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Abstract12

1. Species distribution models (SDMs) can be used to predict how individual species—and13

whole assemblages of species—will respond to a changing environment. Until now, these14

models have either assumed (1) that species’ occurrence probabilities are uncorrelated,15

or (2) that species respond linearly to preselected environmental variables. These two16

assumptions currently prevent ecologists from modeling assemblages with realistic co-17

occurrence and species richness properties.18

2. This paper introduces a stochastic feedforward neural network, called mistnet, which makes19

neither assumption. Thus, unlike most SDMs, mistnet can account for non-independent20

co-occurrence patterns driven by unobserved environmental heterogeneity. And unlike21

recently proposed Joint SDMs, mistnet can also learn nonlinear functions relating species’22

occurrence probabilities to environmental predictors.23

3. Mistnet makes more accurate predictions about the North American bird communities24

found along Breeding Bird Survey transects than several alternative methods tested. In25

particular, typical assemblages held out of sample for validation were nearly 50,000 times26

more likely under the mistnet model than under independent combinations of single-species27

models.28

4. Apart from improved accuracy, mistnet shows two other important benefits for ecological29

research and management. First: by analyzing co-occurrence data, mistnet can identify30

unmeasured—and perhaps unanticipated—environmental variables that drive species31

turnover. For example, mistnet identified a strong grassland/forest gradient, even though32

only temperature and precipitation were given as model inputs. Second: mistnet is able33
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to take advantage of incomplete data sets to guide its predictions towards more realistic34

assemblages. For example, mistnet automatically adjusts its expectations to include more35

forest-associated species in response to a stray observation of a forest-dwelling warbler.36
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Introduction37

Programs for managing and understanding biodiversity each require information about where38

species occur and where they could occur. Statistical approaches to these questions, such as39

species distribution models (SDMs), are important because they can help us anticipate how40

beneficial species might fare—or how harmful species might spread—in scenarios that we41

cannot observe directly (Elith & Leathwick 2009). Modern SDMs need not assume that species42

respond to environmental variation in a pre-specified way (e.g. linearly or quadratically);43

relaxing this assumption has substantially improved our ability to make predictions about44

where species can occur (Elith et al. 2006).45

Unfortunately, existing nonlinear approaches do not always answer the most pressing questions46

for ecologists. Ecologists are not only interested in individual species; we are also interested47

in learning about higher-level patterns, such as community structure, species richness, species48

turnover, and alternative stable states (Chase 2003). While SDMs are often combined49

(“stacked”) to generate assemblage-level predictions (Pellissier et al. 2013), doing so requires50

assuming that species’ occurrence probabilities are uncorrelated (Clark et al. 2013; Calabrese51

et al. 2014). As shown in more detail below, ignoring these correlations leads stacked52

models to predict incoherent jumbles of species rather than realistic assemblages (Clark et al.53

2013). A major source of non-independence among species—which stacked SDMs ignore—is54

shared dependence on unobserved environmental factors (McInerny & Purves 2011; Figure55

1; Calabrese et al. 2014). Given that most models only use climate variables as predictors56

(Austin & Van Niel 2011), the set of unobserved factors will usually include all of ecology57

apart from climatic influences. SDMs’ failure to model other ecological processes is thus58

widely considered to be a major omission from statistical ecology’s toolbox (Austin & Van59
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Niel 2011; Guisan & Rahbek 2011; Kissling et al. 2012; Wisz et al. 2013; Clark et al. 2013).60
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Figure 1: Unobserved environmental heterogeneity can induce correlations between species;
ignoring this heterogeneity can produce misleading results. A: Based on climate predictors,
a pair of single-species models might predict 50% occurrence probabilities for each of two
wetland species (black cross). Climate predictors are not sufficient in this case, however: a
site’s suitability for these species cannot really be determined without information about the
availability of wetland habitat. Real habitats will to be tend to be suitable for both species
(dense cloud of points in upper-right corner) or neither (lower-left corner), depending on
this unmeasured variable. B This correlation among species substantially alters the set of
assemblages one would expect to observe. (Under independence, all four possibilities would be
equally probable.) C Positive correlations among species can even induce a strongly bimodal
distribution of species richness values.

In the last few years, several mixed models have been proposed to help explain the co-61

occurrence patterns that stacked SDMs ignore (Latimer et al. 2009; Ovaskainen, Hottola62

& Siitonen 2010; Golding 2013; Clark et al. 2013; Pollock et al. 2014). These joint species63

distribution models (JSDMs) can produce mixtures of possible species assemblages (points64

in Figure 1a), rather than relying on a small number of environmental measurements to65

fully describe each species’ probability of occurrence (which would collapse the distribution66

in Figure 1a to a single point; Pollock et al. 2014). In JSDMs (as in nature), a given set67

of temperature and precipitation measurements could be consistent with a number of very68

different possible sets of co-occurring species, depending on factors that ecologists have not69
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necessarily measured or even identified as important. JSDMs represent these unobserved70

(latent) factors as random variables whose true values are unknown but whose existence71

would still help explain discrepancies between the data and the stacked SDMs’ predictions72

(Figures 1b and 1c). While JSDMs represent a major advance in community-level modeling73

(Clark et al. 2013; Pollock et al. 2014), existing implementations have all assumed that74

species’ responses to the environment are linear (in the sense of a generalized linear model).75

Thus, these JSDMs sacrifice the flexibility of modern single-species models, reducing their76

accuracy and limiting their utility.77

Here, I present a new R package for assemblage-level modeling—called mistnet—that does not78

rely on independence (as stacks of single-species models do) or linearity (as previous JSDMs79

do). Mistnet is a stochastic feed-forward neural network (Neal 1992; Tang & Salakhutdinov80

2013) that combines the nonlinear flexibility of modern single-species models with the latent81

variables found in previous JSDMs (cf Hutchinson, Liu & Dietterich 2011). In order to82

demonstrate the value of this approach, I compared mistnet’s predictive likelihood with83

that of several existing models, using observational data from thousands of North American84

Breeding Bird Survey transects (BBS; Sauer et al. 2011). A high predictive likelihood85

indicates that the model expects to see assemblages like those found along transects held86

out-of-sample, while a very low likelihood means that the model has effectively ruled those87

assemblages out due to overfitting or underfitting.88

An accurate JSDM would up new possibilities for research and effective management. For89

example, although most models only have access to climate data (Austin & Van Niel 2011),90

a successful model of community structure should also be able to identify the major axes of91

non-climate variation that drive species turnover based on the species’ observed co-occurrence92
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patterns. Moreover, a successful assemblage-level model would be able to take advantage of93

partially-completed samples or other kinds of prior information about a few species to inform94

its predictions about the rest of the assemblage. Since data collection efforts are frequently95

asymmetrical or incomplete, the ability to transfer information from well-documented taxa to96

more cryptic or rare species would prove valuable for community ecologists and conservationists97

alike. While a model’s ability to infer, for example, that “waterbirds like water” would not98

provide any novel biological insights, it would demonstrate that a modeling framework is99

ready to tackle more difficult problems where the biology is not already known.100

Materials and Methods Methods101

Methods are presented in four main sections: (1) an introduction to the data sets used in102

this analysis, (2) a description of mistnet, (3) a summary of the existing methods used for103

model comparison, and (4) criteria for model evaluation.104

Data105

Field survey data was obtained from the 2011 Breeding Bird Survey (BBS; Sauer et al. 2011).106

The BBS data consists of thousands of transects (“routes”), which I used as the main unit107

for my analysis. Each route includes 50 stops, about 0.8 km apart. At each stop, all the108

birds observed in a 3-minute period are recorded, using a standardized procedure. Following109

BBS recommendations, I omitted nonstandard routes and data collected on days with bad110

weather.111

In order to evaluate SDMs’ capacities for predicting species composition, I split the routes112
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into a “training” data set consisting of 1559 routes and a “test” data set consisting of 280113

routes (Figure 2; Appendix A). The two data sets were separated by a 150-km buffer to114

ensure that models could not rely on spatial autocorrelation to make accurate predictions115

about the test set (Bahn & McGill 2007) (Appendix A). Each model was fit to the same116

training set, and then its performance was evaluated out-of-sample on the test set.117

Figure 2: Map of the BBS routes used in this analysis. Black points are training routes; red
ones are test routes. The training and test routes are separated by a 150-km buffer in order
to minimize spatial autocorrelation across the two partitions.

Observational data for each species was reduced to “presence” or “absence” at the route level,118

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 9, 2014. ; https://doi.org/10.1101/003947doi: bioRxiv preprint 

https://doi.org/10.1101/003947
http://creativecommons.org/licenses/by/4.0/


ignoring the possibility of observation error for the reasons outlined in (Welsh, Lindenmayer119

& Donnelly 2013). It would be possible to incorporate the possibility of such errors in the120

model-fitting procedure if appropriate data were available, as was done in (Hutchinson et al.121

2011). 368 species were chosen for analysis according to a procedure described in Appendix122

A.123

To obtain environmental predictors for the model, I extracted the 18 Bioclim climate variables124

for each route from Worldclim (version 1.4; Hijmans et al. 2005). I omitted variables that125

were nearly collinear with one another (i.e. |r| >0.8) using the findCorrelation function in126

the caret package (Wing et al. 2013), leaving eight climate-based predictors (Appendix A).127

Since most SDMs do not use land cover data (Austin & Van Niel 2011) and one of mistnet’s128

goals is to make inferences about unobserved environmental variation, no other variables129

were included in this analysis.130

Finally, I obtained habitat classifications for each species from the Cornell Lab of Ornithology’s131

All About Birds website (www.allaboutbirds.org) using an R script written by K. E. Dybala.132

Introduction to stochastic neural networks133

Neural networks describe nonlinear mappings from input variables to predictions about one134

or more output variables. In general, ecologists have not had much success using neural135

networks for SDM, compared with other methods (e.g. Dormann et al. 2008). However,136

modern neural networks have recently outperformed other machine learning techniques in a137

wide range of applied contexts (Bengio 2013) and are thus worth a second look.138

Mistnet models are stochastic neural networks, meaning that they include latent random139

variables (Neal 1992; Tang & Salakhutdinov 2013). In such a model, species’ occurrence140
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probabilities are not fully specified the variables ecologists happen to measure, but can also141

depend on factors that have not been observed. In the absence of any information about these142

variables, mistnet (like other JSDMs) represents them using standard normal distributions.143

Depending on which values are sampled from these normal distributions and fed through the144

neural network, the model will expect to see different kinds of species assemblages (Figure 3).145

While the model’s main function is to make predictions about the species found in a given146

environment, inference can also proceed backward through the network, so that the presence147

(or absence) of a particular species can provide indications about the local environment—and148

thus about the likely configuration of the rest of the assemblage. This kind of inference could149

be useful in a variety of important contexts. For example, data is often more plentiful about150

waterfowl than about other wetland species, due to interest from hunters and conservation151

groups. If waterfowl are known to be present along a route, then a JSDM should recognize152

that suitable habitat was available, automatically increasing the estimated probability of153

occurrence for other species known to have similar habitat requirements. Notably, none of154

this extra inferential power requires that the mistnet user understand which environmental155

factors are driving the correlations between species, since these correlations are automatically156

inferred from species’ co-occurrence patterns.157

The neural network used here (illustrated in Figure 3b) is trained to find a way of representing158

different environmental conditions such that each species’ response to the environment can159

be described using a small number of coefficients (e.g. 15 in this analysis; Appendix B). The160

small number of coefficients and the uniformity of their functions makes mistnet models highly161

interpretable: the coefficients linking the second hidden layer to a given species’ probability of162

occurrence essentially describe that species’ responses to a few leading principal components163
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Figure 3: A A generalized diagram for stochastic feed-forward neural networks that transform
environmental variables into occurrence probabilities multiple species. The network’s hidden
layers perform a nonlinear transformation of the observed and unobserved (“latent”) environ-
mental variables; each species’ occurrence probability then depends on the state of the final
hidden layer. B The specific network used in this paper, with two hidden layers. The inputs
include Worldclim variables involving temperature and precipitation, as well as random draws
from each of the latent environmental factors. These inputs are multiplied by a coefficient
matrix and then nonlinearly transformed in the first hidden layer. The second hidden layer
uses a different coefficient matrix to linearly transform its inputs down to a smaller number
of variables (like Principal Components Analysis of the previous layer’s activations). A third
matrix of coefficients links each species’ occurrence probability to each of the variables in
this linear summary (like one instance of logistic regression for each species). The coefficients
are all learned using a variant of the backpropagation algorithm.
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of environmental variation (cf Vincent et al. (2010)). For comparison, the boosted regression164

tree SDMs used below (Elith, Leathwick & Hastie 2008) have tens of thousands of coefficients165

per species, with entirely new interpretations for each new species’ coefficients.166

How do we train the model to make good predictions? As with most neural networks,167

mistnet’s coefficients are initialized randomly, and then the model climbs the log-likelihood168

surface by iteratively adjusting the coefficients toward better values. In mistnet models, the169

adjustments are calculated with a variant of the backpropagation algorithm (Rumelhart,170

Hinton & Williams 1986; Murphy 2012) suggested by Tang & Salakhutdinov (2013) for171

stochastic neural networks. The fitting procedure alternates between inferring the states of172

the latent variables (via importance sampling) and updating the model’s coefficients (via173

backpropagation). Both phases of model fitting are described in more detail in Appendix174

B. Despite importance sampling’s imprecision, this generalized expectation maximization175

procedure will converge to a local optimum on the likelihood surface with probability one176

(Neal & Hinton 1998; Tang & Salakhutdinov 2013), ensuring that the expected likelihood177

is high after averaging over the possible random samples. Following best practices (Orr &178

Müller 1998; Murphy 2012), mistnet constrains the coefficients using L2 regularization to179

prevent overfitting; the strength of this “weight decay” term was chosen by cross-validation,180

as described in the Appendix.181

The mistnet source code can be viewed and downloaded from https://github.com/davharris/mistnet.182

While the user interface and most of the algorithms are written in R, a small portion of183

the code is written in C++, using Rcpp (Eddelbuettel & Francois 2011) to manage the184

interface between languages and RcppArmadillo (Eddelbuettel & Sanderson 2014) to access185

the Armadillo linear algebra library for faster matrix manipulations (Sanderson 2010).186
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Existing models used for comparison187

I compared mistnet’s predictive performance with two machine learning techniques and with188

a linear JSDM called BayesComm (Golding 2013; Golding & Harris 2014). Each of these189

techniques is described briefly below; implementational details and settings for each method190

can be found in the Appendix.191

The first machine learning method I used for comparison, boosted regression trees (BRT;192

Elith et al. 2008), is among the most powerful techniques available for single-species SDM193

(Elith et al. 2006; Elith et al. 2008). I trained one BRT model for each species using R’s gbm194

package (Ridgeway 2013) and stacked them following the recommendations in (Calabrese et195

al. 2014).196

I also used a neural network model with no stochastic latent variables as a baseline against197

which to compare mistnet. Such neural networks do share some information among species198

(i.e. all species’ log-odds of occurrence are linear combinations of the same hidden layer), but199

like most other multi-species SDMs (De’ath 2002; Leathwick et al. 2005; Ferrier et al. 2007)200

they are not JSDMs and do not explicitly model co-occurrence (Clark et al. 2013). The201

neural net baseline was trained using the nnet package (Venables & Ripley 2002).202

Finally, I trained a BayesComm model (Golding 2013; Golding & Harris 2014) to evaluate203

the importance of mistnet’s nonlinearities compared to a linear alternative that also models204

co-occurrence explicitly.205

To ensure a level playing field, each modeling approach was given about 15 hours on the same206

computer for cross-validation and to make its predictions, as described in the Appendix.207
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Evaluating model predictions along test routes208

I evaluated mistnet’s predictions both qualitatively and quantitatively. Qualitative assess-209

ments involved looking for patterns in the model’s predictions and comparing them with210

ornithological knowledge (e.g. the habitat classifications provided by the Cornell Lab of211

Ornithology).212

Each model was evaluated quantitatively on the test routes (red points in Figure 2) to213

assess its predictive accuracy out-of-sample. Models were scored according to their predictive214

likelihoods, i.e. the probabilities they assigned to various scenarios observed in the test215

data. Models with high likelihoods expect realistic co-occurrence patterns, and should yield216

more biologically relevant insights about the processes underlying those patterns. Models217

that overfit or underfit will have lower out-of-sample likelihoods, and should be trusted less218

to provide these kinds of insights. I tested each model’s ability to make several kinds of219

predictions, ranging from estimates of the probability of observing particular species at a given220

location, to predictions about the species richness and composition of entire assemblages.221

To quantify the difficulties each model faced as it made predictions about increasingly large222

assemblages, I estimated their route-level predictive likelihoods for randomly-chosen groups223

of species, ranging in size from individual species pairs to the full set of 368 species in224

the data set. Models that assumed species were uncorrelated should see an exponential225

decay in their likelihoods as the number of species increases (since the probability of making226

correct predictions for a set of uncorrelated species equals the product of their individual227

probabilities), while BayesComm and mistnet should be able to take advantage of correlations228

to simplify problem of making predictions for the larger assemblages.229

Finally, each model predicted a range of possible species richness values for each test route;230
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I calculated quantiles for each model’s predictions using the Poisson-binomial distribution231

(Hong 2013), as recommended in Calabrese et al. (2014).232

Results and Discussion233

Mistnet’s view of North American bird assemblages234

I began by decomposing the variance in the mistnet’s species-level predictions among-routes235

(which varied in their climate values) and residual variation within routes. On average,236

the residuals accounted for 29% of the variance in mistnet’s predictions, indicating that237

non-climate factors play a substantial role in habitat filtering at continental scales.238

If the non-climate factors mistnet identified were biologically meaningful, then there should be239

a strong correspondence between the 15 coefficients assigned to each species by mistnet and240

the habitat classifications assigned by the Cornell lab of Ornithology. A linear discriminant241

analysis (LDA; Venables & Ripley 2002) demonstrated such a correspondence (Figure 4). The242

two-dimensional subspace in Figure 4 explains 19% of the total variance in species’ coefficients243

(representing an even greater portion of the non-climate variance). Mistnet’s coefficients244

cleanly distinguished several groups of species by habitat association (e.g. “Grassland” species245

versus “Forest” species), though the model largely failed to distinguish “Marsh” species from246

“Lake/Pond” species and “Scrub” species from “Open Woodland” species. These results247

indicate that the model has identified the broad differences among communities, but that it248

lacks some fine-scale resolution for distinguishing among types of wetlands and among types249

of partially-wooded areas. Alternatively, perhaps these finer distinctions are not as salient at250

the scale of a 40-km transect.251
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Figure 4: Each species’ mistnet coefficients have been projected into a two-dimensional space
by linear discriminant analysis (LDA) in order to maximize the spread between the six habitat
types assigned to species by the Cornell Lab of Ornithology’s All About Birds website. The
figure shows that mistnet cleanly separates “Grassland” species from “Forest” species, with
“Scrub” and “Open Woodland” species representing intermediates along this axis of variation.
“Marsh” and “Lake/Pond” species cluster together in the upper-left. The other habitat classes
were included in the LDA, but are not shown here.
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Figure 5A shows how the forest/grassland gradient identified by mistnet affects the model’s252

predictions for a pair of species with opposite responses to forest cover. The model cannot253

tell which of these two species will be observed (since it was only provided with climate data),254

but the model has learned enough about these two species to tell that the probability of255

observing both along the same 40-km transect is much lower than would be expected if the256

species were uncorrelated.257

Figure 5A reflects a great deal of uncertainty, which is appropriate considering that the model258

has no information about a crucial environmental variable (forest cover). Often, however,259

additional information is available that could help resolve this uncertainty, and the mistnet260

package includes a built-in way to do so, as indicated in Figures 5B and 5C. These panels261

show how the model is able to use an observation of a forest-associated Nashville Warbler262

(Oreothlypis ruficapilla) to indicate that a whole suite of other forest-dwelling species are263

likely to occur nearby, and that a variety of species that prefer open fields and wetlands264

should be absent. Similarly, Figure 5D shows how the presence of a Redhead duck (Aythya265

americana) can inform the model that a route is suitable habitat for a variety of other ducks,266

as well as for other wetland-associated species such as marsh-breeding blackbirds, sandpipers,267

and rails (along with a few other species that do not fit this theme as nicely). None of these268

inferences would be possible from a stack of disconnected single-species SDMs.269

Model comparison: species richness270

Environmental heterogeneity plays an especially important role in determining species richness,271

which is often overdispersed relative to models’ expectations (O’Hara 2005). Figure 6 shows272

that mistnet’s predictions respect the heterogeneity one might find in nature: areas with273
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C. Model responses to
observing a Nashville Warbler
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D. Model responses to
observing a Redhead
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Figure 5: A. The mistnet model has learned that Ruby-crowned Kinglets (Regulus calendula)
and Horned Larks (Eremophila alpestris) have opposite responses to some environmental
factor whose true value is unknown. Based on these two species’ biology, an ornithologist could
infer that this unobserved variable is related to forest cover, with the Kinglet favoring more
forested areas and the Lark favoring more open areas. B. The presence of a forest-dwelling
Nashville Warbler (Oreothlypis ruficapilla) provides the model with a strong indication that
the area is forested, increasing the weight assigned to Monte Carlo samples that are suitable
for the Kinglet and decreasing the weight assigned to samples that are suitable for the lark.
C. The Nashville Warbler’s presence similarly suggests increased occurrence probabilities for
a variety of other forest species, as well as decreased probabilities for species associated with
wetlands and grasslands. D. If a Redhead (Aythya americana) has been observed along a
route, the model correctly expects to see more ducks, rails and sandpipers in the same area.
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a given climate could be largely unsuitable for waterfowl (Anatid richness < 2 species) or274

marshy and open (Anatid richness > 10 species). Under the independence assumption used275

for stacking SDMs, however, both of these very plausible scenarios would be ruled out (Figure276

6A).277
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Figure 6: The predicted distribution of species richness one would expect to find based on
predictions from mistnet and the baseline neural network. A. Anatid species (waterfowl). B.
All bird species. BRT’s predictions (not shown) are similar to the baseline network, since
neither one accounts for the effects of unmeasured environmental heterogeneity.

Unfortunately, stacking leads to even larger errors when predicting richness for larger groups,278
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such as the complete set of birds studied here. Models that stacked independent predictions279

underestimated the range of biologically possible outcomes (Figure 6B), frequently putting280

million-to-one or even billion-to-one odds against species richness values that were actually281

observed. In more concrete terms, half of the observed species richness values fell outside282

these models’ 95% confidence intervals. The overconfidence associated with stacked models283

could have serious consequences in both management and research contexts if we fail to284

prepare for species richness values outside such an unreasonably narrow range.285

Mistnet, on the other hand, was able to explore the range of possible non-climate environments286

to avoid these missteps: 90% of the test routes fell within mistnet’s 95% confidence intervals,287

and the log-likelihood ratio decisively favored it over stacked alternatives.288

Model comparison: single species289

The two neural network models had the best performance at the level of individual species290

(Table 1). The neural networks’ advantage over BRT was largest for low-prevalence species291

(linear regression of log-likelihood ratio versus log-prevalence; p = 0.004). This is consistent292

with previous observations that multi-species models can outperform single-species approaches293

for rare species (Leathwick, Elith & Hastie 2006), which will often be of the greatest294

conservation concern. BayesComm’s predictions were substantially worse than any of the295

machine learning methods, which I attribute to its inability to learn nonlinear responses to296

the environment.297
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method expected.log.likelihood likelihood.ratio
nnet -48.7 21.3
mistnet -48.7 21
BRT -51.7 1
BayesComm -56.6 0.00771

Table 1: Expected species-level log-likelihood for each method, summed over all test routes and
averaged across all species. The likelihood ratio compares each model to BRT, representing
single-species SDMs. Sharing information among species with either of the neural net models
improves the predictive likelihood more than twenty-fold for a typical species compared to
BRT. Note also that BayesComm averages less than 1% of the machine learning methods’
likelihoods because of its linearity assumption.

Model comparison: community composition298

While making predictions about individual species observations is fairly straightforward299

with this data set (since most species have relatively narrow breeding ranges), community300

ecology is more concerned with co-occurrence and related patterns involving community301

composition (Chase 2003). As expected, models that combined their single-species predictions302

independently (including the neural network baseline) showed exponential decay in their303

likelihoods as the number of species per prediction increased. The JSDMs (mistnet and304

BayesComm) showed sub-exponential declines, since correlations reduce the number of305

independent bits of information needed to make an accurate prediction. As a result, mistnet306

became increasingly advantageous over independent combinations of single-species predictions307

as the assemblage size increased (Figure 7). Mistnet’s log-likelihood averaged 10.8 units higher308

than BRT’s for full assemblages of 368 species, corresponding to a 47000-fold improvement309

in likelihood for a typical transect in the test set. Mistnet’s ability to focus its predictions310

on plausible combinations of species indicates that it has captured a great deal more of311

the underlying ecological processes than existing SDM approaches. While some of this312

improvement can be attributed to mistnet’s overall tendency to make better predictions about313
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individual species (Table 1), the difference is mainly due to mistnet’s ability to keep ahead of314

the combinatorial explosion of possible assemblages by exploiting correlations among species.315
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Figure 7: The likelihood ratio favoring mistnet over BRT grows super-exponentially with
assemblage size. Each circle corresponds to a randomly-generated set of N species, where the
value of N is indicated along the horizontal axis. Note the log scale on both axes.

Comparison with BayesComm316

BayesComm’s ability to make out-of-sample predictions was severely limited by its assumption317

that species respond linearly to climate variables, highlighting the the need for nonlinear318

methods that can learn the functional forms of species’ responses to the environment. Adding319

quadratic and interaction terms would have led to severe overfitting for many rare species,320

and may still not have provided enough flexibility to compete with nonlinear techniques.321

Even without the added complexity of nonlinear terms, the BayesComm model required322

70,000 parameters, most of which served to to identify a distinct correlation coefficient323

between a single pair of species. Tracing this many parameters through hundreds of Markov324

chain iterations routinely caused BayesComm to exceed my machine’s 8 gigabytes of memory325

and crash, even after the code was modified to reduce its memory footprint. Storing long326

Markov chains over a dense, full-rank covariance matrix (as has apparently been done in all327
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other JSDMs to date) thus appears not to be a feasible strategy with large assemblages.328

Conclusion329

These results show conclusively that both linearity and independence are unwarranted330

assumptions; either assumption can substantially impair our ability to model and understand331

large assemblages. Linear JSDMs are not flexible enough, and models without latent random332

variables cannot match the properties of real assemblages.333

SDMs’ failure to sufficiently consider correlations among has kept these models from explaining334

and anticipating the full range of complex assemblages found in nature (Austin & Van Niel335

2011). Mistnet’s predictions are much more compatible with these sorts of complexities. In336

particular, the model’s predictions need not be unimodal, allowing the model to express337

conditional predictions, such as that “the probability of observing a Redhead duck will be very338

high if other wetland species are present, but very low otherwise.” Such conditional predictions339

are important because the available data will not always contain enough information to340

narrow the possibilities down to a single assemblage type or a single group of species. In341

such situations, stacked models will provide a false sense of security out-of-sample, leading342

to bad decisionmaking and biased estimates of nature’s variability. Mistnet provides better343

confidence intervals that are much more likely to actually contain the observed values when344

we look out-of-sample.345

Mistnet can also identify some of the same similarities among species that a skilled biologist346

would expect to find, which will be important for studying taxa that are more diverse and347

harder to observe (such as microbes). For taxa on the frontier of our knowledge, a model348

23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 9, 2014. ; https://doi.org/10.1101/003947doi: bioRxiv preprint 

https://doi.org/10.1101/003947
http://creativecommons.org/licenses/by/4.0/


like mistnet could help guide the biologists to ask the best questions and organize their349

understanding by suggesting which species have similar habitat requirements—even when350

the factor controlling their occurrence are still unknown.351

Unlike with stacked methods, one can read this straight out of mistnet’s coefficient tables352

with no more difficulty than interpreting a Principal Components Analysis.353

Mistnet’s ability to use asymmetrical or low-quality data sources to improve its predictions354

should inrease the value of low-effort data collection procedures such as short transects—355

especially since these improvements can be incorporated without need for fitting a new model.356

Future research should look for ways to use other forms of ecological knowledge about species357

to impose some structure on models coefficients and nudge the models toward more biologically358

reasonable predictions (Kearney & Porter 2009; Kissling et al. 2012). Such a research program359

could also be useful in other areas of predictive ecology [@pearse_predicting_2013].360

Finally, it should be noted that, while one could describe direct interactions among species361

using latent variables (Ovaskainen et al. 2010; Golding 2013), existing JSDMs are not362

particularly well-suited for learning about species interactions. Other models, such as Markov363

random fields (Azaele et al. 2010), or ensembles of classifier chains (Yu et al. 2011) would364

be much more appropriate for inferring coefficients related to species interactions, as they365

include direct dependencies among species. Latent variable-based JSDMs, including mistnet,366

are more appropriate for studies like this one at large spatial scales where direct species367

interactions will tend to be weaker and most of the variation is driven by environmental368

filtering and species’ range limits.369

In conclusion, mistnet’s accuracy, as well as its flexibility to work with opportunistic samples370

should make it useful for a variety of basic and applied contexts. Assemblage-level models,371
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such as mistnet, also have the potential to yield new biological insights. With charismatic and372

well-studied species like North American birds, most models will mainly be telling information373

that we already know. Still, mistnet’s ability to capture useful information about axes of374

variation among birds and to match preconceptions about which species co-occur due to375

habitat variables may indicate that the model can teach us new things about taxa that are376

harder to study.377
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