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Abstract

In cancer progression, fixation of some driver mutations (those causally involved in the
disease) can depend on the presence of other drivers. The majority of mutations present in
cancer cells, however, are not drivers but passenger mutations that are not involved in disease
progression.

Several methods have been developed to identify restrictions in the temporal order of
accumulation of driver mutations from cross-sectional data, but the few available comparisons
of performance assume that drivers are known, and have not examined the effects of sampling.

Here I conduct a comprehensive comparison of the performance of all available methods.
In contrast to previous work, I embed order restrictions within evolutionary models of tumor
progression that include passengers and drivers. This allows me to asses the effects of having
to filter out passengers, of sampling schemes, and of deviations from order restrictions.

Poor choices of method, filtering, and sampling can lead to large errors in all performance
metrics. However, one filtering approach emerges as a reasonable compromise when drivers
are unknown. The best method for reconstructing order restrictions are Oncogenetic Trees:
over a range of scenarios they do a very good job, superior to Conjunctive Bayesian Networks
and Progression Networks. Single cell sampling provides no advantage, but sampling in the
final stages of the disease vs. sampling at different stages can have severe effects depending
on the evolutionary model. Evolutionary model and deviations from order restrictions can
have major, and counterintuitive, interactions with other factors that affect performance.

This paper provides practical recommendations for using these methods with experimental
data. Moreover, it and implements a framework that shows that it is both possible and neces-
sary to embed assumptions about order restrictions and the nature of driver status within evo-
lutionary models of cancer progression to evaluate the performance of inferential approaches.
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1 Introduction

Cancer progression is caused by the sequential accumulation of somatic mutations, including
changes in copy number (structural variants), single nucleotides (SNP variants) and DNA methyla-
tion patterns (Hanahan and Weinberg, 2011) during the life of an individual. Among the mutations
causally responsible for the development of cancer (drivers) not all possible orders of accumula-
tion seem equally likely, since the fixation of some mutations can depend on the presence of other
mutations. Understanding the restrictions in the temporal order of accumulation of driver mu-
tations could be very relevant for cancer prevention and treatment as it would allow identifying
critical events (Cheng et al., 2012; Gerstung et al., 2011; Longerich et al., 2012; Sprouffske et al.,
2011), but these restrictions remain poorly known (Gerstung et al., 2011; Raphael and Vandin,
2014).

In this context, a variety of methods have been developed to try to infer the possible restrictions
in the order of accumulation of these driver mutations from cross-sectional data; a brief review is
provided next, including some recent developments, but see more extensive reviews in Hainke
et al. (2012); Radmacher et al. (2001). Desper et al. (1999) introduced the oncogenetic tree (OT)
as an extension of the linear path model (e.g. Vogelstein et al., 1988): in OTs progression starts
from a common (non-altered) root, and branches out, so that there are several mutational pathways
that can be observed simultaneously. OTs, by virtue of being trees, can only model order restric-
tions where an event depends on its single parent. Another early model are distance-based trees,
from Desper et al. (2000) (see also von Heydebreck et al., 2004); these are also trees, but their
meaning is rather different, since the observed mutations are only placed in the leaves or terminal
nodes of the tree, and the internal nodes are unobserved and unknown events, which precludes an
interpretation in terms of order restrictions like “mutation A is required for mutation B”. Youn and
Simon (2012) developed a method to identify the order of mutations allowing for the sequence of
alterations to differ between subjects; their model, however, does not explicitly return order re-
strictions of events. Models that do not try to infer order restrictions will not be considered further
in this paper.

Beerenwinkel et al. (2007a) proposed Conjunctive Bayesian Networks (CBNs) as a general-
ization of oncogenetic trees: these are graphs where the occurrence of a mutation can depend on
the occurrence of two or more parents (i.e., a conjunction). The disease progression models of
OTs and CBNs assume that a mutation can only occur if the preceding parent mutation(s) in the
graph have occurred, what Farahani and Lagergren (2013) call monotonicity. Thus, for driver
genes, under the strict OT and CBN models it would be impossible to observe a genotype that is
not compatible with the relations specified in the graph. Less restrictive models for tumor pro-
gression have been proposed. A very general Markov model was proposed in Simon et al. (2000),
and was referred to as directed acyclic graphs by Radmacher et al. (2001); Simon et al. (2000).
Bulashevska et al. (2004) used general Bayesian Network approaches. The model in Hjelm et al.
(2006) also allows for mutations to occur even if no other aberrations have occurred. The model in
Raphael and Vandin (2014), like the one of Hjelm et al. (2006), simultaneously tries to find mod-
ules or pathways and their order restrictions (but note that CBNs, OTs, and similar methods can
be directly applied to module/pathway data, provided those data are partitioned into predefined
pathways before the analysis; e.g., Cheng et al., 2012; Gerstung et al., 2011).

Having a single graph means having a single set of restrictions that is common to all individ-
uals, but that does not mean that all cells follow the same path (so the actual genotypes and their
paths can be quite diverse under one graph). Mixtures of OTs (Beerenwinkel et al., 2005) are one
further generalization of OTs where disease progression is modeled allowing for different order
restrictions in different subsets of individuals, each one modeled as an OT. By using a star as one
of the trees in the mixture, these models can also account for any mutation occurring without its
parent(s) having occurred. Later, Tofigh et al. (2011) developed the HOT and mixture of HOTs
as a generalization of OTs and their mixtures. In this paper I restrict attention to finding a sin-
gle graph, the approach most widely used in the literature, and one which seems to work even
when there are mild departures from the single-graph assumption (Sweeney et al., 2009, but see
Sprouffske et al., 2012). Recently, Cheng et al. (2012) developed a method that attempts to find
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the order of events taking into account the evolutionary dynamics of mutation accumulation. And
Farahani and Lagergren (2013) have proposed a general method, DiProg, for learning what they
call Progression Networks, which include OTs, CBNs, as well as several other special types of
Bayesian Networks, and that can incorporate deviations from monotonicity.

Most of the above are general methods, and can be applied to different kinds of data including
cytogenetic (e.g., the first description of OTs by Desper et al., 1999), gene mutation, and pathway
alteration data (e.g., Gerstung et al., 2011). This versatility, coupled with the increasing wealth
of cross-sectional data available, provides an excellent opportunity to try to understand the still
largely unknown details of the order of mutations. However, in spite of the relevance of the
problem, there are very few systematic comparisons of method performance, and they do not
provide a clear and robust answer to the question of method choice.

Applied usage of the above methods faces at least three major additional problems. First,
most of the mutations present in cancer cells are not driver mutations, but passenger mutations
not responsible for the development of cancer (e.g., Greenman et al., 2007; Tomasetti et al., 2013;
Vogelstein et al., 2013; Wood et al., 2007). Passenger mutations can show a non-negligible fre-
quency because they “hitchhike” on drivers (Greaves and Maley, 2012; Merlo et al., 2006). Unless
we know what mutations are drivers, the presence of passengers in our data sets requires forces us
to use some filtering procedure to select which mutations (or, generally, alterations) to use with (or
to pass on to) the methods to infer order restrictions. However, the simulations in the only compar-
ison of methods (Hainke et al., 2012), as well as in the original descriptions of new methods (e.g.,
Farahani and Lagergren, 2013; Gerstung et al., 2009; Szabo and Boucher, 2008), have all been
conducted assuming that the identity of the driver mutations is known. Virtually all papers that
try to infer order restrictions, including methodological papers, rely on simple frequency-based
selection or filtering procedures (e.g., Desper et al., 1999; Diep et al., 2006; Gerstung et al., 2011;
Gunawan et al., 2007; Hjelm et al., 2006; Rieker et al., 2005; Sakoparnig and Beerenwinkel, 2012;
Szabo and Boucher, 2008; von Heydebreck et al., 2004) to select which genes to use, but the ef-
fects of these filtering approaches on the performance of the methods to infer order restrictions are
completely unknown.

Second, attention to sampling decisions is largely missing from the literature: simulations that
examine method performance (e.g., Farahani and Lagergren, 2013; Gerstung et al., 2009; Hainke
et al., 2012; Szabo and Boucher, 2008) obtain genotypes directly from the generative models of the
graphs but, except when we use single cell sampling, our experimental data are from samples that
aggregate over many cells and the joint and marginal frequencies of mutations of those aggregates
can depend not only on the aggregation per se but also on when we sample (due, for example, to
the clonal expansion episodes).

Finally, development and evaluation of methods of reconstruction of order restrictions are
conducted without consideration for the evolutionary model of tumor progression (but see Cheng
et al., 2012 and Discussion). This problem is highlighted by Sprouffske et al. (2011): referring to
oncogenetic tree models they say (p. 1136) “ This is not an evolutionary model because the onco-
genetic tree does not represent ancestral relationships within a neoplasm but rather a summary of
the observed co-occurrences of mutations across independent neoplasms”. This lack of consider-
ation for the evolutionary model is also unfortunate since it does not provide a clear mechanistic
interpretation of deviations from the restrictions encoded in the graph. Of particular interest is the
monotonicity restriction (a mutation in a driver gene can only be observed if the preceding parent
mutations in the graph have occurred), because deviations from it can easily arise when a mutation
behaves as a driver or as a passenger depending on the genetic context —i.e., depending on which
other genes are mutated (Greaves and Maley, 2012; Yap et al., 2012).

Direct simulation of data from the generative models of OTs, CBNs, and Progression Networks
cannot be used to address any of those three problems (passengers, sampling, deviations from
monotonicity). However, it is possible to incorporate the order restrictions encoded in CBNs,
OTs, and other models, into plausible evolutionary models of tumor progression (in fact, Reiter
et al., 2013 have developed a simulation tool that incorporates simple order restrictions among four
drivers; see Discussion). If we model together drivers (with possible restrictions) and passengers
we can address the consequences of having to filter drivers from passengers. Incorporating order
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Factor Description Values
Model Model of cancer progression exp, Bozic, McF_4, McF_6
sh Penalization of deviations from

monotonicity
0, Inf (for∞)

True Graph The true graph. All possible com-
binations of Number of nodes and
Conjunction

11-A, 11-B, 9-A, 9-B, 7-A,
7-B

Number of nodes (NumNodes) Number of genes or alterations 11, 9, 7
Conjunction Whether or not the graph has conjunc-

tions
Yes, No

Sample size (S.Size) Number of samples used for recon-
structing the graph

100, 200, 1000

Sampling time (S.Time) When the sample is taken Last, unif (for uniform)
Sampling type (S.Type) How tissue is collected singleC (for single cell),

wholeT_0.5 (whole tumor,
detection threshold=0.5),
wholeT_0.01 (whole tumor,
detection threshold=0.1)

Filtering Method for selecting drivers, of fil-
tering passengers, when the true
drivers are not known

S1, S5, J1, J5 (for frequency
of Single event and Joint
frequency of events, with
thresholds 1% and 5% re-
spectively)

Method Method for reconstructing the onco-
genetic tree/CBN model

CBN, CBN-A, DiP, DiP-A,
OT, OT-A

Table 1: Factors considered and their levels or possible values, together with the acronyms used through the
text. The within-data set factors, Filtering and Method (see text), are shown in italics. All other factors are
among-data set factors. Sampling scheme, used through the text, refers to when (S.Time) and how (S.Type)
we sample.

restrictions within evolutionary models would also allow us to address two questions of immediate
practical relevance related to data collection: should we try to use single cell sampling now that it
is becoming a realistic possibility (Eberwine et al., 2013) instead of whole tumor sampling? and
would it be better to try to use samples collected in the final stages of the disease vs. using samples
collected also at intermediate stages? Finally, using explicit evolutionary tumor growth models
also allows us to examine the consequences of deviations from the monotonicity restriction and
the genetic context dependence of driver status.

In this paper I incorporate the order restrictions into evolutionary models to address how the
performance of all available methods for inferring order restrictions is affected by: a) passenger
mutations that lead to uncertainty about the identity of the true drivers and the need to use filtering
approaches; b) sampling choices (when and how and how many to sample); c) type of underlying
true graph, including presence/absence of conjunctions; d) deviations from the order restrictions
encoded in the graphs (monotonicity); e) evolutionary model of tumor progression.

2 Methods

2.1 Experimental design

Details of each factor examined are discussed below, but Table 1 provides an overview of the
main factors, and Figure 1 a schema of all the steps. We will deal separately with two different
scenarios: one where we know the true identity of the drivers, which we will call “Drivers Known”,
and another scenario that replicates the common situation where the data includes both passengers
and drivers and we do now know with certainty which is which, a scenario we will refer to as
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Model

sh

True Graph

cancer progression
individual 1

cancer progression
individual 2

. . .

cancer progression
individual S.Size

1. Simulate
Genotype1

Genotype2

. . .

GenotypeS.Size

2. Sample:
S.Time, S.Type

One data set

3. Fit:
All combinations of
3.a Filter and 3.b Method

CBN-ACBN . . . J5:OT-A

Fitted
graph

Fitted
graph . . .

Fitted
graph4. Compare

True with Fitted:

compute metrics

Diff

PFD

PND

FPF

. . . . . .

Figure 1: Schematic representation of the key steps of design and analysis, and illustration of the within- and
among-data set factors. Terms in magenta are those in Table 1, and terms in italics, as in Table 1, correspond
to within-data set entries. Terms in blue denote the main steps, with numbers indicating chronological order
(Filter and Method are both steps and entries in the table). The process illustrated here was repeated 20 times
for all possible compbinations of Model, sh, True Graph, S.Time, S.Type, S.Size.

“Drivers Unknown”. The “Filtering” factor is only relevant for the “Drivers Unknown” scenario.
When referring to the restrictions I will use the term “graphs” (e.g., following Desper et al., 1999,
their Figure 1). “Graph”, therefore, refers to the structure that encodes the order restrictions and
I will reserve the term “tree” for graphs that have no conjunctions. All the graphs were analyzed
with all methods (CBN, CBN-A, OT, OT-A, DiP, DiP-A), as shown in the table and explained
below in section 2.6.

Method (Drivers Known scenario) or Filtering by Method combinations (Drivers Unknown
scenario) were applied to a data set: a matrix of individuals or subjects by genes (i.e., a matrix
of genotypes). The same data set can be analyzed with different Methods (or different Filtering
by Method combinations) but for other factors (e.g., Model) different settings of the factor (and
reruns of the same settings with different seeds of the random number generator) generate different
data sets. This allows us to use an experimental design with among- and within-data set factors so
as to examine the effect of Method and Filtering controlling for possible among-data set variation
(as explained in Sections 2.7.3 and 2.7.4), and so as to minimize computational cost. For factors
Model, sh, Graph, Conjunction, S.Size, S.Type, and S.Time, the among-data set factors, I used a
full factorial design (thus, 864 = 4 ∗ 2 ∗ 3 ∗ 2 ∗ 3 ∗ 2 ∗ 3, among-data set factor combinations).
For every combination, I used twenty independent replicate data sets. Each of the twenty replicate
data sets was analyzed with every Method, or every Filtering by Method combination (the within-
data set factors) to fit a graph to the data (i.e., to try to infer the order restrictions among events).
Therefore, a total of 864 ∗ 6 = 5184 or 864 ∗ 6 ∗ 4 = 20736 factor combinations for the Drivers
Known and Drivers Unknown scenarios, respectively, were examined. Every data set was obtained
by independently sampling different (and independently generated) simulated tumor trajectories,
according to the settings of the among-data set factors. For instance, if sample size was set to
1000, I simulated 1000 tumor progression trajectories as specified by the settings of Model, sh,
and True Graph, and sampled each of those trajectories as specified by the settings of S.Time and
S.Type (see Figure 1). This process was repeated at every one of the 864 among-data set factors
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Model Birth rate (bj) Death rate (dj or
DN )

Mutation rate
(per gene per
unit time)

Cancer reached if

Bozic 1 (1− s)j(1 + sh)
p 10−5 > 109 cells

exp (1+s)j(1−sh)p (+) 1 bj ∗ 10−7 > 109 cells
McF_4 (1 + s)j/(1 + sh)

p log(1 +N/K) 5 ∗ 10−7 Number of drivers ≥ 4
McF_6 (1 + s)j/(1 + sh)

p log(1 +N/K) 5 ∗ 10−7 Number of drivers ≥ 6

Table 2: Main parameters for each of the tumor progression models. j is the number of drivers with their
dependencies met, and p the number of drivers with dependencies not met. In all cases s = 0.1. sh is set to
either 0 (so it has no effect) or∞ (so fitness of that clone is 0). N : population size. K = 2000. + This is
really bj = max(0, (1 + s)j(1− sh)p).

(and, thus the results shown here are based on 7.49 million simulated trajectories = 4 ∗ 2 ∗ 3 ∗ 2 ∗
3 ∗ 2 ∗ 20 ∗ (1000 + 200 + 100)).

2.2 Evolutionary models and simulation

Simulated data for the analysis were generated using different models of tumor progression. The
purpose of using several models is not to compare models of tumor development, but to use a
range of plausible ones so that we can examine how the true underlying model could impact
the inference of restrictions, and so that we can embed the restrictions within plausible models of
clonal expansion. Two of the models used, called here “Bozic” (as it is based in Bozic et al., 2010)
and “exp” have no density dependence and lead to exponential growth. The second set of models,
called “McF_4” and “McF_6”, are based in McFarland et al. (2013) and lead to logistic-like
behavior, as death rate depends on total population size. Table 2 summarizes the main parameters
used for the tumor progression models. Details about the models and choice of model parameters
are provided in Supplementary Material Section 2.1.

To simulate data, I have used BNB, the fast stochastic algorithm of Mather et al. (2012).
This method is closely related to the Gillespie algorithm and the next reaction method (Gibson
and Bruck, 2000), but can lead to significant speed improvements. This algorithm is exact when
birth, death, and mutation rates are constant between consecutive mutations, as in the “exp” and
“Bozic” models. For the McFarland model (McFarland et al., 2013), where death rate is density
dependent, the approach in Mather et al. (2012) does not provide an exact simulation, but can be
used to provide a very accurate approximation, as discussed by Mather et al. (2012). Details about
the usage of BNB are provided in Supplementary Material Section 2.2. Examples of simulated
trajectories for each model are shown in Supplementary Figure 3.

2.2.1 Deviations from monotonicity and genetic context dependence of driver status: sh

Genetic context dependence of driver/passenger status (Greaves and Maley, 2012; Yap et al., 2012)
and deviations from monotonicity (i.e., from the order of events implied by the graph of the onco-
genetic model) can be closely related, and affect the performance of methods to infer order restric-
tions. A mutation in a driver gene for which all the preceding required mutations have occurred
(i.e., a mutation in a gene that has its dependencies satisfied) will lead to an increase in fitness
(through its increase of the value j, for number of drivers, as shown in Table 2). What about muta-
tions in driver genes that do not have their dependencies satisfied? We can formulate the problem
in a general context by using the terminology in Datta et al. (2013). Enforcing monotonicity is
equivalent to considering such a mutation as a mutation in an essential housekeeping gene, which
can be modeled setting sh, in the notation of Datta et al. (2013), to∞ (so fitness of such clones is
zero). Deviations from monotonicity can arise, however, if such mutation is similar to a passenger
mutation: it confers no fitness benefits (and if it has no deleterious effect sh = 0, similar to setting
sp = 0 in McFarland et al., 2013). Of course, in none of these cases would the value of j be
increased (a driver only increases fitness if its dependencies are satisfied). In the simulations re-
ported here I considered two extreme scenarios: a) no deviations from the graph of the oncogenetic
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model are allowed, which I will refer to as “sh=Inf” (from ∞); b) drivers without dependencies
satisfied are equivalent to passengers with no deleterious effects, which I will refer to as “sh=0”.
Note that the implementations I used to infer CBN and OT incorporate errors (Gerstung et al.,
2009, 2011; Szabo and Boucher, 2008) and the OT model explicitly allows for errors due to the
occurrence of genetic events outside the model implied by the graph of the oncogenetic model
(Szabo and Boucher, 2002). DiP, the method to infer Progression Networks models of Farahani
and Lagergren (2013), explicitly incorporates deviations from monotonicity with the parameter ε.

2.3 True graphs, number of drivers, and number of passengers

Six different true graphs have been used, three of them with conjunctions (i.e., CBN-like) and three
of them without conjunctions (i.e., OT-like), where the trees without conjunctions are derived from
the graphs with conjunctions by removing conjunctions. The graphs have 7, 9, and 11 nodes. The
number of nodes of the graphs targets the range of nodes commonly considered in studies that
try to reconstruct graphs from real cancer data: 10, 11, and 12 in Gerstung et al. (2009), 7 to 11
(including gene and core pathways) in Gerstung et al. (2011), 7 in Desper et al. (1999), 11 and 12
in Sakoparnig and Beerenwinkel (2012), 8 in Sweeney et al. (2009), 7 (modules) in Hjelm et al.
(2006), 9 in Jiang et al. (2007), 17 in Longerich et al. (2012) and Bulashevska et al. (2004), 12 in
Pathare et al. (2009), 6 and 13 in Simon et al. (2000), 12 in Radmacher et al. (2001). The size of
graphs was limited to 11 because CBN cannot deal with more than 14 events or nodes (see also
Sections 2.5 and 4) and we need to allow for the possible selection of more events than 11 when
Drivers are Unknown. The graphs are shown in Supplementary Figure 2, and we will refer to them
by the number of events using post-fix A for conjunction and B no conjunction. Graph 11-A is
the same as Poset 2 in Gerstung et al. (2009) (see their Figure 2A), and Graph 7-A is the same
as the estimated graph for pancreatic cancer in Gerstung et al. (2011) (their Figure 2B). Graph
9 was created so as to contain an intermediate number of both nodes and conjunctions between
the previous two graphs. In addition to the number of nodes and presence/absence and number of
conjunctions, the six graphs used differ in other features (such as depth, total number of edges,
existence or not of isolated nodes or subgraphs, existence or not of a single parental node, indegree
of conjunctions, and outdegree).

Graphs with 11, nine, and seven drivers generate clones with between two and six drivers (see
also Supplementary Figure 3), a range which is well within the range of drivers considered in the
literature: although some authors, such as Datta et al. (2013) and Beerenwinkel et al. (2007b)
examine scenarios with 20 drivers, most papers focus on much smaller numbers of drivers (Bozic
et al., 2010; McFarland et al., 2013; Sprouffske et al., 2011) and recent reviews suggest that the
number of drivers in the cells of most tumors lies between two and six (McFarland et al., 2013;
Vogelstein et al., 2013). Regarding number of passengers, it is now widely accepted that most
mutations in cancer cells are passengers (Bozic et al., 2010; Greenman et al., 2007; Sjoblom
et al., 2006; Tomasetti et al., 2013; Vogelstein et al., 2013; Wood et al., 2007). When considering
the scenario where drivers are not known, I set the proportion of passengers to drivers constant, so
that there are four passengers for every driver, a range within that considered in the literature. Our
scenario is also relevant if the actual number or fraction of passengers is much larger, but many
of those passengers can be excluded a priori based on other information, so that they are never
considered as candidates for the process of filtering data and inferring graphs.

2.4 Sample size and sampling type and time

Sample size (S.Size) was set to three possible values: 100, 200, 1000. The values considered
in other studies, both empirical and methodological, vary widely (e.g., 100, 400, and 800 in
Sakoparnig and Beerenwinkel (2012); 83 to 95, plus a pool of 268 in Gerstung et al. (2011); 50,
100, 200, 500, and 1000 in Hainke et al. (2012); 971 in Sweeney et al. (2009); 887 in Longerich
et al. (2012)). The set of 100, 200, and 1000 cover a likely range of sample sizes and will allow us
to compare the magnitude of the effects of sample size with those of other factors. Sampling time
(S.Time) refers to when sampling occurs. S.Time = last means that samples were collected at the
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end of the simulation (at the end of cancer progression). S.Time=unif (for uniform) means that
sampling time was uniformly distributed between the start and end of the simulation (so ttot sensu
Desper et al., 1999 or Ts in Gerstung et al., 2009, have this uniform distribution). Uniform sam-
pling is a very simple model for obtaining cross-sectional samples of patients at different stages.
Sampling uniformly between time zero and the final stages of the disease is, of course, unrealistic,
but I used this type of sampling because it provides a stark contrast with sampling at the end of
the disease. Sampling type (S.Type) refers to whether single cell or whole tumor tissue is used,
and three values have been used for this factor. When S.Type = singleC (single cell), a simulation
provides the genotype of one single cell (or, equivalently, one single clone), where the probability
of selecting a clone is proportional to its abundance. When using whole tumor sampling, and as
in Sprouffske et al. (2011), a biopsy is the entire tumor, but whether a gene is considered mutated
or not can depend on the detection threshold, and here I used two levels: 0.5 (like Sprouffske
et al., 2011) and 0.01, meaning that a gene is considered mutated if it is mutated in 50% or 1%,
respectively, of the cells. Of course, it is unlikely that any study using single cell would take a
single sample from a patient; however, in this study we focus on cross-sectional data, and single
cell sampling is the type of sampling that leads to data most similar to the type of data obtained
when we simulate using the generative model of the underlying graph (as done, for instance, in
Gerstung et al., 2009; Hainke et al., 2012; Szabo and Boucher, 2008). Moreover, single cell sam-
pling and whole tumor sampling, as used here, can be considered two extremes in the range of
sampling possibilities. Likewise, a detection threshold of 0.01 is probably unrealistically low but
that setting is used because it combines the capacity of detecting very low frequency co-occurring
events (as in single cell sampling) with summing over distinct cells (which could lead to problems
similar to the ecological fallacy). The sampling type schemes used here ignore any possible spa-
tial structure and tissue architecture (e.g. Vermeulen et al., 2013), not because they are considered
irrelevant, but because none of the evolutionary models considered here incorporate it (but note
that the uniform sampling scheme can sometimes be equivalent to incorporating spatial structure,
if that spatial structure is correlated with time).

2.5 Filtering

When the identity of the driver genes is not known, it is often necessary to select genes before
fitting the data to the graph (i.e., before trying to infer the order restrictions). Some studies that
deal with chromosomal abnormalities have used the methods of Brodeur and collaborators or
Taetle and collaborators, to try to locate non-random breakpoints (see discussion in Radmacher
et al., 2001; Simon et al., 2000) but these methods are not directly applicable to other types of
data nor to our simulations. Other authors that deal with chromosomal abnormalities, or that use
mutation data, have used one of the following general approaches to decide which alterations to
analyze: a) selecting the most frequent mutations, either by setting a minimal number as in Szabo
and Boucher (2008), Gunawan et al. (2007), and Hjelm et al. (2006), where the seven, 13, or
25, respectively, most frequent alterations are used, or setting a minimal frequency such as in
Gerstung et al. (2011), Diep et al. (2006), Rieker et al. (2005), von Heydebreck et al. (2004)
where the threshold is set at 5%, 5%, 10%, 10%, respectively; b) selecting the largest set of events
so that every pair of events is observed at least k times, as in Szabo and Boucher (2002), Desper
et al. (1999) where the threshold is five times, out of 124 and 117 cases, respectively (this method
can be implemented searching for the largest weighted clique, as in Desper et al., 1999).

The key difference between these two filtering procedures, therefore, is that the second uses
the joint occurrences of pairs. To comprehensively incorporate common uses, I used four filtering
procedures: two of them only consider the marginal frequency of each single event, and I use an
“S” to denote “frequency of Single event”, and the other two take into account joint occurrences,
and a I use “J” to denote “Joint frequency of pairs of events”. The procedures are S1, that selects
any mutation with a frequency larger than 1%, S5 where the threshold is 5%, J1 that selects the
largest set of events so that every pair of events is observed at least in 1% of the cases and J5,
where the threshold is 5%. In the rare case where a filtering procedure returned more than 12
mutations, the 12 most common were selected.
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2.6 Fitting data to graphs. Methods and software for inferring order restrictions:
CBN, DiP, OT

I have used three types of methods to infer order restrictions from data: methods that infer OTs,
methods that infer CBNs (which should also be able to reconstruct OTs), and methods that infer
Progression Networks (and, thus, should also be able to reconstruct OTs and CBNs). Each method,
when applied to a data set, returns what we will refer to as a “fitted graph” (see also Figure 1).
For OTs I used the R package Oncotree (Szabo and Pappas, 2013) with its default settings. Some
of the analysis were rerun (see Discussion and Supplementary Material) with the implementation
available in the BioConductor package Rtreemix (Bogojeska, 2014; Bogojeska et al., 2008a). For
CBNs as detailed in Gerstung et al. (2009) I used the software from Gerstung et al. (2011). I
used the same default settings for temp (1) and steps (number of nodes2) and started the simulated
annealing search for the best poset from an initial linear poset as in Gerstung et al. (2011). For
Progression Networks I used the DiProg program (the method we call DiP) from Farahani and
Lagergren (2013) to fit monotone networks (option “MPN”), choosing the best k from 1 to 3 (and
the results reported here have ε = 0.05). Further details about software versions and parameters
used for all methods are provided in the Supplementary Material.

Other methods have been described in the literature, but I have not been able to use them here.
The method in Sakoparnig and Beerenwinkel (2012) is too slow (analysis of data sets of 200 cases
exceeding 4 hours) to be used in more than 100000 runs, as in this paper. The methods in Cheng
et al. (2012) and Tofigh et al. (2011) have no software available. Therefore, this paper includes all
currently existing approaches for which software is available.

It is important to mention here that the methods reported differed greatly in speed: the median
and mean execution times, over all 172800 analysis performed by each family of methods, were
0.045 and 0.07 seconds for OT, 3.89 and 12.60 seconds for DiP, but 31 and 1127 seconds for
CBN. In addition, one of the methods examined (DiProg: DiP/DiP-A) currently depends on IBM’s
CPLEX ILOG library, which not only is not open source but has a severely restrictive license.

2.6.1 CBN-A, OT-A, DiP-A

In some cases one or more mutations were present in all or almost all of the samples. Even if
these are driver mutations on which all other events depend, events with a frequency of 1 are often
removed from the graph (e.g., by the OT method) or placed as nodes that descend directly from
Root and that have no descendants. This problem is particularly severe with Graphs 7A and 7B
(e.g., see Supplementary Figure 72), but can affect all graphs (especially under the McF_6 model).
To try to minimize this problem, we can augment the data by adding “pseudosamples” that have
no mutations in any gene. Adding “pseudosamples” does not amount to knowing anything about
the order of events, nor the truth about which genes are drivers or not (and in the Drivers Unknown
scenario I always augmented after the filtering step). Data augmentation only requires being able
to differentiate between presence and absence of a genetic alteration, mutation, or aberration,
which is always assumed in these analyses. In this paper, “CBN-A”, “DiP-A”, and “OT-A”, refer
to using CBN, DiP, or OT on data that has been augmented by adding to it another 10% of samples
filled with zeroes (0 is the code that denotes no alteration).

2.7 Analysis

There are two questions that we want to address: a) what procedures (choice of Method, Filtering,
S.Time, and S.Type) are “best” (for reconstructing the underlying true graph from the data), so that
we can choose a course of action when faced with new data; b) what factors have an important
effect on performance, even if they are not under user control, so that future research can focus
on them. The first question is most straightforwardly addressed by comparing (via statistical
tests of differences) and ranking the available options (combinations of Method, Filtering, and
Sampling scheme). The second question is best addressed with statistical modeling that focuses on
identifying factors with relevant effects. Of course, results from each type of analysis complement
each other, and should be coherent. The approaches used below reflect these two questions and are
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based on very different procedures and assumptions. Below I detail the different analyses, after
explaining how performance was measured.

2.7.1 Metrics: measuring performance

I consider here that the main goal of most studies is the reconstruction of the topology of the graph,
which is what captures the order restrictions (e.g., Desper et al., 1999; Farahani and Lagergren,
2013; Szabo and Boucher, 2008) . There is no single metric that can fully characterize the perfor-
mance of these methods, and therefore I have used four metrics that capture their behavior along
different dimensions. One is a global score of the difference between the fitted graph and the true
graph, whereas the other three are measures of classification or diagnostic performance common
in medical testing and machine learning (Davis and Goadrich, 2006; Pepe, 2003) that focus on
the fractions or proportions across specific rows or columns of the confusion matrix (where en-
tries in that matrix are commonly called “true positives”, “false positives”, “false negatives”, and
“true negatives”). Thus, the dimensions measured by each of these four metrics relate to concepts
already familiar to researchers, and arguably capture the key features of the methods’ behavior.
As we will see below, using these four different metrics is also key to understanding some of the
major differences between methods.

Diff is the sum of the absolute value of the entries in the matrix of the Difference between
the adjacency matrices of the true (T) and fitted (F) graphs; this is the square of the “usual”
Frobenius norm (Gentle, 2007) of that matrix difference, and is the same as the “graph edit
distance” of Hainke et al. (2012). The Proportion of False Discoveries (PFD) is defined as
# of relations in F but not in T

# of relations in F
. Following Gerstung et al. (2009, 2011), we define “relations” as

the transitive closure of “cover relations”. For instance, suppose a graph with A → B → C
(where A → B means that A needs to occur for B to occur); the cover relations are A → B and
B → C, but we also include A→ C in the relation. As in Gerstung et al. (2009, 2011), we do not
include the root node when finding cover relations and their transitive closure (in contrast to what
is done in the computation of Diff). The numerator is, therefore, the number of false positives (FP).
The Proportion of Negative Discoveries (PND) is defined as # of relations in T but not in F

# of relations in T
. The

False Positive Fraction (FPF) is defined as # of relations in F but not in T
# of relations not in T

. In both PND and FPF
the numerator is the number of false negatives (FN). Computation of # of relations not in T and
further details for all metrics are provided in the Supplementary Material.

2.7.2 Overall ranking of Filtering, Method, and Sampling scheme

To understand what combinations of Method, Filtering, and Sampling scheme are best, I ranked
them, averaging the ranks over (subsets of) the other factors (i.e., marginalizing over other factors).
As “best” can depend on metric, each metric has to be dealt separately. More precisely, for each
metric separately, I ranked the 36 combinations of Method by S.Time by S.Type (for the Drivers
Known scenario) or the 144 combinations of Filtering by Method by S.Time by S.Type (for the
Drivers Unknown scenario) in each of the 144 factor combinations defined by Graph by Model
by sh by S.Size. Thus, for each metric, there were 144 separate rankings (where we ranked 36
items in the Drivers Known scenario and 144 items in the Drivers Unknown scenario). Ranking
was done using the median (over the 20 replicates) of the metric. Then, for each metric, I obtained
the average rank over subsets of the 144 combinations and the averaged ranks were then ranked to
obtain the final rankings for each metric (e.g., Table 3 shows, on the left four columns, the ranked
average ranks over the 72 combinations of Number of Nodes by Model by sh by S.Size when
there are conjunctions and, on the right, the ranks over those 72 combinations when there are no
conjunctions). Similar to Narendra et al. (2011), because the maximum and minimum ranks may
differ between scenarios, the ranks were normalized before averaging.

This procedure does not take into account the repeated usage of the same data set for each of
the four/sixteen methods and, thus, would not be valid if we tried to estimate standard errors of
differences between, say, methods, but we are using it simply to rank alternatives. The advantage
of this procedure is that it provides an overall view of the results that is equivalent to examining
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all possible interactions of Filtering by Method by Sampling scheme, marginalizing over all other
terms, and this is done with a simple procedure that does not depend on additional modeling
assumptions. The disadvantage is that it does not allow us to judge the relative size of different
effects.

2.7.3 Best subsets of Method and Filtering: within-data set testing

As mentioned above, for each combination of Graph, Model, sh, S. Size, S. Time and S. Type, I
analyzed twenty replicate data sets, and each data set was subject to each Method or each Filtering
by Method combination (section 2.1). This design allows us to use paired tests within each among-
data set combination to compare each policy (where a policy is a Method in the Drivers Known
scenario or a Filtering by Method combination in the Drivers Unknown scenario) with the rest
of policies. Separately for each metric and for each of the 864 among-data set combinations, I
declared that policy i was better (had a smaller metric) than policy j if a paired Wilcoxon test
had, for the alternative hypothesis of i < j, a one-sided p-value < 1 − (1 − 0.05)(1/numcomps),
where numcomps is the number of comparisons, or the number of other policies each policy is
compared against. This procedure is a simple adaptation (to a paired Wilcoxon test) of the “subset
selection” procedures in the analysis of simulation experiments common in industrial settings
(e.g., p. 67 and ff. in Allen, 2011 or Goldsman and Nelson, 1998). For metrics Diff, PND, and
FPF, numcomps is always five in the Drivers Known case and 23 in the Drivers Unknown case;
for PFD sometimes fewer tests are performed if all 20 observations of a policy have missing values
(due to not making any discovery). After all pairs of combinations of policies had been compared,
for each policy I counted in how many cases it was significantly better than the other policies. The
subset of best policies is/are the policy(es) with the largest count. If there is a single policy with
that largest number of significant differences, the best subset will be composed of only one policy;
otherwise, the best subset will have more than one member (meaning that we cannot tell which
of those policies is better using this procedure). The best subsets for each of the 864 among-data
set combinations are shown in the supplementary file “best-subsets.pdf”. From these, we can then
find the frequency of the different best subsets for selected combinations of factors as shown in
Table 4 or 6. A detailed example of this procedure is provided in Supplementary Material Section
12.

2.7.4 Generalized linear modeling of performance metrics

The procedures in section 2.7.3 and 2.7.2 do not provide a direct way to compare the relative
magnitude of the effects of different factors. A direct approach to this problem is to use a statistical
model for each of the metrics. I used generalized linear mixed models (GLMM), where data set
was a random effect and the rest of the factors in the design were regarded as fixed effects. Diff
was modeled as a Poisson-distributed count, and PND, PFD, and FPF, were modeled as binomial
data. Some factors, specially Number of Nodes but possibly also Model, might be regarded as
random effects, but I modeled them as fixed effects since the number of different levels is too small
(but see Supplementary Material). Data for the Drivers Known and Drivers Unknown scenarios
were modeled separately. Models were fitted using INLA (Fong et al., 2010; Rue et al., 2009),
with the R package R-INLA, a Bayesian approach that uses nested Laplace approximation as an
alternative to Markov Chain Monte Carlo (MCMC). I run all models with two different priors
and for model validation I used the cross-validated probability integral transform (PIT) (Held
et al., 2010), and a simple comparison of fitted vs. observed values. In addition, I also fitted the
additive and two-way interaction models for Drivers Known scenario, and the additive model for
the Drivers Unknown scenario, using the R package MCMCglmm (Hadfield, 2010), using three
chains per model and variable; MCMCglmm differs from INLA not only on the use of MCMC
(vs. Laplace approximations) but also on the priors and in the inclusion of an observation-level
random effect. There were no relevant differences in results.

Models were fitted using sum-to-zero contrasts: each main effect parameter is to be interpreted
as the (marginal) deviation of that level from the overall mean, and the interaction parameter as the
deviation of the linear predictor of the cell mean (for that combination of levels) from the addition
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Method and sampling Conjunction No conjunction
Diff PFD PND FPF Diff PFD PND FPF

OT-A, last, singleC 1 2 14 10 1 3 2 15
OT-A, last, wholeT_0.5 2 1 15 12 2 4 3 14
OT-A, last, wholeT_0.01 3 3 7 22 3 6 1 22
OT-A, unif, singleC 4 6 19 13 4 9 12.5 9.5
OT, unif, singleC 5 5 20 11 5 7 12.5 9.5
OT-A, unif, wholeT_0.01 8 11 16 24 8 11 5 24
OT, last, singleC 10 9 23 1 10 1 17 2
OT, last, wholeT_0.01 11 4 18 18 12 5 14 18
OT, last, wholeT_0.5 12 7 24 2 11 2 23 1
CBN-A, unif, wholeT_0.01 13 13 1 26 13 13 4 26
CBN-A, unif, singleC 14 16 2 28 15 15 9 29
CBN-A, unif, wholeT_0.5 15 18 3 34 14 16 8 31
CBN, unif, singleC 16 17 5 29 17 19 10 34
CBN, unif, wholeT_0.01 17 14 4 27 18 14 6 27
DiP-A, unif, singleC 31 28 31 4 31 30 31 6
DiP, last, wholeT_0.5 33 35 34 5 34 34 36 5
DiP, unif, singleC 35 31 33 3 35 32 33 3
DiP, unif, wholeT_0.5 36 36 36 6 36 36 35 4

Table 3: Overall ranking of all 36 combinations of method and sampling when Drivers are Known with
respect to each performance metric. Methods have been ordered by their performance in the first metric.
Best 5 methods are shown in bold. Only methods that are within the best 5 in at least one metric are shown
(full table as well as tables split by S.Size are available from the Supplementary Material).

of the corresponding main effect parameters. As explained in the Supplementary Material, we
will focus on models with two-way interactions. We will refer to these analyses as the GLMM
fits. Further details of the statistical modeling and interpretation of coefficients are provided in the
Supplementary Material.

3 Results

We first examine the results when Drivers are Known. When the identity of drivers is not known
(Drivers Unknown), we need to add the step of filtering or selecting mutations before inferring the
restrictions.

3.1 Drivers Known

Figures with the median values for all metrics for all combinations of factors considered are pro-
vided in Supplementary Material Section 9.1, and examples of actual fitted graphs are provided
in Supplementary Material Section 10.1. There was wide variation in performance: under some
Models and with some Methods perfect results were achieved but, for those same Models and
S.Sizes, there were choices of Method and Sampling scheme that led to very large errors (e.g.,
PFD and PND of 0.7 to 0.9). This emphasizes that even for the easiest models and largest sample
sizes, careful choice of Method can be crucial. There was also a large difference in the number of
relations inferred (the transitive closure of the cover relations), whether correct or incorrect: the
mean values were 19.1, 18.5, 1.7, 2.6, 7.0 and 8.4 for CBN, CBN-A, DiP, DiP-A, OT, and OT-A,
respectively (complete data in Supplementary Material Section 9.1.1).
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S.Size(1000):Method(OT−A)

S.Size(1000):Method(OT)

S.Size(1000):Method(DiP−A)

S.Size(1000):Method(DiP)

S.Size(1000):Method(CBN−A)

S.Size(1000):Method(CBN)

S.Size(200):Method(DiP)

S.Size(100):Method(OT−A)

S.Size(100):Method(OT)

S.Size(100):Method(DiP−A)

S.Size(100):Method(DiP)

S.Size(100):Method(CBN−A)

S.Size(100):Method(CBN)

Method(OT):S.Type(wholeT_0.5)

Method(OT):S.Type(wholeT_0.01)

Method(OT):S.Type(singleC)

Method(OT−A):S.Type(wholeT_0.01)

Method(DiP):S.Type(wholeT_0.01)

Method(DiP):S.Type(singleC)

Method(DiP−A):S.Type(wholeT_0.5)

Method(DiP−A):S.Type(wholeT_0.01)

Method(CBN):S.Type(wholeT_0.5)

Method(CBN):S.Type(wholeT_0.01)

Method(CBN−A):S.Type(wholeT_0.5)

Method(CBN−A):S.Type(wholeT_0.01)

Method(CBN−A):S.Type(singleC)

Method(OT):S.Time(unif)

Method(OT):S.Time(last)

Method(OT−A):S.Time(unif)

Method(OT−A):S.Time(last)

Method(DiP−A):S.Time(unif)

Method(DiP−A):S.Time(last)

Method(CBN):S.Time(unif)

Method(CBN):S.Time(last)

Method(CBN−A):S.Time(unif)

Method(CBN−A):S.Time(last)

Method(OT−A):Conjunction(Yes)

Method(OT−A):Conjunction(No)

Method(CBN):Conjunction(Yes)

Method(CBN):Conjunction(No)

Method(CBN−A):Conjunction(Yes)

Method(CBN−A):Conjunction(No)

S.Type(wholeT_0.5)

S.Type(wholeT_0.01)

S.Type(singleC)

S.Time(unif)

S.Time(last)

S.Size(1000)

S.Size(200)

S.Size(100)

Method(OT−A)

Method(OT)

Method(DiP−A)

Method(DiP)

Method(CBN−A)

Method(CBN)

Conjunction(Yes)

Conjunction(No)

S.Size(1000):Method(OT−A)

S.Size(1000):Method(OT)

S.Size(1000):Method(DiP−A)

S.Size(1000):Method(DiP)

S.Size(1000):Method(CBN−A)

S.Size(1000):Method(CBN)

S.Size(200):Method(DiP)

S.Size(100):Method(OT−A)

S.Size(100):Method(OT)

S.Size(100):Method(DiP−A)

S.Size(100):Method(DiP)

S.Size(100):Method(CBN−A)

S.Size(100):Method(CBN)

Method(OT):S.Type(wholeT_0.5)

Method(OT):S.Type(wholeT_0.01)

Method(OT):S.Type(singleC)

Method(OT−A):S.Type(wholeT_0.01)

Method(DiP):S.Type(wholeT_0.01)

Method(DiP):S.Type(singleC)

Method(DiP−A):S.Type(wholeT_0.5)

Method(DiP−A):S.Type(wholeT_0.01)

Method(CBN):S.Type(wholeT_0.5)

Method(CBN):S.Type(wholeT_0.01)

Method(CBN−A):S.Type(wholeT_0.5)

Method(CBN−A):S.Type(wholeT_0.01)

Method(CBN−A):S.Type(singleC)

Method(OT):S.Time(unif)

Method(OT):S.Time(last)

Method(OT−A):S.Time(unif)

Method(OT−A):S.Time(last)

Method(DiP−A):S.Time(unif)

Method(DiP−A):S.Time(last)

Method(CBN):S.Time(unif)

Method(CBN):S.Time(last)

Method(CBN−A):S.Time(unif)

Method(CBN−A):S.Time(last)

Method(OT−A):Conjunction(Yes)

Method(OT−A):Conjunction(No)

Method(CBN):Conjunction(Yes)

Method(CBN):Conjunction(No)

Method(CBN−A):Conjunction(Yes)

Method(CBN−A):Conjunction(No)

S.Type(wholeT_0.5)

S.Type(wholeT_0.01)

S.Type(singleC)

S.Time(unif)

S.Time(last)

S.Size(1000)

S.Size(200)

S.Size(100)

Method(OT−A)

Method(OT)

Method(DiP−A)

Method(DiP)

Method(CBN−A)

Method(CBN)

Conjunction(Yes)

Conjunction(No)

S.Size(1000):Method(OT−A)

S.Size(1000):Method(OT)

S.Size(1000):Method(DiP−A)

S.Size(1000):Method(DiP)

S.Size(1000):Method(CBN−A)

S.Size(1000):Method(CBN)

S.Size(200):Method(DiP)

S.Size(100):Method(OT−A)

S.Size(100):Method(OT)

S.Size(100):Method(DiP−A)

S.Size(100):Method(DiP)

S.Size(100):Method(CBN−A)

S.Size(100):Method(CBN)

Method(OT):S.Type(wholeT_0.5)

Method(OT):S.Type(wholeT_0.01)

Method(OT):S.Type(singleC)

Method(OT−A):S.Type(wholeT_0.01)

Method(DiP):S.Type(wholeT_0.01)

Method(DiP):S.Type(singleC)

Method(DiP−A):S.Type(wholeT_0.5)

Method(DiP−A):S.Type(wholeT_0.01)
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Figure 2: Drivers Known, plot of the coefficients (posterior mean and 0.025 and 0.975 quantiles) for Con-
junction, Method, S.Time, S.Type and S.Size from the GLMMs for each of the metrics. X-axis labeled by
the exponential of the coefficient (i.e., relative change in the odds ratio or the scale of the Poisson parameter
for Diff): smaller (or lefter) is better. The vertical dashed line denotes no change relative to the overall mean
(the intercept). The x-axis has been scaled to make it symmetric (e.g., a ratio of 1.25 is the same distance
from the vertical line as a ratio of 1/1.25). Coefficients that correspond to a change larger than 25% (i.e.,
ratio > 1.25 or < 1/1.25) shown in larger red dots. The coefficients shown are only those that represent
a change larger than 25% for at least one metric, or coefficients that are marginal to those shown (e.g., any
main effect from an interaction that includes it).
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Figure 3: Drivers Known, plot of the coefficients Model, sh, Graph, and their interactions with all other
terms. See legend for Figure 2.
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Best subsets Conjunction No conjunction
Diff PFD PND FPF Diff PFD PND FPF

OT, OT-A 0.63 0.49 0.05 0.06 0.66 0.55 0.27 0.08
DiP, DiP-A, OT, OT-A 0.02 0.12 - 0.56 0.03 0.18 0.05 0.56
CBN, CBN-A 0.01 0.04 0.55 - - 0.01 0.27 0.01
DiP, DiP-A - 0.03 0.01 0.16 0.01 0.02 - 0.14
CBN, CBN-A, OT, OT-A 0.02 0.01 0.06 - 0.02 0.03 0.12 -
CBN-A 0.04 0.01 0.10 - - 0.01 0.03 0.01
CBN - 0.01 0.07 - - - 0.03 -
OT-A 0.16 0.09 0.07 - 0.15 0.03 0.14 -
OT 0.08 0.05 - 0.01 0.04 0.03 - -
DiP, OT - 0.04 - 0.08 0.01 0.06 - 0.07

Table 4: Frequencies of best subsets for all metrics when Drivers are Known. The table shows the frequency
of the most common best subset combinations. Combinations not shown have a frequency less than 0.05
for all columns. Frequencies normalized by column total (N = 432).

Table 3 shows the overall ranking of Method and Sampling scheme. OT and OT-A were the
best methods according to Diff and PFD. CBN and CBN-A were among the best methods accord-
ing to PND (in graphs with conjunctions) and DiP and DiP-A according to FPF. This is coherent
with the patterns of number of edges (number of dependency relations) inferred: CBN and CBN-A
inferred more edges and thus the number of false negatives (FN) decreased, so they had larger sen-
sitivity or recall. But this was done, however, at the cost of increasing the false positives and, thus,
increasing PFD and FPF: a larger fraction of the discoveries were false (precision was smaller) and
a larger fraction of the non-existing relationships were regarded as being present. DiP and DiP-A
showed the opposite trend: these were the methods that inferred the smallest number of relations
(in fact, in many cases no edges, beyond those from Root, were inferred), leading to a smaller
number of false positives (FP), so that a smaller fraction of non-existing relations are regarded as
being present, but this is done at the cost of a very large number of FN that affects not only PND,
but also Diff.

In Figure 2 we can see the coefficients from the GLMM fits: DiP and DiP-A only performed
well with respect to metric FPF, and CBN and CBN-A only with respect to metric PND. How-
ever, for metric PND the better performance of CBN/CBN-A compared to other methods was
concentrated in graphs with conjunctions. The left column for PND in Table 3 shows that the
best five methods were all CBN/CBN-A, but the right column for PND shows that OT-A occupies
the first three positions. The analysis of frequencies of best subsets, in Table 4, again reveals the
same patterns: OT and OT-A were clearly the best methods for metrics Diff and PFD, and were
best methods with DiP/DiP-A for metric FPF. CBN and CBN-A were in best subsets that do not
include either of the other methods in 55% of the cases for metric PND in graphs with conjunc-
tion. In the absence of conjunctions, however, the frequency of best subsets of CBN/CBN-A was
the same as that of OT/OT-A, and subsets that did not include CBN/CBN-A were more prevalent
than those that included CBN/CBN-A (and this association between subset and conjunction was
highly significant, p < 2.2e−16 from a chi-square test). That the best performance of OT/OT-A
in graphs with conjunctions cannot be perfect should be expected, and we should only see perfect
performance in these cases, if at all, with CBN/CBN-A or DiP/DiP-A. Two interesting extreme
cases (which also provide an internal consistency check) are graphs “7-A” and “11-A” (both have
conjunctions): perfect performance was achieved for the first with CBN-A and for the second with
DiP (S.Size = 1000, McF_6, sh Inf and 0, respectively —see Supplementary Figure 6). A simple
marginal plot is shown in Figure 4 which provides a view of the above results in a scale that is
directly interpretable, and which also illustrates the interaction Method by Conjunction that we
see in Figure 2. Conjunctions degraded performance for Diff for all methods, and were irrelevant
for FPF; for the other metrics their effect was method-dependent. OT and OT-A were better for
metrics Diff and PFD regardless of the presence/absence of conjunctions, and were essentially as
good as DiP/DiP-A for FPF. For PND, when there were conjunctions, CBN/CBN-A were the best
methods, but when there were no conjunctions OT-A was the best. Interestingly, for CBN/CBN-
A, PFD was smaller in the presence of conjunctions (an effect that we can also see in Figure 2),

15

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 3, 2014. ; https://doi.org/10.1101/005587doi: bioRxiv preprint 

https://doi.org/10.1101/005587
http://creativecommons.org/licenses/by/4.0/


a) Drivers Known

● ●

●
●

● ●
● ●

●
●

● ●

5

10

CBN CBN−A OT OT−A DiP DiP−A

Diff
● ●

● ●

● ●

● ●

● ●

● ●

0.1

0.2

0.3

0.4

0.5

CBN CBN−A OT OT−A DiP DiP−A

PFD

● ●
●

●

●
●

● ●

●
●

●
●

0.4

0.6

0.8

CBN CBN−A OT OT−A DiP DiP−A

PND
● ●

● ● ● ●

● ●

● ● ● ●
0.04

0.08

0.12

0.16

CBN CBN−A OT OT−A DiP DiP−A

Conjunction

●

●

No

Yes

FPF

b) Drivers Unknown

● ●

●
●

●
●

● ●

●
●

●
●

6

8

10

12

CBN CBN−A OT OT−A DiP DiP−A

Diff
●

●

● ●

● ●

●
●

● ●

● ●
0.3

0.4

0.5

0.6

CBN CBN−A OT OT−A DiP DiP−A

PFD

● ●
●

●

●
●● ● ●

●

●
●

0.6

0.7

0.8

0.9

CBN CBN−A OT OT−A DiP DiP−A

PND
●

●

●
●

● ●

●
●

●
●

● ●
0.001

0.002

0.003

CBN CBN−A OT OT−A DiP DiP−A

Conjunction

●

●

No

Yes

FPF

Figure 4: Mean of each of the metrics for the different combinations of Method and Conjunction in (a) the
Drivers Known and (b) the Drivers Unknown scenarios. Y-axis is in the scale of the variable (fractions for
PFD, PND, FPF and sum of differences for Diff). Each mean value shown is the mean of 8640 and 34560
values for the Drivers Known and Unknown, respectively.

probably due to the tendency of CBN/CBN-A to infer an excess of conjunctions (see figures of
reconstructed trees in Supplementary Material Section 10.1).

Figure 2, as well as Table 4 (full tables available in Supplementary Material Section 13.1)
and Table 3 (full tables in Supplementary Material Section 11.1) show that OT-A is generally
superior to OT, and similar but weaker patterns affect CBN and DiP. The magnitude of the differ-
ences between augmented and non-augmented alternatives, however, depended strongly on metric
and showed interactions with other effects (e.g., S.Time). If we focus on Diff with OT and DiP
there was little to loose from always using the augmented alternative, even if no mutation has a
frequency of one, but this was not the case with CBN (see Supplementary Table 38).

The effect of S.Time was marginally very small (Figure 2), and there were also small in-
teractions with method, which depended on metric (see also Supplementary Figure 48). These
differences in performance of each method with different S.Time in each metric can also be ob-
served in the overall ranking of methods (Table 3), as well as in the change in relative frequencies
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Figure 5: Mean number of each of the metrics in the Drivers Known scenario, for the different combinations
of Method and sh. Each value shown is the mean of 8640 values.
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Figure 6: Mean number of each of the metrics in the Drivers Known scenario, for the different combinations
of Model and sh. Each value shown is the mean of 12960 values.

of OT, OT-A and CBN in the frequencies of best subsets as a function of S.Time (see Supplemen-
tary Material Section 13.1). All of these interactions, however, were much smaller than the main
effect of Method and should rarely affect which method to choose.

Although the marginal effects of S.Type were generally small (and single cell sampling pro-
vided no benefit), overall it seems best to avoid whole tumor sampling with very small detection
thresholds. However, as with many other effects, this was reverted with PND. This result is in-
tuitively reasonable: whole tumor sampling at very low thresholds can lead to obtaining samples
where we observe together two low frequency events that rarely occur together in the same indi-
vidual clone (i.e., that do not correspond to a likely pattern as encoded in the graph of the onco-
genetic model), leading to the observation of possible artifacts, but also allowing the detection of
co-occurring events of very low frequency. The effects of S.Type were amplified by method (the
interaction of Method by S.Type in Figure 2), and this effect was strongly metric-dependent (see
also Supplementary Figure 50). The marginal effect of S.Size was as expected: larger sample size
led to better performance with all metrics. However, the effect in performance was small com-
pared to the effects of choosing a bad method or even the effects of S.Type and S.Time for some of
the metrics (or the effects of non user-controllable factors such as Model). Moreover, the effects
of increases in sample size depended on method and metric (see also Figure Supplementary Figure
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52): DiP/DiP-A were, comparatively, the methods that benefited the most from increasing S.Size
(except for FPF).

Regarding variables that are not under user control, Model and its interactions with other
factors had a strong effect on performance (see Figure 3). Overall, the McFarland models led to
better performance (see also Figure 7). The differences between evolutionary models explain the
interaction S.Time by Model. S.Time=uniform benefited especially McF_6 (whereas the opposite
trend was observed with Bozic and exp; see also Supplementary Figure 54). Due to the strong
density dependence of McF_6, if we sample at the end it will not be easy to observe intermediate
steps that involve only a few mutations, since the final population will be composed of clones with
around five to six driver mutations.

Model also showed interactions with Method, and Model determined the effects of sh (the
strength of enforcement of monotonicity) and affected its interaction with Method. Starting with
the interaction Model by Method, if we knew that the true model was McF_6, even when minimiz-
ing PND we should then choose OT-A (or even OT), not CBN or CBN-A; this can be seen from the
marginal results displayed in Figure 7 (or from the coefficients in Figure 3, or adding the relevant
coefficients from the model fit of PND in Supplementary Material Section 24.1). Conversely, for
PND, the performance of CBN/CBN-A is much more robust to evolutionary model variation.

Method and sh also showed interactions (see also Figure 5) and the performance of DiP and
DiP-A benefited particularly of sh=0, which contrasts with CBN/CBN-A and OT/OT-A (where
sh=Inf leads to better performance): all three families of procedures make allowance for deviations
from monotonicity, but the model behind DiP was able to deal with (or even be favored by) them
better. Finally, regarding the interaction Model by sh, from Figure 3 (see also Figure 6) we see that
with Bozic and exp, sh=0 consistently led to worse performance over the four metrics, but it had the
opposite effect on the McF models. This is understandable, since the McF models have very strong
density dependence of fitness: if the graph specifies A → B and a clone has B without A, even
if there is no explicit penalty via the birth rate (i.e., sh = 0), we will be unlikely to observe them,
since they will be under a severe relative disadvantage compared to clones with A and not B, and
under a much more severe disadvantage compared to clones with both A and B. Thus, even if sh =
0, the McF models by their very nature intrinsically incorporate a strong penalty for any mutation
order that does not strictly conform to that encoded in the graph. In other words, genes that can act
as drivers or passengers depending on genetic context are much less likely to be observed in their
passenger role in the McF models. As we can see, therefore, differences in evolutionary model can
modify how deviations from monotonicity affect the performance of different methods and these
results underline the importance of explicitly considering evolutionary model and deviations from
monotonicity.

Finally, Graph had an effect, which for some metrics could be large, and also presented large
interactions with Model, Method and S.Time for some metrics; these effects will not be examined
here further (although a specific one will be addressed in the discussion), but it is important to no-
tice that the graphs used in this study differ in many different ways that are not simply summarized
by the number of nodes (see Supplementary Figure 4).

3.2 Drivers Unknown

Many results here were similar to the ones in the previous section, so we will focus on the main
differences as well as the added factor of filtering. Overall, performance was worse when Drivers
were Unknown (the overall mean values for Diff, PFD, PND, and PFP were 9.2, 0.30 0.53, 0.06
when Drivers were Known, but 9.4, 0.41, 0.80, and 0.002 when Drivers were Unknown —FPF is
not comparable because of the way TN has to be calculated when Drivers are Unknown; see
Supplementary Material Section 7). As those number show, the main problem was the large
increase in PND, or failing to detect existing edges: see panels a) and b) of Figure 4 for a graphical
comparison. However, there were cases when performance was perfect or almost perfect for all
metrics (trees without conjunctions, with model McF_6, method OT-A, Dip-A, and occasionally
OT, and filtering S5 and rarely S1 or J1; see Supplementary Figure 9.2.2).
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Figure 7: Mean of each of the metrics for the different combinations of Method and Model in (a) the Drivers
Known and (b) the Drivers Unknown scenarios. Each mean value shown is the mean of 4320 and 17280
values for the Drivers Known and Unknown, respectively.

The marginal effect of Filtering (Figure 8) was as expected: more stringent filtering (J5) de-
creased FP and thus led to better performance for both PFD and FPF, but less stringent filtering
(S1) was better for missing fewer patterns, and thus led to better performance in PND (where J5
shows terrible performance); this pattern is also shown in Figure 10. A reasonable overall choice
is probably S5: it was the best filtering for the Diff metric, and did reasonably well for all the
other metrics. However, as we have already seen repeatedly, the choice of the best filtering is
metric-dependent, and if we wanted to maximize performance on each metric, S5 would only be
the best choice for the Diff metric, as we can also see from the overall ranking of methods (Table
5).
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One difference with the results when Drivers are Known was related to Method: here, OT/OT-
A were almost always better than CBN and CBN-A. This can be seen in Figure 8 —OT and OT-A
had much smaller coefficients for all metrics, except for OT under PND—, and comparing panels
a) and b) of Figure 4. The same pattern was seen in the overall ranking of methods (Table 5):
CBN/CBN-A were rarely among the best performers, not even with conjunctions and with metric
PND. Similar results were observed in the analysis of best subsets (Table 6): CBN/CBN-A were
rarely among best subsets, and when they were it was generally in best-subsets that included also
OT and OT-A, from which they could not be differentiated by the Wilcoxon tests. The results for
DiP and DiP-A were similar to the Drivers Known scenario: these methods led to the smallest
FPF, but did so at the cost of the other metrics. However, in this scenario DiP and DiP-A were
slightly better performers than CBN and CBN-A for Diff.

There are interactions of Filter by Method (see also Supplementary Figure 62), and their di-
rection and magnitude depend on metric, but these interactions are not large enough to revert our
preferences of methods. S.Type followed similar patterns as seen for the Drivers Known scenario,
although the effects were of larger magnitude, and its interactions with Method (see also Supple-
mentary Figure 51) or Filter (see also Supplementary Figure 63), even when present, produced no
change in the ordering of preferences of Filtering, Method, or S.Type. The effects of S.Size or its
interactions with Method (see also Supplementary Figure 53) were similar to those in the Drivers
Known scenario, although S.Size seemed to matter more for decreasing PFD when Drivers are
Unknown.

Other effects and interactions, however, were different with respect to the Drivers Known
scenario, illustrating that the need to filter passengers can lead to counterintuitive and much more
complicated interpretation of results. There was an interaction of Filter by Model: the best choice
of S5 vs. J5 for metrics Diff and PFD depends on the Model, as shown in Figure 10. Moreover,
we can see that the very poor results in metric FPF of model McF_6 are largely due to its terrible
results with Filter S1 (see also below). There was also an interaction Model by Method, and
OT/OT-A were now superior in all metrics (except FPF) not only overall, but also virtually for
every one of the four models, as we can see from panel b) in Figure 7.

The effect of S.Time for all metrics except Diff was reverted and had larger magnitude com-
pared to the Drivers Known scenario. The cause is that S.Time affected the number of genes
that were selected and thus the number of false positives (FP) and false negatives (FN). As seen
in panel (a) of Figure 11 (which also depicts interactions Filter*Model*S.Time), under S.Time
= uniform fewer genes were selected for all filtering methods (the number of genes selected is
independent of Method but depends on Filtering). Under uniform sampling many of the samples
have few mutations (those corresponding to the early history of the tumor), and thus fewer genes
are above the filtering thresholds. As fewer genes are selected under S.Time = uniform, the num-
ber of FP goes down, and thus both PFD and FPF showed a decrease in error (and the opposite
pattern was observed for PND). None of these phenomena were present when Drivers are Known,
because there was no filtering (or gene selection) step there. For Diff, however, the marginal effect
of S.Time=uniform was still slightly better than that of last-period sampling, as was when Drivers
are Known. These differences of the effect of S.Time between the Drivers Known and Drivers Un-
known scenarios explain also the differences in the patterns of interactions of Method by S.Time
(see also Supplementary Figure 49) and Model by S.Time (see also Supplementary Figure 55).

Two other differences with the Drivers Known scenario are the poor performance of model
McF_6 with metric FPF (see also above), and some of the interactions between Model and sh
in several metrics, and both probably are related by the filtering step. The poor performance
of McF_6 in FPF was not paralleled by a poor performance in PFD, which also has FN (false
negatives) in the numerator. Thus, per discovery made (i.e., for each relationship found by the
methods), McF_6 was actually the model that allowed achieving best results (the best PFD). But
the number of errors (FN) increased disproportionately with respect to the number of edges that
were not present (the denominator of FPF). Figure 11 (both panels) shows that, for all filtering
methods, McF_6 was the model that resulted in the largest number of genes selected: the strong
density dependence of McF_6, specially when S.Time = last, will tend to return samples where
most driver mutations are present in many samples. This increase in the number of genes selected
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can lead to inferring a larger number of relationships and, ultimately, to an increase in FP. This
would also explain that sh=0, specially with PFD and FPF, led to a large decrease in error rates.
Panel (b) of Figure 11 shows that, for all filtering procedures, sh=0 led to smaller number of genes
being selected with models Bozic and Exp (but had no effect on the McF models), and Bozic and
exp were the two models where sh=0 led to a larger relative improvement in performance in PFD
and FPF. Interestingly, the difference between the two levels of sh is more pronounced in S1, and
suggests that sh=Inf allows the accumulation of larger numbers of mutated genes that pass the less
stringent filters, but that have too little signal for the graph inference step (in contrast, sh=0 leads
to the accumulation of mutations with too low a frequency to even pass the filters). That sh should
have virtually no effect on number of genes in the McF models has been explained before. These
interactions, therefore, highlight the complex and counterintuitive relationships between Model,
sh, and Filtering, that then cascade onto the overall performance differences between Methods or
sampling schemes and times.
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Method and sampling Conjunction No conjunction
Diff PFD PND FPF Diff PFD PND FPF

S5, OT-A, last, singleC 1 7 15 60 1 13 13 60
S5, OT-A, last, wholeT_0.5 2 6 23 59 2 7 23 59
J5, OT-A, last, wholeT_0.01 3 1 26 71 4 2 29 74
S5, OT-A, last, wholeT_0.01 4 2 2 94 3 5 4 94
S5, OT-A, unif, wholeT_0.01 5 17 33 69 10 17 32.5 68.5
S5, OT, unif, singleC 6 41 61.5 28 9 38 55.5 20.5
S5, OT-A, unif, singleC 7 50 61.5 31 8 49 55.5 20.5
J1, OT-A, last, singleC 8 15 38 80 6 12 37 75
J1, OT-A, last, wholeT_0.5 9 10 39 79 7 6 39 71
S5, OT-A, unif, wholeT_0.5 10 47 67 29.5 14 45 60.5 27.5
S5, OT, unif, wholeT_0.01 11 11 34 68 11 10 32.5 68.5
J1, OT-A, last, wholeT_0.01 13 21 9 109 15 19 8 108
S1, OT-A, last, wholeT_0.5 18 39 3 117 5 27 3 116
S1, OT-A, last, singleC 21 38 4 120 12 32 2 120
S5, OT, last, singleC 23 16 51 21 20 8 42 19
S5, OT, last, wholeT_0.5 24 3 55 16 23 3 49 17
J1, OT, unif, wholeT_0.01 29 9 36 91 30 14 36 91
S5, CBN-A, unif, wholeT_0.01 30 4 37 89 40 20 40 103
J5, OT, last, wholeT_0.01 31 5 59 32 36 4 62 50
S1, OT-A, last, wholeT_0.01 36 48 1 134 24 50 1 134
S5, OT, last, wholeT_0.01 38 8 29 83 34 1 24 82
J1, OT, last, wholeT_0.5 47 14 89 61 38 9 83 43
J5, OT, last, singleC 48 35 101 4 58 43 109 4.5
J5, DiP-A, unif, singleC 49 125 139 10.5 51 128 138 9
J5, OT, last, wholeT_0.5 57 20 102 4 75 23 112 4.5
J5, DiP, unif, singleC 61 131 143 8 60 132 144 4.5
J5, DiP, unif, wholeT_0.5 64 144 144 4 64 144 143 4.5
J5, DiP, last, singleC 79 115 140 4 81 119 140 4.5
J5, DiP, last, wholeT_0.5 82 137 138 4 83 136 139 4.5
S5, DiP, last, wholeT_0.5 83 134 120 9 87 130 110 10
J1, DiP, last, wholeT_0.5 91 132 134 4 89 134 134 4.5
J1, DiP, last, singleC 92 110 135 4 93 115 132 4.5
S1, OT-A, unif, wholeT_0.01 102 65 5 136 70 59 5 136
S1, OT, unif, wholeT_0.01 109 62 6 135 74 55 6 135
S1, CBN-A, unif, wholeT_0.01 137 82 7 143 140 81 7 143
S1, CBN-A, last, wholeT_0.01 142 93 10 137 139 94 12 137
S1, CBN, unif, wholeT_0.01 143 84 8 144 143 90 9 144

Table 5: Overall ranking of all 144 combinations of method, filtering, and sampling when Drivers are
Unknown with respect to each performance metric. Methods have been ordered by their performance in the
first metric. Best 10 methods are shown in bold. Only methods that are within the best 10 in at least one
metric are shown (full table as well as tables split by S.Size are available from the Supplementary Material).

22

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 3, 2014. ; https://doi.org/10.1101/005587doi: bioRxiv preprint 

https://doi.org/10.1101/005587
http://creativecommons.org/licenses/by/4.0/


Best subsets Conjunction No conjunction
Diff PFD PND FPF Diff PFD PND FPF

S1:OT-A, S5:OT-A 0.01 - 0.07 - 0.01 - 0.08 -
S1:OT, S1:OT-A 0.10 0.10 0.23 - 0.13 0.11 0.35 -
S1:OT-A 0.02 - 0.06 - 0.02 - 0.06 -
S5:OT-A 0.07 - - - 0.09 - - -
S5:OT 0.06 - - - 0.05 - - -
S5:OT, S5:OT-A 0.20 0.05 - - 0.22 0.07 - -
S5:DiP, S5:DiP-A, S5:OT, S5:OT-A 0.06 - - - 0.07 - - -
S1:OT, S1:OT-A, S5:OT, S5:OT-A 0.01 - 0.03 - 0.03 - 0.07 -
J5:DiP, J5:DiP-A, J5:OT, J5:OT-A - 0.01 - 0.06 - - - 0.05
J5:OT, J5:OT-A, S5:OT, S5:OT-A - 0.06 - - 0.01 0.04 - -
S1:CBN, S1:CBN-A, S1:OT, S1:OT-A - - 0.18 - - - 0.12 -

Table 6: Frequencies of best subsets for all metrics when Drivers are Unknown. The table shows the
frequency of the most common best subset combinations. Combinations not shown have a frequency less
than 0.05 for all columns or are composed of more than 10 individual best methods. Frequencies normalized
by column total (N = 432). ’A:B’ denotes filtering with A and using method B.
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Figure 8: Drivers Unknown, plot of the coefficients for Conjunction, Filtering, Method, S.Time, S.Type and
S.Size from generalized linear models. See legend for Figure 2.24
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Figure 9: Drivers Unknown, plot of the coefficients Model, sh, Graph, and their interactions with all other
terms. See legend for Figure 2.
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Figure 11: Mean number of genes selected for the different combinations of Model and Filter by S.Time
(panel (a)) or sh (panel (b)). Different symbol shapes identify the number of true nodes (NumNodes) of the
true graph. Note that the number of genes selected is a function of Filtering, not Method. Each value shown
is the mean of 720 values.

4 Discussion

This paper presents a comprehensive study that has examined, for the first time, the effects of sam-
pling decisions, evolutionary models, and the presence of passenger mutations in the performance
of methods for the inference of restrictions in the accumulation of mutations.

From the point of view of a user of these methods with available cross-sectional data, the main
results can be summarized as follows:

1. Method and sampling choice should be guided by the metric considered most important:
no combination of Method, Filtering, and Sampling scheme excels in all metrics. This is
not unexpected, but it is worth emphasizing that each metric is sensitive to a different kind
of deviation, and the results here show that characterizing behavior with only one or two
metrics could have been deceptive. Moreover, as we have seen, the relative strengths of
each method are better captured using these different metrics.
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2. In terms of method choice, a very simple summary is (see also figures with examples of
fitted graphs in Supplementary Material Section 10): CBN tends to return graphs with too
many edges, including too many conjunctions, DiP tends to return graphs with too few
edges between non-root nodes, and OT does a good overall job even though it will fail, by
construction, to return any conjunction. In more detail, OT and OT-A are the best methods,
except if we are particularly interested in minimizing PND (when we might want to consider
CBN) or FPF (when we might want to consider DiProg). Since it is impossible for OT to
return any conjunction, further research on computationally efficient methods to recover
conjunctions is sorely needed.

3. Using frequency-based statistics when we do not know which mutations are true passen-
gers can lead to a heavy performance penalty. In addition, having to filter genes makes it
much harder to intuitively understand, and reason about, what is likely to happen in any
scenario, and this in turns makes interpretation of results and reconciliation of output from
different methods much harder. Thus, it probably pays off to try to use other approaches
that incorporate information about non-silent mutation rates, pathway information together
with combinatorial properties of drivers in pathwayws, or functional consequences of mu-
tations to differentiate drivers from passengers (e.g., Fischer et al., 2011; Khurana et al.,
2013; Leiserson et al., 2013; Vandin et al., 2012; Watson et al., 2013; Youn and Simon,
2011). It might not always be possible to use these other methods. If we need to rely on
frequency-based approaches, selecting those mutations with a frequency larger than 5% is
an overall reasonable choice (but not the single best choice for any metric other than Diff).

4. Sampling time and type, by themselves, had minor effects compared to, say, filtering or
method choice (and we will rarely have control over these factors when we use data already
available in databases). However, we might have information about characteristics of the
tumor which indicate that it is in an exponential (the Bozic or exp models) or logistic-like
growth (the McF models) phase; sampling as late as possible is to be preferred for the first
cases, whereas trying to obtain samples distributed over different stages of the disease is
best in the second. The best choice of sampling time, however, will depend on metric and
whether or not we are certain about which are the driver genes.

5. Single cell sampling is about as good as whole tumor sampling, unless we use whole tu-
mor sample with extremely small detection thresholds (which leads to poorer performance,
except for metric PND).

6. Although with S. Size the larger the better, its effect is relatively minor for OT and CBN
(not so for DiP), a result that agrees with those in Hainke et al. (2012), specially for some
metrics; in particular, resources might be better spent trying to be certain about the identity
of the true drivers than increasing sample size from 100 to 1000.

7. Data augmentation (Section 2.6.1) is not always the right choice, although with OT and
DiP there is little to loose from always using data augmentation but potentially a lot to
loose from not using the augmentation approach (see Supplementary Material Section 25).
Unfortunately, simple rules of thumb like “always use data augmentation when at least one
gene has a frequency of 1, and never otherwise” do not work well, especially across all
methods, and appropriate choice warrants further study.

Most of the above results cannot be compared to any other studies, since those factors have
not been considered before. Both Desper et al. (1999) and Szabo and Boucher (2008) provide
estimates of the sample sizes needed to have high probability of recovering the true tree (tree in
their case, since they deal with oncogenetic trees); they conclude that very good reconstructions
are achievable with realistic sample sizes, and we have seen that, at least under several scenarios,
it is possible to obtain perfect reconstructions even with sample sizes as small as 100.

The results concerning the superiority of OT with respect to CBN contrast with those of Hainke
et al. (2012), who find that CBN outperforms OT. A more detailed discussion is provided in Sup-
plementary Material Section 26, but these differences are attributable to Hainke et al. (2012)
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basing their conclusion on a single graph with a small number of nodes for each scenario. Sup-
plementary Figure 67 shows the within-data set difference in the Diff metric between CBN and
OT separately for the different combinations of Model, sh, Graph, and Sampling scheme (under
the Drivers Known scenario only, since Hainke et al., 2012 do not consider passengers): OT sys-
tematically outperformed CBN except for Graph 7A when sampling last (under all models except
McF_6), and Graph 7B when sampling last under the Bozic and exponential models. This pat-
tern was reproduced when I fitted the OT models with the Rtreemix package (Bogojeska, 2014;
see Supplementary Figure 68). The single tree (or graph) used by Hainke et al. (2012) for the
non-conjunction case (their Figure A1) contains five nodes, and the single graph they use for the
conjunctive case contains four nodes (their Figure A7), a very small number of nodes compared to
the trees that are seen on the literature (see section “True graphs, number of drivers, and number
of passengers”). Our graphs 7A and 7B, those where CBN outperformed OT in certain scenarios,
are the closest in number of nodes to the graphs in Hainke et al. (2012).

Given that the results of Hainke et al. (2012) are, thus, probably not really contradictory with
ours, is the recommendation that practitioners generally use OT instead of CBN still valid? Prob-
ably yes, since most graphs in the literature (including studies involving citogenetic bands and
genes) contain many more than four or five nodes, and we cannot be sure if the evolutionary
model is one that would favor using CBN. In addition, we have focused only on the comparison
between CBN and OT, since those are the only variants used in Hainke et al. (2012): if we in-
cluded OT-A in the comparison, CBN (or CBN-A) are then very rarely better alternatives (see,
e.g., the second supplementary file with the complete list of best subsets or Supplementary Figure
69). However, this apparent difference in results emphasizes the need for considering at least a
few different scenarios with regards to potentially key variables, and suggests that a through ex-
amination of the impact of graph characteristics (and its interaction with evolutionary model and
sampling scheme) on method performance is warranted.

This paper is also one of the first to explicitly connect evolutionary models with restrictions
on the order of mutations. Reiter et al. (2013) have recently published a simulation tool where
restrictions are incorporated into the evolutionary model of Bozic et al. (2010) via what they call
“path fitness landscape”; our approach is more general as they are restricted to one evolutionary
model, only four drivers, and no passengers whereas, in addition to passengers and other evolu-
tionary models, we can specify these landscapes using arbitrary graphs and allowing for a range of
deviations from monotonicity. In fact, one of the attractive features of OTs, CBNs, and Progres-
sion Networks is their mechanistic interpretation as graphs that encode restrictions in the order in
which driver mutations can accumulate (e.g., Desper et al., 1999; Farahani and Lagergren, 2013;
Hainke et al., 2012; Szabo and Boucher, 2008). And one major result of this paper is that infer-
ring those restrictions can be strongly affected by evolutionary model (including deviations from
monotonicity) and sampling scheme, and that the relative effect of these factors depends on the
metric used. Yet restrictions on the order of driver mutations and evolutionary models are virtually
always examined separately.

There is a rich literature about tumor progression models that focuses on the consequences of
drivers, passengers, and variation in selection pressures (e.g., Beerenwinkel et al., 2007a; Bozic
et al., 2010; Datta et al., 2013; Durrett et al., 2010, 2011; McFarland et al., 2013), and a largely
separate body of work (e.g., see Desper et al., 1999; Gerstung et al., 2009; Hainke et al., 2012;
Radmacher et al., 2001; Simon et al., 2000; Szabo and Boucher, 2002, 2008; Youn and Simon,
2012) that deals with understanding the restrictions and order of accumulation of mutations (but
see Gerstung et al., 2011 for a connection between the λi of CBNs and selection coefficients, in the
context of the Fisher-Wright model of tumor progression in Beerenwinkel et al., 2007a). The work
of Cheng et al. (2012) (see also Attolini et al., 2010) tries to infer the order of mutations within a
explicit evolutionary model of tumor progression (a Moran model in their case); unfortunately, no
software is available, and thus comparisons are not possible.

Focusing on methods with available software, the actual values (and, thus, interpretation) of
the conditional probabilities inferred by OTs or the λi parameter for the waiting time to event
i, in CBNs will be a complex interplay between the restrictions encoded in the graphs and the
details of the tumor progression model as well as the sampling scheme used. In fact, our way
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of incorporating the restrictions of the graph models into the tumor growth models when sh =
Inf (i.e., when monotonicity is strictly enforced so that we fully comply with the restrictions
of the graph) leads to data that conform to timed oncogenetic trees in the sense of Desper et al.
(1999); Szabo and Boucher (2008). But in both OTs and CBNs we should expect estimated λs
and conditional probabilities to vary by node level or depth (where level or depth refers here to
how many edges there are in the path to the root): deeper nodes will show smaller values and, for
a given depth, λs/conditional probabilities should be larger for those nodes than “unlock” more
downwards mutations. The strength of this effect will increase with the number of nodes along the
largest path along the graph, especially when the evolutionary model and sampling scheme result
in strong selection for clones with many drivers, and we should see competition between multiple
nodes that descend from the same parent.

As an example of the impact of evolutionary model and sampling scheme on the observable
consequences of the restrictions encoded in the graphs, figures in Supplementary Material Section
27 show fitted oncogenetic trees for each of the three trees, under several scenarios. For example,
Supplementary Figure 76 shows fitted oncogenetic trees for 11-B with a sample size of 26000 (to
minimize sampling variation; see also Supplementary Material Section 27 for other sample sizes
and graphs). The fitted trees are perfect, or almost perfect, reconstructions of the topology of the
true tree (compare with Supplementary Figure 2), but the estimates of the conditional probabilities
show large differences. The variations are in directions we would expect both between S.Time
and among models, as well as among nodes (similar patterns can be seen for Tree 11 under whole
tumor sampling and for Trees 9 and 7; see Supplementary Material Section 27). Even if the
above results are intuitively reasonable, they highlight that whereas the topologies of the graphs
(the partial orders) encode constraints in the order of mutations, the conditional probabilities (or
λs) we estimate and, most importantly, the patterns of co-occurrence of mutations and the sets of
clones we observe, will depend crucially on the evolutionary model and sampling scheme. Since
the topology reconstructions depend on the patterns observed, it follows that our inferences will be
strongly impacted by evolutionary model (and sampling scheme), as we have seen repeatedly in the
results. Moreover, examining the consequences of sampling scheme (S.Time and S.Type) and the
detrimental effects of having to separate drivers from passengers on the quality of our inferences,
can only be meaningfully considered with respect to an evolutionary tumor progression model that
generates the data.

As mentioned in the Introduction, the above interaction between order restrictions and evolu-
tionary model, and the unavoidable need to interpret parameters in the context of a given evolution-
ary model, are coherent with the limitations pointed out by Sprouffske et al. (2011): that oncoge-
netic tree models (and related models) are not really evolutionary models and do not represent an-
cestral relationships, but only summarize patterns of co-occurrences of mutations across samples.
Virtually all studies of methods for inferring order restrictions are susceptible to this criticism,
since they simulate data directly from the generative (but non-evolutionary) OT/CBN/Progression
network model. However, the design I have used here completely overcomes this limitation: I
have simulated the data using plausible evolutionary models that incorporate the restrictions en-
coded in the topology of the graphs via a straightforward effect on the fitness of clones. Moreover,
deviations from monotonicity are not added to the model just as an unexplained error term, but are
an integral part of the evolutionary model that can be related, for instance, to the genetic context-
dependence of the driver/passenger status.

Sprouffske et al. (2011) conclude that cross-sectional data can be misleading if we try to infer
the order of mutations. But this conclusion is based on a design where a single OT is fitted to a
cross-sectional sample where mutations are not restricted to obey a pre-specified set of restrictions.
Thus, it is not surprising that the OT fit does not do well. The results of Sprouffske et al. (2011)
of course highlight that if different subjects have different sets of order restrictions, then no single
OT will capture these patterns, a limitation that is already recognized in the early literature on
ongenetic trees (e.g., Desper et al., 1999; Radmacher et al., 2001), and that has prompted the
development of mixtures of oncogenetic trees (e.g. Beerenwinkel et al., 2005; Bogojeska et al.,
2008b; Tofigh et al., 2011). But, by themselves, their results do not show that OTs (or CBNs or
DiPs) from cross-sectional data cannot fare well if there is a true underlying set of restrictions
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that can be represented as a single graph. Quite to the contrary, I have shown here, embedding
the restrictions in evolutionary models, that they can do very well and even recover the exact
underlying graph (at least under certain scenarios). Moreover, Sprouffske et al. (2011) do not
show that any particular within-subject method is actually capable of recovering the true paths
from their data (they sidestep that problem altogether).

The key questions to be answered regarding the usage of cross-sectional data, then, are two:
1) whether the accumulation of mutations in cancer progression can be reasonably represented
by a single graph that encapsulates restrictions; 2) if 1) does not hold, whether cross-sectional
methods such as mixtures of oncogenetic trees can recover the set of different restrictions. If the
answer to 1) is positive, the results of this paper indicate that we have methods that can (at least
partially) recover those relationships, and these results also highlight possible avenues to improve
them. But question 1) is one that neither this study nor the one of Sprouffske et al. (2011) can
answer (I simulated data assuming a Yes to that question and Sprouffske et al., 2011 assuming
a No). Question 2) remains to be thoroughly addressed, and neither this paper nor Sprouffske
et al., 2011 shed light on the matter. If the answer is negative, then we need to start focusing
on within-individual data, which are much harder to obtain. Nevertheless, the approaches in this
paper provide a principled and general way to address that question by simulating data under
scenarios were there is no single set of restrictions in common to all subjects, and examining the
consequences both for our methods of inferring trajectories and for the data patterns themselves
(so as to try to infer, from them, whether or not there is a single set of restrictions).
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