standard mean difference. However, the absence of studies with
sufficiently large cohorts does not allow us to conclude of an
absence of publication bias. The dashed lines indicate the 95%
confidence interval.

size, should then provide a reference. The funnel plot in Fig. 3
appears to be symmetric, and we did not find a significant
correlation between the effect size and the standard error of
each study (t=0.169, d.f.=15, P-value=0.8681). However, it is
difficult to establish whether there was or not a publication bias
because there are not really large studies in our sample: the
largest statistical power to detect a 0.3 standard deviation was
36%. In general, the mean achieved power was of just 46.9%
and the studies appeared to be very underpowered, with only a
20% average power to detect a difference of 0.3 standard
deviations (commonly recognised as a “small” difference).
Despite the general lack of power, 12 out of 17 studies reported
significant results.

B. Analysis of the Abide cohort

We start by providing a brief description of the autistic traits
and intelligence scores in the ASD group compared with the
control group (subsection 1). Next, in subsections 2-4 we
describe the differences related to scanning site, the effect of
age, sex, and the differences between diagnostic groups in
intracranial volume, brain volume, and corpus callosum
volume. In subsection 5 we describe the allometric scaling
relationship between corpus callosum volume and intracranial
volume, and between corpus callosum volume and brain
volume. In subsection 6 we describe the correlation between
intelligence scores and brain volume. Finally, in subsection 7
we summarise all our previous results to look at the effect that
different analysis strategies may have on the detection of
differences related to diagnostic group.

1. Characteristics of the Abide population

Several ASD scales were available for different subsets of
subjects in the Abide cohort. Scores in the Autism Diagnostic
Observation Schedule (ADOS) were available for 435 subjects.
The mean score among ASD subjects was 11.943.8 (N=383)
versus 1.3+£1.4 among controls (N=32). The difference was
highly significant (t=-34.28, P<0.0001). In the Social
Responsiveness Scale the mean score among ASD subjects was
91.3+£30.5 (N=190) versus 21.6+16.6 (N=175) among controls.
The difference was highly significant (t=-27.44, P<0.0001).
Finally, a smaller subset of subjects had also Autism Quotient
scores. The mean AQ score among ASD subjects was 30.5+8.1
(N=28) versus 13.3+5.5 among controls (N=28). The difference
was again highly significant (t=-9.3, P<0.0001).

Because of the emphasis on functional connectivity analyses in
Abide, only high-functioning subjects were studied (it would be
more difficult to ask low-functioning subjects not to move, and
sedation affects functional imaging results). The mean FIQ was
10517 among ASD patients and 111+12 among controls,
statistically significantly higher in the control group (P<0.0001,
2-sided t-test, t=5.22). There was also a statistically significant
difference in mean VIQ: 103+18 in the ASD group and 111+13
in the control group (P<0.001, 2-sided t-test, t=5.61), but there
was no statistically significant difference in mean PIQ: 106+17
in the ASD group and 107+13 in the control group (P=0.19, 2-
sided t-test, t=1.31). For all 3 1Q values the standard deviation
was statistically significantly larger in the ASD group than in
the control group (2-sided F-tests for FIQ: P<0.0001,
F(318,352)=1.95; VIQ: P<0.0001, F(263,273)=2.10; PIQ:
P<0.0001, F(263,273)=1.68). Table 4 shows these differences
within the individual scanning sites (note that the minimum
sample size required to detect with 80% power a 2-sided
difference in IQ larger than 0.5 standard deviations is of
N=128, only achieved by the NYU site).

VIQ and PIQ were correlated at P =0.44 (we will use these
values later). Table 4 shows the strength of this correlation at
the different scanning sites (note that the minimum sample size
required to detect with 80% power a correlation of 0.3 is of
N=67, achieved only by the NYU, UCLA and USM scanning
sites).

2. Intracranial volume

Freesurfer estimates ICV from the inverse of the determinant of
the linear transformation matrix used to align each individual's
brain to the MNI152 template (see Buckner et al (14) for more
details on this method, and a comparison with manual
segmentation). This provides an estimation of each individual's
ICV as a proportion of the template's ICV.

Site effect. The mean ICV was 1368+231 c¢m’, with statistically
significant differences among centres (P<0.0001, F=32.8,
d.f=16), varying from 232 cm’ below the global mean
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Table 4. 1Q differences between ASD and Ctrl per scanning site in Abide (negative values mean smaller in the ASD
group). (*) None of the controls retained from SBL had IQ scores available. (**) VIQ and PIQ scores were not available. P-

values are for 2-sided t-tests (uncorrected).

(Stanford) to 273 cm® above the global mean (Caltech). Site
effects accounted for 43.7% of ICV variance.

Age effect. There was a small but significant increase in ICV of
4.3 cm’® per year (P=0.0005, F=12.19, d.f.=1), which accounted
for a 1.7% of ICV variance.

Sex effect. We observed the expected difference in mean ICV
between males and females, 9.4% smaller in females
(P<0.0001, F=28.2, d.f=1). The Sex effect explained 3.9% of
total ICV variance.

Diagnostic group effect. The mean ICV, adjusted for Site, Age
and Sex effects, was of 1331168 cm®. We had 90% power to
detect 2-sided differences larger than 41 cm’® (a 3.1%
difference). ICV was 6.8 cm® larger in the ASD group, but this
difference was not statistically significant (GLM for ICV with
site, age, sex and diagnostic group as fixed effects, Diagnostic
group effect P=0.61, F=0.26, d.f.=1). The complete model
explained 46.9% of ICV variance.

3. Brain volume

Supratentorial brain volume was estimated using Freesurfer
5.1, and includes everything except the cerebellum and the
brain stem. In particular, it includes the volume of the
ventricles, choroid plexus, and vessels.

Site effect. The mean BV was 1131+£130 cm?, with statistically
significant differences among centres (P<0.0001, F=10.6,

FIQ VIQ PIQ P (VIQ,PIQ)

Site N A P-val A P-val A P-val R? P P-value
Caltech 15 -10.9 0.05 -10.5 0.17 -6.11 0.27 0.059 0.24 0.38
KKI (**) 52 -16.1 0.0008 - - - - - - -
Leuven 55 -13.4 0.0007 -19.0 | 0.0001 -4.7 0.24 0.099 0.32 0.019
MaxMun (**) | 33 -4.8 0.34 - - - - - - -
NYU 129 -1.9 0.46 -3.7 0.15 1.3 0.65 0.19 0.43 <0.0001
OHSU (*%) 21 -12.9 0.11 - - - - - - -
Olin (**) 28 -0.6 0.92 - - - - - - -
Pitt 57 -0.2 0.95 -0.5 0.89 04 0.89 0.22 0.47 0.0003
SBL (*) 7 - - - - - - 0.070 0.26 0.57
SDSU 20 11.5 0.16 11.6 0.14 7.9 0.30 0.43 0.64 0.0018
Stanford 13 2.6 0.72 -3.0 0.72 6.4 0.43 0.11 0.33 0.27
Trinity 20 -8.1 0.28 -8.5 0.22 -6.5 0.40 0.51 0.71 0.0004
UCLA 67 -5.8 0.07 -5.8 0.08 -3.9 0.25 0.10 0.32 0.0082
UM 50 -0.3 0.95 -4.3 0.44 3.7 0.38 0.03 0.18 0.22
USM 68 -15.3 <0.0001 -18.7 |<0.0001 | -8.5 0.027 0.22 0.46 <0.0001
Yale 37 -10.5 0.089 -11.7 0.086 -10.4 0.077 0.56 0.75 <0.0001

d.f=16), varying from 267 cm’ below the global mean
(Stanford) to 157 cm® above the global mean (Trinity). Site
effects accounted for 20.1% of BV variance.

Age effect. BV showed a small but statistically significant
increase of 2.3 cm’® per year (P=0.001, F=10.86, d.f.=1), which
explained 1.5% of BV variance.

Sex effect. BV was statistically significantly smaller among
females by 9.3% (P<0.0001, F=62.11, d.f.=1). The Sex effect
explained 8.2% of BV variance.

Diagnostic group effect. The mean BV, adjusted for site, age
and sex effects, was of 1097+112 cm®. We had 90% power to
detect 2-sided differences larger than 28 cm® (i.e., 2.6% of the
average BV). BV was 4.0 cm’ larger in the ASD group, but this
difference was not statistically significant (GLM for BV with
site, age, sex and diagnostic group as fixed effects, diagnostic
group effect P=0.86, F=0.03, d.f.=1). The complete model
explained 26.0% of BV variance.

BV correlated relatively strongly with ICV, P =0.64
(41.5% of the variance, P<0.0001, F=491.6, both BV and ICV
adjusted for site, age and sex effects).

4. Corpus callosum
We used the default settings of Freesurfer 5.1, which segments
the corpus callosum as a 5 mm thick slab, and divides it into 5
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Table 5. Mean sizes per callosal subregion, and variance due to site, age, sex and diagnostic group effects in Abide. Corpus
callosum slabs were 5 mm thick. The full model includes site, age, sex and diagnostic group as effects. P-value in bold are <0.05

Callosal region

Central Mid-anterior Anterior
0.45+0.09 0.49+0.13 0.90+0.18
9.19 12.87 7.74
<0.0001 <0.0001 <0.0001
17.8% 23.3% 15.5%

2 1 5

17.07 2.99 31.66
<0.0001 0.084 <0.0001
2.4% 0.4% 4.4%
4.5% 7.6% 8.2%
4.54 7.28 15.17
0.033 0.0072 <0.0001
0.7% 1% 2.1%

-3.3 -1.4 1.7

0.67 0.14 0.04

0.41 0.71 0.84

0.00 0.00 0.00
18.3% 24.7% 17.1%

(uncorrected).
Posterior Mid-posterior

Mean size (cm®) 0.89+0.18 0.44+0.09
Site effect

F 5.63 7.81

P-value <0.0001 <0.0001

R? 11.7% 15.6%
Age effect

Increase (mm3/year) 7 3

F 63.30 41.54

P-value <0.0001 <0.0001

R? 8.4% 5.7%
Sex effect

Percent difference 8.4% 6.8%

(1-Female/Male)

F 16.12 8.74

P-value <0.0001 0.0032

R? 2.3% 1.2%
Group effect

Difference (mm?®) -4.7 1.3

F 0.63 0.01

P-value 0.43 0.91

R? 0.00 0.00
Variance explained 15.1% 16.3%
by the full model

segments of equal length in the main CC axis (closely
corresponding with the antero-posterior axis, see Fig. 1).

Site effect. The global mean volume of the CC was 3.16+0.54
cm?®, with statistically significant differences among sites
(P<0.0001, F=10.7, d.f=16). Mean CC volume ranged from
0.61 cm?® below the global mean (Stanford), to 0.4 ¢cm® above
the global mean (Trinity). Site differences accounted for 20.2%
of total CC variance. Mean sizes per subregion, and variance
due to site effects are listed in Table 5.

Age effect. There was a small but statistically significant
increase in mean CC size of 19 mm® per year (P<0.0001,
F=45.0, d.f=1), which accounted for 6.1% of CC variance. The
increase was more pronounced in the Posterior and Anterior
subregions, which are those that more strongly correlate with
BV (see below). Table 5 lists Age effects for the 5 callosal
subregions, and the amount of variance they account for.

Sex effect. Mean CC size was statistically significantly smaller
among females by 7.4% (P<0.0001, F=17.1, d.f.=1) compared
with males. The Sex effect explained 2.4% of CC variance. A
similar difference was observed in all subcallosal regions,

especially the Posterior and Anterior ones (Table 5). We will
discuss in the next section the extent to which this difference is
explained by the significant difference in BV between females
and males.

Diagnostic group effect. The mean CC volume adjusted for
Site, Age and Sex effects was of 3.08+0.48 cm’. We had 90%
power to detect differences larger than 119 mm® (a 3.9%
difference). The observed difference was < 7 mm® (larger in
controls), not statistically significant (P=0.56, F=0.35,d.f=1),
as were none of the differences in the 5 callosal subregions
(Table 5). The full model for total CC volume explained 22.0%
of the variance.

The different callosal subregions presented a medium
correlation among them (Table 6). The 1st principal component
of the variance/covariance matrix of callosal subregion volume
explained 65% of the variance, and was correlated with P
=0.43 with BV and with P =0.98 with total CC volume. This
principal component corresponded to a coordinated increase in
the size of the posterior and anterior subregions. Indeed, the
posterior and anterior subregions of the corpus callosum
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Table 6. Pearson’s correlation matrix among ICV, BV and callosal regions.

ICV BV Posterior Mid-posterior Central Mid-anterior Anterior

ICV 1 0.67 0.26 0.12 0.13 0.11 0.33
BV 0.67 1 0.34 0.30 0.33 0.29 0.40
Posterior 0.26 0.34 1 0.58 0.47 0.39 0.61
Mid-posterior 0.12 0.30 0.58 1 0.67 0.57 0.48
Central 0.13 0.33 0.47 0.67 1 0.69 0.46
Mid-anterior 0.11 0.29 0.39 0.57 0.69 1 0.36
Anterior 0.33 0.40 0.61 0.48 0.46 0.36 1

showed one of the strongest correlations among them: P
=0.61.

5. Allometric scaling of the corpus callosum with ICV and
BV

The total corpus callosum volume presented a small correlation
with ICV ( P =0.27) and a medium correlation with BV ( P
=0.43). The same was observed for individual callosal regions,
that showed a small correlation with ICV and medium
correlation with BV (Table 6). A partial correlation analysis
suggested that the variability of the CC was more directly
related to BV than to ICV, and that the observed correlation
between ICV and CCV was largely mediated by BV (Table 7).
In consequence, our further analyses related CC variability with
BV.

Our results show a statistically significant negative allometry of
CC with BV, with a scaling coefficient ﬁ =0.64. We
observed the same negative scaling for the callosal regions
(average B =0.64, range from 0.58 to 0.73, Table 8).

The scaling coefficient for CC was not different between ASD
patients and controls — neither the diagnostic group effect nor
the interaction between diagnostic group and BV were
statistically significant (Diagnostic group P=0.43, F=0.62,
d.f=1; Diagnostic group * BV P=0.85, F=0.04, d.f=1).
Additionally, none of the callosal regions showed any
significant diagnostic group effect or diagnostic group * BV
effect.

Because of the allometric relationship between CC and BV, and
due to the significant effect of sex on BV, we expect females to
have smaller CC than males in absolute terms (as we observed

Table 7. Matrix of partial correlations among ICV, BV and
C C.Most of the correlation between ICV and CC was
mediated by the correlation between ICV and BV.

in the previous section), but larger than males in relative terms
(i.e., CC/BV). This was indeed the case: relative CC was
statistically significantly larger in females than males (Age and
Site as covariates, Sex effect: F=6.75, P=0.0095, d.f.=1). The
difference was, however, completely explained by the
relationship between CC and BV, as adding BV as a covariate
made the sex effect not statistically significant (Age, Site and
BV as covariates, Sex effect: F=1.8, P=0.18, d.f.=1) as it had
been previously pointed out by Luders et al (15).

6. Correlation between brain volume and 1Q

IQ is often used to match ASD patient groups and controls. But
several studies have reported a significant correlation between
IQ and ICV or IQ and BV. Additionally, IQ appears to be very
sensitive to environmental factors such as stress or socio-
economic status. It is then not clear that the relationship
between IQ and brain size would be the same in a control group
and a group of ASD patients. Indeed, whereas we did observe
the expected correlation between IQ and BV in the control
group ( P =0.23, P<0.0001, F=18.75), the relationship was
significantly weaker in the ASD patients group ( P =0.04,
P=0.044, F=4.10). A GLM for FIQ with Site, Age and Sex as
covariates, and BV, diagnostic group and diagnostic group *
BV as main effects, indicated a statistically significant
diagnostic group effect (P<0.0001, F=29.33, d.f.=1), as well as
a statistically significant interaction between BV and diagnostic
group (P=0.0178, F=5.64, d.f=1). In other words, whereas in
controls FIQ increased on average by 1 point every 31 cm’, the
same 1 point increase in FIQ required an increase of 84 cm? in
ASD patients.

Most of the diagnostic group * BV interaction effect on FIQ
appeared to be due to a difference in the correlation between
VIQ and BV in ASD patients and controls, but not between PIQ
and BV. VIQ and BV correlated with P =0.22 in controls,
but with 0 =0.08 in ASD patients. By contrast, PIQ and BV
correlated with 0 =0.18 and P
patients, respectively (see Table 9 for correlations at individual

=0.17 in controls and

ICcV BV cC sites). A GLM for VIQ with Site, Age and Sex as confounding
ICV ~ 0.64 20.027 covariates and BV, diagnostic group and diagnostic group * BV
BV 0.64 3 035 as main effects indicated that the interaction effect was
cc 0027 e - statistically significant (P=0.035, F=4.5, d.f.=1). This was not
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Table 8. Allometric scaling coefficient ( [3 ) of the callosal regions and ICV and BV. P-value in bold are <0.05

(uncorrected).
Region ICV BV

[:") R? F P [:’) R’ F P
Posterior 0.34 5.0% 36.7 <0.0001 0.59 9.1% 69.7 <0.0001
Mid-posterior 0.19 1.4% 10.5 0.0013 0.58 8.4% 64.2 <0.0001
Central 0.20 1.9% 13.4 0.0003 0.59 10.9% 84.2 <0.0001
Mid-anterior 0.24 1.8% 12.6 0.0004 0.71 9.7% 74.5 <0.0001
Anterior 0.47 9.9% 75.9 <0.0001 0.73 15.0% 122.3 <0.0001
CcC 0.32 6.9% 51.4 <0.0001 0.64 17.8% 149.6 <0.0001
the case for the interaction effect diagnostic group * BV on PIQ (3) PIQ=107+0.03 ( BV —1 126)
(P=0.60, F=0.27, d.f.=1). (5% of PIQ variance)

VIiQ=105

7. Impact of the relationship between BV, ICV, CC and IQ (4) +(0.03—0.02(GroupZASD))(BV— 1126)
in controls and ASD patients of the Abide cohort on analysis (5% of VIQ variance)

strategies.

Our analyses suggested that BV could be used as a parameter
indexing a relatively large part of the neuroanatomical diversity
in ICV and CC in our cohort, as well as smaller but statistically
significant part of the diversity in IQ scores. Summarising from
our previous analyses:

From Equations 3, 4 and the linear model for FIQ in the Abide
cohort described in the Methods section we can deduce an
expression for the dependance of FIQ on BV:

(5)
FIO=106.81

(1) ICV=225+BV
+(0.611—0.511(Group=ASD))( BV —1126).

(45% of ICV variance)

) CC=0.39BV"*
(19% of CC variance)

Table 9. Correlation between FIQ, VIQ, PIQ and BV. P-value in bold are <0.05 (uncorrected).

FIQ VIQ PIQ

Site N R p P R? o P R? p P
Caltech 15 0.062 025 037 0.002 0.04 0.87 0.015 -0.12 0.66
CMU - - - - - - - - - -

KKI 52 0.001 -0.03 084 - - - - - -
Leuven 55 0.080 0.28 0.036 0.077 0.28 0.040  |0.021 0.15 0.29
MAX 33 0.001 0.03 0.84 - - - - - -
NYU 129  0.070 0.26 0.0024  |0.030 0.17 0.049  |0.070 0.26 0.0025
OHSU 21 0.005 0.07 077 - - - - - -

Olin 28 0.007 0.08 0.68 - - - - - -
PITT 57 0.023 0.15 0.26 0.009 0.09 0.48 0.012 0.11 0.42
SBL 7 0.004 -0.06  0.89 0.017 0.13 0.78 0.192 -0.44 0.32
SDSU 20 0.006 0.08 0.7378  |0.064 0.25 0.28 0.010 -0.09 0.70
Stanford 13 0014 0.12 0.6905  |0.047 0.22 0.48 0.0 0.0 0.96
Trinity 20 0.02 0.14 04852  |0.020 0.14 0.54 0.033 0.18 0.44
UCLA 67  0.035 0.19 0.1280  |0.012 0.1 0.38 0.050 0.22 0.068
UM 50  0.173 0.42 0.0026  |0.03 0.17 0.21 0.249 0.50 0.0002
USM 68  0.051 0.23 0.0635  |0.010 0.10 0.40 0.078 0.28 0.021
Yale 37 0014 -0.12 04795  |0.000 0.0 0.92 0.045 021 0.21

10
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Mean BV difference between groups (Cohen's d)

Since the first observations by Kanner (16), many researchers
have reported a higher incidence of macrocephaly (17) in ASD,
as well as a larger average brain volume (18). Recent studies,
however, have shed some doubts on this hypothesis (19, 20). In
any case, if head circumference or brain volume were on
average larger among ASD patients compared with the general
population, and because of Eq. 2, we would expect the
proportion of the corpus callosum to be smaller in the ASD
group than in the control group. The size of the corpus
callosum is not directly proportional to BV, but more like the %
power of BV (i.e., to brain “surface” — the surface of the
envelope of the brain, not to be confounded with cortical
surface).

Many previous studies use either corpus callosum size relative
to brain volume (5 out of 17 in our meta-analysis), or include
brain volume as a covariate in a linear model (8 out of 17 in our
meta-analysis). But if the relationship between CC and BV is
non-linear as stated by Eq. 2, and if the groups differed in
average brain volume, both procedures could potentially
produce artifactual group effects (this would be in general the
case for any other comparison of two populations with different
average brain volumes — males and females, or tall and short
persons, for example).

Human brain volumes are widely variable, with large brains
reaching up to 2 times the volume of small brains. If relative
CC size were used (i.e., CC/BV) instead of absolute CC, we
should expect the proportion of the CC in the largest brains to
be up to 1.28-fold (i.e., 2"°%**) smaller than in the smallest
brains. Were the brains of ASD patients larger on average than
those of the control population, a proportionally smaller CC
would be expected.

We used simulations to test the extent to which BV
normalisation controlled for differences in BV between
populations. We simulated two populations of 50, 100, ..., 350

igure 4. Statistical power to detect a significant, artifactual,

difference in CC size for two groups presenting a difference in
mean BV: CC normalised by BV. Statistical power as a function
of the difference in mean BV between 2 simulated groups (Cohen's
d) consisting of 50, 100, ... 350 subjects each. CC is normalised
by dividing it by BV. Because of the non-linear relationship
between CC and BV, CC normalisation was not sufficient to
control for the difference in mean BV.

subjects per group, that had a standardised mean BV difference
of 0.1, 0.2, ..., 1.0 standard deviations. We generated BV
values distributed as in the Abide data, and corresponding CC
values based on Eq. 2. As in Abide, 19% of the variance of CC
was explained by BV. The result is summarised in Figure 4. We
observed that BV normalisation did not eliminate the effect of
mean BV differences between groups when this difference was
large enough (depending on group size). For example, BV
normalisation in a study based on two groups of 50 subjects
each with a mean BV difference of 0.65 standard deviations
will detect a statistically significant difference in CC size 50%
of the time, i.e., a statistical power of 50%. For a statistical
power of 20% (the average of the studies in our meta-analysis),
a mean BV difference of 0.25 standard deviations will suffice.

Alternatively, if brain volume (or intracranial volume) were
used as a covariate in a linear model, the non-linear Eq. 2
would be approximated by a linear function. The expansion of
u

Eq. 2 in Taylor series around a reference brain volume
is:

CC(BV)~CC(u)

d

+g§;CCWﬂBV—M

+O((BV—u)...).

(6)

A linear approximation of Eq. 2 results from discarding factors
related to the 2™ derivative and higher, and will be valid close
to W . We obtain

(7 CC(BV)=o(1-p)u’+apu’ ' BV,

were O =0.39 and ﬁ =0.64. If we were to study only 1
group, the best value of W  would be close to the average
brain volume of the group. But if we studied two groups with

different average brain volumes, a linear model with a group
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effect and an interaction effect would allow for 2 intercepts and
slopes in Eq. 7. Given enough statistical power, these
difference may become significant.

We used simulations to test the extent to which including BV
and BV*group effects controlled for differences in BV between
populations. As before, we simulated two populations of 50 to
350 subjects per group, with standardised mean BV differences
of 0.1 to 1 standard deviations, and CC values following Eq. 2
(19% of its variance). The result is summarised in Figure 5.
This approach was better than the precedent at controlling the
effect of mean BV differences between groups, and induced
detectable differences in CC size only for very large groups and
very large differences in mean BV.

Another frequent strategy in the study of ASD neuroanatomy
has been to match patients and controls by 1Q (used by 9 out of
17 studies in our meta-analysis). Equations 4 and 5 suggest,
however, that the relationship between IQ and brain size may
be different in patients and controls. If larger increases in brain
volume are required among patients than among controls to
obtain a similar increase in 1Q, matching groups by IQ may
bias the recruitment to either decrease the number of controls
with large brain volumes, or increase the number of patients
with large brain volumes. This bias could in turn affect the
assessment of group differences in CC size.

We evaluated through simulation the impact of matching by
FIQ two groups with different correlations between FIQ and
BV. We considered, based on the Abide data, two groups with

the same mean BV and with the same correlation between PIQ
and BV:

Mean (BV )= Mean(BV ,,)=1100,
p<PIQASD’BVASD):p<PIQCtr1’ BVCtrl):pIB'

In one group (the simulated ASD group), VIQ did not correlate
with BV and was also lower than in the control group (Ctrl):

p( VIQ 45, BVASD):()’
p( VIQ e, BVCtrl):pIBJ
Mean(VIQ ,,)=100,

Mean (VIQ,.,,)=Mean (PIQ..,,)=Mean( PIQ ,;,,)=110.

In all cases VIQ and PIQ correlated at 0.5, the standard
deviation of VIQ and PIQ was of 15 points, and the standard
deviation of BV was of 100 cm®:

o(VIQ, PIQ)=p,,=0.5,
o(ViQ)=o(PIQ)=0,=15,
Mean (VIQ¢,,)= Mean (PIQ.,,)= Mean( PIQ ,5,)=110.

Then, the variance matrices between VIQ, PIQ, BV for ASD (
2 4sp ) and Ctrl ( ZC,,I ) groups were, respectively:

a b
20 20
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P A AP AP S o LB O L P
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5 154 5 154 0 |
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Mean BV difference between groups (Cohen's d)

Mean BV difference between groups (Cohen's d)

Figure 5. Statistical power to detect a significant, artifactual, difference in CC size between two groups presenting a
difference in mean BV: BV used as covariate in a GLM. (a) Statistical power to detect a group effect in CC size as a function
of the difference in mean BV between 2 simulated groups (Cohen's d) consisting of 50, 100, ..., 350 subjects each. (b) Statistical
power to detect an interaction effect BV*Group in CC size as a function of the difference in mean BV between 2 simulated
groups consisting of 50, 100, ..., 350 subjects each. Including BV as a covariate successfully controls for BV effects even for

large sample sizes and large differences in mean BV.
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Figure 6. Effect of IQ matching on mean BV. Two groups were simulated with different correlation between FIQ and BV. In
one (the control group) both VIQ and PIQ correlated with BV. In the other (the ASD group) only PIQ correlated with BV. FIQ
was computed as the average between VIQ and PIQ, and subjects in both groups were selected to match the FIQ distributions. (a)
Mean BV difference induced by matching two populations as a function of the correlation between PIQ and BV, for groups of 50,
150, ..., 750 subjects each. (b) Power to detect a difference in mean BV induced by matching two populations by FIQ as a
function of the number of subjects per group. Statistical power curves were drawn for correlations between PIQ and BV of 0.3,
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The only difference between this variance-covariance matrices
is the correlation between VIQ and BV, which is zero in the
ASD group and PO ;05 inthe Ctrl group.
Next, we computed FIQ scores for each subject as

Fro=Y1C+PIO

2
To match the groups we matched their FIQ histograms. We
sorted all subjects by FIQ and retained alternatively one ASD
subject followed by one Ctrl subject. As expected, matching by
FIQ eliminated more often ASD subjects than controls in the
small BV end, and more controls than ASD subjects in the large
BV end. We repeated this procedure for groups with 50, 150,
Pz between IQ and BV
equal to 0.3, 0.35, ..., 0.5. For each group size and Pz
value we performed 1000 simulations.

..., 750 subjects, and correlations

We observed that based on the strength of the correlation
between IQ scores and BV, matching by FIQ induced an
increasing difference in mean BV between groups. The
relationship was linear (Fig. 6a):

13

StandardMeanDifference( BV )=0.34p ;.

We counted for each group size and Pz  value the number
of times that a statistically significant mean BV difference was
found (Fig. 6b). Only in groups with a strong relationship
between 1Q and BV the strategy of matching groups by FIQ
induced a reproducible difference in mean BV. For example,
comparisons between 2 groups of 50 subjects each, with a
correlation between IQ and BV or Pz =0.5 will detect a
significant difference in mean BV 20% of the time (which is,
sadly, higher than the average statistical power of many
neuroimaging studies (21)).

Finally, because the size of callosal subregions is highly
determined by total CC size, group differences will be more
casily detected in the posterior and anterior subregions, which
are more strongly correlated with total CC size, and with total
BV. Indeed, the 1st principal component of the variance-
covariance matrix of CC subregion size explains 65% of the
variance and correlates at 0 =0.98 with CC size:

Posterior =886+0.31(CC — Mean(CC)),
Mid-posterior =436+0.13(CC — Mean(CC)),
Central=447+0.12(CC — Mean(CC)),
Mid-anterior =494+0.15(CC — Mean(CC)),
Anterior=896+0.30(CC — Mean(CC)).
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DISCUSSION AND CONCLUSION

Our analyses of the neuroanatomical variability of the corpus
callosum and the brain volume in the Abide cohort did not
show any statistically significant difference between patients
and controls, contrary to the majority of the previous reports.
The difference that we observed between ASD patients and
controls was < 0.02 standard deviations for the mean size of the
corpus callosum, and < 0.04 standard deviations for the brain
volume, in other words, practically inexistent.

This absence of difference did not seem to be due to a
difference in the characteristics of the Abide cohort. The Abide
cohort is comparable with the previous ones in regards to the
subject's age, sex ratio and IQ level. Additionally, nothing
indicates that we may be dealing with an ASD population
presenting a milder autistic phenotype — the ADOS, AQ and
SRS scores were all highly significantly different between
patients and controls. Several of the previous reports, however,
included low-functioning subjects either exclusively or in
addition to high-functioning individuals, whereas the Abide
cohort includes only high-functioning subjects. But differences
in corpus callosum size had been equally reported among low-
functionning and high-functionning subjects. Out of the 9
studies in our meta-analysis that included exclusively high-
functioning subjects, 7 reported significant differences in
corpus callosum size as large as 0.78 standard deviations.

The absence of difference does not seem to stem either from
the multi-centric nature of Abide. There are several scanning
sites within Abide that included as much or even more subjects
than in the previous literature (NYU: N=129, USM: N=68,
UCLA: N=67). In none of them we detected a statistically

significant difference (Table 10 summarises the significance of
the group effects for ICV, BV, CC, and CC segments for all
scanning sites. The number of uncorrected significant P-values
was the expected given the number of multiple tests). Finally,
the computational neuroanatomy methods that we used to
segment and measure CC, BV and ICV were all standard and
well validated. We are making available our data tables and
scripts as well as a web interface with our quality control
decisions to allow the community to inspect and criticise our
analyses.

The major, clear, difference between our analysis and the
previous ones was statistical power. Using the Abide cohort we
achieved 99% power to detect differences of 0.3 standard
deviations, whereas the highest statistical power to detect this
effect size among the studies in our meta-analysis was of only
36%. Given the low mean statistical power of the previous
reports (20% on average), even if there were a real difference in
corpus callosum, there should be about 80% of negative
reports. However, only 5 out of the 17 articles analysed
reported non-significant differences. It has been observed that
the scarcity of negative results is especially marked in autism
research (22). This is a very damaging tendency within our
field, which impedes us from deciding on which hypothesis are
worth pursuing and which are not.

Despite the appeal of the hypothesis of a smaller corpus
callosum in ASD, we need to consider the possibility that it
may not be true. Does this falsify or weakens the
underconnectivity theory? The underconnectivity theory states
that autism is caused by “insufficient integration circuitry” (3).
But whereas many articles in different sub-fields of autism
research have indicated that their findings support (verify) the
underconnectivity hypothesis, it is not clear what finding would

Table 10. Summary of diagnostic group effects in BV, ICV and CC per scanning site in Abide. P-value in bold are <0.05

(uncorrected).

Site BV ICV CC Posterior Mid-posterior Central Mid-anterior Anterior
Caltech 0.19  0.43 0.82 0.92 0.65 0.94 0.66 0.84
CMU 0.57 0.16 0.97 0.69 0.41 0.98 0.59 0.82
KKI 041  0.20 0.024 0.13 0.094 0.012 0.059 0.36
Leuven 027  0.69 0.24 0.21 0.76 0.26 0.66 0.11
MaxMun 048  0.58 0.23 0.26 0.59 0.81 091 0.022
NYU 048  0.26 0.97 0.66 0.97 0.86 0.14 0.37
OHSU 020  0.55 0.93 0.56 0.91 0.48 0.70 0.92
Olin 048 049 0.19 0.64 0.040 0.85 0.74 0.044
Pitt 052  0.27 0.25 0.52 0.035 0.17 0.050 0.39
SBL 020  0.49 0.038 0.12 0.17 0.71 0.99 0.025
SDSU 041  0.089 0.89 0.60 0.57 0.85 0.58 0.94
Stanford 038 0.89 0.85 0.75 0.51 0.70 0.73 0.76
Trinity 0.86  0.80 0.27 0.32 0.11 0.18 0.68 0.51
UCLA 086 0.39 0.16 0.75 0.20 0.020 0.040 0.47
UM 030 046 0.62 0.73 0.10 0.80 0.080 0.98
USM 0.58  0.60 0.12 0.074 0.63 0.57 0.11 0.10
Yale 041 043 0.28 0.38 0.88 0.17 0.048 0.37
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be necessary to prove it wrong (falsify it). As pointed out by
Braitenberg (23), most of the brain tissue could be considered
as circuitry (myelinated and non myelinated axons, dendrites),
the main role of which is undoubtedly some type of integration.
It is not entirely surprising that ASD, as other psychiatric
disorders, can be interpreted as some type of insufficiency in
integration circuitry. We believe that to progress, autism
research requires a theoretical framework with stronger, more
clearly falsifiable predictions. In particular, a smaller corpus
callosum has not been directly stated as a prediction of the
underconnectivity theory. If our aim were to preserve the
theory, we could simply add an ad-hoc clause (“autism is
caused by an insufficiency in integration circuitry of a type that
does not change the size of the corpus callosum”), but the
appropriateness of this approach has been criticised (24).

Our results suggest that non-linear variations in corpus
callosum size relative to brain volume present in the general
population, or different patterns of covariation of confounding
factors could lead to some of the group differences reported in
the literature. We found that 19% of the variance in CC size
was captured by a relationship with brain volume where
progressively larger brains had a proportionally smaller CC. If
for some reason the brain volume in one population were
different than in the other, this difference could lead to a group
difference in corpus callosum size (for example, if females and
males were compared). Our analyses showed that normalisation
of CC size (divide CC by BV, which supposes that the relative
size of the CC is independent of BV, i.e., isometric scaling)
may not be sufficient to control for a difference in BV.
Including BV as a covariate provided a more reliable control,
and should be preferred to normalisation (the only more
reliable method being, of course, to match groups by brain size
as in (15)). Besides a real difference in BV we showed that 1Q
matching could under certain circumstances induce an
artifactual BV difference, that could be later observed as a CC
size difference (this will be the case for any other confounding
variable that changes differently in cases and controls). Finally,
besides the allometric scaling of CC and BV, similar non-linear
relationships have been also observed between total cortical
surface and BV, between folding (local and global) and BV, and
between white matter volume and BV. Because of these non-
linear scaling relationships it is expected that subjects with
larger brain volumes will have a larger cortical surface area
(25), more folded particularly in the prefrontal cortex (26), and
with a larger frontal white matter volume (27). These are

exactly the findings that have been reported in several articles
comparing ASD patients and controls (2, 28-30). The extent to
which they arise from a difference in brain volume (real or
artifactual) has yet to be evaluated.

We found that intelligence scores do not covary with BV in the
same way in ASD and controls. This is not completely
surprising, as FIQ — and VIQ in particular — are known to be
affected by environmental factors such as stress or
socioeconomic status (31). Psychiatric disorders such as ASD
do not only impose to the patients the cognitive challenges that
we most often use to define them, but also a daily confrontation
with various comorbidities, and various degrees of social,
educational and daily-life difficulties depending of our
society’s ability to integrate them. This additional burden is
very likely to leave physiological traces, in particular
neuroanatomical. Finding the biological markers of the causes
of ASD may then require to disentangle them not only from
risk factors, but also from the social effects of being different
(carrying a handicap, being disadvantaged, etc.).

Research suggest today that the aetiology of ASD is highly
heterogeneous, with hundreds of genetic mutations associated
with it (32, 33), as well as many environmental factors. The
patient’s phenotypes are also so diverse, with the presence of
such a large number of different comorbidities and wide
spectrum of cognitive abilities that one could wonder about the
pertinence of trying to look for neuroanatomical traits common
to all of them. It is important, however, to remember that the
nervous system is strongly self-regulated, and capable of the
most striking plasticity. The processes leading to the formation
of a mammalian nervous system are incredibly resilient and
able to produce viable cognitive function under the most
extreme circumstances. The phenomena that we may be able to
observe at the scale of the complete nervous system will be
more likely the trace of this common mechanism of
developmental canalisation and compensation than a direct
reflexion of the heterogencous aetiology. In this sense, the
comprehension of the normal response of the nervous system to
perturbation, and the way in which the diversity of this
response is regulated by the complete individual’s genetic
background, may turn to be as important as the direct study of
the pathologic cause. The study of large cohorts with extensive
behavioural, genetic and neuroimaging data will be of
fundamental relevance for this endeavour.
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