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Summary

Most bioscientists need to report mean values, yet many have little idea of how many digits 
are significant, and at what point further digits are mere random junk. Thus a recent report
that the mean of 17 values was 3.863 with a standard error of the mean (SEM) of  2.162 
revealed only that none of the seven authors understood the limitations of their work. The 
simple rule derived here by experiment for restricting a mean value to its significant digits 
(sig-digs) is this:  the last sig-dig in the mean value is at the same decimal decade as the first 
sig-dig (the first non-zero) in the SEM. An extended rule for the mean, and a different rule 
for the SEM itself are also derived. For the example above the reported values should be a 
mean of 4 with SEM 2.2. Routine application of these simple rules will often show that a 
result is not as compelling as one had hoped.

Introduction

During the last five years, as referee (reviewer) or editor of 53 biosciences articles, I found that 29
(55 %) reported too many, even ridiculously too many, digits in mean values or SEMs or both. For
example, a report of 3.863 ± 2.162 for a sample of 17 for which the sig-digs are really 4 ± 2.2. A 
scan of 50 articles in a variety of bioscience journals showed that 32 % made this mistake once or 
many times. It is not the total number of digits, or where the decimal point falls that matters: the 
critical feature is the relation between the mean and its SEM. Thus the frequency of a transition of
a trapped and laser-cooled, lone ion of 88Sr+ was reported1, correctly according to the extended 
rule in Table 3, to 16 significant digits  as  444 779 044 095 484.6 Hz, with a SEM of 1.5 Hz. 
Equally correct though less clear would have been 444 779 044 .095 4846 MHz and 
SEM 0.000 00015 MHz.

The problem seems to be that there is no published logical analysis of where to stop. Here I derive
simple rules by experiment which allow one to restrict a mean and SEM to their sig-digs: that is to
those digits that do mean something and are not just random junk.
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Experiments and their results

From a population with mean 39.615 and SEM 1.33, 8000 instances were drawn at random by a 
computer program (8000 is an arbitrary large number). Table 1 below shows the frequency of the 
ten digits in successive decades. The digit ‘3’in the 10’s decade is clearly meaningful, and so is 
‘9’ in the 1’s, but in the 0.1’s decade, the target digit ‘6’, though the most frequent in its decade, is
barely better than random: a mean of ‘39’ is worth reporting, but  ‘39.6’ is overdoing things.

Table 1. Frequency of digits in 8000 values drawn at random from a 'normal' (Gaussian) 
population with mean 39.615, SEM 1.33. The target digit in each decade is underlined.

Decade Digit

0 1 2 3 4 5 6 7 8 9

10’s ... ... ... 4846 3154 ... ... ... ... ...

1’s 1963 890 261 36 5 33 190 677 1621 2324

0.1’s 827 798 787 775 769 777 859 810 840 758

Table 2 below derives from the same mean but a SEM 100 times smaller at 0.0133.  This supports
a mean of 39.61, but in the next ‘0.00x’ decade the target digit, ‘5’, is not even the most frequent 
in its decade. A simple rule is, thus, to stop the mean at the same decade as that of the first 
significant (non-zero) digit in the SEM. Note that the rule uses the SEM to show where to stop: 
it makes no use whatever of the position of the decimal point.

Table 2. As in Table 1, but with SEM 0.0133, only 1/100 of that in Table 1. In the last row the
target digit (‘5’, in 39.615) is not even the most frequent digit.

Decade Digit

0 1 2 3 4 5 6 7 8 9

10’s ... ... ... 8000 ... ... ... ... ... ...

1’s ... ... ... ... ... ... ... ... ... 8000

0.1’s ... ... ... ... ... 924 7076 ... ... ...

0.01’s 1738 2331 1825 894 240 43 5 35 164 725

0.0001’s 759 823 787 806 800 768 797 827 813 820

In Table 1 the counts in the ‘0.1’s decade are near random, but if we were to decrease the SEM 
gradually the totals for each digit in a decade would become more and more unequal as peaks 
emerged and grew from the slowly sinking hummocky plain and, consequently, indicated that we 
would soon be able to justify another sig-dig. In a report, the number of sig-digs must be integer, 
but to understand the trends we need a sig-dig index, DM, that is at least semi-continuous. Such an
index is derived in the Appendix.
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The points in Figure 1 below show how DM depends experimentally on C, the quotient of mean / 
SEM in experiments similar to those outlined in Tables 1 and 2. The fitted line is DM = log10 (C). 
If we take the ceiling of these values — equivalent to truncating and adding 1 — to get an integer 
value we get the stepped broken line in Figure 1. This translates into the simple rule already 
given. But at some points, at the back of the steps, this gives values that are only just sufficient 
while at the front of the step the values are well into the meaningless random zone and almost a 
digit too many. A more complex extension to the simple rule (Table 3) shifts the steps about half a
decade left (log10 (3) ≈ 0.5) and spreads the overshoot into the meaningless region more evenly: 
the overshoot is 0.5 to 1.5 random digits. The unbroken line (staircase) in Figure 1 shows the 
extended rule.

 Figure 1. Experimental dependence (filled 
circles) of sig-digs in a mean on the C = 
mean / SEM quotient. The points are close to 
the calculated DM = log10 (C) line. The area 
below and to the right of the sloping line is the 
domain of significant digits in the mean; above 
and to the left the digits are random junk.

The broken line staircase shows the simple rule 
for integer (1, 2, 3 and so on) sig-digs. The 
unbroken line staircase shows a better but 
slightly more complex rule that gives a more 
uniform distance between the staircase and the 
continuous line. Both simple and extended rules
are shown in Table 3.
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Rule 2 for DSEM  is simpler but its origin is more complicated. Figure 2 below shows, for a fixed 
mean and standard deviation (SD), how DSEM depends, in experiments similar to those in Tables 1 
and 2, on the number of items, NS, in the calculation of a SEM. Points for two such experiments, 
with the same mean and different SDs are shown. Over a range of 100 in NS the value of DSEM 
rises with a slope of 1 on the log-linear scales shown: DSEM = log10 (NS) + c. But eventually it falls 
over a cliff from a first significant digit of ‘1’ to ‘9’ a decade further down (for example from 
1.001 to 0.999). The overall slope of this saw-toothed progression (0.5) is half that of the teeth 
themselves reflecting the fact that the SEM depends on √NS.

The exact position of the saw-tooth depends on the numerical value of the SEM, and to 
accommodate this the bounding line DSEM = log10 (NS) / 2 + 1 is shown. The steps show Rule 2. 
The offset for NS ≤ 6 accommodates the fact that at small NS the bounding line curves downwards,
though this is not shown in detail in Figure 2.

Figure 2. For a fixed standard deviation
(SD), the experimental dependence (filled
circles) of sig-digs in the SEM, on the 
number, NS, of items in the sample on which 
the SEM is based. The points are close to a 
series of segments DSEM = log10 (NS) + c. The 
saw-tooth jumps occur where the first 
significant digit of the SEM, which depends on
NS, passes from 1 to 9 (e.g. from 1.001 to
0.999). The unfilled squares show a similar 
pattern for a SD half that for the filled circles.
The line through the points for one sawtooth
has a slope of 1.0. The longer sloping line 
y = log10 (NS) / 2 + 1, with half the slope of the 
saw-tooth lines,  summarises the upper bound 
of saw-tooth lines and sets the boundary 
between significant and random digits. The 
staircase ending in a broken line, with a step every 100-fold increase in NS shows the simple rule 
for significant digits in a SEM. The staircase with continuous lines and a short step at the bottom 
shows the more complex rule listed in Table 3, taking account of  behaviour at small NS.

The full rules for sig-digs in a mean and in a SEM are summarised below in boxed Table 3, which
includes a rule for percentages (which have additional problems).
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A minor problem remains. Suppose that a computer-calculated mean is 12345.67 with calculated SEM 
5678.90. The results are based on 25 values, so the SEM justifies 2 sig-digs. These would be ‘57’, but 
how can we show where the decimal point is? One way would be to change units, if there are any. A more 
general solution though is to use italic ‘0’ as a packing digit. The example would then be reported as 
12000 with SEM 5700.

Discussion

Does it matter if random junk is reported? For those who understand these matters, no. They can 
adjust the values themselves. For an author’s reputation, yes, it does matter. Gross over-reporting 
of values is one of the clearest warning signs to readers that the author does not understand what 
he or she is doing.

The big general purpose journals were not interested in this article, yet (I suggest) those who need
it most are the least likely to come across it in a specialist education or statistics journal. This 
version was therefore archived as: Clymo RS (2012) How many digits in a mean are worth 
reporting? http://arXiv.org/abs/1301.1034. But that location is unlikely to be scanned by 
bioscientists. ‘Duplicate publication’ is strongly deprecated in formal journals, for obvious 
reasons, but is allowed in preprint archives. So this is the second source for this article.

Table 3. Rules determining the number of significant digits to report

Rule 1: for significant digits (DM) in the mean:

The last significant digit in the mean is in the same decade as the first non-zero digit in the SEM;
but

Rule 1 extended (you may ignore this supplement without serious error): 

if the first significant digit in C = mean / SEM is ‘3’ to ‘9’ then one more digit is significant in 
the mean.

Rule 2:  for significant digits (DSEM) in the SEM itself:

NS in sample 2 to 6 7 to 100 101 to 1e4 1e4 to 1e6 > 1e6

Significant digits,  DSEM 1 2 3 4 5

Rule 3: for counts as percentages

For fewer than 100 observations the two digits in a percentage overstate the significance.

NS in sample* 11 to 20 21 to 50 51 to 100 101 to 10 000 10 001 to 1e6

Report % to the nearest / % 5 2 1 0.1 0.01

* For fewer than 10 observations do not use %

Examples: 7 / 17 = 40 % (not 41.17. . . %); 6 / 17 = 35 %
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If you found it useful, please recommend it to colleagues and to editors.
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Appendix: derivation of the sig-dig index DM.

 To calculate the sig-dig index, DM, first, set a threshold, T. Let n be the total number of counts. 
The expected number, E,  in each of the 10 classes (the digits 0 to 9, Tables 1 and 2) if the counts 
are uniformly distributed is n / 10. Let |X| be an absolute difference from E, then the smallest χ2 
results if half the ten classes (of the digits 0 to 9) are E + |X| and half are E − |X|. Substituting 
these values in the formula for calculating χ2 in a contingency table gives |X| = √(n  χ2) / 10. This 
value of |X| defines the threshold, T. For P = 0.5 and 9 d.f., χ2 = 8.34. Any value with |X|, the 
difference from n / 10,  < 0.289 √n is more likely to be random than significant.

The maximum count above the expected value is n – E. Start at the decade in the mean value with
the first non-zero digit and work rightwards through the decades (downwards in Tables 1 and 2) 
stopping when the counts for the decade as a whole are more likely than not to be random in the  
χ2  test at P = 0.5, 9 d.f. Then calculate the index as the sum, for all the decades and digit classes 
where the count, x, exceeds the threshold, T, of DM = (x – E) / (n – E).

As illustrations: if all counts in a decade are for a single digit, 1.0 is added to DM . If  there are 
equal counts for two digits in the decade and zero for the other eight, then 0.89 is added.
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