bioRxiv preprint doi: https://doi.org/10.1101/005579; this version posted May 27, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Song et al.

SOFTWARE

Lighter: fast and memory-efficient error
correction without counting

Li Song !, Liliana Florea®! and Ben Langmead®2”*

*Correspondence:
langmea@cs.jhu.edu Abstract

1
Department of Computer . . - . . .
Science, Johns Hopkins University, Lighter is a fast and memory-efficient tool for correcting sequencing errors in

21218, Baltimore, USA high-throughput sequencing datasets. Lighter avoids counting k-mers in the

Full list of author information is sequencing reads. Instead, it uses a pair of Bloom filters, one populated with a
available at the end of the article sample of the input k-mers and the other populated with k-mers likely to be
correct based on a simple test. As long as the sampling fraction is adjusted in
inverse proportion to the depth of sequencing, the Bloom filter size can be held
constant while maintaining near-constant accuracy. Lighter is easily applied to
very large sequencing datasets. It is parallelized, uses no secondary storage, and is
both faster and more memory-efficient than competing approaches while
achieving comparable accuracy. Lighter is free open source software available
from https://github.com/mourisl/Lighter/.

Keywords: Probablistic method; Low space complexity; Sequence error
correction

Introduction

The cost and throughput of DNA sequencing have improved rapidly in the past sev-
eral years [1], with recent advances reducing the cost of sequencing a single human
genome at 30-fold coverage to around $1,000 [2]. With these advances has come an
explosion of new software for analyzing large sequencing datasets. Sequencing error
correction is a basic need for many of these tools. Removing errors at the outset of
an analysis can improve accuracy of downstream tools such as variant callers [3].
Removing errors can also improve the speed and memory-efficiency of downstream
tools, particularly for de novo assemblers based on De Bruijn graphs [4, 5].

To be useful in practice, error correction software must make economical use of
time and memory even when input datasets are large (many billions of reads) and
when the genome under study is also large (billions of nucleotides). Several methods
have been proposed, covering a wide tradeoff space between accuracy, speed and
memory- and storage-efficiency. SHREC [6] and HiITEC [7] build a suffix index of
the input reads and locate errors by finding instances where a substring is followed
by a character less often than expected. Coral [8] and ECHO [9] find overlaps
among reads and use the resulting multiple alignments to detect and correct errors.
Reptile [10] and Hammer [11] detect and correct errors by examining each k-mer’s
neighborhood in the dataset’s k-mer Hamming graph.

The most practical and widely used error correction methods descend from the
spectral alignment approach introduced in the earliest De Bruijn graph based assem-
blers [4, 5]. These methods count the number of times each k-mer occurs (its multi-
plicity) in the input reads, then apply a threshold such that reads with multiplicity

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/005579; this version posted May 27, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Song et al. Page 2 of 16

exceeding the threshold are considered solid. These k-mers are unlikely to have
been altered by sequencing errors. k-mers with low multiplicity (weak k-mers) are
systematically edited into high-multiplicity k-mers using a dynamic-programming
solution to the spectral alignment problem [4, 5] or, more often, a fast heuristic
approximation. Quake [3], the most widely used error correction tool, uses a hash-
based k-mer counter called Jellyfish [12] to determine which k-mers are correct.
CUDA-EC [13] was the first to use a Bloom filter as a space-efficient alternative to
hash tables for counting k-mers and for representing the set of solid k-mers. More
recent tools such as Musket [14] and BLESS [15] use a combination of Bloom filters
and hash tables to count k-mers or to represent the set of solid k-mers.

Lighter (LIGHTweight ERror corrector) is also in the family of spectral alignment
methods, but differs from previous approaches in that it avoids counting k-mers.
Rather than count k-mers, Lighter samples k-mers randomly, storing the sample in
a Bloom filter. Lighter then uses a simple test applied to each position of each read
to compile a set of solid k-mers, stored in a second Bloom filter. These two Bloom
filters are the only sizable data structures used by Lighter.

A crucial advantage is that Lighter’s parameters can be set such that memory
footprint and accuracy are near-constant with respect to depth of sequencing. That
is, no matter how deep the coverage, Lighter can allocate the same sized Bloom
filters and achieve nearly the same (a) Bloom filter occupancy, (b) Bloom filter
false positive rate, and (c) error correction accuracy. Lighter does this without
using any disk space or other secondary memory. This is in contrast to BLESS and
Quake/Jellyfish, which use secondary memory to store some or all of the k-mer
counts.

Lighter’s accuracy is comparable to competing tools. We show this both in simu-
lation experiments where false positives and false negatives can be measured, and
in real-world experiments where read alignment scores and assembly statistics can
be measured. Lighter is also very simple and fast, faster than all other tools tried
in our experiments. These advantages make Lighter quite practical compared to
previous counting-based approaches, all of which require an amount of memory or
secondary storage that increases with depth of coverage.

Method

Lighter’s workflow is illustrated in Figure 1. Lighter makes three passes over the
input reads. The first pass obtains a sample of the k-mers present in the input
reads, storing the sample in Bloom filter A. The second pass uses Bloom filter A to
identify solid k-mers, which it stores in Bloom filter B. The third pass uses Bloom
filter B and a greedy procedure to correct errors in the input reads.

Bloom filter

A Bloom filter [16] is a compact probabilistic data structure representing a set. It
consists of an array of m bits, each initialized to 0. To add an item o, h independent
hash functions Hy(0), H1(0), ..., Hn—1(0) are calculated. Each maps o to an integer
in [0,m) and the corresponding h array bits are set to 1. To test if item ¢ is a
member, the same hash functions are applied to ¢. ¢ is a member if all corresponding
bits are set to 1. A false positive occurs when the corresponding bits are set to 1

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/005579; this version posted May 27, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Song et al. Page 3 of 16

“by coincidence,” that is, because of items besides ¢ that were added previously.
Assuming the hash functions map items to bit array elements with equal probability,
the Bloom filter’s false positive rate is approximately (1 — e~)", where n is the
number of distinct items added, which we call the cardinality. Given n, which is
usually determined by the dataset, m and h can be adjusted to achieve a desired
false positive rate. Lower false positive rates can come at a cost, since greater
values of m require more memory and greater values of k require more hash function
calculations. Many variations on Bloom filters have been proposed that additionally
permit compression of the filter, storage of count data, representation of maps in
addition to sets, etc [17]. Bloom filters and variants thereon have been applied in
various bioinformatics settings, including assembly [18], compression [19], k-mer
counting [20], and error correction [13].

By way of contrast, another way to represent a set is with a hash table. Hash
tables do not yield false positives, but Bloom filters are far smaller. Whereas a
Bloom filter is an array of bits, a hash table is an array of buckets, each large
enough to store a pointer, key, or both. If chaining is used, lists associated with
buckets incur additional overhead. While the Bloom filter’s small size comes at the
expense of false positives, these can be tolerated in many settings including in error
correction.

Lighter’s efficiency depends on the efficiency of the Bloom filter implementation.
Specifically Lighter uses a “blocked” Bloom filter to decrease overall number of
cache misses and improve efficiency. This comes at the expense of needing a slightly
larger filter to achieve a comparable false positive rate to a non-blocked filter, as
discussed in Supplementary Note 1.

In our method, the items to be stored in the Bloom filters are k-mers. Because
we would like to treat genome strands equivalently for counting purposes, we will
always canonicalize a k-mer before adding it to, or using it to query a Bloom filter.
A canonicalized k-mer is either the k-mer itself or its reverse complement, whichever
is lexicographically prior.

Sequencing model
We use a simple model to describe the sequencing process and Lighter’s subsam-
pling. The model resembles one suggested previously [21]. Let K be the total number
of k-mers obtained by the sequencer. We say a k-mer is incorrect if its sequence has
been altered by one or more sequencing errors. Otherwise it is correct. Let € be the
fraction of k-mers that are incorrect. We assume € does not vary with the depth of
sequencing. The sequencer obtains correct k-mers by sampling independently and
uniformly from k-mers in the genome. Let the number of k-mers in the genome be
G, and assume all are distinct. If . is a random variable for the multiplicity of a
correct k-mer in the input, . is binomial with success probability 1/G and number
of trials (1 — €)K: k. ~ Binom((1 — €)K,1/G). Since the number of trials is large
and the success probability is small, the binomial is well approximated by a Poisson:
ke ~ Pois(K(1 —€)/G)

A sequenced k-mer survives subsampling with probability a. If k., is a random
variable for the number of times a correct k-mer appears in the subsample, &/, ~
Binom((1 — €)K, a/G), which is approximately Pois(aK (1 —¢€)/G).

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/005579; this version posted May 27, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Song et al. Page 4 of 16

We model incorrect k-mers similarly. The sequencer obtains incorrect k-mers
by sampling independently and uniformly from k-mers “close to” a k-mer in the
genome. We might define these as the set of all k-mers with low but non-zero
Hamming distance from some genomic k-mer. If k. is a random variable for the
multiplicity of an incorrect k-mer, k. is binomial with success probability 1/H and
number of trials eK: k. ~ Binom(eK,1/H), which is approximately Pois(Ke/H).
It is safe to assume H > G. K, ~ Pois(aKe/H) is a random variable for the
number of times an incorrect k-mer appears in the subsample.

Others have noted that, given a dataset with deep and uniform coverage, incor-
rect k-mers occur rarely while correct k-mers occur many times, proportionally to

coverage [4, 5].

Stages of the method

First pass. 1In the first pass, Lighter examines each k-mer of each read. With
probability 1 — «, the k-mer is ignored. k-mers containing ambiguous nucleotides
(e.g. “N”) are also ignored. Otherwise, the k-mer is canonicalized and added to
Bloom filter A.

Say a distinct k-mer a occurs a total of N, times in the dataset. If none of the N,
occurrences survive subsampling, the k-mer is never added to A and A’s cardinality
is reduced by one. Thus, reducing « can in turn reduce A’s cardinality. Because
correct k-mers are more numerous, incorrect k-mers tend to be discarded from A
before correct k-mers as o decreases.

The subsampling fraction « is set by the user. We suggest adjusting « in inverse
proportion to depth of sequencing, for reasons discussed below. For experiments
described here, we set o = 0.05 when the average coverage is 70-fold. That is, we
set a to 0.057—65J where C' is average coverage.

Second pass. A read position is overlapped by up to = k-mers, 1 < z < k, where x
depends on how close the position is to either end of the read. For a position altered
by sequencing error, the overlapping k-mers are all incorrect and are unlikely to
appear in A. We apply a threshold such that if the number of k-mers overlapping
the position and appearing in Bloom filter A is less than the threshold, we say
the position is untrusted. Otherwise we say it is trusted. Each instance where the
threshold is applied is called a test case. When one or more of the x k-mers involved
in two test cases differ, we say the test cases are distinct.

Let P*(«) be the probability an incorrect k-mer appears in A, taking the Bloom
filter’s false positive rate into account. If random variable B, , represents the num-
ber of k-mers appearing in A for an untrusted position overlapped by x k-mers,
Be , ~ Binom(z, P*(«)). We define thresholds y,, for each x in [1,k]. y, is the
minimum integer such that p(Be ; <y, — 1) > 0.995.

Ignoring false positives for now, we model the probability of a sequenced a k-mer
having been added to A as P(a) = 1—(1—a)/(®). We define f(a) = maz{2,0.1/a}.
That is, we assume the multiplicity of a weak k-mer is at most f(«), which will
often be a conservative assumption, especially for small a. It is also possible to
define P(«) in terms of random variables k. and k., but we avoid this here for
simplicity.

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/005579; this version posted May 27, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Song et al. Page 5 of 16

A property of this threshold is that when o is small, P(a/2) = 1—(1—a/2)% 1%/« ~
1—(1—a)%Y* = P(a), where z is a constant greater than 1 and we use the fact
that (1 —a/2)* = 1—a.

For P*(«), we additionally take A’s false positive rate into account. If the false
positive rate is 8, then P*(«) = P(«) + 8 — SP(a).

Once all positions in a read have been marked trusted or untrusted using the
threshold, we find all instances where k trusted positions appear consecutively. The
k-mer made up by those positions is added to Bloom filter B.

Third pass. In the third pass, Lighter applies a simple, greedy error correction
procedure similar to that used in BLESS [15]. A read r of length |r|, contains
|r|—k+1 k-mers. k; denotes the k-mer starting at read position i, 1 < ¢ < |r|—k+1.
We first identify the longest stretch of consecutive k-mers in the read that appear
in Bloom filter B. Let k;, and k. be the k-mers at the left and right extremes of
the stretch. If e < |r| — k 4+ 1, we examine successive k-mers to the right starting
at k. + 1. For a k-mer k; that does not appear in B, we assume the nucleotide at
offset i + k — 1 is incorrect. We consider all possible ways of substituting for the
incorrect nucleotide. For each substitution, we count how many consecutive k-mers
starting with k; appear in Bloom filter B after making the substitution. We pick
the substitution that creates the longest stretch of consecutive k-mers in B. The
procedure is illustrated in Figure 2.

If more than one candidate substitution is equally good (i.e. results in the same
number of consecutive k-mers from B), we call position ¢ + & — 1 ambiguous and
make no attempt to correct it. The procedure then resumes starting at k;4, or the
procedure ends if the read is too short to contain k-mer k; .

When errors are located near to end of a read, the stretches of consecutive k-
mers used to prioritize substitutions are short. E.g. if the error is at the very last
position of the read, we must choose a substation on the basis of just one k-mer: the
rightmost k-mer. This very often results in a tie, and no correction. Lighter avoid
many of these ties by considering k-mers that extend beyond the end of the read,
as discussed in Supplementary Note 2.

Scaling with depth of sequencing

Lighter’s accuracy can be made near-constant as the depth of sequencing K in-
creases and its memory footprint is held constant. This is accomplished by holding
aK constant, i.e., by adjusting « in inverse proportion to K. This is illustrated in
Tables 1 and 2. We also argue this more formally in Supplementary Note 3.

Quality score

A low base quality value at a certain position can force Lighter to treat that position
as untrusted even if the overlapping k-mers indicate it is trusted. First, Lighter scans
the first 1 million reads in the input, recording the quality value at the last position
in each read. Lighter then chooses the 5th-percentile quality value; that is, the value
such that 5% of the values are less than or equal to it say ¢;. Use the same idea,
we get another Sth-percentile quality, say to value for the first 1 million reads’ first
base. When Lighter decides whether a position is trusted or not, if its quality score
is less or equal to min{t;,ta — 1}, then call it untrusted regardless of how many of
the overlapping k-mers appear in Bloom filter A.

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/005579; this version posted May 27, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Song et al. Page 6 of 16

Parallelization

As shown in Figure 1, Lighter works in three passes: (1) populating Bloom filter A
with a k-mer subsample, (2) applying the per-position test and populating Bloom
filter B with likely-correct k-mers, and (3) error correction. For pass 1, because « is
usually small, most time is spent scanning the input reads. Consequently, we found
little benefit to parallelizing pass 1. Pass 2 is parallelized by using concurrent threads
handle subsets of input reads. Because Bloom filter A is only being queried (not
added to), we need not synchronize accesses to A. Accesses to B are synchronized
so that additions of k-mers to B by different threads do not interfere. Since it
is typical for the same correct k-mer to be added repeatedly to B, we can save
synchronization effort by first checking whether the k-mer is already present and
adding it (synchronously) only if necessary. Pass 3 is parallelized by using concurrent
threads to handle subsets of the reads; since Bloom filter B is only being queried,

we need not synchronize accesses.

Evaluation

Simulated data set

Accuracy on simulated data. We compared Lighter v1.0.0’s performance with
Quake v0.3[3], Musket v1.1[14] and BLESS v0pl2 [15]. We generated collec-
tion of reads simulated from the reference genome for the K12 strain of E. coli
(NC_000913.2) using Mason v0.1.2 [22]. We let k-mer size k = 17 for all programs
unless otherwise noted.

We simulated six distinct datasets with 101bp single-end reads, varying average
coverage (35x, 75x 140x) and average error rate (1% and 3%). For a given error rate
e we specify Mason parameters —-qmb e/2 -qme 3e, so that the average error rate is
e but errors are more common toward the 3’ end, as in real datasets.

We then ran all three tools on all six datasets, with results presented in Ta-
ble 1. In these comparisons, a true positive (TP) is an instance where an error is
successfully corrected, i.e. with the correct base substituted. A false positive (FP)
is an instance where a spurious substitution is made at an error-free position. A
false negative (FN) is an instance where we either fail to detect an error or an
incorrect base is substituted. As done in previous studies [14], we report the fol-
lowing summaries: recall = TP/(TP+NP), precision = TP/(TP+FP), F-score =
2xrecall x precision/(recall+precision) and gain = (TP-FP)/(TP+FN).

Unlike the other tools, Quake both trims the untrusted tails of the reads, and
discards reads that it cannot correct. For a more fair comparison, Quake’s result
will contain the non-correctable reads through out this paper. And for the trimmed
reads, the evaluation is done only on the reported portion. This leads to very high
precision relative to other tools, though at the expense of discarded data. Of the
remaining tools, Lighter and Musket achieve the highest precision, with Musket
achieving slightly higher precision. Lighter achieves the highest recall, F-score and
gain in all experiments.

Scaling with depth of simulated sequencing. We also used Mason to generate a
series of datasets with 1% error, similar to those used in Table 1, but for 10x, 20x,
35x, 7T0x, 140x and 280x average coverage. We ran Lighter on each and measured

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/005579; this version posted May 27, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Song et al. Page 7 of 16

final occupancies (fraction of bits set) for Bloom filters A and B. If our assumptions
and scaling arguments are accurate, we expect the final occupancies of the Bloom
filters to remain approximately constant for relatively high levels of coverage. As
seen in Table 2, this is indeed the case. Note that when coverage is quite low (10x),
the occupancy of table B is significantly lower, since distributions of multiplicities
of correct and incorrect k-mers become too similar to distinguish clearly.

Cardinality of Bloom filter B. We also measured the number of correct k-mers
added to table B. We used the Mason dataset with 70x coverage and 1% error rate.
The E. coli genome has 4,553,699 distinct k-mers, and 4,553,653 (99.999%) of them
are in table B.

We conducted a similar experiment with Mason configured to simulate reads from
a diploid version of the E. coli genome. Specifically, Mason was configured to intro-
duce heterozygous SNPs at 0.1% of the reference positions. Mason then sampled the
same numbers of reads from both haplotypes, making a dataset with 70x average
coverage. Of the 159,098 simulated k-mers overlapping a position with a heterozy-
gous SNP, table B held 158,723 (99.764%) of them at the end of the run.

Effect of varying a. In a series of experiments, we measured how different settings
for the subsampling fraction « affected Lighter’s accuracy (recall, precision, F-score
and gain) as well as the occupancies of Bloom filters A and B. We three datasets
simulated by Mason with 35x, 70x and 140x coverage. The simulated error rate
was 1% in all cases.

As shown in Figures 3 and 4, only a fraction of the correct k-mers are added to
A when « is very small, causing many correct read positions to fail the threshold
test. Lighter attempts to “correct” these error-free positions, decreasing accuracy.
This also has the effect of reducing the number of consecutive stretches of &k trusted
positions in the reads, leading to a smaller fraction of correct k-mers added to B,
and ultimately to lower accuracy. When a grows too large, the y, thresholds grow
to be greater than k, causing all positions to fail the threshold test, as seen in Figure
4’s right-hand side. This also leads to a dramatic drop in accuracy as seen in Figure
3. Between the two extremes, we find a broad range of values for o (from 0.06 to
0.45) that yield high accuracy.

Effect of varying k. A key parameter of Lighter is the k-mer length k. Smaller &k
yields higher probability that a k-mer affected by a sequencing error also appears
elsewhere in the genome. For larger k, the fraction of k-mers that are correct de-
creases, which could lead to fewer correct k-mer in Bloom filter A. We measured
how different settings for k affect accuracy using the simulated data with 35x cov-
erage and 1% error rate. Results are shown in Figure 5. Accuracy is high for k-mer
lengths ranging from about 18 to 30.

Real datasets

E. coli. Next we benchmarked the same error correction tools using a real sequenc-
ing dataset, ERR022075. This is a deep DNA sequencing dataset of the the K-12
strain of the E. coli genome. We again used Quake, Musket, BLESS and Lighter to

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/005579; this version posted May 27, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Song et al. Page 8 of 16

correct errors in the dataset. To obtain a level of coverage more reflective of other
projects, we randomly subsampled the reads in the dataset to obtain roughly 75x
coverage (3.5M reads) of the E. coli K-12 reference genome. The reads are 100
x 102 bp paired-end reads. Because BLESS cannot handle paired-end reads where
the ends have different lengths, we truncated the last 2 bases from the 102 bp end
before running our experiments.

These data are not simulated, so we cannot measure accuracy directly. But we can
measure it indirectly, as other have done [15], by measuring read alignment statistics
before and after error correction. We use Bowtie2 [23] with default parameters to
align the original reads and the corrected reads to the E. coli K-12 reference genome.
We then count the total number of the matched positions in all the alignments.
Results are shown in Table 3. Lighter yields the greatest improvement in number of
reads aligned and in average matched positions per aligned reads. As before, Quake
is hard to compare to the other tools because it trims and discards reads. This leads
to negative values in the “Increase” columns.

Also, for each tool we examined the alignments for the first read in the pair. We
filtered out the alignments with indels or trimmed bases (in the case of Quake),
then calculated the fraction of nucleotides at each alignment position that match
the reference genome. These are plotted in Figure 6. “Position” on the x axis is
the offset from the 5’ end of the read. An unusual feature of this dataset is that
many reads begin with an “N” indicating that the sequencer was unable to make a
base call at that position. Nevertheless, error correction significantly improved the
fraction of nucleotides matching the reference genome, especially at the ends of the
reads.

To further assess accuracy, we assembled the reads before and after error correc-
tion and measured relevant assembly statistics using Quast [24]. We used Velvet
1.2.10[25] to assemble. Velvet is a De Bruijn graph-based assembler designed for
second-generation sequencing reads. A key parameter of Velvet is the De Bruijn
graph’s k-mer length. To avoid being overly influenced by choice of k-mer length,
for each dataset we ran Velvet with several k-mer lengths and reported statistics for
the assembly with the best N50 contig size. For each assembly, we then evaluated
the assembly’s quality using Quast, which was configured to discard contigs shorter
than 100 bp before calculating statistics. Results are shown in Table 4.

N50 is the length such that the total length of the contigs no shorter than the N50
cover at least half the assembled genome. NG5O0 is similar, but with the require-
ment that contigs cover half the reference genome rather than half the assembled
genome. Edits per 100kbps is the number of mismatches or indels per 100kbps when
aligning the contigs to the reference genome. A misassembly is an instance where
two adjacent stretches of bases in the assembly align either to two very distant or to
two highly overlapping stretches of the reference genome. The Quast study defines
these metrics in more detail [24].

Assemblies produced from reads corrected with the four programs are very similar
according to these measures, with Quake and Lighter yielding the longest contigs
and the best genome coverage. Surprisingly, the post-correction assemblies have
more differences at nucleotide level compared to the pre-correction assemblies, per-
haps due to spurious corrections.

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/005579; this version posted May 27, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Song et al. Page 9 of 16

Human Chrl1/

We also evaluated Lighter’s effect on alignment and assembly using a dataset from
the GAGE project [26]. The dataset consists of real 101 x 101 bp paired-end reads
covering human chromosome 14 to 35X average coverage (36.5M reads). We set
the k-mer length to 19 for all error correctors for these experiments.

Error correction’s effect on Bowtie 2 alignment statistics are shown in Table 5.
We used Bowtie 2 with default parameters to align the reads to an index of the
human chromosome 14 sequence of the hgl9 build of the human genome. Programs
had comparable performance, adding between 171,000 - 323,000 aligned reads and
increasing the average number of matching bases per read by 0.61 - 0.70 bases. As
before, Quake produced fewer correct bases per mapped read on average due to
trimming.

We also tested error correction’s effect on de novo assembly using Velvet for
assembly and Quast to evaluate the quality of the assembly. Results are shown in
Table 6. Overall, Lighter’s accuracy on real data is comparable with other error
correction tools, producing the longest contigs and covering the largest portion of

the genome with the smallest number of assembly errors.

Speed, space usage, and scalability

We compared Lighter’s peak memory usage, disk usage, and running time with
Quake, Musket and BLESS. These experiments were run on a computer running Red
Hat Linux 4.1.2-52 with 48 2.1GHz AMD Opteron processors and 512G memory.
The input datasets are the same simulated E. coli datasets with 1% error rate
discussed previously, plus the human chromosome 14 data from Gage.

The measure of space usage is shown in Table 7. BLESS and Lighter achieve con-
stant memory footprint across sequencing depths. While Musket uses less memory
than Quake, it uses more than either BLESS or Lighter. BLESS achieves con-
stant memory footprint across sequencing depths, but consumes more disk space
for datasets with deeper sequencing. Note that BLESS can be configured to trade
off between peak memory footprint and the number of temporary files it creates.
Lighter’s algorithm uses no disk space. Lighter’s only sizable data structures are
the two Bloom filters, which reside in memory.

To assess scalability, we also compared running time for Quake, Musket and
Lighter using different number of threads. For these experiments we used the simu-
lated E. coli data set with 70x coverage and 1% error. Results are shown in Figure 7.
Note that Musket requires at least 2 threads due to its master-slave design. BLESS
can only be run with one thread and its running time is 1475s, which is slower than
Quake.

Discussion

At Lighter’s core is a method for obtaining a set of correct k-mers from a large
collection of sequencing reads. Unlike previous methods, Lighter does this without
counting k-mers. By setting its parameters appropriately, its memory usage and
accuracy can be held almost constant with respect to depth of sequencing. It is also

quite fast and memory-efficient, and requires no temporary disk space.

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/005579; this version posted May 27, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Song et al. Page 10 of 16

Though we demonstrate Lighter in the context of sequencing error correction,
Lighter’s counting-free approach could be applied in other situation where a col-
lection of solid k-mers is desired. For example, one tool for scaling metagenome
sequence assembly uses of a Bloom filter populated with solid k-mers as a memory-
efficient, probabilistic representation of a De Bruijn graph [18]. Other tools use
counting Bloom filters [27, 28] or the related CountMin sketch [29] to represent De
Bruijn graphs for compression [19] or digital normalization and related tasks [30].
We expect Ideas from Lighter could be useful in reducing the memory footprint of
these and other tools.

Lighter has three parameters the user must specify: the k-mer length k, the
genome length G, and the subsampling fraction a. While the performance of Lighter
seems not to be overly sensitive to these parameters (see Figures 3 and 5), it is not
desirable to leave these settings to the user. In the future, we plan to extend Lighter
to estimate G, along with appropriate values for k£, and «, from the input reads.
This could be accomplished with methods proposed in the KmerGenie [31] and
KmerStream [21] studies.

Lighter is free open source software released under the GNU GPL license, and has
been compiled and tested on Linux, Mac OS X and Windows computers. The soft-
ware and its source are available from https://github.com/mourisl/Lighter/.

Competing interests
The authors declare that they have no competing interests.

Author’s contributions
LS and BL designed and analyzed the method. LS implemented the software. LS, LF and BL did the evaluation.

Acknowledgements
The authors thank Jeff Leek for helpful discussions.
Funding: National Science Foundation grant ABI-1159078 to LF and a Sloan Research Fellowship to BL.

Author details
! Department of Computer Science, Johns Hopkins University, 21218, Baltimore, USA. 2McKusick-Nathans Institute
of Genetic Medicine, Johns Hopkins University School of Medicine, 21205, Baltimore, USA.

References
1. Glenn, T.C.: Field guide to next-generation dna sequencers. Molecular Ecology Resources 11(5), 759-769
(2011)
2. Hayden, E.C.: Is the $1,000 genome for real? Nature News (2014)
3. Kelley, D.R., Schatz, M.C., Salzberg, S.L., et al.: Quake: quality-aware detection and correction of sequencing
errors. Genome Biol 11(11), 116 (2010)
4. Pevzner, P.A., Tang, H., Waterman, M.S.: An eulerian path approach to dna fragment assembly. Proceedings
of the National Academy of Sciences 98(17), 9748-9753 (2001)
5. Chaisson, M., Pevzner, P., Tang, H.: Fragment assembly with short reads. Bioinformatics 20(13), 2067-2074
(2004)
6. Schrdder, J., Schréder, H., Puglisi, S.J., Sinha, R., Schmidt, B.: Shrec: a short-read error correction method.
Bioinformatics 25(17), 2157-2163 (2009)
7. llie, L., Fazayeli, F., llie, S.: Hitec: accurate error correction in high-throughput sequencing data. Bioinformatics
27(3), 295-302 (2011)
8. Salmela, L., Schrdder, J.: Correcting errors in short reads by multiple alignments. Bioinformatics 27(11),
1455-1461 (2011)
9. Kao, W.-C., Chan, A.H., Song, Y.S.: Echo: a reference-free short-read error correction algorithm. Genome
research 21(7), 1181-1192 (2011)
10. Yang, X., Dorman, K.S., Aluru, S.: Reptile: representative tiling for short read error correction. Bioinformatics
26(20), 2526-2533 (2010)
11. Medvedev, P., Scott, E., Kakaradov, B., Pevzner, P.: Error correction of high-throughput sequencing datasets
with non-uniform coverage. Bioinformatics 27(13), 137-141 (2011)
12. Margais, G., Kingsford, C.: A fast, lock-free approach for efficient parallel counting of occurrences of k-mers.
Bioinformatics 27(6), 764-770 (2011)
13. Shi, H., Schmidt, B., Liu, W., Miiller-Wittig, W.: A parallel algorithm for error correction in high-throughput
short-read data on cuda-enabled graphics hardware. Journal of Computational Biology 17(4), 603-615 (2010)

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/005579; this version posted May 27, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Song et al. Page 11 of 16

14. Liu, Y., Schroder, J., Schmidt, B.: Musket: a multistage k-mer spectrum-based error corrector for illumina
sequence data. Bioinformatics 29(3), 308-315 (2013)

15. Heo, Y., Wu, X.-L., Chen, D., Ma, J., Hwu, W.-M.: Bless: Bloom-filter-based error correction solution for
high-throughput sequencing reads. Bioinformatics, 030 (2014)

16. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Communications of the ACM 13(7),
422-426 (1970)

17. Tarkoma, S., Rothenberg, C.E., Lagerspetz, E.: Theory and practice of bloom filters for distributed systems.
Communications Surveys & Tutorials, IEEE 14(1), 131-155 (2012)

18. Pell, J., Hintze, A., Canino-Koning, R., Howe, A., Tiedje, J.M., Brown, C.T.: Scaling metagenome sequence
assembly with probabilistic de bruijn graphs. Proceedings of the National Academy of Sciences 109(33),
13272-13277 (2012)

19. Jones, D.C., Ruzzo, W.L., Peng, X., Katze, M.G.: Compression of next-generation sequencing reads aided by
highly efficient de novo assembly. Nucleic acids research 40(22), 171-171 (2012)

20. Melsted, P., Pritchard, J.K.: Efficient counting of k-mers in dna sequences using a bloom filter. BMC
bioinformatics 12(1), 333 (2011)

21. Melsted, P., Halldérsson, B.V.: Kmerstream: Streaming algorithms for k-mer abundance estimation. bioRxiv
(2014)

22. Holtgrewe, M.: Mason—a read simulator for second generation sequencing data. Technical Report FU Berlin
(2010)

23. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with bowtie 2. Nature methods 9(4), 357-359
(2012)

24. Gurevich, A., Saveliev, V., Vyahhi, N., Tesler, G.: Quast: quality assessment tool for genome assemblies.
Bioinformatics 29(8), 1072-1075 (2013)

25. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using de bruijn graphs. Genome
research 18(5), 821-829 (2008)

26. Salzberg, S.L., Phillippy, A.M., Zimin, A., Puiu, D., Magoc, T., Koren, S., Treangen, T.J., Schatz, M.C.,
Delcher, A.L., Roberts, M., et al.: Gage: A critical evaluation of genome assemblies and assembly algorithms.
Genome research 22(3), 557-567 (2012)

27. Fan, L., Cao, P., Almeida, J., Broder, A.Z.: Summary cache: a scalable wide-area web cache sharing protocol.
IEEE/ACM Transactions on Networking (TON) 8(3), 281-293 (2000)

28. Bonomi, F., Mitzenmacher, M., Panigrahy, R., Singh, S., Varghese, G.: An improved construction for counting
bloom filters. In: Algorithms—ESA 2006, pp. 684—695. Springer, 7?7 (2006)

29. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-min sketch and its
applications. Journal of Algorithms 55(1), 58-75 (2005)

30. Zhang, Q., Pell, J., Canino-Koning, R., Howe, A.C., Brown, C.T.: These are not the k-mers you are looking for:
efficient online k-mer counting using a probabilistic data structure. arXiv preprint arXiv:1309.2975 (2013)

31. Chikhi, R., Medvedev, P.: Informed and automated k-mer size selection for genome assembly. Bioinformatics
30(1), 31-37 (2014)

Figures

Tables

Table 1 Accuracy measures for simulated rate(%) for each table for different coverages

Coverage 35% 70x 140x
Error rate 1% 3% 1% 3% 1% 3%
a for lighter 0.1 0.1 0.05 0.05 0.025 | 0.025

quake 89.59 | 48.77 | 89.64 | 48.82 | 89.59 | 48.78
Recall musket | 92.61 | 92.04 | 92.60 | 92.05 | 92.60 | 92.03

bless 98.68 | 97.29 | 98.69 | 97.48 | 98.65 | 97.47
lighter | 99.42 | 98.03 | 99.36 | 98.93 | 99.39 | 98.99

quake 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99
Precision musket | 99.78 | 99.63 | 99.78 | 99.63 | 99.78 | 99.63
bless 98.90 | 98.59 | 98.88 | 98.62 | 98.88 | 98.61
lighter | 99.10 | 99.14 | 99.08 | 99.18 | 99.07 | 99.18

quake 94.51 65.56 94.54 65.61 94.51 65.57
F-score musket | 96.06 | 95.68 | 96.05 | 95.69 | 96.05 | 95.68
bless 98.79 | 97.94 | 98.78 | 98.04 | 98.77 | 98.04
lighter | 99.26 | 98.58 | 99.22 | 99.06 | 99.23 | 99.09

quake 89.58 | 48.76 | 89.64 | 48.82 | 89.59 | 48.78
Gain musket | 92.40 | 91.70 | 92.39 | 91.71 | 92.39 | 91.69
bless 97.58 | 95.90 | 97.57 | 96.11 | 97.54 | 96.09
lighter | 98.52 | 97.17 | 98.44 | 98.12 | 98.46 | 98.18

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/005579; this version posted May 27, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Song et al. Page 12 of 16

*fa*fq,...

read
Y
Store each kmer with *fa,*1q,...
probability a
read
kmer

y
Compute the

Bloom Filter A » trusted positions
(multi-threaded)
kmer from k
solid kmer | consecutive
trusted positions read
Stage 1: sample kmers y Turn every kmer to
Bloom Filter B > solid kmers
(multi-threaded)
Stage 2: obtain solid kmers v read
Ouput *.corfa,...
Stage 3: error correction
Figure 1 The framework of Lighter
Read : ..ACCGATTCGTA Solid kmers:
Try 'A': CCGATTA <=— | g%gﬁﬂg
CGATTAG <= |
GATTAGT ~CCATTAG
~GATTAGT

ATTAGTA~— | 2=y

Try 'G': no candidate
__—TCCGATTT

Try 'T': CCGATTT

Figure 2 An example of the greedy error correction procedure k-mer CCGATTC does not appear
in Bloom filter B, so we attempt to substitute a different nucleotide for the C shown in red. We
select A since it yields the longest stretch of consecutive k-mers that appear in Bloom filter B.

Table 2 Occupancy rate(%) for each table for different coverages

Coverage «a Bloom A | Bloom B
10x 0.35 41.563 19.843
20 0.175 41.555 32.765
35X 0.1 41.555 33.802
70% 0.05 41.580 33.906
140x 0.025 41.577 33.881
280x 0.0125 41.571 33.903

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/005579; this version posted May 27, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Song et al. Page 13 of 16
100 T T T
£ = & & B = q
98 E
96 | E
94 F g
S
<
3
e 92 .
o
90 -
88 | -
Recall —+—
Precision
86 F-score ---%:-- e
Gain -8
W L L L L L L L L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.%
alpha
Figure 3 The effect of a on the accuracy using the simulated 35 X dataset

100 T T T T T T T T T
35x Table A —+—
35x Table B
70x Table A ---%---
70x Table B &
140x Table A
8o | 140x Table B *2

occupancy(%)

0 1 1 1 1 1 1 2 i ,-

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.4
alpha

Figure 4 The effect of « on occupancy of Bloom filters A and B The effect of a on occupancy
of Bloom filters A and B using simulated 35%, 70x and 140X datasets.

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/005579; this version posted May 27, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Song et al. Page 14 of 16

100

80

60

percent(%)

40

20 E
Recall —+—
Precision
F-score ---:---
Gain &
0 L L
20 25 30 35

k-mer length

Figure 5 The effect of k-mer length k on accuracy

100 T T T T T T

99.8 E

99.6

correct ratio(%)

99.4

99.2
Original
Quake
Musket --------
Bless
Lighter
99 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

position

Figure 6 The matching ratio for each base in E. coli data set

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/005579; this version posted May 27, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Song et al. Page 15 of 16
1400 T T T T T T
Quake —+—
Musket
Lighter ------
1200 |
1000 |
800 |
)
[0}
£
600
400 | .
X\
200 | K -
e
TR Hoomommeeaan E RREEEERTPEP f REERETEPEPEPR [SERIETTRTPERE 1
O 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16
of threads
Figure 7 Running times The running times of Quake, Musket and Lighter on 70x simulated data
set with increasing number of threads

Table 3 Alignment statistics for the 75X E. coli data set, before error correction (Original row) and
after error correction (Quake, Musket, BLESS and Lighter rows). The first “Increase” column shows
percent increase in reads aligned. The second “Increase” column shows percent increase in average
number of matching positions per aligned read.

Read Level Base Level
Mapped Reads | Increase(%) || Base Match/Read | Increase(%)
Original 3,464,137 - 99.038 -
Quake 3,475,689 0.33 97.982 -1.97
Musket 3,467,875 0.11 99.601 0.57
BLESS 3,472,976 0.26 99.611 0.58
Lighter 3,476,422 0.35 99.611 0.58
Table 4 De novo assembly of E. coli data set
N50 NG50 | Edits / 100kbps | Misassemblies | Coverage(%)
Original 94,879 87,008 3.41 0 97.496
Quake 100,379 | 91,194 5.6 2 97.515
Musket 86,419 79,481 7.25 1 97.504
BLESS 94,879 90,126 4.72 1 97.419
Lighter 98,555 94,875 4.84 2 97.510

Table 5 Alignment of chrl4 data set

Read Level Base Level
Mapped Reads | Increase(%) || Base Match/Read | Increase(%)
Original 35,993,146 - 99.492 -
Quake 36,164,028 0.47 92.622 -6.90
Musket 36,316,697 0.90 100.100 0.61
BLESS 36,297,285 0.84 100.192 0.70
Lighter 36,280,347 0.80 100.109 0.62

Table 6 De novo assembly of chrl4 data set

N50 | NG50 | Edits / 100kbps | Misassemblies | Coverage(%)
Original | 5277 | 3847 139.16 1257 78.777
Quake 4704 | 3427 131.98 965 78.55
Musket | 5583 | 4103 131.04 556 79.175
BLESS | 5620 | 4114 128.42 583 79.204
Lighter | 5712 | 4195 128.92 544 79.251

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/005579; this version posted May 27, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.
Page 16 of 16

Song et al.

Table 7 Comparison of four error correction tools based on their memory usage (peak resident
memory) and disk usage.

35X 70x 140x chrl4
memory disk memory | disk memory | disk memory | disk
Quake 2.8G 3.3G 7.1G 6.0G 14G 12G 48G 57G
Musket 139M 0 160M 0 241M 0 1.4G 0
BLESS 10M 661M 11M 1.3G 13M 2.6G 600M 15G
Lighter 31M 0 31M 0 31M 0 510M 0

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

