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Abstract

Cancer progression is an example of a rapid adaptive process where evolving new traits is essential for
survival and requires a high mutation rate. Precancerous cells acquire a few key mutations that drive rapid
population growth and carcinogenesis. Cancer genomics demonstrates that these few ‘driver’ mutations
occur alongside thousands of random ‘passenger’ mutations—a natural consequence of cancer’s elevated
mutation rate. Some passengers can be deleterious to cancer cells, yet have been largely ignored in cancer
research. In population genetics, however, the accumulation of mildly deleterious mutations has been shown
to cause population meltdown. Here we develop a stochastic population model where beneficial drivers
engage in a tug-of-war with frequent mildly deleterious passengers. These passengers present a barrier to
cancer progression that is described by a critical population size, below which most lesions fail to progress,
and a critical mutation rate, above which cancers meltdown. We find support for the model in cancer age-
incidence and cancer genomics data that also allow us to estimate the fitness advantage of drivers and fitness
costs of passengers. We identify two regimes of adaptive evolutionary dynamics and use these regimes to
rationalize successes and failures of different treatment strategies. We find that a tumor’s load of deleterious
passengers can explain previously paradoxical treatment outcomes and suggest that it could potentially serve
as a biomarker of response to mutagenic therapies. Collective deleterious effect of passengers is currently
an unexploited therapeutic target. We discuss how their effects might be exacerbated by both current and
future therapies.
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Introduction
While many populations evolve new traits via a gradual accumulation of changes, some adapt very rapidly.
Examples include viral adaptation during infection (1); the emergence of antibiotic resistance (2); artificial
selection in biotechnology (3); and cancer (4). Rapid adaptation is characterize by three key features: (i)
the availability of strongly advantageous traits accessible by a few mutations, (ii) an elevated mutation
rate (5, 6), and (iii) a dynamic population size (7). Traditional theories of gradual adaptation are not
applicable under these conditions, and new approaches are needed to address pressing problems in medicine
and biotechnology.

Cancer progression is an example of a rapidly adapting population: cancers develop as many as ten new
traits (8), often have a high mutation rate (8-10), and a population size that is rapidly changing over time.
This process is driven by a handful of mutations and chromosomal abnormalities in cancer-related genes
(oncogenes and tumor suppressors), collectively called drivers. From an evolutionary point of view, drivers
are mutations that are beneficial to cancer cells because their phenotypes increase the cell proliferation rate
or eliminate brakes on proliferation (8). Drivers, however, arise alongside thousands of other mutations
and alterations dispersed through the genome that have no immediate beneficial effect, collectively called
passengers.

Passengers have been previously assumed to be neutral and largely ignored in cancer research, yet growing
evidence suggests that they may sometimes be deleterious to cancer cells and, thus, play an important role in
both neoplastic progression and clinical outcomes. In an earlier study, we showed that deleterious passengers
can readily accumulate during tumor progression and found that many passengers present in cancer genomes
exhibit signatures of damaging mutations (11). Additionally, chromosomal gains and losses that are pervasive
in cancer can be passengers, and have been shown to be highly damaging to cancer cells (12). Lastly, cancers
with high levels of chromosomal alterations exhibit better clinical outcomes in breast, ovarian, gastric, and
non-small cell lung cancer (13). Passenger mutations and chromosomal abnormalities can be deleterious via
a variety of mechanisms: direct loss-of-function (14), proteotoxic cytotoxicity from protein disbalance and
aggregation (15), or by inciting an immune response (16).

While the role of deleterious mutations in cancer is largely unknown, their effects on natural populations
has been extensively studied in genetics (5, 17-19). The accumulations of deleterious mutations can cause
the extinction of a population via processes known as Muller’s ratchet and mutational meltdown (17, 20, 21)
It was recently proposed that inevitable accumulation of deleterious mutations in natural populations should
be offset by new beneficial mutations, leading to long-term population stability (19). Here we consider a
rapid adaptation of a population with a variable size and subject of a high mutation rate. A rapidly adapting
population faces a double bind: it must quickly acquire, often exceeding rare, adaptive mutations and yet
avoid mutational meltdown. As a result, adaptive processes frequently fail. Indeed, less than 0.1% of species
on earth have adapted fast enough to avoid extinction (22) and, similarly, only about 0.1% of precancerous
lesions ever advance to cancer (23). To control cancer or pathogens, we should understand the constraints
that evolution imposes on their rapid adaptation.

Here we investigate how asexual populations such as tumors rapidly evolve new traits while avoiding
mutational meltdown. Unlike classical theories of gradual adaptation, the evolutionary model we develop
has three key features: (i) rare, strongly advantageous driver mutations, (ii) a high mutation rate that
makes moderately deleterious passengers relevant, and (iii) a population size that varies with the fitness of
individual cells. We found that a tug-of-war between beneficial drivers and deleterious passengers creates
two major regimes of population dynamics: an adaptive regime, where the probability of adaptation (cancer)
is high; and a non-adaptive regime, where adaptation (cancer) is exceedingly rare.

Adaptive and non-adaptive regimes are separated by a critical population size or barrier to cancer pro-
gression that most lesions fail to overcome, and a critical mutation rate that leads to mutational meltdown.
We found strong evidence of these phenomena in age-incidence curves and recent cancer genomics data.
Agreement of the model with these data allows us to estimate the selective advantages of drivers as 10-50%,
a range consistent with recent direct experimental measurements (24). Genomic data also show that dele-
terious passengers are approximately 100 times weaker. Our model offers a new interpretation of cancer
treatment strategies and explains a previously paradoxical relationship between cancer mutation rates and
therapeutic outcomes. Most importantly, it suggests that deleterious passengers offer a new, unexploited
avenue of cancer therapy.
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Results
Model
We consider a dynamic population of cells that can divide, mutate (in a general sense, i.e. including
alterations, epigenetic changes, etc), and die stochastically. Mutations occur during cell divisions with a
per-locus rate µ. The number of driver loci in the genome, i.e. a driver target size, is Td, while the
target size for deleterious passengers is Tp. Hence, the genome-wide driver and passenger mutation rates
are µd = µTd and µp = µTp respectively. A driver increases an individual’s growth rate by sd ∼ 0.1, while
a new passenger decreases the growth rate by sp ∼ 10−4 − 10−1. Here we only consider fixed values of sd
and sp because previous work showed that drivers and passengers sampled from various fitness distributions
(exponential, normal, and Gamma) exhibit essentially the same dynamics (11). The net effect of multiple
mutations on cell fitness w is given by w = (1 + sd)nd(1 + sp)np , where nd and np are the total number of
drivers and passengers in a cell.

The birth and death rates of a cell in our model depend not only on fitness, but also on the population
size N via a Gompertzian growth function often used to describe cancerous populations (25) (see SI for
details). At large N , deaths exceed births and tumors must adapt (or innovate) via new drivers to progress
to larger population sizes. Thus, populations in our model expand and shrink in two ways: on a short
time-scale due to stochastic cell divisions and deaths, and on a long time-scale due to the accumulation of
advantageous and deleterious mutations. Previous models of advantageous and deleterious mutations have
not considered a varying population size (26, 27).

In cancer and other adapting populations the target size for advantageous mutations (drivers) is much
smaller than the target size for deleterious mutations (Td � Tp). If driver loci include a few specific
sites (∼ 10 per gene) in all cancer-associated genes (approximately 100, (28)), then collectively drivers will
constitute less than one one-millionth of the genome. Conversely, as much as 10% of the human genome is
well-conserved and likely deleterious when mutated (29, 30). In natural populations, Tp should still remain
much greater than Td simply because natural selection optimizes genomes to their environment, implying
that most changes will be neutral or damaging. Indeed, most protein coding mutations and alterations were
deleterious or neutral when investigated in fly (31), yeast (32), and bacterial genomes (33). We consider only
moderately deleterious loci here (sp ≈ 10−4 − 10−1)—which account for most nonsynonymous mutations
(34, 35). Deleterious mutations outside of this range either do not fixate or negligibly alter progression
(11). Hence, we used a conservative size of Tp ≈ 105 − 107 loci to account for passengers with fitness effects
outside of this range that we are neglecting (see SI and Table S1 for details of parameters estimation).
This quantity is still much greater than Td. Finally, we explored a variety of driver fitness advantages, as
estimates in the literature ranged from 0.0001 (36) to 1 (24).

A critical population size
Figure 1A shows the dynamics N(t) of individual populations starting at different initial sizes N0, which
correspond to different potential hyperplasia sizes (we begin trajectories immediately after a stem cell acquires
its first driver, see SI for a discussion of dynamics before this time point). Populations exhibit two ultimate
outcomes: growth to macroscopic size (i.e. cancer progression), or extinction. The prevalence of either
outcome is determined by a critical population size N∗, about which larger populations (N > N∗) generally
commit to rapid growth and smaller populations (N < N∗) generally commit to extinction.

To understand the cause of this critical population size N∗, we looked at the short-term dynamics of
populations. All trajectories show a reversed saw-toothed pattern (Fig. 1B), which result from a tug-of-war
between drivers and passengers (11). When a new driver arises and takes over the population, the population
size increases to a new stationary value. In between these rare driver events, the population size gradually
decreases due to the accumulation of deleterious passengers. The relative rate of these competing processes
determines whether a population commits to rapid growth or goes extinct.

We can identify the location of N∗ by considering the average change in population size over time
(< dN/dt >), which is simply the average population growth due to driver accumulation (vd) minus the
population decline due to passenger accumulation (vp). Fixation of a new driver causes an immediate jump
in population size ∆N = Nsd. These jumps occur randomly at a nearly constant rate f = µdNsd, given by
the driver occurrence rate µdN , multiplied by a driver’s fixation probability sd/(1 + sd) ≈ sd. Hence, the
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velocity due to drivers is vd = f∆N = µdN
2s2
d. Similarly, passengers’ velocity (vp = µpNsp) is a product

of their rate of occurrence (µpN); their effect on population size (Nsp); and their probability of fixation
(∼ 1/N , a more accurate measure of this probability is used below and provided in the SI). Thus, we obtain:〈

dN

dt

〉
= µpspN

(
N

N∗
− 1
)

(1)

N∗ = Tpsp
Tds2

d

(2)

where N∗ is the critical population size.
Because the population velocity is negative belowN∗ and positive aboveN∗ there is an effective barrier for

cancer (Fig. 1C): smaller populations tend to shrink, while larger populations tend to expand. Simulations
support our conclusion that the probability of cancer increases with N0 and sharply transitions at N∗ (Fig.
1D). Indeed, drastically different probability curves collapse onto a single curve once N0 is rescaled by
N∗ (computed from equation 2). Since N∗ captures only the average, or mean-field, dynamics, it misses
the variability of outcomes in rapidly adapting populations. Figure 1E illustrates that the variability of
outcomes depends upon the strength of drivers sd. Higher values of sd lead to larger stochastic jumps, which
leads to larger deviations from mean behavior and more gradual changes in the probability of cancer across
N0. Thus, we formulated and analytically solved a stochastic generalization of equation 1 that incorporates
this variability (SI). Our solution provides an excellent fit to simulations (Fig. 1E) and indicates that N∗
and sd fully describe population dynamics (SI).

We can understand how N∗ and sd control cancer progression using a simple random-walk analogy. The
population size experiences random jumps, resulting from driver fixation events, which are described by
equation 1. These random jumps and declines are effectively a random walk in a one-dimensional effective
potential (Ueff =

∫
(dN/dt ) dN), Fig. 1C and SI) with stochastic jumps of frequency f and size ∆N .

Similar to chemical reactions activated by thermal energy, cancer progression is a rare event triggered by a
quick succession of driver fixations. Below, we show that human tissues operate in a regime where progression
is rare and successful lesions are the rare lesions that happen to acquire drivers faster than average. We
found that population dynamics depend entirely on two dimensionless parameters: a deterministic mean
velocity, dependent only upon N/N∗, and a stochastic step-size that is approximately proportional to sd.
By reducing the complexity of our evolutionary system to two parameters, we were next able to infer their
values for real cancers without over-fitting.

Model validation using cancer incidence and genomic data
Our model of cancer progression predicts the presence of an effective barrier to cancer where small lesions
are very unlikely to ever progress to cancer. It also predicts a specific distribution in the number of passenger
mutations and a specific relationship between drivers and passengers in individual cancer samples. We looked
for evidences of these phenomena in age-incidence data (37) and cancer genomics data (28, 38-40). These
comparisons also allowed us to estimate some critical parameters of the model: N0, sd, and sp.

Figure 2A presents the incidence rate of breast cancer versus age (37) alongside the predictions from
a classic driver-only model (SI) and our model. The incidence rate was calculated by considering a process
where precancerous lesions arise with a constant rate r beginning at birth. These lesions then progress to
cancer in time τ with a probability P (τ) that we determined from simulations (Fig. S1). By convoluting
this distribution P (τ) with the lesion initiation rate r, we can predict the age-incidence rate I(t). Because
many lesions go extinct in our model and never progress to cancer, the predicted incidence rate saturates at
old-age: Imax = r

∞∫
0
P (τ) dτ =rP∞, where P∞ is the probability that a lesion will ever progresses to cancer,

determined above.
Both the observed population incidence rates and our driver-passenger model saturate with age. This

is a direct result of the probability of progression from a lesion to cancer being low. We estimate a lower
bound for the rate of lesion formation r in breast cancer of at least 10 lesions per year that can be arrived at
through two separate considerations: first, by considering the quantity of breast epithelial stem cells and the
rate at which they can mutate into lesions (SI), and second, by considering the number of lesions observed
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Figure 1: Tug-of-war between drivers and passengers leads to a critical population size (A)
Population size verses time of simulations initiated at various sizes. Populations starting above N∗ generally
commit to rapid growth (i.e. adaptation) and to extinction below it. (B) A fragment of a trajectory
shows periods of rapid growth and gradual decline. New drivers arrive with a frequency f(N) and abruptly
increases the population size by an amount ∆N . Meanwhile, passenger accumulation causes populations to
gradually decline with rate vp. (C) Analytically computed mean velocity of population growth (top) and an
effective barrier (bottom) as a function of population size N . The velocity is negative below N∗ and positive
above it. (D) The probability of adaptation (cancer) as a function of initial population size N (left) and a
relative initial population size (N/N∗, right) for nine values of evolutionary parameters. Using the relative
size N/N∗ leads to curve collapse, whereby populations with different evolutionary parameters nevertheless
behave similarly. (E) Same as in (D) for simulations and theory but for different values of sd. Higher values
of sd, leads to more gradual transition from non-adaptive to adaptive regime. Excellent agreement between
simulations and theory demonstrates accuracy of the theory. In our formalism, an increase in sd results in a
larger jump size ∆N and lower potential barrier, allowing more populations to overcome the barrier (right).

within the breast tissue of normal cadavers (23). By comparing this limit (∼ 10 lesions · year−1) to the
maximum observed breast cancer incidence rate Imax ≈ 10−2 cancers · year−1, we find that P∞ ≈ 10−3, or
only about 1 in 1,000 lesions ever progress. This finding is consistent with a number of clinical studies that
have observed that very few lesions ever progress to cancer, while many more regress to undetectable size
(41, 42)—another property seen in our model. Thus, good agreement between age-incidence data and our
model is obtained when sd ≈ 0.1 − 0.2 and N0/N∗ is chosen such that P∞ = 10−3. This suggests that
cancer begins at a population size far below N∗, where drivers are most often overpowered by passengers.
Indeed, 21 of the 25 most prevalent cancers plateau at old-age suggesting that progression is inefficient in
most tumor types (Fig. S1). In a driver-only model (see SI for details), every lesion progresses to cancer
after sufficient time (i.e. P∞ = 1), therefore a plateau in incidence rate can only result from a very low lesion
formation rate (0.01 per year), which is inconsistent with abundant pathology data (23, 43).

Recent cancer genomics data offer a new opportunity to validate our model. Specifically, we looked at
Somatic Nonsynonymous Mutations (SNMs) and Somatic Copy-Number Alterations (SCNAs) derived from
over 700 individual cancer-normal sample pairs obtain from the breast (38), colon (28), lung (40), and skin
(39) (Table S2). We found similar results when analyzing SNMs and SCNAs both separately (Fig. S2,
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Table S3) or in aggregation (Fig. 2BC). Figure 2B shows a wide and asymmetric distribution of the
total number of mutations, which is consistent with our model under realistic parameters. A driver-only
model yields a narrower and more symmetric distribution that is inconsistent with the data (Fig. 2B). The
driver-only model can fit the observed distribution only if it assumes that just 1-2 drivers are needed for
cancer (Fig. S3, Table S4)—a value inconsistent with both the extent of recurrent mutations seen in cancer
(10) and known biology. This large variance in mutation totals further supports our model and suggests that
driver mutations and alterations have a large effect size: sd ≈ 0.4. Our estimate of sd ≈ 0.1− 0.4 obtained
from age-incidence and mutation histograms is in excellent agreement with experimentally measured changes
in the growth rate of mouse intestinal stem cells upon induction of p53, APC or k-RAS mutations where
measured values ranged from of 0.16 to 0.58 (24).

We then used cancer genomics data to compare the number of drivers and passengers observed in indi-
vidual cancer samples to our model’s predicted relationship. In our model, additional passengers must be
counterbalanced by additional drivers for the population to succeed. If a lesion lingers around N∗ for a long
time, then it must have acquired both many passengers and many counterbalancing drivers; while lesions
that quickly progress through the barrier at N∗ acquire fewer of each. As a result, we expect a positive
linear relationship between the number of drivers and passengers: nd · sd − np · sp = constant; this result
follows directly from the definition of fitness in our model (SI). Our predicted positive linear relationship
between drivers and passengers is indeed observed in all tumor types that we studied (Fig. 2C, Table S3,
p < 0.08 − 10−6). The slope of this regression line is predicted to be sp/sd, which ranged from 1/21 to
1/193 (Table S3) for the various subtypes. While there is considerable variation and large margins of error
in these numbers, these slopes (sp/sd ≈ 5 · (10−2 − 10−3)) correspond to an sp of 5 · (10−3 − 10−4) when
sd = 0.1. These rough values are similar to germ-line SNMs in humans of European descent, where 64% of
all mutations exhibit an sp between 10−5 and 10−2 (35).

We considered and refuted several alternative explanations for the observed positive linear relationship
between drivers and passengers. First, that the strength of SCNAs may differ from SNMs. Hence, we
investigated each alteration-type separately and found positive linear relationships in both cases (Fig. S2,
Table S3). Second, that the number of driver alterations might be explained by variation in the tumor
stage, or the rate and/or mechanism of mutagenesis. In Table S3 we show that these factors cannot suppress
the correlation between drivers and passengers. Lastly, we considered and refuted the possibility that this
relationship between drivers and passengers is non-linear (Fig. 2C insert). Because the data disagrees with
all of these alternate hypotheses, we believe that it supports our conclusion that cancer progression is a
tug-of-war between drivers and passengers.

A critical mutation rate
We next used simulations to investigate the probability of cancer over a broad range of evolutionary param-
eters (Fig. S4) and found that there is a critical mutation rate above which the probability of cancer is
exceedingly low (Fig. 3A). To explain this phenomenon and to find the parameters that determine this
critical mutation rate µ∗, we modified our analytical framework to consider selection against passengers and
the effects of unfixed passengers on the accumulation of drivers. The modified framework, described in the
SI, explains observed dynamics well (Fig. 3AB, S4). Previous theoretical work has shown that the number
of unfixed passengers per cell is Poisson distributed with mean µp/sp [first described in (44)]. This result
assumes an approximate balance between the mutation rate of passengers and the selection against them,
otherwise known as mutation-selection balance. The average fitness reduction of a cell due to this mutational
load (i.e. the reduction in fitness relative to the fittest cells in the population) is µp. A new driver arises
in one of these cells at random and must carry the load of passengers residing in its cell along with it to
fixation (18) (Fig. 3C); this process is often referred to as hitchhiking, so we describe these passengers as
‘hitchhikers’. If the reduction in fitness due to the load of passengers (µp = µTp) exceeds the benefit of a
new driver (sd), then the driver will not fixate (Fig. 3C). Hence, cancer is extremely rare when µp > sd.
This suggests a critical mutation rate:

µ∗ = sd/Tp (3)

The critical mutation rate suggests a new mode by which mutational meltdown operates. Prior models
of mutational meltdown consider deleterious mutations in isolation (17), whereas our model points at the
ability of deleterious mutations to inhibit the accumulation of advantageous mutations as a mechanism of
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Figure 2: Signatures of balance between drivers
and passengers in incidence and genomics data
(A) Predicted and observed breast cancer incidence
rates verses age. Notice that in our model, as well
as in the data, incidence rates plateau at old age.
A traditional driver-only model, where the incidence
rate I increases with patient age t according to a
power-law (I ∝ tk), does not saturate. (B) His-
togram of the collective number of protein-coding mu-
tations (SNMs) and alterations (SCNAs) in breast can-
cer alongside predicted distributions. Our model, cap-
tures the width and asymmetry of the distribution well
for sd = 0.4, while a driver-only model predicts a nar-
rower and symmetric distribution. (C) The total num-
ber of driver verses the number of passenger alterations
in sequenced tumors for several major subtypes. SC-
NAs and SNMs were aggregated. As predicted by the
model, all subtypes exhibited a positive linear rela-
tionship between the number of drivers and passen-
gers (p < 0.08 − 10−5). A driver-only model with
neutral passengers does not predict this linear rela-
tionship between drivers and passengers. (Insert) The
same genomics data plotted on log axes, with the y-
intercept from each subtype’s linear fit subtracted. A
linear relationship on logarithmic axes with a slope of
approximately one suggests that the relationship be-
tween drivers and passengers is indeed linear.
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meltdown. While it has been previously shown that deleterious mutations interfere with the fixation of
beneficial alleles (18, 26, 45), this phenomenon has never been studied in the context of population survival.
We discuss some important implications of this critical mutation rate for cancer treatment below.

We found support for the critical mutation rate in both cancer age-incidence and cancer genomics data.
If we constraint cancer progression to develop within the typical timeframe for cancer progression (i.e. when
we begin to see a plateau in incidence: ∼ 60 years or 10,000 generations), the probability of cancer exhibits
an optimum across mutation rates (Fig. 3D). Above µ∗ population meltdown is very common, while at very
low mutation rates progression is too slow. The optimal mutation rate (10−9−10−8mutations ·nucleotide−1 ·
generation−1) is similar to mutation rates observed in cancer cell lines with a mutator phenotype (9) and
the inferred mutation rate derived from the median number of mutations observed in a pan-cancer study of
>3,000 tumors (10). Because µ∗ depends only on sd and Tp, and is independent of other variables, we believe
the maximal mutation rate should be the same across tumor subtypes (SI, Fig. S4). Indeed, a maximum
of approximately 100 somatic mutations per Mb (99.4th percentile) was observed in the pan-cancer study
mentioned above, which corresponds to our theoretical estimate (if we assume that the most mutagenic
cancers still require 1,000 generations to progress).
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Figure 3: Effect of mutation rate on cancer dynamics (A) The probability of cancer (adaptation) com-
puted by simulations as a function of the initial population size and mutation rate. Evolutionary parameters
roughly partition into a regime where cancer (adaption) is almost certain, and a regime where it is exceed-
ingly rare. Estimates of N∗ from our theory (magenta, solid) accurately predict the transition observed at
low mutation rates. Another transition is observed as mutation rate exceeds the critical mutation rate, also
predicted by theory (µ∗, blue line). Transition between these two regimes is better described by our theory
when we incorporated (i) passenger interference with driver sweeps, and (ii) selection against passengers
(black lines; dashed, solid, and dotted-dash predict 10%, 50%, and 90% probability of adaptation). (B) Can-
cer (adaption) probability (color) obtained by simulations as a function of mutation rate and sp. The theory
(black lines) accurately reproduces the complex transition between both regimes. (C) Diagram illustrating
how the load of passengers influences the probability of fixation of a driver. The distribution of fitness is
due to a distribution of the number of passengers per cell, which follows a Poisson distribution with a mean
reduction in fitness of µp. Hence sp > µp for a typical driver to outweigh the load of passengers. Segregating
passengers not only reduce a driver’s probability of fixation, but also its fitness benefit (26). (D) Probability
of cancer for various mutation rates constrained to grow within 10,000 generations. We observe an optimum
mutation rate.

Two regimes of dynamics
Taken together, our results demonstrate that the tug-of-war between advantageous drivers and deleterious
passengers creates two major regimes of population dynamics: an adaptive regime where the probability of
progression (cancer) is high (∼ 100 %) and a non-adaptive regime where cancer progression is exceedingly
rare (Fig. 3, S4). Evolving populations that fail to adapt and go extinct may do so because they reside
in a non-adaptive region of the phase space. Similarly, normal tissues that avoid cancers may present a
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tumor microenvironment that is in this non-adaptive regime. By keeping N∗ sufficiently high, a tissue or
clinician could keep cancerous populations outside of the adaptive regime. This critical population size
N∗ = Tpsp/(Tds2

d) depends on the evolutionary parameters of the system. For example, if sp were increased
by tuning the response of the immune system to mutation-harboring cells, or if Td were decreased via a driver-
targeted therapy, adaptation would become less likely. Below we demonstrate that a successful treatment
must push a cancer back to the non-adaptive regime.

The adaptive barrier and critical mutation rate explain cancer treatment out-
comes
We simulated cancer growths and treatments and then monitored the long-term dynamics of these popula-
tions. Most treatments used today attempt to reduce tumor size, e.g. by specifically inhibiting key drivers
(46) or by simply killing rapidly dividing cells (chemotherapy and radiation). Chemotherapy and radiation
also elevate the mutation rate, thus affecting evolutionary dynamics. Previous work on the evolution of
resistance to therapy has not considered the barriers to adaptation that we observe, so we re-investigated
evolutionary outcomes from standard therapies and identified new potential ways to treat cancer. While real
cancers have a varied evolutionary history, our analytical formalism predicts that cancer’s future dynamics de-
pend only on their current state, not their history (i.e. cancer dynamics are approximately path-independent,
Fig. S5). We show below that this assumption can accurately predict outcomes in simulations and the
clinic.

In Figure 4, we present the evolutionary paths of cancer—from hyperplasia, to cancer, to treatment,
and relapse or remission—on top of the phase diagrams described earlier. Our analysis demonstrates that
a treatment is successful if it pushes a cancer into the non-adaptive regime of evolutionary dynamics where
the probability of adaptation is low. Conversely, therapies fail, and populations re-adapt and remiss, when
the therapy does not move cancer far enough to place it in the non-adaptive regime.

Our model suggests that chemotherapies succeed, in part, because they move cancers across the muta-
tional threshold µ∗. Beyond this threshold, the probability that a driver is strong enough to overpower a
load of passengers becomes small (see above, Fig. 2C), making it hard for cancer to readapt. Increasing
the mutation rate has little effect on the critical population size N∗ (see above).

Thus, our model suggest that cancers with a very high load of mutations/alterations are close to the
critical mutation rate and should be more susceptible to mutagenic treatments, such as chemotherapy.
Several recent studies (13, 47) have noticed that patients survive breast and ovarian cancer most often when
their tumors exhibited exceptional high levels of chromosomal alterations. This phenomenon was robust
within and between subtypes of breast cancer (47). This finding is paradoxical for all previous models
of cancer, where a greater mutation rate always accelerates cancer evolution and adaptation; yet is fully
consistent with our model (Fig. 4B).

Treatments exploiting the mutational load of cancers (i.e. their accumulated passengers) remain largely
unexplored. We show that increasing the deleterious effect of passengers sp causes tumors to enter remission.
Increasing sp is doubly effective because it exacerbates the deleteriousness of accumulated passengers and
also slows down future adaptation. When we simulate such treatment by a 3-5 fold increase of sp (Fig. 4C),
we observe an immediate decline in the population size followed by a low probability of replace due to an
increased N∗. The phase diagram shows that a mild increase in sp is sufficient to push a population into
an extinction regime and thus induce remission. Below we discuss possible treatment strategies that would
increase sp.

Given the large number of treatment options, finding therapies that work synergistically is a very im-
portant problem in cancer research (reviewed in (48)). While synergism is often discussed in the context of
pharmacology, our phase diagrams identify evolutionarily synergistic treatments. We found that remission
was most likely to occur when the mutation rate and the fitness cost of passengers were increased simulta-
neously, more so than would be expected from simply adding together the effects of the individual therapies
(Fig. S6). Hence, combinations of mutagenic chemotherapy along with treatments that elevate the cost of
a mutational load may be most effective. According to our model, these therapies should also be compatible
and complementary to driver-targeted therapies.
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Figure 4: Mapping and interpreting treatment outcomes (A) An adapted population (grown cancer)
can be reverted to extinction by increasing the mutation rate (mutagenic chemotherapy) or by decreasing
the population size (e.g. surgery or cytotoxic chemotherapy). Our phase diagrams explains therapeutic
outcomes: therapies that reduce cancer size or increase mutation rate enough to push it outside of an adaptive
regime cause continued population collapse; those that do not experience relapse. (B) (Top) Comparison
of the model to clinical data. Cancers with intermediate mutational loads are the most aggressive (4, 13).
Patients with intermediate Chromosomal INstability (CIN) and Loss Of Heterozygosity (LOH) scores are
the least likely to survive. Patients with very high CIN are most effectively treated. (Bottom) Our phase
diagrams shows these clinical outcomes: traditional therapies which work by decreasing the population size
and/or increase the mutation rate work best for cancers with the highest mutation rate. (C) Three fold
increase in the effect of passenger mutations leads to rapid population meltdown below N∗, thus relapse is
unlikely.

Discussion
We present an evolutionary model of rapid adaptation that incorporates rare, strongly advantageous driver
mutations and frequent, mildly deleterious passenger mutations. In this process, a population can either
succeed and adapt, or fail and go extinct. We found theoretically, and confirmed by simulations, two regimes
of dynamics: one where a population almost always adapts, and another where it almost never adapts.
Complex stochastic dynamics, which emerge due to a tug-of-war between drivers and passengers, can be
faithfully described as diffusion over a potential barrier that separates these two regimes. The potential
barrier is located at a critical population size that a population must overcome to adapt. We also found
a critical mutation rate, above which populations quickly meltdown. This general framework for adaptive
asexual populations appears to be perfectly suited to characterize the dynamics of cancer progression and
responses to therapy.

Progression to cancer is an adaptive process, driven by a few mutations in oncogenes and tumor sup-
pressors. During this process, however, cells acquire tens of thousands of random mutations many of which
may be deleterious to cancer cells. While strongly deleterious passenger mutations are weeded out by se-
lection, mildly deleterious can fixate and even accumulate in a cancer by hitchhiking on drivers, as we have
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shown earlier (11). Passengers may be deleterious by inducing loss-of-function in critical proteins (14), gain-
of-function toxicity via proteotoxic/misfolding stress (15, 49), or by triggering an immune response by a
mutated epitope (16, 50). While we looked at passengers in cancer exomes and in SCNAs, passengers may
also constitute epigenetic modifications, or karyotypic imbalances (15). Hence the number of deleterious
passengers may be more than currently observed by genome-wide assays.

Our framework suggests that most normal tissues reside in a regime where cancer progression is exceed-
ingly rare; i.e. most lesions fail to grow above the critical population size and, thus, fail to overcome the
adaptive barrier. Clinical cancers, on the contrary, reside above the adaptive barrier in a rapidly adapting
state. Therapies must push a cancer below this adaptive barrier to succeed. In our framework, this entails
moving the population below N∗ or increasing the mutation rate above µ∗. The availability of a broad range
of data for cancer allowed us to thoroughly test our framework’s applicability.

We tested out model and estimated its parameters using cancer age-incidence curves, cancer exome
sequences from almost 1,000 tumors in four cancer subtypes, and data on clinical outcomes. Age-incidence
curves support the notion that the vast majority of lesions fail to progress and allow us to estimate the fitness
benefit of a driver as sd ∼ 0.1− 0.4. Genomics data suggests that passengers are indeed deleterious and that
their deleterious effect is approximately one hundred times weaker than driver’s beneficial effect. Moreover,
the fitness benefit of a driver estimated from genomic data is roughly sd ∼ 0.4. Our range of values are
consistent with recently measured 16-58% increases in the mouse intestinal stem cell proliferation rate upon
mutations in APC, k-RAS or p53 (24). Taken together these data support the notion of a tug-of-war between
rare and large-effect drivers and frequent, but mildly deleterious passengers sp ∼ 5 · (10−4 − 10−3), which
nevertheless have a large collective effect.

Results of our analysis have direct clinical implications. Available clinical data (13, 47, 51) show that
cancers with a higher load of chromosomal alterations, i.e. close to µ∗, respond better to treatments.
Our study suggests two potentially synergistic therapeutic strategies: to increase the mutation rate above
µ∗, and/or to increase the deleterious effect of accumulated passengers. An increase in the fitness cost of
passengers would not only magnify the effects of an already accumulated mutational load, but also reduce
future adaptation. This may be accomplished by (i) targeting unfolding protein response (UPR) pathways
and/or the proteasome (15), (ii) hyperthermia that may further destabilize mutated proteins or clog UPR
pathways (52), or (iii) by eliciting an immune response (16). Intriguingly, all these strategies are in clinical
trials, yet they are often believed to work for reasons other than by exacerbating passengers’ deleterious
effects. In contrast, we predict that these therapies will be most effective in cancers with more passengers and
an elevated mutation rate. Thus, characterizing the load of mutations/alterations in tumors may offer a new
biomarker for predicting treatment outcomes and identify the best candidates for mutational chemotherapies.

While this study focused on asexual innovative evolution in cancer, our model may be generally applicable
to other innovating populations. Consider a population in a new environment. The population is often
initially small and fluctuating in size and often goes extinct, yet occasionally it expands to a larger stationary
size by rapidly acquiring several new traits that are highly advantageous in the new environment. Both the
evolutionary parameters (53) and observed phenomena (54) match our model well. Our mathematical
framework may explain why these populations sometimes adapt, yet often fail.

Materials and Methods
All simulations were run using a previously-described first-order Gillespie algorithm (11). Driver genes
were identified using MutSig (10) and GISTIC 2.0 (55) for potential NSM and SCNA drivers, respectively;
requiring a Bonferroni-corrected enrichment p-value ≤ 5 ·10−3 for classification of a gene as driver-harboring.
All other genes were classified as ‘passenger-harboring’.
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Supplementary Information to A tug-of-war between driver and
passenger mutations in cancer and other adaptive process
Mathematical description and analysis of our model of advantageous drivers and
deleterious passengers.
In this section, we present an exact mathematical formulation of our model, describe the broad ranges of
parameters that we chose to explore, and offer an analytical description of our model. In our analytical
description, we estimate (i) the effects of stochasticity on population dynamics, (ii) the rate of accumulation
of deleterious passengers, and (iii) the interference of driver accumulation by deleterious passengers.

Detailed formulation of our model

As mentioned in the main text, we model cancer via a first-order Gillespie Algorithm. Each cell within
the cancer is represented by a separate “chemical species" or reactant in the Gillespie algorithm. Cells
are defined by their state: {nd, np} 1. nd denotes the number of drivers in the cell, while np denotes the
number of passengers. Cells can then divide, with and without mutations, and die according to the following
half-reactions:

{nd, np}
B(nd,np)−−−−−−→ {nd + δd, np + δp}+ {nd + δd, np + δp}

{nd, np}
D(N)−−−→ ∅

The functions B(nd, np) and D(N) represent the birth and death rates of cells, while N represents the
total number of cells in the precancerous population. The birth rate assumes multiplicative fitness effects of
mutations and no epistasis between mutations:

B(nd, np) = (1 + sd)nd
(1 + sp)np

≈ (1 + sd)nd(1− sp)np [S1]

We also define a generation in terms of the mean division time:

1 generation = 1
1/N

∑N
i=0B(ndi , npi)

The death rate is defined such that, in the absence of mutations, the expectation value of the population
size will obey a Gompertz curve at large sizes and a logistic curve at small sizes:

D(N) = Log[1 + (e− 1)N
N0 ]

We used a simpler form of this death function for populations grown to less than 106 cells:

D(N) = N

N0 [S2]

This second functional form did not significantly alter dynamics at small sizes [28], has been used previously
[24], is easier to calculate, and seemed equally justified to us for small sizes because very little is known
about the true carrying capacity of a tumor micro-environment in its early stages. Lastly, the number of

1Depending upon the number of cells and genomes in the population, it may be more efficient to model cancer as a set
genotypes that can gain and lose cells (rather than a set of cells that can gain mutations—as we have done). This alternate
design is best when the number of genomes in the population is significantly less than the number of cells. However, the efficiency
of a Gillespie algorithm depends very weakly on the number of chemical species n (Specifically, it affects computational speed by
O(log n) in the Next Reaction Method [17]). More importantly however, the other steps in the simulation: creating mutations,
and calculating birth/death rates is faster for individual cells than for genomes. Thus, using cells as the basic element of
simulations, rather than genomes, is faster even under circumstances where the number of cells outnumber the number of
genomes by a few orders of magnitude. This design choice also afforded more plasticity in model design and allowed us to create
and investigate coalescences trees, which were informative. In fact, the genetics community at large tends to simulate genomes
(rather than individuals) for what appears to be ill-conceived speed considerations, and may want to consider adopting our
style.
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new drivers δd and passengers δp acquired during cell division are Poisson-distributed random variables with
mean Ud and Up, respectively. For example, P (δp = k|Up) = Ukp e

−Up

k! .
Many of the particular design choices and properties of our model were altered and then investigated

in a previous study [28]. Specifically, we considered (1) the effects of mutations with additive effects [i.e.
B(nd, np) = 1 + ndsd − npsp], (2) the effects of mutations that alter the death rate [i.e. D = D(N,nd, np)],
(3) the effects of driver and passenger mutations selected from various distributions (exponential, normal,
and gamma) of fitness effect sizes, and (4) variations on the relation between population size and death
rate. For the parameters that we believe are most relevant to cancer (Table ), these permutations did
not qualitatively alter our simulations. However, in the analytical analysis presented below we discuss the
boundaries where assumptions of our model break-down; this was, in part, why we analyzed the model in
such detail.

It should be noted that many of the considerations discussed above are germaine to all models of tumor
progression, not simply the in silico model presented here. Consider that recent data on growth rates of
human tumors differs from data obtain from mouse models: human tumors grow according to an exponential
curve [7], while mouse tumors grow according to a Gompertz curve [14]. Careful mathematical consideration
of the differences between a model of progression where growth is exponential, and one where growth is
Gompertzian, should allow us to understand when it is necessary to refine the design of simulations and
experiments and/or temper our conclusions.

Before describing the entire dynamics of our model, it is useful to consider the difference between our
simulations initiated at their stationary size (N0 cells) and simulations initiated at 1 cell. In the absence of
mutations, an initial population of one cell will grow logistically until it reaches the stationary size. Hence,
it takes approximately Log2[N0] ∼ Log2[103] ∼ 10 generations for the initial cell to approach stationary
size. This is far shorter than the average time required for cancer progression (∼ 10, 000 generations) and
the time required for a new driver to accumulate (∼ 1/(UdN0sd) ∼ 1, 000 generations). Thus, our choice of
initiating a tumor at one cell versus N0 does not significantly alter the conclusions of our model.

This comparison of timescales also suggests that cancers are almost always near their stationary size:

B(nd, np) ≈ D(N)

We previously tested this conclusion in simulations and found that it is a excellent approximation of tumor
size [28]. If we assume B(nd, np) ≈ B(nd, np), then a relationship between the number of drivers and
passengers in a tumor and its size is obtainable:

B(nd, np) ≈ D(N)
(1+sd)nd
(1+sp)np

≈ Log[1 + N
(e−1)N0 ]

ndLog(1 + sd)− npLog(1 + sp) ≈ Log[Log[ NN0 ]]
ndsd − npsp ≈ Log[Log[ NN0 ]] : sd, sp � 1

This final equation suggests that there exist a linear relationship between drivers and passengers among
tumors with similar sd and sp, which we assume is the case for tumors of the same tissue of origin. The
relationship should be relatively robust to tumor size, but sensitive to the fitness effects of drivers and
passengers. Moreover, changes in the functional form of D(N) will alter the y-intercept of this linear
relationship, but not the slope of the relationship. Hence, we can draw conclusions about the relative
strength of drivers versus passengers (sd/sp) without knowing the exact constraints on population size. We
tested and verified this prediction of a linear relationship between drivers and passengers in the main text.

Our computational model has 5 independent parameters: a mutation rate µ, a mutation’s relative like-
lihood of being a driver versus a passenger Td/Tp, the fitness benefit of a driver sd, and disadvantage of a
passenger sp, and an initial stationary size N0. These parameters vary considerably between tumor types
(and the mutation rate even varies within tumor types [26]), so we explored a wide range of values centered
around literature best-estimates (Table ). More importantly, our analytical analysis reveals that we can
describe our system with two dimensionless parameters, which we then estimated from age-incidence and
genomics data (Fig. 2).
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Overview of our analytical model for dynamics

In the main text, we demonstrate that dynamics are described by two countervailing forces: an upward
velocity vd resulting from accumulating beneficial drivers, and a downward velocity vp resulting from accu-
mulating deleterious passengers. The upward velocity vd was further subdivided into a product of the rate
at which new drivers fixate in the population f times their effect on population size once fixated ∆N (Fig.
1B) 2. The velocities vd and vp are balanced at a critical population size N∗, at which the population is
approximately equally likely to go extinct or progress to cancer.

While we were able to describe the average behavior of our population in the main text, our system,
like cancer, is inherently stochastic. Its complete dynamics is best described by a differential equation with
stochastic jumps:

dN = vpdt+ ∆Ndnd
nd

f−→ nd + 1
[S3]

In this equation, the change in population size dN is the product of a deterministic component −vp, along
with a stochastic component describing the random arrival of new drivers (∆Ndnd). Below, we use this
equation to estimate the probability of cancer for any population size Pcancer(x) and the mean waiting time
to cancer tcancer(x). Lastly, we noticed that simulations differed from the formalism we presented in the
main text when we varied the mutation rate µ and explored a broader range of passenger deleteriousness
sp (Fig. 2, S4). These discrepancies could be resolved by considering two phenomena neglected by our
first derivation: selection against passengers, and passenger’s effect on both the fixation probability and
clone fitness of drivers. Fortuitously, accounting for these phenomena did not alter Eq. 3, nor the overall
framework of our analytical model. Instead, they only affect the rates vp, f , and jump size ∆N in our model.
Thus, with the refined formalism, we described dynamics across a very broad range of parameters (Fig. 2,
S4). More importantly, we observe drastic reductions in the probability of adaptation at high mutation
rates and encompassing moderately deleterious passengers. These findings suggest novel strategies to cancer
therapy.

Population size is the state variable of our system and, as such, is all that is needed to describe future
dynamics (this is evident from Eq. 3, and can be observed in Fig. S5). By converting population size into
a dimensionless parameter x = N/N∗ (and x0 = N0/N∗), the probability of cancer collapse onto a simple
curve Pcancer(x) (Fig. 1)—further underscoring the importance of the critical population size. Hence, we
will use this dimensionless quantity heavily throughout the remainder of our analysis.

Estimating the probability of cancer

Using Eq. 3 we can describe how the probability of extinction changes in an infinitesimal time due to either
passenger accumulation or a rare driver jump:

Pcancer(x) = f(x)dtPcancer[x+ ∆N(x)] + [1− f(x)dt]Pcancer[x− vp(x)dt]

Note that f , ∆N , and vp are all functions of x. In this equation, we see that is the probability of cancer at x
is the probability of a jump times the probability of cancer after the jump (f(x)dtPcancer[x+∆N(x)]) plus the
probability of decline times the probability of cancer after the decline ([1− f(x)dt]Pcancer[x− vp(x)dt]). The
probability of cancer after a decline can be expanded via a Taylor series: Pcancer[x− vp(x)dt] ≈ Pcancer(x)−
vpdtP

′
cancer(x). This reduces the above equation to:

vp(x)P ′cancer(x) = f(x)[Pcancer(θx)− Pcancer(x)] [S4]

Here θ = (x+ ∆N)/x ≈ 1 + sd denotes the logarithmic change in population size after a driver jump. Like
∆N , vp = µpspN and f = µdsdN are also linear in x. Thus, by expanding the logarithm of θ via Maclaurin
Series: Pcancer[x + ∆N(x)] ≈ Pcancer(x) + xLog(θ)P ′cancer(x) + x2Log2(θ) + P ′′cancer(x), we arrive at a now
solvable differential equation:

x2Log(θ)P ′′cancer(x) + [Log(θ)x+ 2x+ 2N∗]P ′cancer(x) = 0
2While we assume that drivers arise at random time intervals, this assumption is not always true. Because unfixed passengers

can interfere with the fixation of drivers, a driver is more likely to fixate immediately following a previous driver fixation
event [23]. Ignoring this caveat does not significantly alter dynamics in the parameter space explored here.
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With this equation, and boundary conditions that follow from our definition of cancer and extinction:

Pcancer(x = 0) = 0
Pcancer(x =∞) = 1

, we can solve for the probability of cancer after infinite time:

Pcancer = 1− γ( 2
Log(θ)

, 2
Log(θ)x

) [S5]

Here, γ(s, x) = 1/Γ(s)
∫ x

0 e
−tts−1dt : Γ(s) =

∫∞
0 xs−1e−x dx is the normalized incomplete gamma function.

This solution is parameterized by two dimensionless quantities: θ and x, which represent the jump size in
population of driver sweeps and our effective population size respectively.

Estimating the mean time to progression

We can also use Eq. 3 to solve for the waiting time to cancer. This can be accomplished in two ways: (1) we
can simulate random driver jumps and deterministic passenger decline directly, and (2) we can approximate
the mean waiting time to cancer using a Taylor expansion similar to the strategy we employed to solve for
the probability of cancer. These two approaches agree with each other (thus, illustrating their accuracy),
and offer key insights into the evolutionary parameters that affect age-incidence curves (Fig. 2, S1).

Eq. 3 can be simulated using a “hybrid” Gillespie algorithm: a meta-simulation of driver- and passenger-
accumulation events that we, originally, observed arising from our atomistic simulations of birth, death, and
mutational events. The advantage of this technique is that it allows us to quickly simulate billions of tumors,
which would be computationally impossible via the more detailed simulations. Because we are confident
that we are accurately estimating the rate of driver and passenger accumulation events (Fig. S4), this
simplification should retain accuracy. To simulate Eq. 3 directly, we must consider that the instantaneous
probability of a driver jump f [x(t)] is a function of a constantly declining population size due to passenger
accumulation: x(t) = xnd(1 + sp)vp/spt ≈ xnde

−vpt. Here, xnd is the population size after the last driver
jump. Thus, the waiting time between drivers ∆t = tnd+1 − tnd is:∫∆t

0 fN(t′)dt′ = ζ

f
∫∆t

0 Nnde
−vpt′dt′ = ζ

∆t = − 1
vp
Log(1− vpζ

fNnd
)

[S6]

, where ζ is an exponentially-distributed random number with mean 1. Using our precise calculations of f ,
vp and ∆N below, we can now simulate Eq. 3 directly.

We can also solve Eq. 3 for tcancer, using the exact same approximations as we did to estimate Pcancer(x).
To do this, we begin with a Master Equation for the probability of acquiring a cancer after waiting time t
when currently at size x:

Pcancer(x, t) = f(x)δt Pcancer(θx, t+ δt) + [1− f(x)δt]Pcancer[x− vp(x)δt, t+ δt]

The mean waiting time to cancer is then:

tcancer(x) =
∫ ∞

0
tPcancer(x, t)dt

By substituting the Master Equation into this definition, and by utilizing the first-order Taylor series expan-
sion:

Pcancer(θx, t− δt) ≈ Pcancer(x, t) + ∂Pcancer(x, t)
∂x

(θ − 1) + ∂Pcancer(x, t)
∂t

δt

, we find:

tcancer(x) =
∫ ∞

0
Pcancer(x, t)tdt+ δt

∫ ∞
0

∂Pcancer(x, t)
∂t

tdt+ [fδt(θ−1) +
(
1− f

)(
vpδt

)
]
∫ ∞

0

∂Pcancer(x, t)
∂x

tdt
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The first integral in this solution is simply the definition of our mean waiting time (tcancer(x)). The second
integral can be integrated by parts by noting that limt→∞ tPcancer(x, t) = 0 (otherwise, tcancer(x) would be
undefined). Lastly, the third integral reduces to t′cancer(x). Thus, we eventually find:

f(x)[ρc(θx)− ρc(x)]− vp(x)ρ′c(x) + Pcancer(x) = 0

Here, ρc(x) = Pcancer(x)tcancer(x). This equation has a nearly identical form to Eq. 4. So we used a similar
Second-Order Maclaurin series expansion of θ to approximate its solution:

tcancer(x) = 2
fLog2(θ)

[ ∫ ∞
x

dy

y3
Pcancer(y)[1− Pcancer(y)]

P ′cancer(y) + 1− Pcancer(x)
Pcancer(x)

∫ x

0

dy

y3
P 2

cancer(y)
P ′cancer(y)

]
[S7]

This equation can be solved using Simpson’s Method and is in good agreement with the hybrid simulations
described in the preceding paragraph (Fig. S1). This calculation of the waiting time to cancer is most
illustrative when x � 1—the regime that we expect to contain most tumors. In this regime, the mean
time increases as −Log(x)/vp, which implies two interesting properties of tcancer. First, x has a very weak,
sub-linear, effect on the waiting time and does not significantly alter the shape of incidence curves (Fig.
S1). Second, the waiting time to cancer is dictated by vp (the accumulation rate of passengers), thus offering
yet another reason to understand the rate of deleterious passenger accumulation.

Accumulation of deleterious passengers

Passenger mutations accumulate and drag populations down by a rate vp. This quantity is a product of
passengers arrival rate µpN , their fixation probability πp, and their effect on population size once fixated
Nsp (i.e. vp ≈ µpspN). In the main text, we assume that the fixation probability is approximately neutral
(πp ≈ 1/N); however, when selection is stronger that genetic drift, the fixation probability becomes less than
the neutral rate. A number of studies have focused entirely on estimating this fixation probability [9,19,20,30].
In general, estimates of this fixation probability begin by considering the distribution of deleterious alleles
in a population of infinite size in mutation-selection balance—where allele frequencies are not changing. At
equilibrium, such a population exhibits a Poisson distribution in the number of segregating passengers within
cells Nnp , defined by a characteristic parameter λp = µp/sp (Fig. 3C):

Nnp = N
e−λpλ

np
p

np!
[S8]

If we then consider a population of finite size, we find that the allele frequencies fluctuate due to genetic drift.
If fluctuations in the fittest class (Nnp=0 = Ne−λp) are large enough to cause this fittest class to go extinct,
then it is irrevocably lost from the population. This irrevocable loss is considered a ‘click’ of Muller’s Ratchet.
The new fittest class—individuals harboring one segregating passenger prior to the ‘click’—then relaxes to a
new equilibrium that fluctuates, and the process repeats. Estimating the time required for a new fittest class
to relax to equilibrium size immediately following a ‘click’ is non-trivial and dependent upon the parameters
of the system: N , sp, and µp, which can vary by orders of magnitude depending upon the evolutionary
system in question; hence there are many estimates of the exact rate of Muller’s Ratchet. We present and
utilize 3 estimates of the rate of Muller’s Ratchet: (1) a solution that ignores the time to equilibration and
works decently for most values of sp, µp, and N considered here (Fig. 2, magenta lines); (2) a traveling-
wave solution that allows the distribution of segregating passengers to be far from equilibrium, but presumes
that that the size of neighboring fitness classes are uncorrelated, accurate for large values of λp [9]; and
(3) a path-integral solution that considers correlations between neighboring fitness classes, but requires that
the population be in quasi-equilibrium (i.e. near mutation-selection balance), accurate for small values of
λp [19]. These later two estimates were combined with an estimate of the number of hitchhiking passengers
and their effects on driver fixation events to form a very precise description of our model’s dynamics (Fig.
3, S4; black lines). We felt that offering these two refined models to readers was useful because they
trade-off applicability, simplicity, and accuracy.

If we simply ignore the equilibration tome of a population into mutation-selection balance, then we can
estimate the rate of Muller’s Ratchet with a closed form solution that is applicable to all values of sp, µp, N
investigated here. The other two solutions each apply only to their respective halves of the parameter space
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and are more complex, but also more accurate. To our knowledge, we are the first authors to present this
simplified solution. We obtain the solution by assuming that the probability of a ‘click’ is approximately
the probability of a new passenger fixating within the fittest class: Nnp=0 = Ne−λp . In other words, to a
first-approximation, deleterious passengers simply reduce the effective population size of our system. The
probability of a lone deleterious allele fixating within this fittest class is describe by a Moran Process [31].
Hence,

π(1)
p = sp

(1 + sp)Np0 − 1
[S9]

This refined fixation probability π(1)
p is then used to correct the downward velocity due to passengers, using

the same formula for vp derived in the main text:

v(i)
p = µpspNp0π

(i)
p [S10]

This equation links vp to the passenger fixation probabilities calculated above, and the other two fixation
probabilities calculated below.

The solution for Muller’s Ratchet as a traveling wave, which we apply when λp < 1, was obtained from [9]:

Log( Nsp√
λp

)

λp
≈ 1− π

(2)
p

2 [Log2( e

π
(2)
p

) + 1]− 1
λp

Log[ (π(2)
p )3/2√

1− pi(2)
p

Log( e
λp

)

1− π(2)
p Log( e

λp
) + 5

6λp

] [S11]

Because this equation is transcendental, we solved for π(2)
p using Brent’s Method.

When λp ≥ 1, a quasi-stationary analysis of the mutation classes becomes appropriate. This analysis was
first done in [19], resulting in a solution of the form:

Tclick = e− 1
sp

e
spNp0
2(e−1) [S12]

The fixation probability is then simply the inverse of the ‘click’ time: π(3)
p = 1/Tclick.

Lastly, there is a discontinuity between the above two solutions at their intersection: λp = 1. We resolved
this by interpolating between the two solutions, as follows:

π(combined)
p = λpπ

(2)
p + (1− λp)π(3)

Effects of deleterious passengers on fixation probability and clone fitness of drivers

The occurrence and fixation of driver mutations are rare events, separated by nearly random time intervals,
with a frequency of occurrence f = µdNπd. Here, πd is the fixation probability of a new mutant driver
once it arises in the population. In the first-order model presented in the main text, we estimate that
πd = sd/(1 + sd) ≈ sd. However, this result assumes that there are no other non-neutral alleles in the
population. In reality, there are many segregating passengers in the population, and potentially other
segregating drivers.

The presence of other drivers in the population, which interfere with the fixation of our clone of interest, is
a phenomena commonly described as Clonal Interference [18]. Clonal Interference becomes significant in the
population once the time required for a driver to fixate [∼ Log(N)/sd generations] approaches the fixation
rate (f ≈ µdNsd). Nascent precancerous population are in a space of evolutionary parameters where Clonal
Interference is particularly negligible: population size is small (N ∼ 103), and drivers are rare (µd ∼ 10−5),
but strong (sd ∼ 10−1). Thus, we do not consider its effects here. However, for a larger tumor population,
clonal interference may become very significant. This is especially true in a poorly-mixed population, where
beneficial alleles take longer to sweep through the population [25].

Segregating passenger mutations can also interfere with a driver sweep by ‘hitchhiking’ on the expanding
clone [2, 23]. We consider two types of hitchhikers: (1) those that reside in the Initial clone before the new
driver arises (denoted δpI), and (2) those that arise and fixate in the new driver clone as it Sweeps through
the population (denoted δpS). It is necessary to distinguish hitchhikers this way because only the initial
hitchhikers (δpI) significantly alter the fixation probability f , while both types alter the effect size ∆N .
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The hitchhikers that accumulate during the sweep will generally arise after the clone is of appreciable size;
however, once the driver clone is of appreciable size, it is exceedingly likely that it will fixate so long as it
remains the fittest clone in the population.

Here, we consider only the average number of hitchhikers in a driver sweep (δpI and δpS), rather than their
entire distribution of quantities; estimates of the average number of hitchhikers appear to explain dynamics
reasonably well (first shown in [23] and also evident from our analysis’ good agreement with simulations Fig.
S4). Thus the probability that a new clone fixates in the absence of Clonal Interference is (Fig. 3C):

πd(δpI) = s′d(δpI)
1 + s′d(δpI)

: s′d(δpI) = sd − δpIsp [S13]

, and the jump size ∆N becomes:
∆N ′ = N [sd − (δpI + δpS)sp] [S14]

We can conclude our analysis of hitchhikers once we obtain δpI and δpS. These quantities were first derived
in [23]. We use their results (summarized below), along with a minor necessary adjustment for populations
when λp is large, to complete our analytical model of cancer progression.

For a new driver clone to take over the population and fixate, it has been shown that its fitness must
be greater than the fittest class in the population [23]. This imposes a maximum on the number of initial
hitchhikers δpmax

I that a successful driver clone can have:

sd > δpIsp
δpmax

I = bsd/spc

A clone that does not satisfy this constraint may proliferate for a while in the population, but it will
nevertheless be eventually out-competed by fitter clones. When the mean number of hitchhiking passengers
(λp) approaches this maximum, hitchhikers dramatically reduce both f and ∆N , thus increasing N∗ to
untenable sizes. This occurs when:

λp = δpmax
I

µp/sp = bsd/spc
µp ≈ sd

[S15]

Hence, our analysis suggests a limit on the maximum mutation rate that an adapting population can tolerate:
µ∗p ≈ sd. In simulations, we observe extinction slightly above this threshold (Fig. 3A, S2). This mechanism
of collapse, where populations go extinct by failing to acquire new advantageous mutations or adaptations,
differs from the traditional model of mutational meltdown. In the traditional model, advantageous mutations
are generally ignored and meltdown occurs only because deleterious mutations accumulate too quickly. In our
model, however, traditional mutational meltdown is difficult because populations also acquire advantageous
mutations faster as the mutation rate increases. Moreover, traditional meltdown occurs only when the
population size is small, making it impossible to occur in a large population like cancer. Our discovery of a
new mechanism of meltdown that is independent of population size suggests that mutational meltdown may
be induced via cancer therapeutics.

The number of initial segregating passengers in a clone when a driver arises (δpI) can be obtained by
considering, once again, the population at mutation selection balance, i.e. Eq. 8. The average number of
initial hitchhiking passengers is simply the average of the likelihood of a driver arising in each mutational
class, conditional on the driver successfully sweeping through the population:

P (δpI) = 1
N
Nnp=δpIπd(δpI)

δpI = 1
N

∑δpmax
I

δpI=0 P (δpI)πd(δpI)
= 1

N

∑δpmax
I

δpI=0
e−λpλδppI
δpI!

s′d(δpI)
1+s′

d
(δpI)

[S16]

Here, N =
∑δpmax

I
δpI=0 π

′
d(δpI) is a normalization constant.

The above solution fails when λp is large. In this circumstance, the population is far from mutation-
selection balance. Rectifying the solution in this case is difficult to do precisely, however we find that a
simple correction to Eq. 16 can crudely ameliorate the estimate. Because the assumption of mutation-
selection balance fails only once the expected number of passengers in the fittest class becomes very small
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(Nnp=0 = Ne−λp ∼ 1), we propose that the actual fittest surviving class in the population is the first class
of passengers with an expected population size that is greater than the size of fluctuations in the population.
Because the variance in a birth and death process is the sum of the rates (2N in our model), the Fittest
Surviving Class kFSC is:

kFSC = minnp [Nnp >
√

2N ]
kFSC = minnp [e−λpλnpp /np! >

√
2
N ]

The corrected distribution of δpI then becomes:

δpI = 1
N

δpmax
I∑

δpI=0
P (k = δpI + kFSC|λp)πd(δpI)

This simple correct yields a final solution for Pcancer that agrees with simulations well (Fig. S4).
Lastly, the number of passengers that accumulate during the selective sweep (δpS) can be calculated using

a recursive relationship. that begins with the probability of accumulating the maximum possible passengers
during the sweep δpmax

I [23]:

P (δpS = δpmax
I ) = 1

N2
δpmaxI

P (δpS = k) = 1
N2

k+spP (δpS=k+1)
1+sp

δpS = 1
N2

∑δpmax
I

δpS=0 P (δpS)

Where N2 =
∑δpmax

δpS=0 P (δpS) is a second normalization constant.

A traditional model of cancer progression with drivers and neutral passengers.
In the traditional model of cancer progression used to estimate age-incidence curves, it is assumed that a
cancerous population transitions through k intermediate states before malignancy:

C0
r1−→ C1

r2−→ ...
rk−→ Ck

Simply put, these intermediate states and transitions correspond to the many phenotypic changes that occur
within a tumor as it progresses [21]. The instantaneous probabilities of each transition from one state to the
next ri can vary in the general case. Nevertheless, it has been shown that this predicts similar age-incidence
rates to a model where transition rates are all the same [1]. Thus, for parsimony we only consider the case
where all transition rates are the same constant r. Moreover, if the transition rates are drastically different
from one another, then dynamics will largely be determined by the slowest rate and the faster rates can be
neglected.

From a mathematical perspective, this model is agnostic towards the underlying event that transitions
a precancerous population from one state to the next. However from a genetic perspective, each transition
corresponds to the acquisition of a new driver alteration in the population. If rate-limiting events are non-
heritable, then the inferences we draw from age-incidence curves about this traditional model may break
down; however, we would like to reiterate that a large variety of events can be drivers in the sense that they
are inheritable across cell division: SNMs, SCNAs, alterations in DNA and histone moieties, stable changes
in cell signaling cascades, etc. Therefore, we believe it is reasonable to assume that each rate-limiting step
is the acquisition of a new driver, as has been presumed for many years [29].

We now consider the properties of this model when neutral passengers also accumulate. These neutral
passengers do not alter progression. The precancerous population is now defined by the state Cnd,np . We
consider the case where drivers accumulate at a fixed rate rd and passengers accumulate at different fixed
rate rp:

C0,0
rd−→ C1,0

rd−→ ...
↓ rp ↓ rp
C0,1

rd−→ C1,1
rd−→ ...

↓ rp ↓ rp
...

...
. . .

Cnd,np
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As before, cancer arises once enough drivers accumulate (Cnd=k,np).
To interpret age-incidence data, as well as genomics data, we are interested in both the waiting time until

cancer (tcancer) and the total number of mutations (np+k). This model can be simplify by noting that there
is a freedom in the units for which we measure time. In our simulations, time was measured in generations
and then converted to years. Here, we chose to measure time in units of the driver transition probability
rd and will then convert this to years afterwards. Hence, rd = 1 without loss of generality. Consider the
quantity τcancer = tcancerrd, as a dimensionless measure of the waiting time to cancer. Because driver and
passenger accumulation events are independent processes in this model, the joint probability of observing a
cancer at time τcancer with np passenger mutations, P (τcancer, np|nd = k, rp), is:

P (τcancer, np|nd = k, rp) = P (τcancer|nd = k) · P (np|τcancer, rp) [S17]

This joint probability distribution provides a framework for identifying our quantities of interest.
The waiting times to cancer in this neutral-passenger model, has been previously shown to be a sum of

exponentially-distributed waiting times [1], i.e. an Erlang or Gamma distribution, of the form:

P (τcancer|nd = k) = Erlang[τcancer|nd = k, rd = 1]
= rkdτ

k−1
cancere

−rdτcancer

(k−1)!
= τk−1

cancere
−τcancer/(k − 1)!

∝ tk−1
cancer , when τcancer/k � 1

[S18]

Traditionally in this model, it is believed that very few precancerous population have enough time to progress,
as lesion formation rates are much greater than cancer incidence rates. Hence, it is believed that age-incidence
curves should be fit with only the beginning of this distribution: a power-law distribution presented in the
last line is appropriate. We find that although this hypothesis explains age-incidence rates well at mid-age,
it fails to explain the plateau in age-incidence rates seen at older ages in most cancer subtypes (Fig. 2A,
S1).

In this model, the total number of passengers accumulated is a Poisson distribution, if the time of
progression tcancer is known:

P (np|τcancer, rp) = Poisson[np| < np >= tcancerrp]
= e−<np> < np >

np /np!
[S19]

Here, < np >= tcancerrp is the mean number of expected passengers. The distribution takes this form
because each passenger accumulation event occurs with an exponentially-distributed waiting time; a Poisson
distribution describes the sum of events with exponentially-distributed waiting times in a fixed time interval.
Because we do not know when a new lesion arrises, we must convolute this distribution with our expected
distribution of tcancer.

The available time for cancer progression depends upon the length of a human life: thuman. If thuman <
tcancer, then the precancerous population will be unobserved in age-incidence and genomics data because
the person died of an alternate cause prior to malignancy. Although the actual distribution of human
lifetimes is complicated, we can still make inferences about the validity of this model by considering its
extremes. Consider two opposing extreme cases: (1) when thuman � tcancer, all lesions eventually progress
and are sequenced (i.e. a human lifetime is much greater than the mean time to cancer); and (2) when
thuman � tcancer, only a few exceptional lesions progress (i.e. the mean time to cancer is much shorter than
a human lifetime). We find that this first extreme predicts a much broader and more positively skewed
distribution in the number of passengers, than the second case (Fig. S3). Nevertheless, it is still not wide
enough, nor positively skewed enough, to explain the observed distribution of passengers in cancer under
realistic parameters (Fig. 2B, S3, Table ). In contrast, our model predicts a broader and positively skewed
distribution that captures observed passenger histograms well (Fig. 2B).

In the case where thuman � tcancer, accumulation of passengers follows a binomial process. Each accumu-
lation event has probability p = rd/(rd + rp) of being a driver and probability (1− p) of being a passenger.
Because the population has infinite time to progress to cancer, the binomial process continues until nd = k
drivers accumulate. A binomial process that continues until k successes (i.e. drivers), will have a total
number of failures (i.e. passengers) that samples a negative binomial distribution:

P (np|p, k) =
(
np + k − 1

np

)
(1− p)nppk [S20]
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A negative binomial distribution with p � 1 (i.e. passengers greatly outnumber drivers–as is the case in
observed) reduces to a Poisson distribution.

In the case where thuman � tcancer, the waiting time to cancer follows a power law distribution (Eq. 18).
This, convoluted with the distribution of passengers expected for a particular tcancer (Eq. 19) yields the
expected distribution of passengers for a cancer subtype:

P (np|k) =
∫ τh

0 P (τcancer|k)P (np|τcancer, rp)dτcancer

≈
∫ τh

0
τk−1

cancerk

τk
h

e−τpτ
np
p

np! dτcancer

≈ 1/[∗np!]
∫ τh

0 e−τpτk−1
cancerτ

np
p dτcancer

≈ k/[τkhnp!rkp ]
∫ τp=τhrp
τp=0 e−τpτ

k−1+np
p dτp

≈
(
np+k−1
np

)
k!< nmax

p >−k γ(k + np, < np >
max)

[S21]

Where γ(s, x) is the normalized incomplete gamma function defined previously (Eq. 5). In the above
derivation, we eliminated a parameter by considering the quantity: < np >

max= τhrp, which corresponds to
the mean number of passengers expected for a person who lives until the maximum allowable time, τh. This
solution is compared with the other extreme case in Figure S3. Obviously, for both predicted passenger
distributions (Eqs. 21 and 20) the total number of mutations nd + np is the expected number of passengers
P (np|k) plus the number of drivers k, which is constant.
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A Mean waiting time to cancer tcancer(x) decreases as initial population size x = N0/N∗ increases. We
solved for tcancer(x) from Eq. 3 using two methods: (1) via stochastic ‘hybrid’ Gillespie simulations (Eq.
6), and (2) via an analytical approximation (Eq. 7). Agreement between these two estimates suggests that
our solution is accurate (see Estimating the mean time to progression for details). The mean time to
cancer tcancer(x) depends heavily on the probability of adaptation Pcancer(x), as tcancer is a conditioned on a
population successfully progressing to cancer. Because Pcancer(x) has an inflection point at x = 1, tcancer(x)
behaves very differently when x > 1, than when x < 1. When x > 1, tcancer is approximately the mean
expected velocity of the population integrated over population size, as nearly all cancers succeed. However,
when x < 1, tcancer(x) is significantly shorter than would be expected from mean behavior. This is because
most populations go extinct. Only the exceptional populations that progress to cancer are weighted in the
mean of tcancer(x); these exceptional populations happened to grow much faster than the average population.
Hence, the increase in waiting time to cancer is sub-linear with respect to x when x < 1. Most importantly,
these results suggest that the shape of our predicted age-incidence cures (below) will depend almost entirely
on sd and not x, thereby simplifying the interpretation of data.
B Incidence rate verses age for 25 most common cancers in the SEERs databases [22]. Nearly all cancers
show incidence rates that rise rapidly at mid-life, but then plateau at old-age. Leukemias tend to have flatter
curves, which may suggest that they need fewer drivers for carcinogenesis. Colorectal cancer is exceptional
in that it does not plateau and, instead, exhibits a power-law relationship for all ages. Incidence curves are
flatter at young ages because of patients with a genetic predisposition to cancer that expedites progression;
neither our model or the traditional neutral-model of cancer progression attempt to explain these incidences.
C The predicted age-incidence curves derived from simulations can explain observed age-incidence curves in
most cancer subtypes well when proper parameters are chosen. The slope of predicted age-incidence curves
is described by sd: a larger sd causes the slope of age-incidence curves to decrease. In contrast, the location
in the plateau of age-incidence curves is described by the success rate of cancer progression P∞ multiplied by
the lesion formation rate r. While we do not know the precise value of these two quantities (r and P∞) that
determine the plateau level, we note that both parameters collectively introduce only one free parameter
in the description of age-incidence curves. Both parameters only alter the location of the plateau, not the
shape of the distribution (as predicted in A). r = 5 in the predicted age-incidence curves plotted, however
we expect this value to vary considerably between the cancer types. In the main text, we argue that r is
at least 10 lesions · year−1 in breast epithelial. This estimate was based on the assumption that r =(#
of mamospheres in breasts)(# of stem cells per mamosphere)(# of initiating mutations per cell per year)
= (107)(10)(10−7). Lower-bounds of literature-derived quantities were used in this estimate [„]. Moreover,
the number of lesions observed in normal breasts corroborates this estimate [32,35]. Thus, we eliminate the
possibility that age-incidence curves can be explained by models which assume that most lesions eventually
progress to cancer.
D The actual initial population size (N0) necessary to obtain various success rates of cancer progression from
various sd utilized in C. Values were obtained by iteratively simulating various initial sizes until converging
to the desired success rate.
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Figure S2: Comparison of drivers and passengers in Somatic Nonsynonymous Mutations (SNMs)
and Somatic Copy Number Alterations (SCNAs). A A positive linear relationship is observed between
driver and passenger SNMs in all cancer subtypes studied here. This suggests that additional SNM passengers
are being counterbalanced by additional drivers, and is consistent with our conclusions in the main text.
Slope and y-intercept of the best-fit lines can be found in Table S3. B This positive linear relationship is
also observed in SCNAs. The similar slopes and y-intercepts of SCNAs to SNMs supports our assumption
that SCNAs and SNMs can be aggregated in analysis and modeling.
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Figure S3: Neutral-passenger model of cancer progression explains distribution of mutation
totals in cancers only with unrealistic parameters.

A We estimated the expected distribution of total mutations in sequenced tumors from a traditional model
of cancer progression with neutral passengers (see A traditional model of cancer progression with
drivers and neutral passengers. for details). The expected distribution depends upon the time allowed
for progression. If the time for progression is much shorter than the mean, we expect power-law waiting
times to cancer and a distribution of passengers that follows Eq. 21 (Black lines). If the time to progression
is much longer than the mean, then we expect a Negative Binomial distribution (Eq. 20, Gray lines). We
compared these distributions for various quantities of drivers necessary for carcinogenesis (k = 3, 5) and
various quantities of the mean number of passengers (< nmax

p >= 100, 500). Because these distributions
differed and we found no compelling reason to chose one over the other, we selected the distribution that was a
priori more likely to fit the observed distributions of total mutations; we wanted to give the neutral-passenger
model of cancer progression every opportunity to succeed. The second scenario (gray lines), where cancers
have ample time to progress predicts a distribution with more variance and positive skew. Large variance
and positive skew are observed in the true distribution of passengers, therefore we used this distribution.
B We investigated the mutation totals of the 11 cancer subtypes that TCGA has sequenced in over 100
tumors [26]. The distribution of mutation totals in these subtypes is compared in a Quantile-Quantile plot
to the best-fitting Negative Binomial distribution for each subtype. Deviations from the black line indicate
regions of the observed distribution that are poorly explained by the theoretical distribution. While this
theoretical distribution explains observed distributions well (excluding Colorectal cancers and Gliablastoma
Multiforme), the Maximum-Likelihood Estimators (MLEs) used to fit this distribution suggest that only
1-2 drivers are necessary for progression (Table )—quantities that are inconstant with known biology and
age-incidence curves.
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Figure S4: Analytical framework predicts probability of cancer across parameter space.

The probability of progression, determined from the outcome of 3,000 simulations propagated until extinction
or rapid growth, across the parameter range of our model. In simulations, we observe parameters where
progression occurs, fails, and is rare. A sophisticated analytical framework incorporating selection against
passengers, hitchhiking of passengers onto driver mutations, and stochasticity predicts phase patterns well
(black lines). This sophisticated analytical model uses two solutions for Muller’s Ratchet in various parameter
regimes (see Selection against passengers.), an estimate of the quantity of hitchhiking passengers (see
Effects of passengers on driver fixation), and a stochastic differential equation to estimate probabilities
of progression (see Estimating the probability of cancer). A simplified framework, which offers a
closed-form solution, is possible and works reasonably well (magenta). This solution differs from the more
precise solution in two ways: (1) a novel estimate of Muller’s ratchet is used (Eq. 9), and (2) hitchhikers
that accumulate after the new driver clone arises δpS are neglected. A-A′′′ Pcancer increases as the relative
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target size of drivers Td verses passengers Tp increases, for all parameters. B-B′′′, A′′′ Pcancer exhibits a
local minimum with respect to the selection against passengers sp. When the selection against passengers is
very weak, passengers are effectively neutral. When the selection against passengers is too strong, natural
selection weeds out passengers and they never accumulate. Deleterious passengers are most effective at
preventing cancer when at moderate fitness effects. This local minimum suggests that there may be two
types of cancers: those that exist in an environment/genetic context where passengers are weak and buffered
by, for example, an activated UPR; and those that succeed by exacerbating passengers’ deleterious effects,
perhaps by minimizing the mutation rate. C, C′, A′′, B′′ The probability of cancer always increases with
sd. This parameter has a profound affect on cancer progression, as can be seen by how little the boundary
between success and failure appears to be almost independent of the other parameters. Thus, this parameter
is easy to estimate from epidemiological patterns. D, A′ An increasing mutation rate affects the probability
of cancer very little at first; however, once it exceeds a critical value (µ∗), the probability of cancer drops
precipitously.
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Figure S5: Simulations exhibit path independence. A The 12 trajectories from Figure 1A in the
main text, initiated at N0 = {500, 1000, 2000}. B An additional 12 trajectories, initiated at various N0,
but plotted once they cross N = {500, 1000, 2000}. Populations that crossed N = 500 and N = 2000
were initiated at N0 = 1000, while populations that crossed N = 1000 were initiated at N0 = 500. This
comparison demonstrates that populations beginning at different initial sizes N0 will behave similarly, if
they have the same current size. Thus, populations evolve independent of their past history and the entire
state of a trajectory is defined by x = N/N0.
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Figure S6: Combination treatments that increase mutation rate and selection against passengers
work best. A Using the analytical theory describe in Fig. S4, we can plot the critical population size N∗
across evolutionary parameters as a contour plot. Optimal therapy would be drug combinations that increase
N∗ most dramatically, which would be the gradient of steepest ascent (blue lines). From this 3-Dimensional
perspective the interplay between µ and sp is evident. At low mutation rates, only weak passengers with
low sp can fixate. Thus, treating cancers with low mutation rates by increasing sp may be ineffective. At
high mutation rates, all passengers fixate and increasing sp increases N∗. At intermediate mutation rates,
the most effective way to increase N∗ would be to moderately increase both the mutation rate and sp. B
Via simulations, we tested our prediction that the gradient of steepest ascent is optimal for the magenta
gradient line in A. 50 cancers with µ = 10−8, sp = 0.001 grown to 106 cells were treated with combinations
of mutagenic and sp increasing therapy. Indeed, moderate increases in both parameters were more effective
than would be expected from the lone treatments, thus confirming our prediction. These results suggest that
combinatorial therapies may be most effective at treating cancer and that evolutionary modeling can guide
clinical decisions.
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Table S1: Evolutionary parameters explored in this study
Parameter Symbol Estimate Range Citation
Mutation rate µ 10−8 10−10 - 10−7 [27]
Driver loci Td 700 70 - 7,000 [4, 15,33]
Passenger loci Tp 5 · 106 5 · 105-5 · 107 [3, 8]
Driver strength sd 0.1 0.001 - 1 [4, 6]
Passenger strength sp 0.001 10−4 - 10−1 [16]
Initial population size N0 1000* 100 -10,000 [12]
*Estimated from labeled populations in mice colonic crypts 2 weeks
after an initiating APC deletion was induced.

We explored our evolutionary model incorporating driver and passenger mutations across a broad range
of parameters. The ranges were motivated by literature estimates that we discussed previously [28]. Note
that in simulations µd = µTd and µp = µTp), hence we can explore the entire phase space by only altering
µ and Td/Tp; altering all three parameters would be redundant. In Figure 2 we compare our model to
epidemiological and genomic data and find that the best-fitting parameters agree well with these prior
published estimates.
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Table S2: Average number of driver and passenger mutations by tumor type
NSM NSM SCNA SCNA

Cancer Drivers Passengers Drivers Passengers
breast 1.7 70.8 1.0 34.6
lung 2.3 348.6 8.4 89.5
colon, MIN− 8.8 114.0 14.1 583.5
colon, MIN+ 28.8 489.0 12.7 235.1
melanoma 7.0 379.6 12.6 324.7
all 9.1 272.8 8.8 258.9
Max 28.8 489.0 14.1 583.5
Min 1.7 70.8 1.0 34.6

The total number of identified Somatic Nonsynonymous Mutations (SNMs) and Somatic Copy Number
Alterations (SCNAs) for various tumor-normal paired sequences from various tissues of origin: 100 breast [34],
183 lung [13], 159 Colon without Micro-satellite INstability (MIN−), 64 Colon with Micro-Satellite Instability
(MIN+) [10], and 121 melanomas [5].
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Table S3: Linear relationship between drivers and passengers cannot be explained by other
tumor properties

Cancer Pearson’s r p-value* N† Spearman’s ρ slope (sp/sd) y-intercept
Drivers verses Passengers

breast 0.423 < 10−4 100 0.413 0.006 2.02
lung 0.368 0.08 24 0.998 0.005 8.63
colon, MIN− 0.624 < 10−4 49 0.985 0.009 17.11
colon, MIN+ 0.916 < 10−5 14 0.999 0.047 6.50
melanoma 0.749 < 10−5 29 0.995 0.015 3.69
All 0.937 < 10−99 217 0.992 0.042 -3.81

SNM drivers versus SNM passengers
breast 0.390 < 10−4 100 0.178 0.005 1.34
lung 0.587 < 10−17 183 0.579 0.002 1.56
colon, MIN− 0.990 < 10−134 159 0.569 0.054 2.65
colon, MIN+ 0.994 < 10−60 64 0.918 0.056 1.56
melanoma 0.878 < 10−9 29 0.974 0.012 2.59
All 0.924 < 10−223 536 0.592 0.050 -4.45

SCNA drivers verses SCNA passengers
breast 0.443 < 10−5 100 0.433 0.024 0.17
lung 0.253 0.23 24 0.998 0.028 5.94
colon, MIN− 0.770 < 10−9 49 0.984 0.008 9.44
colon, MIN+ 0.424 0.13 14 0.994 0.029 6.01
melanoma 0.559 < 10−10 121 0.663 0.023 5.23
All 0.573 < 10−27 309 0.962 0.012 5.76

SNMs versus SCNAs
breast 0.052 0.61 100 0.149 0.237 64
lung 0.169 0.43 24 -0.548 1.268 334
colon, MIN− -0.080 0.58 49 -0.068 -0.021 137
colon, MIN+ -0.265 0.36 14 0.045 -0.981 838
melanoma -0.114 0.56 29 0.176 -0.183 431
All 0.331 < 10−6 217 -0.089 0.631 133

Drivers verses Pathological Grade
breast 0.163 0.10 100 0.113 0.067 2.25
lung -0.048 0.83 22 0.024 0.006 2.13
colon, MIN− -0.187 0.20 48 0.072 0.012 2.67
colon, MIN+ -0.121 0.68 14 -0.338 0.004 3.09
melanoma 0.221 0.35 20 0.120 0.025 1.83
All 0.018 0.80 204 0.054 0.001 2.37

SNMs versus Pathological Grade
breast 0.217 0.03 100 0.444 0.001 2.33
lung 0.193 0.02 158 0.235 0.000 1.79
colon, MIN− -0.084 0.30 156 0.039 0.000 2.51
colon, MIN+ -0.045 0.73 63 -0.023 0.000 2.50
melanoma 0.119 0.62 20 0.114 0.000 2.06
All -0.012 0.80 497 0.147 0.000 2.28

SCNAs versus Pathological Grade
breast 0.248 0.01 100 0.235 0.007 2.18
lung 0.170 0.45 22 0.026 0.002 1.85
colon, MIN− -0.166 0.26 48 0.081 0.000 2.48
colon, MIN+ -0.054 0.85 14 -0.333 0.000 2.99
melanoma 0.109 0.31 88 -0.253 0.000 2.06
All -0.067 0.27 272 -0.112 0.000 2.38
*Statistically significant (p < 0.05) relationship are in bold
† Number of samples compared
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Negative values are in gray. We observe a linear relationship between drivers and passengers that was
predicted by our model. Above the thick black line are relationships that appear to robustly covary, while
the bottom half contains relationships that we believe are insignificant. In our model, driver’s and passenger’s
linear relationship results from their competing effect: additional deleterious passengers must be overcome
by additional drivers. However, this relationship could conceivably be explained by alternate factors; in
particular, we were concerned that the mutation type, mutation rate, or aggressiveness of the tumor could
also explain the observed relationship. The data above suggest that these possibilities are unlikely, thus
supporting our conclusion that drivers compete with passengers. Our rational for the other competing
hypotheses and why we reject them: (a) SCNAs and SNMs might have drastically different effects on
cancer progression and undermine our model. The slope and y-intercept between drivers and passengers is
approximately equal in SCNAs and SNMs, suggesting the relative fitness effects of these mutations is similar.
(b) Some cancers might progress via CIN, while others progress via an elevated point mutation rate. If so, a
negative correlation between SCNAs and SNMs within tumor subtypes would be expected, which has been
observed previously in a pan-cancer study [11] and within the aggregate colorectal dataset. However, this
does not appear to be so in other tumor types, nor in colorectal cancer after segregation according to MIN
phenotype. Thus, the observed patterns are not explicable by varying mutational mechanisms. (c) The
relationship between drivers and passengers might be a result of variation in mutation rate. Variation in
the mutation rate should only alter the waiting time to cancer in the neutral-passenger model, and not alter
mutation totals. Nevertheless, if variation in the mutation rate could explain the correlation between drivers
and passengers, then stratifying tumors by their mutation rate should reduce the correlation. Because the
relationship between drivers and passengers is persistent and strong within the MIN+ and MIN−subtypes—
expected to have and not-have a mutator phenotype—we reject this hypothesis. (d) Tumors with more
drivers and passengers might simply be more evolutionarily advance. Suppose some cancers are detected
and sequenced later than others. These late cancers would not only possess additional drivers, but also
additional passengers, even if passengers were neutral; thus, retaining the correlation between drivers and
passengers. However, late-detected tumors with additional drivers should also be more advanced and more
aggressive. We find that a tumor’s pathological grade is uncorrelated with the number of drivers, refuting
this possibility. Pathological grade was quantified by converting roman numerals into a linear scale (i.e. A
Stage IV tumor corresponds to an aggressiveness of 4). Many tumors had intermediate grades that were
given corresponding fractional values (e.g. a Stage IIIa tumor was translated into a 3.0, a Stage IIIb was
given 3.3, and a Stage IIIc was given 3.7). Because this quantification of tumor grade may distort the scale
of aggressiveness, Spearman’s Rank correlations are provided. For completeness, we have also show the
relationship between SNMs and Pathological Grade and SCNAs and Pathological Grade.
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Table S4: Maximum-Likelihood Estimates (MLE) of nd using neutral-passenger model of cancer
progression

Total mutations MLE of
Tissue N (mean ± STD) nd p*
Rhabdoid tumor 20 7.8 ± 8.93 1 0.13
Thyroid 52 11 ± 6.13 2 0.18
Medulloblastoma 26 11.1 ± 4.9 4 0.36
Ewing Sarcoma 20 12.6 ± 10.8 2 0.16
Carcinoid 23 19.3 ± 9.09 3 0.16
Neuroblastoma 80 21.2 ± 27 1 0.047
Acute myeloid leukemia 132 24.2 ± 57.6 1 0.041
Chronic lymphocytic leukemia 91 25.3 ± 15.3 3 0.12
Prostate 221 25.6 ± 26.2 2 0.078
Pancreas 12 28.8 ± 18.4 1 0.035
Low-grade glioma 57 29.6 ± 14.4 3 0.1
Breast 120 39.2 ± 39.8 2 0.051
Multiple myeloma 63 48.1 ± 41.4 2 0.042
Kidney clear cell 214 50.4 ± 41.4 3 0.06
Kidney papillary cell 11 52.1 ± 19.4 4 0.077
Ovarian 385 64 ± 73.8 2 0.031
Diffuse large B-cell lymphoma 49 114 ± 73.3 2 0.018
Head and neck 178 127 ± 129 1 0.0079
Glioblastoma multiforme 219 134 ± 949 1 0.0075
Esophageal adenocarcinoma 76 165 ± 236 2 0.012
Cervical 20 187 ± 292 1 0.0054
Bladder 35 237 ± 298 2 0.0084
Lung adenocarcinoma 333 282 ± 294 1 0.0036
Colorectal 230 313 ± 976 1 0.0032
Lung squamous cell 178 316 ± 307 2 0.0063
Stomach 88 441 ± 673 1 0.0023
Melanoma 121 680 ± 934 1 0.0015
*p = rd

rd+rp i.e. the probability of an accrued mutation being a driver.

A classical model of cancer progression with neutral passengers predicts that the distribution of passengers
will follow a Negative Binomial distribution (see Fig. S3 andA traditional model of cancer progression
with drivers and neutral passengers. for details). Tissues are ordered according to mean number of
mutations and tissues with >100 samples are in bold. The MLE fits to observed distributions predict that
only 1-3 drivers are needed for carcinogenesis. This is far fewer than expected from age-incidence curves,
known biology, and driver classification algorithms. Therefore, we believe that the neutral-passenger model
of cancer progression can not explain the observed spectrum of mutation totals.
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