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Abstract An emerging disease is one infectious epidemic
caused by a newly transmissible pathogen, which has ei-
ther appeared for the first time or already existed in human
populations, having the capacity to increase rapidly in in-
cidence as well as geographic range. Adapting to human
immune system, emerging diseases may trigger large-scale
pandemic spreading, such as the transnational spreading of
SARS, the global outbreak of A(HIN1), and the recent po-
tential invasion of avian influenza A(H7N9). To study the
dynamics mediating the transmission of emerging diseases,
spatial epidemiology of networked metapopulation provides
a valuable modeling framework, which takes spatially dis-
tributed factors into consideration. This review elaborates
the latest progresses on the spatial metapopulation dynam-
ics, discusses empirical and theoretical findings that verify
the validity of networked metapopulations, and the applica-
tion in evaluating the effectiveness of disease intervention
strategies as well.
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1 Introduction

The term metapopulation was coined by Levins [1] in 1969
to describe a population dynamics model of insect pests in
farmlands, yet the perspective has been broadly applied to
study the effect of spatially distributed factors on evolution-
ary dynamics [2], including genetic drift, pattern formation,

extinction and recolonization, etc. The development of metapop-

ulation theory, in conjunction with the fast development of
complex networks theory, lead to the innovative applica-
tion of the networked metapopulation in modeling large-
scale spatial transmission of emerging diseases. This inter-
disciplinary research field has attracted much attention by
the scientific communities from diverse disciplines, such as
public health, mathematical biology, statistical physics, in-
formation science, sociology, and complexity science. New
insights are contributed to understanding the spatial dynam-
ics of epidemic spreading, which provides valuable support
to public healthcare.

This review presents a survey of recent advances in the
emergent discipline of networked metapopulation epidemi-
ology, which is organized as follows. Section 2 introduces
some preliminaries of the compartment model, network epi-
demiology, and networked metapopulation, and also eluci-
dates their relevance. Section 3 specifies the validity of net-
worked metapopulation. Section 4 focuses on the recent pro-
gresses on metapopulation dynamics. The application in eval-
uating the performance of intervention strategies is presented
in Section 5, and some outlooks are provided at last.

2 Dynamical models of infectious diseases: From single
population to networked metapopulation

2.1 Compartment model. To study the phenomena of epi-
demic spreading in human society, a variety of dynamical
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Fig. 1 (Color online) Schematic illustrations of the SIS (a) and the SIR (b) compartment models, where 3, . denote the transmission rate and the

recovery rate, respectively.

models have been proposed [3,4]. The compartment model
is one of the simplest yet basic epidemic models, which
was first introduced by Bernoulli [5] in the 18th century.
Assuming that a population of individuals is mixed homo-
geneously, this model organizes the persons into different
compartments (states), according to their health status, e.g.,
susceptible (denoted by S, those healthy ones who may ac-
quire the infection), infectious (I, those infected ones who
are contagious), and recovered (R, those who are recovered
from the disease). Within each compartment, all individu-
als are identical. The transitions between different compart-
ments depend on the specific transition rates. For example,
the transmission rate [ represents the infection probabil-
ity for a susceptible individual that encounters an infectious
person, and the recovery rate p represents the probability
with which an infectious individual is recovered.

If the disease could not endow recovered persons with a
long lasting immunity but infect them again, e.g., seasonal
flu, asthma, gonorrhoea, the related epidemic reactions are
well described by the so called SIS model; otherwise, if re-
covered people become immune permanently to the disease,
e.g., pandemic influenza, pertussis, smallpox, the epidemic
dynamics can be characterized by the SIR model properly.
Figures 1(a)-(b) illustrate the relevant compartment transi-
tions in the SIS and SIR models, respectively. The dynam-
ical evolution of these models can be simply delineated by
ordinary differential equations [3].

One key parameter characterizing the severity of a dis-
ease is the basic reproductive number, Ry, which identifies
the expected number of infected individuals generated by
introducing an infectious carrier into an entire susceptible
population. This parameter signifies the epidemic thresh-
old applied for predicting whether or not an infectious dis-
ease will prevail. Typically, given a “well-mixed” popula-
tion, Ry = S/p. If Ry < 1, the disease dies out quickly,
which implies that the population remains at the disease-free
state.

2.2 Network epidemiology. Due to the ubiquity of complex
systems in modern society, the study of complex networks
becomes prosperous [6-9] . The Internet and human friend-
ship networks are just a few examples that can be regarded
as systems comprised of a large number of connected dy-
namical units. The most intuitive approach of modeling such
complex systems is to treat them as networks, where nodes

represent component units and edges represent connectivity.
Importantly, empirical findings have unraveled the presence
of universal features in most socio-technical networks, e.g.,
small-world [10], scale-free (SF) [11], which inspires ex-
tensive studies towards a better understanding about the im-
pact of population infrastructures (network connectivity) on
dynamical processes [12—15], including robustness [16, 17],
synchronization [18-20], consensus [21-24], control [25—
28], evolutionary game [29-36], traffic routing [37-39], self-
organized criticality [40-43], etc.

Assuming that interactive individuals are mixed homo-
geneously, the aforementioned epidemic compartment model
neglects the significance of population connectivity. Such
simplification can hardly solve new puzzles emerged in the
present networking society. For example, why is it extremely
difficult to eradicate computer viruses from the Internet or
the World Wide Web, and why do those viruses have an
unusual long lifetime [44]? Similar matters have been ob-
served in diverse systems, ranging from the web of human
sexual relations to vaccination campaigns [4]. One key fac-
tor inducing such problems is the scale-free property of the
networked systems, which causes a serious trouble that the
threshold of disease outbreak vanishes [45]. Within complex
networks, the basic reproductive number is Rf)f = Ro[l +
(CV)?], with CV identifying the coefficient of variation
of the degree distribution (degree represents the number of
edges k per node) [46]. For large networks taking on a scale-
free heterogeneous topology, Ry is always larger than 1 no
matter how small the transmission rate may be, due to the
infinite variance of the degree distribution.

This meaningful finding has motivated the research of
network epidemiology, which concerns particularly the spread-
ing of epidemics in human social networks [4, 14,47]. Many
subsequent works investigated extensively the epidemic thresh-
old on networks with special topological features, such as
degree correlations [48], small world [49], community [50],
edge length [51], and K-core [52]. [53,54] demonstrated that
the vanishing epidemic threshold of the SIS model derives
from the active behavior of the largest hub, which acts as
a self-sustained source of the infection. Such disastrous ef-
fect of highly connected hubs can also be observed in real-
ity, such as the presence of core groups in the propagation
of sexually transmitted diseases, and the appearance of the
patient zero that induces the dissemination of human im-
munodeficiency virus (HIV). Considering that the threshold
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Fig. 2 (Color online) Illustration of the individual-network frame of the networked metapopulation model. a The model is composed of a network
of subpopulations. The disease transmission among subpopulations stems from the mobility of infected individuals. b Each subpopulation refers
to a location, in which a population of individuals interplays according to the compartment rule (e.g., SIR) that induces local disease outbreaks.

Individuals are transferred among subpopulations via mobility networks.

condition generally predicts the final state of the epidemic
evolution, Li and Wang [49] studied the relaxation behavior
of epidemic spreading before reaching a final disease-free or
endemic phase.

2.3 Networked metapopulation. Although the performance
of public healthcare systems has been improved prominently
to weaken the threat of emerging diseases, it is impossible to
entail a world free of infectious pathogens [55]. From the be-
ginning of this new century, we have already witnessed sev-
eral cases of the large-scale geographic transmission of pan-
demics. In 2003, through the international airline network,
the SARS coronavirus (SARS-CoV) was rapidly transmitted
from Hong Kong to more than 30 countries [56,57]. Several
years later, in 2009, the A(HIN1) swept across the world
through public transportation networks again: With only 3
to 4 months, it had spread over about 200 countries [58—61].
Recent potential invasion of avian influenza A(H7N9) poses
a new challenge [62-65]. It seems that the widespread risk
of emerging diseases is higher than before.

This urgent circumstance stems from the changes of hu-
man social ecology in population distribution as well as hu-
man mobility patterns [66,67]. Crowded metropolises re-
sulting from the urbanization process induce people’s fre-
quent contacts, and the fast development of massive trans-
portation (e.g., civil aviation) generates a nonlocal pattern
of human mobility, sharply reducing the time of travel as
well as the distance between populous cities.

It is not convincing to describe the large-scale spatial
pandemic spreading by directly following the routine of net-
work epidemiology, since the network perspective still con-
cerns the epidemic outbreak in a single population, despite
considering the connectivity structure among hosts. This can
hardly capture the key features of spatial transmission of in-
fectious diseases: epidemics prevails inside separate loca-
tions such as cities, each of which can be regarded as a pop-

ulation, and is transmitted among populations through the
travel of infected individuals.

Spatial distribution of populations and human mobility
among connected locations are the pivotal elements mediat-
ing the transmission of pandemic diseases. To introduce spa-
tially distributed factors into modeling substrates, it is intu-
itive to generalize the network model by defining each node
as a subpopulation that has a specific location, in which a
population of individuals interplays according to the com-
partment rule. People are also permitted to transfer among
subpopulations through mobility networks. This individual-
network frame organizes the entire system into networked
populations, leading to an important class of model in mod-
ern epidemiology, namely, the networked metapopulation.
Figure 2 illustrates the basic modeling structure.

3 Validity of networked metapopulation

Aside from the above conceptual descriptions, it is also es-
sential to verify the validity of the model from theoretical as
well as empirical perspectives.

Developing a probabilistic metapopulation with the con-
sideration of long-range human migrations via a worldwide
aviation network composed of 500 largest airports, Hufnagel
et al. [68] first demonstrated the feasibility of forecasting the
real-world transmission of SARS through computational ap-
proaches. To study the spatiotemporal patterns of the trans-
mission process, Colizza et al. [69] defined a statistical mea-
sure based on the information entropy, which quantifies the
disorder level encoded in the evolution profiles of disease
prevalence. Comparing the pandemic spreading on a data-
driven networked metapopulation with that on random reshuf-
fled models providing null hypotheses, the authors unveiled
the presence of a high-level heterogeneity in the geographic
transmission of epidemics.
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To assess the predictability of metapopulation models,
one typical approach focuses on the coincident extent be-
tween the simulation results and the realistic surveillance
reports for each contaminated region, which is an arduous
task due to the sophisticated calibration of parameters as
well as the unavoidable noise presented in the surveillance
process. Concerning the logistical feasibility of the model,
one can resort to an alternative simple means of inspecting
the evolution of related scaling laws [70], which is relevant
to critical transition patterns. The scaling theory concerns
the functional relations describing the data collapsing onto
a power-law curve, and the relations of the critical-point ex-
ponents [71].

The Zipf’s law and the Heaps’ law are two represen-
tative scaling laws that usually emerge together in various
complex systems, however, their joint emergence has hardly
been clarified [72]. Using the data of laboratory confirmed
cases of SARS, H5N1, and A(HINT1) to analyze the joint
emergence of these two scalings in the evolution process of
large-scale geographic transmissions, Wang et al. [70] un-
raveled a universal feature that the Zipf’s law and the Heaps’
law are naturally shaped to coexist at the initial stage of an
outbreak, while a crossover comes with their incoherence
later before reaching a stable state, where the Heaps’ law
still presents with the wane of the strict Zipf’s law. With
the census populations and domestic air transportation data
of the United States (US) [73,74], a data-driven metapop-
ulation network model on the US country level is devel-
oped to analyze the evolution patterns of scaling emergence.
In contrast with a random reshuffled model with a homo-
geneous structure, the data-driven heterogeneous metapop-
ulation successfully reproduced the scaling transitions ob-
served in the real-world pandemics. This demonstrates that
the high-level heterogeneity of infrastructure plays a key
role in characterizing the spatial transmission of infectious
diseases, which also provides a new insight to clarifying
the interdependence between the Zipf’s and Heaps’ scaling
laws.

Within each subpopulation, the individuals are mixed
homogeneously, according to the coarse-grained approxi-
mation of the metapopulation framework. Interestingly, this
assumption can be supported by recent empirical studies on
the intra-urban human mobility. The analysis of the data
generated by the mobile phone or GPS shows that human
movement in the urban scale (e.g., inside a city) generally
has an exponential or binomial trip-length distribution [75—
79]. Although this does not simply mean that short-range
human mobility is random, the related dynamical feature
is similar with that of the Boltzmann gas, if the relevance
among individuals is so weak as to be negligible [76,80,81].
Accordingly, the homogeneous mixing (within each subpop-
ulation) assumption is adopted to ease the computation.

More promisingly, full-scales computational models be-
come increasingly popular, due to the continuous increase of
computer power as well as the fast technical developments
of data collection and processing [82—84]. In some cases, the
real-time forecast of pandemic spreading is becoming real-
ity [85]. Technical details for the estimation and validation
of a large number of parameters in these models are beyond
the interest of this review. Next section focuses on the recent
theoretical progress of metapopulation dynamics.

4 Two scales of dynamics: Recent progress

As stated in Section 2, the networked metapopulation model
is constructed with the individual-network frame, where the
individuals are organized into social units (e.g., villages, towns,
cities) defined as subpopulations, which are connected by
transportation networks that identify the mobility routes. The
disease prevails inside each subpopulation due to interper-

sonal contacts, and is transmitted among subpopulations through

the mobility of infected individuals. Typically, the model is
comprised of two scales of dynamics: (i) disease invasion
among different subpopulations; (ii) disease reaction within
each subpopulation. Recent progresses on these two aspects
are specified here.

2.1 Inter-subpopulation invasion. The substrate of metapop-
ulation depends on the spatial structure of social environ-
ment, such as transport infrastructures and mobility patterns.
The lack of fine-grained data capturing structural features of
human mobility systems leads to the traditional application
of random graphs or regular lattices, which assumes homo-
geneous infrastructures for the mobility substrates. To gen-
eralize metapopulation models with network approaches, the
first attempt was contributed by Rvachev and Longini [86],
in which 52 major cities worldwide in that epoch were con-
nected through an intercity aviation transportation network.
They applied this mathematical model to simulate the global
spread of the 1968-1969 Hong Kong (H3N2) flu.
Subsequently, comparing the effect of non-local human
anomalous diffusion with that of the ordinary diffusion be-
havior, Brockmann et al. unraveled that long-range human
mobility and interactions generate novel irregular spread-
ing patterns without an apparent wavefront [87]. Such com-
plex dynamical features require a mathematical description
of fractional diffusion equations, and they are also well cap-
tured by the networked metapopulations. Colizza et al. [69]
developed a global stochastic metapopulation model in, us-
ing the data of worldwide scheduled flights and census pop-
ulations to establish a complete worldwide air transportation
network (more than 3000 airports). They studied the pre-
dictability and the reliability of the pandemic forecast with
respect to the intrinsic stochasticity, and declared that the
topological heterogeneity reduces the predictability, whereas


https://doi.org/10.1101/003889

bioRxiv preprint doi: https://doi.org/10.1101/003889; this version posted June 4, 2014. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Spatial epidemiology of networked metapopulation: An overview

US Air Transportation Network

ESONONIN
M m%%hv
@i :

‘ﬁ = 9’6?

'/) iue -4\A

4'AA

US Commuting Network

Fig. 3 (Color online) Air transportation network (a) vs. commuting network (b) of the US. Long-range airlines dominate the air transportation
network, whereas the commuting routes are much geographically localized.

the high-level heterogeneity of traffic flows improves the
pandemic predictability.

As illustrated by Fig. 3 a, air traffic network acts as a ma-
jor channel serving human long-range travels, which medi-
ates the pandemic transmission on a large geographic scale.
The epidemic dynamics occurred under this scenario is well
characterized by the reaction-diffusion processes [88], which
are also widely applied to model phenomena as diverse as

genetic drift, chemical reactions, and population evolution [2].

From a theoretical viewpoint, it is significant to analyze
the epidemic threshold, which is instructive for the assess-
ment of the disease transmissibility as well as the outbreak
potential. Such information is also important to regulate the
implementation of intervention strategies. Based on the em-
pirical evidences that the topology of various socio-technical

networks including the airline network presents a high-level
heterogeneity, Colizza et al. [88] studied the effect of general
heterogeneous networks, demonstrating that the epidemic
threshold is significantly decreased with the augmentation
of topological fluctuations. Considering that the theory de-
veloped in Colizza et al. [88] is based on the simplifica-
tion that individual diffusion rate per subpopulation is in-
versely proportional to the degree of subpopulations, Col-
izza and Vespignani [89] generalized the study by introduc-
ing more realistic diffusion rules, such as the traffic- and the
population-dependent patterns. Importantly, using the ap-
proach of branching process, Colizza and Vespignani [89]
proposed a global invasion threshold, R, which distinguishes
the lower bound condition for transmitting the infections to
downstream unaffected subpopulations. The formula of R,


https://doi.org/10.1101/003889

bioRxiv preprint doi: https://doi.org/10.1101/003889; this version posted June 4, 2014. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Lin Wang, Xiang Li

can be summarized as R, = &(Ry, 1)T (k,0,wo), which
combines the epidemiology factors £( Ry, 1) with the diffu-
sion properties of mobility networks 7 (k, 6, wp). For large
networks with a high-level topological heterogeneity, the mo-
bility item 7T diverges, i.e., 7! — 0, thus R, is always
larger than unity, which leads to a decreased epidemic thresh-
old. Based on the observation that human beings usually do
not perform random walks, yet have specific travel destina-
tions, Tang et al. [90] addressed the effect of objective trav-
eling behavior which enlarges the final morbidity.

The above studies mainly concern the influence of hu-
man random diffusion, usually defining the mobility scheme
as a Markovian memoryless diffusive process [91]. Recent
empirical findings on human mobility have shown the cru-
cial role of commuting mobility in human daily transporta-
tion, which is reflected by the individual recurrent move-
ment between frequently visited locations such as house-
hold, school, and workplace [92-95]. Fig. 3b visualizes the
US commuting network with the census data on commut-
ing trips between counties [96]. Evidently, the structural fea-
tures are different between the commuting network and the
air transportation network.

It might be infeasible to analyze the non-Markovian prop-
erties of human commuting with previous reaction-diffusion
theory. In this regard, Balcan and Vespignani [91] extended
the metapopulation framework by considering the impact of
human recurrent commuting, which assumes that individu-
als remember their subpopulations of residence, with a con-
straint that commuters staying at their destination subpop-
ulations cannot continue moving to other places but return
to the residences with a certain rate. The approach of time-
scale separation is applied to perform theoretical analysis,
since in reality the number of frequent commuters only ac-
counts for a small fraction of local populations. This leads to
a mean-field description of stationary populations distribu-
tion. Generalizing the theory of branching process, Balcan
and Vespignani [97] obtained the global invasion threshold
for the reaction-commuting networked metapopulation sys-
tems, which establishes a new threshold relevant to the typ-
ical visiting duration of commuters. With a high return rate,
the sojourn time (i.e., length of stay) of infected commuters
might be too short to transmit the infection to susceptibles
in adjacent unaffected subpopulations.

To study the dynamical differences between the reaction-
commuting and the reaction-diffusion processes, Belik et
al. [98] analyzed their respective traveling wave solutions on
the one dimensional lattice. As the diffusion rate increases,
spatially constrained human commuting generates a satu-

rated threshold of the wave front velocity, whereas the reaction-

diffusion model has an unbounded front velocity threshold.
Such distinction implies that the estimation of transmission
speed might be overestimated under the reaction-diffusion
framework. Besides, they have also found that the character-

istic sojourn time spent by commuters induces a novel epi-
demic threshold. Since airline traffic and ground commut-
ing networks both serve human routine transportation, Bal-
can et al. [94] developed a multiscale networked metapop-
ulation model, where the commuting networks in about 30
countries were embedded into the worldwide long-range air
transportation network. The introduction of short-range com-
muting mobility enhances the synchronization of epidemic
evolution profiles for subpopulations in close geographical
proximity.

Human beings are intelligent. Their risk perception and
adaptive abilities promote the active response to epidemic
outbreaks, which might in turn alter the disease propaga-
tion [99—-101]. Many works [102—111] have investigated the
effect of disease-behavior mutual feedback on compartment
models as well as network epidemiology, and recent research
topics also begin the generalization to deal with human be-
havior of mobility response. For example, [112,113] ana-
lyzed the impact of self-initiated mobility on the invasion
threshold, showing a counterintuitive phenomenon that the
mobility change of avoiding infected locations with high
prevalences enhances the disease spreading to the entire sys-
tem.

2.2 Intra-subpopulation contagion. The above studies focus
on understanding the influence of inter-subpopulation hu-
man mobility patterns, generally assuming that the individ-
uals behave identically in each subpopulation. However, the
diversity of individual behaviors in different subpopulations
also affects the pandemic spreading.

Although it is well-known that human contacts have cru-
cial impact on the spatiotemporal dynamics of infectious
diseases in a population [3], previous works assumed that in-
dividual contact patterns are identical among all subpopula-
tions. Since the basic reproductive number, R, is equivalent
to the same constant in all subpopulations, it is predictable
that the epidemic attack rates as well as evolution profiles
in different areas are similar, as one can clearly observe in
[114].

At the intra-subpopulation scale, aside from the empir-
ical support from the data analysis of intra-urban human
mobility (see Section 3), the feasibility of the “well-mixed”
contacts assumption is also consistent with the recent find-
ings on interactive patterns of human contact. For example,
diverse digital instruments, e.g., wireless sensors [115], ac-
tive Radio Frequency Identification (RFID) devices [116,
117], and WiFi [118-120] (we resort to the WiFi technol-
ogy in our social experiments, due to its ubiquity in urban
areas), have been deployed in realistic social circumstances
to collect the data of human close proximity contacts [121].
The data analyses have unveiled an unexpected feature that
the squared coefficient of variance is quite small for the dis-
tribution of the number of distinct persons each individual
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Fig. 4 (Color online) Effect of location-specific human contact patterns. a—b illustrate the structure of the phenomenological metapopulation model
used in [124], where the reaction-commuting processes couple two typical subpopulations x,y. In the destination-driven scenario (a), individual
characteristic contact rates (cz, c,) depend on the visited locations, while in the origin-driven scenario (b), the contacts of individuals correlate
to their subpopulations of residence. c—d present the phase diagrams of the global R under these two scenarios, respectively. The white dashed
curve in each panel shows the global threshold RY = 1 obtained through the NGM analysis. From Ref. [124].

encounters per day [115-119], which implies the presence
of a characteristic contact rate within each subpopulation.

Note that the characteristic contact rate might vary ev-
idently in different subpopulations. As illustrated by em-
pirical studies [122, 123], in reality, location-specific factors
are the potential drivers resulting in a substantial variation
of disease incidences between populations. Inspired by this
finding, Wang et al. [124, 125] introduced two categories of
location-specific human contact patterns into a phenomeno-
logical reaction-commuting metapopulation model. A sim-
ple destination-driven scenario is considered first, where in-
dividual contact features are determined by the visited lo-
cations. Since the residence and the destination can be dis-
tinguished by the commuting mobility, an origin-driven sce-
nario is also introduced, where the contacts of individuals
are relevant to their subpopulations of residence. Figures 4(a)-
(b) illustrate the modeling structures of these two scenarios.

In these cases, it is infeasible to analyze the invasion
threshold through the theory of branching process, since the
prerequisite of identical basic reproductive number in all

subpopulations is invalid. Instead, the next generation ma-
trix (NGM) approach [126] can be applied to analyze the
global outbreak threshold R here. Due to the mixing of in-
dividuals with heterogeneous contact capacities in each sub-
population, which is analogous to the effect induced by an-
nealed heterogeneous networks [45], the addressed location-
specific contact patterns reduce the epidemic threshold sig-
nificantly, and thus favor disease outbreaks in contrast to the
traditional homogeneous cases. Figs. 4 ¢—d show the phase
diagrams of the global R{ under these two types of con-
tact patterns, respectively. Interestingly, the variance of dis-
ease prevalence under the destination-driven scenario has a
monotonic dependence on the characteristic contact rates,
whereas under the origin-driven scenario, counterintuitively,
the increase of contact rates weakens the disease prevalence
in some parametric ranges. This topic was also extended to
study the metapopulation network, which unraveled a new
problem of disease localization, i.e., the epidemic might be
localized on a finite number of highly connected hubs.
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Other types of human behavioral diversity have also been
considered recently. Motivated by the evidence that the di-
versity of travel habits or trip durations might yield hetero-
geneity in the sojourn time spent at destinations, Poletto et
al. [127] studied the impact of large fluctuations of visit-
ing durations on the epidemic threshold, finding that the
positively-correlated and the negatively-correlated degree-
based staying durations lead to distinct invasion paths to
global outbreaks. Based on the observation that the specific
curing (recovery) condition depends on the available medi-
cal resources supplied by local health sectors, Shen et al. [128]
studied the effect of degree-dependent curing rates, which
demonstrates that an optimal intervention performance with
the largest epidemic threshold is obtained by designing the
heterogeneous distribution of curing rates as a superlinear
mode. Since the epidemic spreading is also relevant to ca-
sual contacts during public gatherings, Cao et al. [129] intro-
duced the rendezvous effect into a bipartite metapopulation
network, and showed that the rendezvous-induced transmis-
sion accelerates the pandemic outbreaks.

5 Performance of intervention strategies

The study of metapopulation model not only expands our
knowledge on the dynamics of spatial epidemic spreading,
but also manifests the power in evaluating the performance
of intervention strategies. For example, although the strat-
egy of travel ban is usually deployed during a pandemic out-
break in reality, it is unclear whether the effectiveness is ex-
cellent enough in limiting the pandemic spreading. Counter-
intuitively, recent studies have unraveled the limited utility
of travel restrictions: Even if the worldwide air traffic is de-
creased to an unprecedented low level, e.g., less than 10 %,
the disease landing to unaffected regions is only postponed
several weeks [130-133]; the contribution to reducing the
morbity is also quite limited [130,131,134]. Such findings
are consistent with the aforementioned fact that the global
invasion threshold is decreased significantly by the presence
of the high-level topological heterogeneity.

It thus becomes urgent to study the controllability of
intra-subpopulation measures, such as the usage of vaccine
or antiviral drugs, and the implementation of community-
based interventions, which are typical containment strate-
gies suggested by the World Health Organization (WHO) [55].
To estimate and also to improve the performance of dis-
ease response plans on decreasing the morbidity, large-scale
computational simulations have been performed extensively
to study various types of pharmaceutical interventions [4, 14,
56,57,60,68, 134—139], which aid in identifying the targeted-
groups and guiding the deployment of limited resources.

Despite technical difficulties, it is probable to analyze
the delaying effect of different strategies. With the theory
of renewal process, Wang et al. [140] developed a general

mathematical framework to deal with the scenario of mini-
mum metapopulation, where two typical subpopulations are
connected by the travel flows. This is a rational approxima-
tion of the initial stage of an outbreak. It is shown that with
a short response time, the intra-subpopulation measures per-
form much better than that of the inter-subpopulation travel
restrictions. However, this advantage is weakened consider-
ably as the response time increases.

Recent clinical evidences obtained from the real-world
pandemic campaigns have uncovered new problems on the
prompt response with pharmaceutical interventions. For ex-
ample, there presents an unavoidable delay of 4—6 months
for developing the proper vaccine against a particular pan-
demic virus [141-143]; and an extensive usage of antiviral
drugs might induce the prevalence of antiviral resistance [144—
146]. Therefore, it is crucial to thoroughly examine the ef-
fectiveness of community-based interventions by using the
models of networked metapopulation, which deserves more
efforts in near future.

6 Conclusions & outlooks

Networked metapopulation contributes an ideal epidemic mod-
eling platform, which promotes our understanding on the
dynamics of large-scale geographic transmission of emer-
gent diseases. The models have the potential to be applied in
the real-time numerical pandemic forecast, and are also very
useful in evaluating the effectiveness of disease response
strategies.

Recently, the good, the bad and the ugly facts of the Big
Data have triggered extensive debates around the world. The
interdisciplinary research of metapopulation epidemiology
establishes a paradigm for the study of data science, since
one remarkable progress in this field is the innovative us-
age of fine-grained data in verifying key assumptions and
in establishing model substrates. Technical developments in
the data collection, processing and analysis not only offer
key insights into the dynamical properties of human mobil-
ity infrastructures as well as human behavioral diversity, but
also raise new questions referring to their influences on the
spatial transmission of emerging infectious diseases. Such
methodology can be applied to study diverse types of conta-
gion phenomena, including the spreading of computer viruses,
information, innovations, emotion, behavior, crisis, culture,
etc.

At the end of discussions, some open questions still de-
serve to be addressed. The development of the sophisticated
computational techniques and the consideration of detailed
human/population dynamics are quite important for the re-
search of spatial epidemiology. However, it is also crucial to
understand the fundamental principals governing the com-
plex contagion phenomena [147]. In this regard, an interest-
ing question poses itself, namely, whether it is possible to
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define a unified mathematical framework that can character-
ize different kinds of spatial dynamics models of emerging
diseases.

It is also probable to generalize present theoretical re-
sults to deal with reverse problems, such as the identifica-
tion of infection sources [147-149], possible mobility net-
works [150], and disease invasion process. Such inference
problems are valuable to establish an optimal response plan
for tracing and preventing the pandemics.
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