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Abstract 

Background 

Gene Ontology (GO) classification of statistically significant over/under expressed genes is a common 

method for interpreting transcriptomics data as a first step in functional genomic analysis. In this approach, 

all significant genes contribute equally to the final GO classification regardless of their actual expression 

levels. However, the original level of gene expression can significantly affect protein production and 

consequently GO term enrichment. Furthermore, even genes with low expression levels can participate in 

the final GO enrichment through cumulative effects.  

GO terms have regulatory relationships allowing the construction of a regulatory directed network 

combined with gene expression levels to study biological mechanisms and select important genes for 

functional studies. 

Results 

 In this report, we have used gene expression levels in bacteria to determine GO term enrichments. This 

approach provided the opportunity to enrich GO terms in across the entire transcriptome (instead of a subset 

of differentially expressed genes) and enabled us to compare transcriptomes across multiple biological 

conditions. As a case study for whole transcriptome GO analysis, we have shown that during the infection 

course of different host tissues by streptococcus pneumonia, Biological Process and Molecular Functions’ 

GO term protein enrichment proportions changed significantly as opposed to those for Cellular 

Components. In the second case study, we compared Salmonella Enteritidis transcriptomes between low 

and high pathogenic strains and showed that GO protein enrichment proportions remained unchanged in 

contrast to a previous case study.  

In the second part of this study we show for the first time a dynamically developed enriched interaction 

network between Biological Process GO terms for any gene samples. This type of network presents 

regulatory relationships between GO terms and their genes. Furthermore, the network topology highlights 

the centrally located genes in the network which can be used for network based gene selection. As a case 

study, GO regulatory networks of streptococcus pneumonia and Salmonella enteritidis were constructed and 

studied. 

Conclusions 

In both Streptococcus pneumonia and Salmonella enteritidis, the pathways related to GO terms 

“Environmental Information Processing”, “Signal transduction” and “two-component system” were 

associated with increasing pathogenicity, breaching host barriers and the generation of new strains. 
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This study demonstrates a comprehensive GO enrichment based on whole transcriptome data, along with a 

novel method for developing a GO regulatory network showing overview of central and marginal GOs that 

can contribute to efficient gene selection. 
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Background 

The functional genomic changes in bacterial pathogens during disease progression or in emerging highly 

pathogenic strains are poorly understood. Classifying genes into distinct functional groups through Gene 

Ontology (GO) is a commonly used and powerful tool for understanding the functional genomics and 

underlying molecular pathways. However, GO protein enrichment is related to the amount and number of 

proteins described in that GO, and in eukaryotes mRNA levels are often poorly correlated with protein 

expression. Bacteria are attractive organisms for GO analysis since they have less Post-transcriptional gene 

silencing compared to animals and plants [1] making gene expression an accurate proxy for protein levels. 

Because of the lack of specific resources for GO analysis in bacteria, we recently developed Comparative 

GO, a PHP based web application for statistical comparative GO and GO-based gene selection in bacteria 

[2]. Comparative GO has the potential to provide a comprehensive view of bacterial functional genomics by 

categorizing genes into a limited number of annotated GO groups [2, 3]. 

Another major advantage of GO analysis is developing quality-based gene selection strategies compared to 

the common approach of gene selection in bacteria which is solely based on the level of gene expression 

(quantity based gene selection) [2, 3]. It should be noted that expression level alone cannot be used as a sole 

index of gene significance because some genes with lower expression levels (such as transcription factors) 

play a prominent role in bacterial systems biology [2, 3]. An integrative approach, combining quality-based 

metrics such as GO classification, promoter analysis, and network construction in conjunction with 

quantity-based gene selection criteria provides a more robust approach for identifying key bacterial genes 

and describing bacterial systems biology. Such an approach can contribute to the discovery of genes 

associated with specific function(s) for investigation as novel vaccine candidates or pathways for 

pharmacological targeting. 

Biological process GO terms are analogous to genes because they have regulatory relationships with each 

other that can be used to construct a directed acyclic network. Compared to common gene networks, GO 

regulatory networks can identify key functional genomics based interactions in a broader sense. Classifying 

a large number of genes in a small number of GO classes and visualising the GO networks can significantly 

decrease the network complexity and, more importantly, offers a new approach for gene selection by 

considering the genes which contribute to central nodes in GO networks. To our knowledge there is no tool 

and methodology currently available to dynamically construct GO regulatory networks. 

The common approach in transcriptome experiments is that GO analysis is carried out on a short list of 

genes with statistically significant differential expression (up/down regulated) [4-6]. In this approach, all 

selected genes contribute equally in the final GO classification regardless of their actual expression levels. 
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The major drawback to this approach is that the original levels of gene expression can significantly affect 

protein production and consequently actual GO term enrichment. In addition, even genes with low or 

statistically non-significant expression levels can participate in final GO enrichment through cumulative 

effects.  

In this report we show for the first time how gene expression levels in bacteria can be used to determine GO 

term enrichments. By using gene expression levels as coefficients, we also took into account the impact of 

non-significantly expressed genes in GO enrichment. This approach provided the opportunity to enrich GO 

terms in the entire transcriptome genome (instead of samples of a short list of genes) and enabled us to 

compare GO terms of transcriptomes across multiple biological conditions. In order to achieve this, we 

enhanced our recently developed web server, Comparative GO[2, 7]. To enable analysis of very large gene 

sets such as from a whole genome, we implemented cache technology to improve web server performance.  

We also integrated robust non-parametric chi-square based tests into our web application to enable genome 

scale GO based comparison of gene expression.  

We applied our new methods to two important bacterial pathogens, streptococcus pneumonia and 

Salmonella Enteritidis in order to unravel the global, transcriptome based, GO pattern of streptococcus 

pneumonia during infection of host tissues and breaching of tissue barriers as well as the comparison of low 

and highly pathogenic Salmonella Enteritidis strains [8]. 

In the second part of this study we describe the implementation of GO based gene selection and GO 

network discovery. We show for the first time a dynamically constructed interaction network between 

Biological Process GO terms for any given bacterial gene sample. To this end, GO relationships were 

extracted from Gene Ontology database [9-11], and used to build a directed acyclic graph (DAG). To 

visualise the final DAG, we used the Cytoscape web browser plug-in [12]. We used our streptococcus 

pneumonia and Salmonella Enteritidis data sets as case studies for this method.   
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Material and Methods 

Incorporation of gene expression levels into GO analysis 

The system accepts any type of expression level such as microarray fold-change data and 

RPKM counts of RNA-Seq data. In all cases, for each gene, one coefficient is estimated 

based on its expression level within the sample or within the genome. If we want to perform 

comparative GO analysis on n sample of genes, and the expression level of gene i in list j is 

eij and also given that the smallest expression level across n samples is denoted by emin, then 

the coefficient of gene i in list j (Cij) is estimated as   : 

                            
mine

e
C ij

ij =                      where emin > 0 

Furthermore, if GO term t in sample r is associated with genes G1r...Gmr, then the protein 

enrichment level of GO term t in sample r (PEtr) is estimated as: 

                                                           ∑
=

=
m

i
irtr CPE

1

           

We have implemented these methods on our server with PHP.   

Hypothesis Testing Tool 

We implemented a tool to test the hypothesis of a significant difference between 2 

genomes/samples GO term distributions. Specifically, we implemented a Chi-Square test for 

2 samples and we compared it with the Kolmogorov–Smirnov test using the R-statistical 

package[13]. These two methods are both non-parametric and are suitable for comparing 2 

lists of paired numbers like GO term enrichment values for 2 samples. 

GO regulatory Network Construction 

Regulatory relationships (up/down regulation) were extracted between Biological Process 

terms from the Gene Ontology database [9, 10]. We stored these relationships in our internal 

database [2]. For any given gene sample, our application builds a GO DAG (Directed Acyclic 

Graph) network, based on regulatory relationships.  

In order to infer new relationships from available relationships we expanded initial GO 

network to include parental nodes; then, new relationships were inferred from relationships 
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between parental GO nodes to the nodes in the network. Figure 1 depicts a simple GO 

regulatory network, where grey nodes represent the GO terms related to the sample, and the 

relationships between GO terms are depicted by green arrows. As we can see at the top of the 

graph, there is a relationship between parental GO terms 2 and 3. Accordingly, we inferred 3 

new relationships between nodes 4, 5, 6 and node 7, depicted as green dotted arrows. The 

final enriched network can describe novel regulatory relationships between GO terms and 

consequently between their associated genes. 

Figure 1:  

Web Application Enhancements 

Methods and algorithms were implemented in our web application [2] using PHP 5 and 

PostgreSQL. Because of the additional functionality to analyse the GO distribution of all 

expressed genes within a genome (global transcriptomics), significant memory and 

processing resources were required by the Apache web server. To enhance performance and 

husband system resources we implemented file based caching technology to cache the whole 

genome GO graphs. When a GO graph was built for the first time, subsequent references to 

that GO graph, even by other users, was instantaneous. For a better user experience in web 

application pages where long running tasks were performed, we used Ajax technology to 

implement task progress bars.   

Visualising the GO interaction network 

In order to visualize the enriched GO regulatory network, we used the Cytoscape [12] flash 

player plug-in for web. We initialized and used this component through JavaScript. 

Cytoscape contains advanced dynamic network customization options such as zooming, 

network filtering, node re-locating, node and edge re-sizing, and colour scheming. These 

user-friendly options allow developers and users to dynamically change the look and feel of 

the network.   

Case study data 

 

To demonstrate the biological application of our new methods in global transcriptome GO 

analysis and GO network analysis, data from 2 previous gene expression experiments were 
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used. Streptococcus pneumonia and Salmonella enteritidis were selected since they are 

responsible for high morbidity, mortality, and infection worldwide and have been well 

studied. 

The first data set [3] was two colour microarray data from Streptococcus pneumonia in vivo 

derived RNA samples, where the relative expression of each gene in one niche was calculated 

in comparison to expression in the previous niche when bacteria moved from nose 

lungs  blood  brain. The relative expression of all 2236 genes of Streptococcus 

pneumonia during the course of infection are presented in Additional File 1 (lung versus 

nose), Additional File 2 (blood versus lung), and Additional File 3 (brain versus blood). 

Additional files are in MS Excell worksheet format. 

The second case study [8] was RNA-Seq global transcriptome data from 6 strains of 

Salmonella enteritidis, where 3 highly pathogenic strains and 3 low pathogenic strains were 

compared. The average whole genome expression of (4402) genes of the 3 highly pathogenic 

strains is presented in Additional File 4. While Additional File 5 contains the average 

expression of the 3 low pathogenic strains. The goal of this analysis was to unravel 

significantly different GO terms between highly and low pathogenic strains of bacteria using 

Salmonella enteritidis as a model. 

For GO network analysis, in case study 1, the 30 highest over expressed genes in 

Streptococcus pneumonia during infection in lung versus, blood versus lung and brain versus 

blood were used (Additional File 6).  Also, in case study 2, 18 genes with the highest fold 

change in expression levels between highly pathogenic strains versus low pathogenic strains 

are presented in Additional File 6.  

 

Results 

 

Introduction of gene expression levels into GO analysis 

 

Addition of expression level data with GO term data provided the opportunity of (1) 

quantifying exact GO enrichments, (2) extending analysis coverage from sample-wide to 

genome-wide, and (3) developing statistical tests for comparison of GO distributions across 

transcriptomes. Considering the influences of all expressed genes in functional genomics, 

even those with low levels of expression, could possibly increase the accuracy of the analysis 

in prokaryotes.  
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GO regulatory network 

 

GO regulatory networks for a sample of genes initially present three types of information: 

regulatory relationships between GO terms and their associated genes depicted by directed 

edges of the graph, enrichment levels of GO terms that are proportional to nodes’ diameter of 

graph and finally, the genes associated with each GO term.   

Furthermore, network topology revealed GO groups and their genes that had the highest 

number of interactions with other groups. Specifically, genes located in centre of the network 

were selected as good candidates for further experiments and gene discovery. In addition, the 

enrichment levels of GO terms that were proportional to the size of the nodes in the graph 

were in accordance with the regulatory relationships between GO terms. 

 

Case studies 

 

As case studies, we used publicly available two colour microarray and global transcriptomics 

data of two important bacterial pathogens, Streptococcus pneumonia and Salmonella 

enteritidis respectively. For each bacterium, 2 types of analysis were carried out: 

transcriptome based GO enrichment and GO network discovery. In Streptococcus 

pneumonia, all expressed genes were subjected to GO analysis in order to characterise 

functional changes in Streptococcus pneumonia during the course of infection. Then, using a 

selection of significantly up-regulated genes during infection in each tissue, GO networks 

were constructed to identify the central GO node and the key genes associated with the 

central GO node. In the Salmonella enteritidis case study, we first compared transcriptome 

GO enrichment levels between highly pathogenic and low pathogenic strains to highlight GO 

functional groups correlated with pathogenicity. We then constructed the GO network using 

the genes which were significantly more highly expressed in pathogenic strains 

  

Case Study 1:   Changes in the transcriptome GO during Streptococcus pneumonia from 

nose lungs  blood  brain 

 

After downloading microarray data [3] from the NCBI GEO database for Streptococcus 

pneumonia , we selected data of strain WCH43 after 72 hours infection across 4 different 

tissues. We estimated the geometric means of the fold-change for each gene in the genome. 
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The result was 3 genome-wide lists (Nose vs. Lung, Lung vs. Blood and Blood vs. Brain) 

each containing 2236 genes along with their mean fold-changes (Additional File 1, 2 and 3). 

These lists were submitted to the web server.  

First, we used the pie chart visualisation to determine GO term proportions (protein 

enrichment distribution percentage) at different levels of the GO tree. GO term proportions of 

some GO groups didn’t change across multiple tissues. Hence, the GO term proportions of 3 

genome-wide lists were mutually compared by Kolmogorov–Smirnov test and the calculated 

p-values are presented in Table 1. 

 

 Table 1:   

 

Table 1 suggests that Cellular Components GO enrichment proportions did not change during 

the course of infection at all. Interestingly, when bacteria moved from blood to its final 

destination (brain), the overall proportions of Biological Process GO terms did not change. 

 

We then produced a tabular report of the last level (most detailed) of the GO tree. From a 

large list of GO terms, this report highlighted GO terms that were consistently up/down 

regulated. Surprisingly, in this study only identified a few such GO terms (Figure 2). GO 

terms with upward or downward arrows had consistent up/down expression patterns. The 

continuously up regulated GOs were “barrier septum assembly” and tryptophan synthase 

activity which are involved in propagation of Streptococcus pneumonia. This result 

confirmed a known, experimentally verified mechanism in this organism [3]. The list of 

genes in each GO is also presented to assist with GO based gene selection. GOs such as 

“histidine biosynthesis process” and “amidase activity” were down regulated. This report also 

highlights GO terms with more than 4 fold average fold-change. 

 

Figure 2:  

 

The GO regulatory network during Streptococcus pneumonia infection from nose 

lungs  blood  brain 

The GO network during movement of Streptococcus pneumonia from nose to lung is 

presented in Figure 3A. Upon inspection, regulation of transcription (Gene Ontology ID: 

6355) is a central node in the network. SP_0798 is the only component of this GO network.  

Interestingly, the GO group (regulation of transcription) governed by SP_0798 plays a key 
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role in breaching the brain-blood barrier and infection of brain tissue. We previously 

demonstrated that the SP_0798 transcription factor positively regulates the Sp-0927 

transcription factor and activates a sub network through interaction with proteins such as 

SP_0797, SP_0084, SP_2083, SP_1226, and SP_0799 [3]. The SP_0798 sub network is one 

of the key sub networks  conferring high virulence to Streptococcus pneumonia [3].  

When comparing lung-nose niche expression patterns, the SP_0798 governed GO has 

interactions with \ GOs such as: “phosphorylation”, “fatty acid biosynthesis process”, 

“establishment of competence for transformation” and “oxidation-reduction process”. The 

“establishment of competence for transformation” GO (SP_0798 gene) can play a significant 

role in the translocation of Streptococcus pneumonia from nose to lung.  

Figure 3C showed that the SP_0798 governed GO (Gene Ontology ID: 6355) had a 

considerable number of regulatory effects in the brain-blood comparison. The brain is the 

final destination of Streptococcus pneumonia WCH43 where it causes meningitis. SP_0798 

activated different GO groups such as “metabolic process”, “establishment of competence for 

transformation”, “phosphorylation” and “antibiotic transport” while reaching and infecting 

the brain. Activation of “antibiotic transport process” helps Streptococcus pneumonia resist 

antibiotics. 

It was previously [3] known that in meningitis-inducing strains of Streptococcus pneumonia 

such as WCH43, relative global gene expression significantly decreased in blood compared 

to the previous niche (lung) or the subsequent niche (brain). Interestingly, the GO network 

shown in Figure 3B helps illustrate the underlying mechanism of this global down regulation 

and shows that Gene Ontology ID 45892 (“negative regulation of transcription, DNA-

dependent”) governed by SP_1713 transcriptional repressor NrdR is central to this relative 

decrease in expression. Gene Ontology ID 45892 has interactions with “CTP/GTP 

biosynthesis process”, “barrier septum assembly” (involved in propagation), “cytokinesis 

binary fission”, and “tryptophan biosynthesis process” (Figure 3B). The SP_1664 protein is 

involved in barrier septum assembly. SP_1813, SP_1814 and SP_1815 proteins participate in 

tryptophan biosynthesis process. 

Discovery of the Gene Ontology ID 45892 (“negative regulation of transcription, DNA-

dependent”) governed by SP_1713 and its considerable influence in suppression of genes 

opens a new avenue for the treatment of blood stream-based diseases such as Bacteremia and 

Sepsis. 

 

Figure 3:  
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Case Study 2: Comparison of whole transcriptome based GO enrichment between low 

and highly pathogenic Salmonella enteritidis 

 

We collected RNA-Seq data for 6 strains of low and high pathogenic Salmonella enteritidis 

[8] including 3 low pathogenic strains and 3 highly pathogenic ones. We averaged the RPKM 

counts for each gene of the 3 low pathogenic strains and created a single list of genome 

expression levels. We did the same for the 3 highly pathogenic strains (Additional File 4 and 

5). After submission of both gene lists (4402 genes for each one) to the web server, we used 

the pie chart to visualise the GO term proportions and navigate the GO term tree. The 

comparison revealed very similar GO proportions at nearly all levels of the GO tree. This 

encouraged us to perform hypothesis tests to compare the GO enrichment proportions 

between low and highly pathogenic strains. Table 2 shows the result of this comparison for 

Biological Process, Molecular Function, and Cellular Components.  

 

Table 2:  

 

Based on a 0.05 level of significance for our tests, Table 2 indicates that there is probably no 

significant difference in GO protein enrichment proportions between low and highly 

pathogenic strains of Salmonella enteritidis bacteria. This is a significant finding that 

demonstrates that the change from low pathogenic strain to highly pathogenic strain is not 

associated with a global shift in GO terms. However, as seen below, a shift in a subset of GO 

terms can be associated with higher pathogenicity.  

 

GO regulatory network changes between high and low pathogenic strains of Salmonella 

enteritidis  

 

A list of the 18  most differentially expressed genes were submitted to the Web server 

(Additional File 6), including fljB, SEN1084, motA, flgK, cheA, invF, invA, invG, , fliD, 

prgH, osmY, , ipB, sipC, yeaG, sipA, dps, yjbJ, and bfr. The resulting GO network is 

presented in Figure 4. 

Interestingly, the GO term “signal transduction by phosphorylation” (Gene Ontology ID: 

23014) is central in the overrepresented GO expression network of highly pathogenic 
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Salmonella enteritidis strains. The protein kinase encoded by cheA is the sole component of 

“signal transduction by phosphorylation process”. This shows that higher pathogenicity in 

Salmonella enteritidis appears to be associated with increased signal transduction and 

phosphorylation. We speculate that up regulating GO “Signal transduction by 

phosphorylation” may allow Salmonella enteritidis  to more rapidly sense environmental 

changes and activate more genes through stronger phosphorylation activity. “Response to 

stress”, “iron ion transport” (bfr gene), “pathogenesis”, “transcription DNA dependent”, 

“protein phosphorylation” (yeaG gene) and “chemotaxis” are the other GO terms which are 

differentially expressed in highly pathogenic strain.  

 

Figure 4:  

 

Commonality between GO Regulatory Networks of Case Studies  

 

Selection of Streptococcus pneumonia during the course of infection in nose, blood, and brain 

of host allowed us to apply whole genome based GO enrichment and GO in study of tissue-

based pathogenesis and breaking host barriers by pathogen. In addition, comparative study of 

GO enrichment and GO network between highly pathogenic and low pathogenic strains of 

Salmonella provided to investigate mechanisms involved in generation of highly pathogenic 

strains using GO concept. 

Go network analysis in Streptococcus pneumonia and Salmonella enteritidis resulted in 

detection of new biological results and genes that were not reported in original works. 

Furthermore, central roles of GO classes of “regulation of transcription” and “signal 

transduction by phosphorylation” governed by SP_0798 and cheA in induction of 

pathogenesis were unravelled. Phosphorylation, performed by kinases, is one of the main 

pathways of rapid signal response and gene activation. Interestingly, even in plants, protein 

kinases are the central compartment of inducing high stress resistance and evolution [14]. 

cheA  (chemotaxis protein CheA) is a sensor histidine kinase and a member of two-

component system. cheA is majorly involves in “Environmental Information Processing” and 

“Signal transduction” (KEGG database [15]). According to Pfam database [16], cheA 

contains the following domains: PF01584 (CheW-like domain), PF01627 (Hpt domain), 

PF02518 ( Histidine kinase-, DNA gyrase B-, and HSP90-like ATPase), PF02895  (Signal 
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transducing histidine kinase, homodimeric domain), PF09078 (CheY binding), and PF13589 

(Histidine kinase-, DNA gyrase B-, and HSP90-like ATPase). 

SP_0798 is a DNA-binding response regulator CiaR and a member of two-component 

system. According to Pfam database [16], SP_0978 contains PF0072 (response regulator 

receiver domain) and PF00486 (Transcriptional regulatory protein, C terminal). Similar to 

cheA, SP_0798  is also involved in “Environmental Information Processing”, “Signal 

transduction” and two-component system (KEGG database [15]). It can be concluded that 

SP_0798 and cheA are ortholog to each other. 

Based on the above discussion and the observed similar observed mechanism between 

Streptococcus pneumonia and Salmonella enteritidis, it can be suggested that “Environmental 

Information Processing” which carries ON by “Signal transduction” and two-component 

system pathways are methods of choice by bacterial pathogens in increasing pathogenicity, 

host barrier breaking and generation of new strains. In fact, successful pathogens such as 

Streptococcus pneumonia and Salmonella enteritidis are developing expert systems to 

recognise faster external environment and also react more promptly by a more efficient signal 

transduction system. Two-component system is a head-tail pathway which one member sits 

outside the cell and other member inside the cell and informs the bacteria about 

environmental signals/changes. Rapid recognition of environmental alterations such as 

antibiotic stress and nutrient change allows bacteria to act more rapidly and increase the 

chance of surviving. Two-component system has a confirmed role in bacterial virulence [17, 

18]. 

On the other hand, SP_1713 is the major player of negative regulation in blood infection of 

Streptococcus pneumonia. The fact that SP_1713 has the ability to regulate a large number of 

other gene ontology terms and dramatically decreases the global transcriptome expression 

levels in blood, offers a new possibility for treatment of blood-based infections such as 

Bacteremia and Sepsis. This example shows how GO network construction can be employed 

for discovery of key GO groups and GO based gene selection.  

 

 

Discussion 

 

GO analysis provides a new avenue for a deeper understanding of gene expression and 

function, which can be exploited in the context of quality-based gene selection strategies [2, 
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3].  While other GO web servers [6, 19] support gene annotation in model eukaryotes via user 

submitted gene lists that must match the single source of annotation used by the server, our 

web server supports all sequenced prokaryotes and viruses and automatically recognizes gene 

names from all annotation sources.   

In contrast to other web servers, our web server provides interactive visual navigation of the 

hierarchical tree structure of GO groups weighted according to gene expression values at all 

levels. Furthermore, our server provides dynamic visual reports (using AJAX technology) 

such as pie charts (to visualize GO group proportions) and bar charts (to compare GO term 

enrichments versus reference genome based on hyper-geometric distribution), whereas other 

web servers present this information in text format or rely on visualization capacity provided 

by other websites [20].   

The most significant analytical advantage provided by our web server is the ability to 

compare GO terms across multiple gene samples (or whole genomes) from multiple 

biological conditions. At present other web servers [6, 19] can only compare one sample 

against a reference genome. Comparative GO analysis is particularly important as a means to 

identify the underlying biological pathways recruited under different biological conditions. 

This is an essential method if one wishes to identify important genes for perturbation 

experiments.  

Unlike other GO web servers that compare one GO term compared to a reference genome at a 

time (using the Fisher Exact test), our web server can compare all the GO term enrichments 

from two or more samples (or whole genomes) simultaneously by using robust non-

parametric statistical tests. This enables detection any shift in GO distribution as a function of 

experimental conditions.  

Finally, our comparative table report takes into account protein enrichment to detect GO 

terms with special enrichment patterns or with specific enrichment fold-change across 

multiple samples. This helps identify key GO terms and their associated genes because their 

expression prevalence.  At present, this is a unique analytical approach that is not found 

elsewhere.   

Global transcriptome based GO analysis was achieved by integrating gene expression levels 

with GO classifications. This allowed us to compare GO enrichment that better reflected the 

biological reality of the experiments across multiple samples by taking into account the 

abundance of gene products.  This type of comparison was not previously possible, most 

likely because the prevalence of eukaryotic GO databases and web servers [6] would not have 

benefited from such an analysis. Current GO web applications are mostly developed in 
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eukaryotic genomes [4-6] where protein abundance levels are poorly correlated with gene 

expression levels, making the need for transcript abundance weighting less relevant.   

 In this report we have presented a method to build GO regulatory networks using public 

GeneOntology data [9].  GO regulatory networks from differentially expressed genes can 

reveal underlying biological pathways [21]. In particular the topology of such networks can 

highlight highly connected/central GO terms and their associated genes, supporting the 

discovery of candidate genes. 

Furthermore, by looking at networks from different bacterial species we can elucidate 

common biological pathways. Even though we have only implemented GO regulatory 

networks for bacteria, this type of network could be very effective for eukaryotes as well, 

particularly for proteomics data. To our knowledge, no current GO web server provides this 

capability. 

We have also demonstrated how to combine a GO regulatory network with gene expression 

data. The resultant network can be used to study regulatory effects of genes and GOs on each 

other. For example, by comparing and overlapping multiple GO regulatory networks for the 

same genes across multiple biological conditions, we can detect areas of the network that 

confirm or contradict expected regulatory relationships. This can be used as a mean to 

support or question the validity of original transcriptomic data or indicate the existence of any 

unknown environmental effects in the experiment.  Moreover, by replacing the GO regulatory 

network’s nodes with their associated genes one can generate a GO-based gene regulatory 

network (GRN).   

Finally, combining GO-based gene regulatory networks with other types of gene regulatory 

networks [21] (those that are reverse engineered from transcriptome data) such as co-

expression networks [22, 23] can lead to the discovery of unknown biological entities or 

biological mechanisms, particularly where such results contradict one another.    

Together, the global transcriptomics based GO enrichment and GO regulatory network, 

developed in the present investigation and implemented in Comparative GO Web application 

[2, 7] can significantly increase the knowledge of bacterial regulatory mechanisms of 

pathogenesis as well as functional genomics arrangements which result in emerging new 

highly pathogenic strains. 

 

Conclusion 
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We applied whole transcriptome data and gene expression levels to GO classification analysis 

leading to new meaningful biological reports. We have also developed a method to 

dynamically construct GO regulatory networks for any given sample. Finally, we have 

demonstrated the efficiency of our developed methods and tools through case studies on two 

types of bacteria. The results of these analyses either identified new candidate genes and GO 

terms that were not reported in the original work or confirmed the functionality of known 

genes. 
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Figures and Legends 

Figure 1: Schematic presentation of a simple GO regulatory network. Grey nodes represent GO terms related 
to the sample and the relationships between GO terms are depicted as green arrows. Parental GO nodes 2 and 3 
have a relationship that can be extended to children GO nodes 4, 5, 6 and node 7, depicted as green dotted 
arrows. 

Figure 2: Amended “Table report” which lists consistently up and down regulated GO terms and also GO 
terms with more than 4 times change in protein enrichment. 

Figure 3: GO regulatory network constructed based on differentially expressed Streptococcus pneumonia 
genes in (A) Lung versus Nose (B) Blood versus Lung (C) Brain versus Blood. 

Figure 4: GO regulatory network based on 18 genes with significant differential expression levels in highly 

pathogenic versus low pathogenic Salmonella enteritidis strains. 

 

Tables and Captions 

Table 1: Comparison of genome-wide GO enrichment levels by Kolmogorov–Smirnov test during the infection 

course of Streptococcus pneumonia from nose lungs  blood brain  

 

 Biological 

Process 

Molecular 

Function 

Cellular 

Components 

(Lung vs. Nose ~ Blood vs. 

Lung) 

P=0.01 P=0.01 Not significant 

(Blood vs. Lung ~ Brain vs. 

Blood) 

Not 

Significant 

P=0.01 Not significant 

 

 

Table 2: Comparison of genome wide GO enrichment levels of low pathogenic strains of Salmonella enteritidis 

versus high pathogenic strains by Kolmogorov–Smirnov test 

 Biological Process Molecular Function Cellular Components 

Low Pathogenic 

strains 

 Vs. 

 High Pathogenic 

strains 

P value =0.86 P value = 0.34 0.7590978 
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Additional Files 

File Name File 

Format 

Title of Data Description of Data 

Additional_File1.xlsx xlsx transcriptome 
streptococcus pneumonia Whole transcriptome 

Relative Expression Levels Lung vs. Nose (2 Colour 

Microarray) 

Additional_File2.xlsx xlsx transcriptome 
streptococcus pneumonia Whole transcriptome 

Relative Expression Levels Blood vs. Lung (2 Colour 

Microarray) 

Additional_File3.xlsx xlsx transcriptome 
streptococcus pneumonia Whole transcriptome 

Relative Expression Brain vs. Blood (2 Colour 

Microarray) 

Additional_File4.xlsx xlsx transcriptome 
Salmonella enteritidis global transcriptome high 

pathogenic (average of 3 strains) RPKM Counts 

Additional_File5.xlsx xlsx transcriptome Salmonella enteritidis global transcriptome low 

pathogenic (average of 3 strains) RPKM Counts 

Additional_File6.xlsx xlsx samples List of Differentially Expressed Genes in Case Study 1 

and Study 2 for GO Network Analysis 
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