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Abstract

Whole genome sequencing is becoming popular as a tool for understanding outbreaks
of communicable diseases, with phylogenetic trees being used to identify individual trans-
mission events or to characterize outbreak-level overall transmission dynamics. Existing
methods to infer transmission dynamics from sequence data rely on well-characterised in-
fectious periods, epidemiological and clinical meta-data which may not always be available,
and typically require computationally intensive analysis focussing on the branch lengths in
phylogenetic trees. We sought to determine whether the topological structures of phyloge-
netic trees contain signatures of the overall transmission patterns underyling an outbreak.
Here we use simulated outbreaks to train and then test computational classifiers. We
test the method on data from two real-world outbreaks. We find that different transmis-
sion patterns result in quantitatively different phylogenetic tree shapes. We describe five
topological features that summarize a phylogeny’s structure and find that computational
classifiers based on these are capable of predicting an outbreak’s transmission dynamics.
The method is robust to variations in the transmission parameters and network types,
and recapitulates known epidemiology of previously characterized real-world outbreaks.
We conclude that there are simple structural properties of phylogenetic trees which, when
combined, can distinguish communicable disease outbreaks with a super-spreader, homo-
geneous transmission, and chains of transmission. This is possible using genome data
alone, and can be done during an outbreak. We discuss the implications for management
of outbreaks.

1 Introduction

Whole-genome sequence data contain rich information about a pathogen population from which
several evolutionary parameters and events of interest can be inferred. When the population
in question comprises pathogen isolates drawn from an outbreak or epidemic of an infectious
disease, these inferences may be of epidemiological importance, able to provide actionable
insights into disease transmission. Indeed, since 2010, several groups have demonstrated the
utility of genome data for revealing pathogen transmission dynamics and identifying individual
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transmission events in outbreaks [22, 13, 27, 7, 24, 12, 28, 11, 4], with the resulting data
now being used to inform public health’s outbreak management and prevention strategies. To
date, these reconstructions have relied heavily on interpreting genomic data in the context of
available epidemiological data, drawing conclusions about transmission events only when they
are supported by both sequence data and plausible epidemiological linkages collected through
field investigation and patient interviews.

Given the rapidly growing interest in this new field of genomic epidemiology, several re-
cent studies have explored whether transmission events and patterns can be deduced from ge-
nomic data alone. These methods rely primarily upon interpreting a phylogenetic tree’s branch
lengths. Phylogenies derived from whole-genome sequence data can be compared to theoretical
models describing how a tree should look under particular processes - for example, predicted
branch lengths from sequences modeled using birth-death processes can be compared to viral
sequence data to explore transmission patterns [23, 22, 14, 21]. Tools from coalescent theory
have also been adapted to the outbreak setting, taking into account the constraints person-to-
person transmission puts on pathogen reproduction [25, 26]. These approaches are powerful,
but are highly computationally intensive and do not consider another source of information
within a phylogeny - tree shape.

The number of different phylogenetic tree shapes on n leaves is a combinatorially exploding
function of n (there are (2n—3)(2n—>5)(2n—7)...(5)(3)(1) rooted labelled phylogenetic trees, or
approximately 1018 trees on 100 tips, compared to approximately 10%¢ atoms in the universe).
For the increasingly large outbreak genome datasets being obtained and analysed (390 [27], 616
[3] and recently 1000 [1] bacterial genomes), the numbers of possible tree shapes are effectively
infinite. It is therefore likely that in addition to branch lengths, tree shape might also contain
substantial information about the underlying transmission network in an outbreak or epidemic
dataset. There are already indications that tree shape contains useful information about the
evolution of viral pathogens [14, 20, 18, 5], but to date we do not have methods to exploit
tree shape in an analysis of pathogen transmission dynamics, built upon simulated data and
validated using real-world outbreak data.

Host contact network structure is one of the most profound influences on the dynamics of an
outbreak or epidemic [1], and outbreak management and control strategies depend heavily upon
the type of transmission patterns driving an outbreak. It is reasonable to expect that pathogen
genomes spreading over different contact network structures - chains, homogenous networks,
or networks containing super-spreaders, as illustrated in Figure 1 - would accrue mutations
in different patterns, leading to observably different phylogenetic tree shapes. We therefore
characterized the structural features of phylogenetic trees arising from the simulated evolution
of a bacterial genome as it spreads over multiple types of contact network. We found several
simple topological properties of phylogenetic trees that, when combined, can be used to classify
trees according to whether the underlying process is chain-like, homogenous, or super-spreading,
demonstrating that phylogenetic tree structure is as informative as branch lengths with respect
to transmission dynamics. We use these properties as the basis for a computational classifer,
which we then use to classify real-world outbreaks. We find that the computational predictions
of each outbreak’s overall transmission dynamics are consistent with known epidemiology.

2 Materials and Methods

Transmission model

We simulated disease transmission networks with three different underlying transmission
patterns: homogeneous transmission, transmission with a super-spreader, and chains of trans-
mission. Each simulation started with a single infectious host who infects a random number of
secondary cases over his or her infectious period; each secondary case infects others, and so on,
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Figure 1: Schematic illustration of different kinds of transmission networks. The index case is
marked in grey.

until the desired maximum number of cases is reached. The models share two key parameters:
a transmission rate $ and a duration of infection parameter D. Our baseline values are = 0.43
per month and D = 3 months, reflecting a basic reproduction number of 1.3. This is also the
mean number of secondary infections for each infectious case.

The homogeneous transmission model assigns each infectious host a number of secondary
infections drawn from a Poisson distribution with parameter Ry = SD. New infections are
seeded uniformly in time over the host’s infectious period. In the super-spreader model, one
host (at random in the first 5 hosts) seeds 7-24 new infections (uniformly at random), and all
other hosts are as in the homogeneous transmission model. In the chain-of-transmission model,
almost all hosts infect precisely one other individual. However, 2 (with probability 2/3) or 3
(with probably 1/3) of the hosts infect two other individuals, so that the transmission tree
consists of several chains of transmission randomly joined together.

Durations of infection are drawn from a I' distribution with a shape parameter of 1.5 and a
scale parameter of D/1.5. To reflect transmission of a chronically-infecting pathogen, such as
Mycobacterium tuberculosis, cases were infectious for between 2 and 14 months with an average
specified by D. The mean infectious period was 4.3 months; a histogram is shown in Figure S2.
We simulated 1000 outbreaks containing a super-spreader, 1000 with homogeneous transmission
and 1000 chain-like outbreaks. These used a fixed parameter set; we also performed a sensitivity
analysis using alternative parameters. To ensure that the size of the outbreak did not affect
the tree shape and classification, we simulated outbreaks with 32 hosts - a similar size as the
real-world outbreaks we later investigated.

The first infected host in each transmission network was seeded with an initial random
genome sequence 1000 base pairs in length. When this individual infected a secondary case,
the transmitted sequence was mutated and the number of mutations reflected the time elapsed
between the seed time and the transmission time. Subsequent transmission events followed the
same rule. Seqeunces were sampled at the end of the infection’s duration. Further detail of the
genome simulation process is provided in the Supplementary Information.

Genealogies and phylogenies from the process

We extracted the true genealogical relationships as a full rooted binary tree (a “phylogeny”),
with tips corresponding to hosts and internal nodes corresponding to transmission events among
the hosts, as follows. The outbreak simulations create lists of who infected whom and at what
time. Fach host also has a recovery time. We sort the times of all of the infection events,
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and proceed in reverse order. The last infection event must correspond to a “cherry”, ie it
must have two tip descendants, one corresponding to the infecting host and one to the infectee.
For all other infection events proceeding in reverse order through the transmission, we create
an internal node, and determine its descendants by determining whether the infector and the
infectee went on to infect anyone else subsequently. If not, then the node’s descendants are the
infector and infectee at the time of sampling. If so, then the descendant represents the infector
or infectee at the time of their next transmission. The tree is rooted at the first infection event.
Branch lengths correspond to the times between infection events or, for tips, the time between
the infection event and the time of sampling.

In the main text, we use the true genealogical relationships among the hosts in our outbreak,
extracted from the simulations - this reduces phylogenetic noise and it allows us to compare
the resulting trees to 100 samples of the BEAST posterior timed phylogenies derived from
WGS data from the two real-world outbreaks. To determine how sensitive our approach is to
phylogenetic noise, we also classified the outbreaks using neighbour-joining phylogenies derived
from simulated gene sequences (Supplementary Information).

Topological summaries of trees Five summary metrics were used to summarise the topology of
the trees.

1. Colless imbalance. The Colless imbalance is defined as m ST — Tii| where
n is the number of tips and T}; and T}; are the number of tips descenéing from the left and right
sides at internal node 7. It is a normalised measure of the asymmetry of a rooted full binary
tree, with a completely asymmetric tree having imbalance of 1 and a symmetric tree having an
imbalance of 0 [8].

2. Ladders We define the 'ladder length’ to be the maximum number of connected internal
nodes with a single leaf descendant, and we divide it by the number of leaves in the tree. This
measure is not unrelated to tree imbalance but is more local - a long ladder motif may occur
in a tree that is otherwise quite balanced. For this reason, ladder length may detect trees in
which there has been differential lineage splitting in some clades or lineages but where this
occurred too locally or in clades that are too small to have affected traditional approaches to
characterising rapid expansion in some lineages. Furthermore, traditional ways of detecting
positive selection may not be appropriate in this context because the super-spreader, if present,
does not pass any advantageous property to descendant infections.

3. Maximum width; Maximum width over maximum depth. The depth of a node
in a tree is the number of edges between that node and the tree’s root. The width of a tree at a
depth d is defined as the number of nodes with depth d. We calculated the maximum width of
each tree divided by its maximum depth (max d, the maximum depth of any leaf in the tree).

4. Maximum difference in widths We compared Aw = max;{|w(d;) — w(d;—1)|} in the
trees. This summary reflects the maximum absolute difference in widths from one depth to the
next, over all depths d; in the tree.

Outbreak classification We trained a k-nearest-neighbour classifier using matlab’s Classifica-
tionKNN.fit function with a Minkowski distance, inverse distance weighting and 100 neigh-
bours. We evaluated the classifier using its resubstitution loss and its performance under
cross-validation. We performed cross-validation using crossval in matlab. KNN classification
was performed on 1000 trees of each type (homogeneous transmission, super-spreaders, chains).

We used a support vector machine (SVM) to resolve differences between homogeneous trans-
mission vs super-spreader networks. SVMs were constructed using the svmtrain method in
matlab with a quadratic kernel function.The training data x; were the five summary metrics
for 300 trees derived from each process. svmtrain returned a set of 128 support vectors s; and
a bias, b = —0.18. All training data were from simulations with the baseline set of parameters.
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The SVM was tested on the remaining trees using matlab’s svimclassify, which computes
sign(y) = sign(z a;ik(zi, z) +b)

where «; are weights, x; are the support vectors, x is the input to be classified, k is the
kernel function and b is the bias. These tests were done separately on the different groups of
simulated trees. The svmclassify function was modified to return y (i.e. the degree to which
an outbreak could be considered super-spreading) rather than only the sign of y (a binary
prediction). Because SVMs are binary classifiers, their quality can be assessed using a receiver
operator characteristic (ROC) curve. See [2] for a full discussion of support vector machines
and classification.

Sensitivity analysis To determine whether the classifier is robust to different choices of model
parameters and to sampling, we simulated three groups of 500 homogeneous and super-spreader
outbreaks with (i) randomly selected parameters, (ii) a random sampling density, and (iii) both
random parameters and random sampling. Group (i) had randomized parameters in which
£/ D was uniformly distributed between 1.25 and 2.5. Group (ii) had fixed parameters, but the
number of cases varied uniformly between 100 and 150, and we sampled only 33 of those cases.
The third group had both randomized parameters and random sampling. To determine whether
the classifier is relevant to different kinds of models, we applied it to simulated phylogenies
described in Robinson et al [20]. In that work, dynamic networks of sexual contacts were
created based on random graphs with a Poisson distribution, and with a distribution of contacts
derived from the National Survey on Sexual Attitudes and Lifestyles (NATSAL) [10]. See
Supplementary material for further details.

Classification of outbreaks from published genomic data We used the classifier on phylogenetic
trees derived from two real-world tuberculosis outbreak datasets. Outbreak A was previously
published [6] and is available in the NCBI Sequence Read Archive under the accession number
SRP002589. This dataset comprises 32 M. tuberculosis isolates collected in British Columbia
over the period 1995-2008 and was sequenced using paired-end 50bp reads on the Illumina
Genome Analyzer II. Outbreak B comprises 33 M. tuberculosis isolates collected in British
Columbia over the period 2006-2011, and was sequenced using paired-end 75bp reads on the
[lumina HiSeq. The outbreak, sequences and SNPs are presented in [4].

For both datasets, reads were aligned against the reference genome M. tuberculosis CDC1551
(NC002755) using BWA [16]. Single nucleotide variants were identified using samtools mpileup
[17] and were filtered to remove any variant positions within 250bp of each other and any posi-
tions for which at least one isolate did not have a genotype quality score of 222. The remaining
variants were manually reviewed for accuracy and were used to construct a phylogenetic tree
for each outbreak as described above. In the main text we apply the classification methods
to 100 samples from the BEAST posterior timed phylogenies estimated from WGS data. In
the Supplementary Information we train the classifiers on neighbour-joining phylogenies from
simulations, and apply them to neighbour-joining phylogenies from the outbreaks with identical
results.

3 Results

Different transmission networks result in quantitatively different tree shapes

To determine whether tree shapes captured information about the underlying disease transmis-
sion patterns within an outbreak, we simulated evolution of a bacterial genome over three types
of outbreak contact network - homogenous, super-spreading, and chain - and summarized the
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Figure 2: Distribution of five simple summary measures of tree topology

resulting phylogenies with five metrics describing tree shape. Figure 2 shows the distributions
of these metrics across the three types of outbreaks, revealing clear differences in tree topol-
ogy depending on the underlying host contact network. Super-spreader networks gave rise to
phylogenies with higher Colless imbalance, longer ladder patterns, lower Aw, and deeper trees
than transmission networks with a homogeneous distribution of contacts. Trees derived from
chain-like networks were less variable, deeper, more imbalanced, and narrower than the other
trees. Other topological summary metrics considered did not resolve the three outbreak types
as fully (Supplementary Information).

Topological metrics can be used to computationally classify outbreaks

To evaluate whether the five topological summary metrics could realiably and automatically dif-
ferentiate between the three types of outbreaks, we trained a series of computational classifiers
on the simulated datasets. We first trained a K-nearest-neighbour (KNN) classifier using the
five metrics to discern which combinations of features correspond to phylogenies derived from
the three underlying transmission processes. The KNN classifier correctly identified nearly all of
the underlying transmission dynamics (see Table 1 (a)); overall, the fraction of mis-classification
was 0.0036 due to resubstitution loss. To evaluate classifier consistency, we performed 10-fold
cross-validation, which resulted in an average error of 7%. In other words, when dividing the
test sample into different groups, re-training the model, and then testing on data not used in
training, the classifier is wrong on average 7% of the time.

Support vector machine improves classification accuracy

To better resolve the separation between super-spreader-type outbreaks and those with ho-
mogeneous transmission, we trained a support vector machine (SVM) classifier to distinguish
between those two types of outbreaks alone. Figure 3(a) shows the receiver-operator character-
istic curve (ROC) for the SVM classification (ROC curves are the most natural way to assess
the quality of a binary classifier). The area under the curve (AUC) is 0.97, reflecting a very
good classifier performance; the theoretical maximum AUC is 1, and 0.5 corresponds to random
guessing.

Qutbreak classification is robust to variable parameters and model choice, but not to sampling
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Truth | Hom | SS | Ch Truth | Hom | SS | Ch
Classification Classification
Hom 995 |5 0 Hom 455 |37 | O
SS 5 995 | 0 SS 45 462 | 0
Ch 0 0 500 Ch 0 1 500
(a) Baseline (b) Varied transmission
Truth | Hom | SS | Ch Truth | Hom | SS | Ch
Classification Classification
Hom 447 | 159 | 0 Hom 454 | 184 | 0
SS 52 296 | 0 SS 46 262 | 0
Ch 1 45 | 500 Ch 0 54 | 500
(c¢) Sampling (d) Varied transmission and sampling
Truth | Hom | SS | Ch Truth | Hom | SS | Ch
Classification Classification
Hom 290 160 | 32 Hom 447 |45 |0
SS 177 (326 |0 SS 53 454 1 0
Ch 33 14 | 468 Ch 0 1 500

(e) 10 isolates

(f) 20 isolates

Table 1: K-nearest neighbour classification results matrix. True outbreak type is shown in
columns; predicted outbreak types is shown across rows. Table (a) shows the results for KNN
classification with baseline parameters, (b) with variable transmission patterns, (c¢) with variable
sampling, (d) with both variable transmission parameters and sampling, (e) for classification
based only on the first 10 isolates sampled in an outbreak, (f) with only the first 20 isolates.
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Figure 3: Receiver-operator characteristic for the SVM classifier based on five summary metrics.
ROC curves are a visual way to assess the classifier’s quality — a perfect classifier will obtain
all the true positives and will have no false positives, giving an AUC of 1. Guessing yields an
AUC of 0.5. In Figure 3(a), different lines correspond to the different groups of simulations in
the SVM sensitivity analysis. Figure 3(b) shows the SVM classifier’s performance when only
the earliest outbreak isolates are sampled.

To explore how robustly phylogenetic structure captures variation in transmission processes,
we performed sensitivity analyses in which we explored the effect of varying the transmission
parameters /D, sampling, and both the parameters and sampling together.

Using the KNN classifier applied to the three outbreak types, we found that the overall
classifier error increased to 10% when the transmission rate varied up to a factor of 2 (Ta-
ble 1(b)). The effect of reduced sampling density was greater, increasing the KNN classifier
error to 26%. Varying both the sampling and the parameters resulted in an error rate of 28%
(Table 1(c,d)) We also evaluated the sensitivity of SVM classification to different transmission
model parameters by training and testing an SVM on a further 500 simulated super-spreading
and homogenous networks, with variable transmission parameters 8/D. As with the baseline
parameter networks, the SVM returned an AUC of 0.97 for the variable 5/D groups. How-
ever, the SVM’s performance declined with decreased sampling density (AUC of 0.88) and
decreased sampling with variable transmission parameters (Figure 3(a)) Notably, the decline
in performance was less with the SVM method than the KNN method - 12% versus 28%.

We tested the SVM classifier to determine whether it could distinguish between phylogenetic
trees derived from simulated sequence transmission on very different contact networks, namely
dynamical models of sexual contact networks over a 5-year simulated time period [20]. The
performance was excellent when sampling was done over time, such that cases infected early
in the simulation were likely to be sampled. When sampling was done at one time, years after
seeding the simulated infection, neither classifier detected differences between the two types of
contact network. Details are presented in the Supplementary Information.

Qutbreak classification is possible using early isolates only

To determine whether classification of an outbreak is possible early in an outbreak - information
that could potentially inform real-time deployment of a specific public health response - we
evaluated the KNN and SVM classifiers’ performance when only the first 10 and first 20 genomes
of the outbreak were sampled. The KNN had an average error of 28% using a phylogeny built
on the first 10 isolates and an avergae error of 7% after 20 isolates had been sampled. The
SVM had AUC values of 0.53 and 0.71 after 10 and 20 isolates were detected, respectively
(see Table 1 and Figure 3). These data suggest that reasonable classification of an outbreak’s
transmission dynamics is possible after at early points within the outbreak.
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Topological metric-based classification recapitulates known epidemiogology of real-world out-
breaks

Finally, to evaluate the classifiers’ performance on real-world outbreaks with known epidemiol-
ogy, we applied the classifier to genome sequence data from two tuberculosis outbreaks whose
underlying transmission dynamics have been described through comprehensive field and ge-
nomic epidemiology. Outbreak A [6]was reported to arise from super-spreading activity, while
Outbreak B displayed multiple waves of transmission, resulting in a somewhat more homoge-
nous network.

We found that our classification results agreed with the empirical characterisations of the
two outbreaks’ underlying transmission dynamics. In the KNN classification, Outbreak A
was grouped with super-spreader outbreaks most often (54%), with 45% of the posterior trees
grouping with homogeneous outbreaks and only 1% with chains. 83% of the trees from Outbreak
B were classed as homogeneous, with the other 17% classed with super-spreader outbreaks.
The SVM classifier returned a mean classification over the BEAST posterior trees of y =
0.09(—1.7,2.7) for Outbreak A and 1.5(—0.5,4.6) for Outbreak B (numbers in parenthesis are
95% Cls). The optimal cutoff was 0.3 (based on matlab’s perfcurve function), indicating that
posterior trees from Outbreak A group more with super-spreader outbreaks and those from
Outbreak B group with homogeneous transmission.

4 Discussion

We have found that there are simple topological properties of phylogenetic trees which, when
combined, are informative as to the underlying transmission patterns at work in an outbreak.
Tree structures can be used as the basis of a classification system, able to describe an outbreak’s
dynamics from genomic data alone. These topological signatures are robust to variation in the
transmissibility, and to the nature and structure of the model, but sampling has a detrimental
effect on the strength of the signal. Signs of the underlying transmission dynamics are present
within the first 20 genomes sampled from an outbreak, and the classifiers are able to recapitulate
known, real-world epidemiology from actual outbreak datasets.

The relationship between host contact heterogeneity and pathogen phylogenies is complex.
In large datasets, phylogenetic branch lengths can reveal heterogeneous contact numbers [23],
but distributions of branch lengths are not a suitable tool for small outbreaks of a chronically-
infecting and slowly mutating organism like TB. Early work made the assumption that hetero-
geneous contact numbers would yield heterogeneous cluster sizes in viral phylogenies [15]. But
cluster sizes also depend on the pathogen population dynamics [20] and the epidemic dynamics
[5]. The relationship between heterogeneous contact numbers and tree imbalance [14] is not
robust to the dynamics of a contact network [20], sampling [20, 5] or the epidemic model used
[5]. It is clear from this body of work that increased heterogeneity in contact numbers will not
always lead to a simple increase or decrease of some measure, like imbalance, of tree structure.
However, we have found that in small outbreaks, several simple topological features, taken to-
gether, can distinguish between outbreaks with high heterogeneity (a super-spreader) and low
heterogeneity.

In any modelling endeavor, when a model reproduces features of real data — whether those are
tree structures, branch lengths, or other data such as prevalence and incidence of an infection,
locations of cases and so on — it remains possible that there are processes not included in the
model that are the real origin of the observations. When we use models to interpret data, we
use formal or informal priors to weigh the likelihoods of the assumptions behind the model
compared to other processes that could drive the same phenomena. Here, one aspect of the
complex relationship between contact heterogeneity and phylogeny structure is illustrated by
the fact that genealogies from a long chain of transmission can look similar to genealogies


https://doi.org/10.1101/003194
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/003194; this version posted March 5, 2014. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

derived from a super-spreader. Indeed, if one individual infects 10 others over a long period,
and none of those infects anyone else, the genealogy among isolates would look the same as a
genealogy in which each case infected precisely one other. However, it is very unlikely that such
a chain of cases would occur, with no one ever infecting two others rather than one. Similarly,
it is unlikely that one host could infect everyone in an outbreak, with no onward transmission
by anyone else. In our simulations, once the occasional person in a long chain can infect two
others, and if non-super-spreader individuals infect others homogeneously, we find that simple
topological structures are well able to resolve the differences between chains and super-spreader
outbreaks.

We have used five coarse and simple summaries of tree topology, though we have explored a
number of others and each time, found the same qualitative story (Supplementary Information).
However, any small set of a few summary statistics cannot capture the topology with much
resolution. In contrast, most methods to compare phylogenies in fine detail are suited only for
phylogenies on the same sets of tips [19], and so cannot be used to compare different outbreaks
or to compare simulations to data. Finding the correct balance to summarize trees sufficiently
that they can be compared across different tree sizes, different outbreaks and different settings,
without summarizing them so much as to remove the most useful information is a challenge,
and a number of methods will likely be developed, beginning with viral pathogens as in the
recent work on Poon et al [18]. Indeed, while we feel that the measures we have used are
demonstrative that tree structure is revealing, they are not intended to be comprehensive or
exhaustive descriptions of tree topology. The fact that a few simple topological summaries can
reveal underlying transmission patterns is a proof-of-principle that tree shape is informative.

Tree shapes from the real outbreaks were inferred using BEAST, and tree shapes depend on
the prior and on any inherent shape bias in the inference method [9]. In our case the classifier
performance was robust to genealogies vs neighbour-joining and worked on maximum-likelihood
trees from the dynamic sexual contact networks, suggesting that phylogenetic noise did not
play a large role. However, shapes of the posterior outbreak trees varied widely. Ultimately, an
understanding of tree shape will allow phylogenetic inference tools such as BEAST to use priors
that take shape explicitly into account (whereas currently the shape is incorporated implicitly
through the quality of the match of a tree to the genomic dataset).

The classification method we have developed provides not only an important empirical quan-
tification of the degree to which genomic data is informative in the absence of epidemiological
information, but is also a useful tool that can be used to describe outbreaks both retrospec-
tively and prospectively. The ability to situate an outbreak on the spectrum from homogeneous
transmission to super-spreading and to do so within the earliest stages of an outbreak when
neither a large number of specimens nor detailed epidemiological information is available rep-
resents an important opportunity for public health investigations. Situating an outbreak on
this spectrum does not require pinning down individual transmission events, but relies more
on characterizing summary features of the outbreak and/or its phylogeny. If the data point to-
wards a significant role for super-spreading in an outbreak, a containment strategy will require
intensive screening of the super-spreader’s contacts. In an outbreak where onward transmission
is occurring in chains, a focus on active case finding around multiple individuals will be needed
instead. Ultimately, investigation of any outbreak of a communicable disease will involve the
collation of multiple sources of information, including epidemiological, clinical, and genomic
data. The approach described here represents one part of this toolbox, and has the advantages
of being robust to the unique nature of complex chronic infection, providing useful information
even when epidemiological information is incomplete, and being informative within the earliest
stages of an outbreak.
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