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Abstract

Modification of gene regulation has long been considered an important force in human evolution, partic-
ularly through changes to cis-regulatory elements (CREs) that function in transcriptional regulation. For
decades, however, the study of cis-regulatory evolution was severely limited by the available data. New
data sets describing the locations of CREs and genetic variation within and between species have now made
it possible to study CRE evolution much more directly on a genome-wide scale. Here, we review recent re-
search on the evolution of CREs in humans based on large-scale genomic data sets. We consider inferences
based on primate divergence, human polymorphism, and combinations of divergence and polymorphism.
We then consider “new frontiers” in this field stemming from recent research on transcriptional regulation.
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Introduction1

The chimpanzee has long presented a conundrum for human geneticists. The orthologous proteins of2

humans and chimpanzees are more than 99.5% identical [1], yet the two species differ profoundly across3

a broad spectrum of apparently unrelated phenotypes. This evident paradox led King and Wilson to spec-4

ulate, famously, that differences in gene regulation, rather than protein-coding sequences, might primarily5

explain differences in physiology and behavior between humans and chimpanzees [2] (see also [3, 4]). This6

proposal—while bold—in a sense grew naturally out of Jacob and Monod’s research over a decade earlier7

establishing that the “program” for gene regulation was, in large part, written in DNA [5]. For, as Jacob8

and Monod themselves recognized [6], if regulatory programs were encoded in the genome, then they were9

subject to modification by mutation and natural selection, just as protein structure was.10

These early conjectures about regulatory evolution were alluring, but for a long time they remained frus-11

tratingly abstract and unsubstantiated. In those days, few details could be provided about precisely which12

regulatory sequences changed, how much, and with what effect. During the ensuing decades, however,13

indirect evidence and anecdotal examples began to accumulate in support of the idea that cis-regulatory14

elements (CREs) associated with transcriptional regulation played a particularly central role in regulatory15

evolution [7–9]. (For the purposes of this article, CREs are regulatory sequences relatively near their target16

gene, typically no more than about a megabase from the transcription unit; we will focus on CREs involved17

in transcription.) Nevertheless, direct, large-scale support for the prominence of CREs in the evolution of18

form and function was lacking, and these claims remained controversial [10].19

During the past few years, it has finally become possible to examine the evolution of CREs directly20

on a genome-wide scale, owing to the availability of genomic data describing both genetic variation and21
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regulatory elements. This review will cover major developments over the past decade in the study of human22

CREs and their role in human evolution, with a particular focus on studies that have leveraged the large23

public data sets released over the past 2–3 years. Along the way, we will discuss various challenges that24

arise in the interpretation of these data sets. We will end with a brief survey of new developments in the25

study of transcriptional regulation that have the potential to enrich studies of human evolution.26

The Old Wave: Studies Based on Interspecies Divergence27

A central principle of molecular evolution holds that inferences about natural selection can be made by28

comparing rates of nucleotide substitution in sites of functional importance with those at sites expected to29

have little or no influence on fitness. This principle is based on the expectation that mutations will occur at30

approximately equal rates in both functional and nonfunctional sites, but natural selection will alter the rates31

at which derived alleles reach fixation in functional sites (Figure 1). This idea has been applied for decades32

to protein-coding sequences, where amino acid altering (nonsynonymous) and non-altering (synonymous)33

substitutions provide convenenient classes to contrast [11–13].34

The sequencing of the chimpanzee genome [1] enabled analogous methods to be applied genome-wide35

to putative CREs in hominids. For example, Keightley et al. examined sequences in upstream regions and36

first introns of genes and contrasted them with other intronic sequences assumed to be neutrally evolving37

[14]. They found that putative regulatory sequences showed almost no evidence of constraint in hominids,38

but were significantly constrained in mouse and rat. Finding no signs of positive selection, they argued that39

regulatory sequences in hominids had experienced “widespread degradation” due to their reduced effective40

population sizes (see also [1, 15, 16]). Soon afterward, Khaitovich et al. analyzed human-chimpanzee41

divergence patterns in promoter regions together with data on mRNA expression. Interestingly, they found42

that human-chimpanzee divergence in gene expression (normalized for intraspecies diversity) was much43

more pronounced in the testis than in the brain or several other tissues, possibly reflecting positive selection44

due to differences in mating strategies. They did find an excess of lineage-specific changes in expression of45

brain genes in human relative to chimpanzee.46

Haygood and colleagues improved on the statistical methology of previous studies by developing a47

phylogenetic likelihood ratio test analogous to those used for protein-coding sequences [17, 18] for lineage-48

specific elevations in substitution rates in promoter regions [19] (see Figure 1C). Based on alignments of49

the human, chimpanzee, and rhesus macaque genome sequences, Haygood et al. found evidence of positive50

selection acting on the promoters of at least 250 genes. High-scoring genes were significantly enriched51

for roles in neural development and function, nutrition, and metabolism, suggesting an important role for52

CREs in human cognitive, behavioral, and dietary adaptations. Another series of studies, based on similar53

statistical methods, tested conserved noncoding sequences for “accelerated” evolution in humans [20–23].54

The first large-scale study of primate evolution to make use of newly emerging chromatin immunopre-55

cipitation and microarray (ChIP-chip) data for TF binding was carried out by Gaffney and colleagues [24].56

The authors collected ChIP-chip data from seven previously published studies, and then analyzed patterns57

of divergence at bound sites in the human, chimpanzee, and rhesus macaque genomes, comparing the reg-58

ulatory sequences with “control” regions. They also considered transcription factor binding sites (TFBSs)59

recorded in the TRANSFAC database. Using a simple divergence-based estimator, they predicted that about60

37% of mutations in TFBSs were deleterious, about half the fraction estimated for 0-fold nonsynonymous61

sites in coding sequences.62
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The New Wave: Studies Based on Intraspecies Polymorphism63

Divergence-based analyses, while informative, are fundamentally limited by the relatively long evolu-64

tionary time periods associated with the accumulation of fixed differences between species. Irregularities65

in the evolutionary process during these periods—for example, due to changes in the locations or bound-66

aries of CREs, or changes in selective pressures—can weaken the signal of natural selection, causing its67

influence to be underestimated. This problem can be mitigated by working instead with data describing68

genetic variation within a single species [25]. Intraspecies polymorphism provides a window into much69

more recent evolutionary processes, on the time scale of genealogies of individuals rather than species phy-70

logenies (for humans, roughly 1M years or less), during which the evolutionary process is likely to be more71

homogeneous. It has been demonstrated at numerous individual loci that patterns of human polymorphism72

can reveal the influence of natural selection on CREs [26–29].73

Several groups have recently used this approach in genome-wide analyses of CREs, taking advantage74

of the abundant high-quality human polymorphism data now available. Because polymorphisms are sparse75

along the genome, these groups have generally pooled data across many similar loci. For example, Mu76

and colleagues examined human polymorphism data from the 1000 Genomes Project in various classes of77

coding and noncoding elements, including ChIP-seq-supported TFBSs [30]. The authors found that TFBSs78

were significantly constrained, but less so than coding sequences. Negative selection dominated in their79

tests, with no sign of pervasive positive selection. They observed stronger constraint in bound than in80

unbound TFBSs, in TFBSs proximal to transcription start sites (TSSs) than in ones distal to TSSs, and in81

TFBSs with strong rather than weak ChIP-seq signals. The related work of Khurana et al. further showed82

that mutations that decrease the matching score of a motif were enriched for rare alleles compared to ones83

that did not [31]. However, Khurana and colleagues found evidence of contributions from positive selection84

as well as negative selection in several types of regulatory elements, including DNase-I hypersensitive sites85

(DHSs) and sequence-specific TFBSs.86

In another analysis of 1000 Genomes data, Ward and Kellis examined mean SNP density, heterozy-87

gosity, and derived allele frequency in various noncoding regions identified as having “biochemical ac-88

tivity” by the Encyclopedia of DNA Elements (ENCODE) project [32]. They observed significant con-89

straint in putative regulatory regions identified by a wide variety of experimental assays. Interestingly,90

they found such evidence both for regions that were conserved across mammalian species and ones that91

were nonconserved, suggesting that a substantial fraction of functional noncoding elements reside outside92

of mammalian-conserved regions. In a similar study, Vernot et al. analyzed 53 high coverage individual93

genome sequences in more than 700 motifs within DHSs from 138 cell and tissue types, finding that many94

of these motifs were signficantly constrained [33].95

A separate line of research has considered patterns of nucleotide diversity in flanking sequences of96

noncoding regions conserved across mammals, which are likely enriched for CREs [34–37]. These studies97

have come to conflicting conclusions, with some arguing for a prominent role for hitchhiking (HH) from98

positively selected sites in regulatory elements [34, 37], and others maintaining that the observed patterns99

are more consistent with background selection (BGS) from negative selection [35, 36]. More work is needed100

to resolve this controversy over the relative roles of positive and negative selection in shaping CREs.101

A Fusion of the Old and the New: Joint Consideration of Divergence and Polymorphism102

Population genomic data, too, has limitations when used as the sole source of information about natural103

selection. As noted above, it can be difficult to distinguish between positive and negative selection based on104
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patterns of polymorphism alone (both forces reduce diversity; see Figure 1). Another major challenge is ac-105

counting for the effects of population bottlenecks, expansions, and other demographic processes, which can106

profoundly influence allele frequencies even in the absence of natural selection [38]. These problems can be107

alleviated by jointly considering intraspecies polymorphism and divergence from a neighboring species, an108

idea that has been used for decades in the analysis of protein-coding genes [39–41]. Classical approaches109

of this kind, such as the McDonald-Kreitman (MK) test [40], compare relative rates of polymorphism and110

divergence in putatively functional and nonfunctional (typically, nonsynonymous and synonymous) classes111

of sites. Under neutral drift, fixation should occur randomly for both classes of sites, causing the ratios of112

polymorphisms and fixed differences to be approximately equal. Departures from this neutral expectation113

provide information about natural selection (Figure 1).114

An early attempt at a joint analysis of polymorphism and divergence of CREs, by Torgerson and col-115

leagues, examined conserved noncoding regions flanking more than 15,000 protein-coding genes, using116

polymorphism data from 15 African Americans and 20 European Americans as well as the chimpanzee117

genome [42]. The authors made use of an extension of the MK test that permits estimation of selection co-118

efficients [43], adapting it for use with noncoding sequences. Consistent with previous analyses, they found119

clear evidence of purifying selection in these regions. In addition, they found a significant excess of fixed120

differences relative to polymorphic sites, indicating positive selection on at least some CREs. In the study121

discussed above [24], Gaffney and colleagues also made limited use of polymorphism data, attempting to122

compute the fraction of fixed differences driven by positive selection (α) in CREs using a simple estimator123

based on the MK framework (see [41]). In contrast to Torgerson et al., they found no significant evidence124

of positive selection on CREs, but their power appeared to be quite weak.125

Arbiza and colleagues attempted to address previous limitations in both models and data in a large-126

scale analysis of TFBSs based on ChIP-seq data from the ENCODE project [44]. Using a new probabilistic127

model and inference method called INSIGHT, the authors analyzed 1.4 million binding sites from 78 TFs,128

together with genetic variation data from the human, chimpanzee, orangutan, and rhesus macaque genome129

sequences, and 54 high-coverage human genome sequences. They found strong evidence of both positive130

and negative selection in TFBSs, with somewhat more positive selection, more weak negative selection,131

and less strong negative selection than in protein-coding genes. The authors estimated that, overall, there132

have been at least as many adaptive substitutions in CREs as in protein-coding genes since the human-133

chimpanzee divergence, consistent with King and Wilson’s conjecture almost forty years earlier.134

Another interesting observation from this study was that regulatory regions exhibited a large excess135

of weakly deleterious segregating mutations compared with protein-coding genes, suggesting considerable136

genetic load associated with gene regulation. This finding is concordant with a recent analysis of genetic137

association data, which found that regulation-associated DNase-I hypersensitivity sites accounted for al-138

most 80% of the heritability for 11 common diseases [45]. Together, these findings suggest that a shift139

toward weaker negative selection in CREs may somewhat paradoxically result in an enrichment for heri-140

table disease-causing segregating variants, because these variants are less efficiently eliminated by natural141

selection than those in protein-coding genes.142

The Next Frontier143

Most studies of cis-regulatory evolution in humans, including all of those discussed so far, have as-144

sumed that binding sites maintain stable positions at orthologous genomic locations over evolutionary time,145

and that fitness effects can be measured by patterns of variation at individual nucleotide positions. In re-146

ality, however, natural selection acts on nucleotides in TFBSs only indirectly, through the effects of those147

nucleotides on transcriptional output. These effects, in turn, occur through a complex and incompletely148
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understood set of physical interactions involving multiple TFs and cofactors, the core transcriptional ma-149

chinery, the DNA sequence, the local chromatin, and the surrounding aqueous environment [46, 47] (see150

Figure 2). Recognizing the full complexity of transcriptional regulation will be essential for a complete151

understanding of its evolution in humans and other species.152

Biophysical Models of Binding-Site Evolution153

A pioneering series of papers by Lässig and colleagues began to explore this complex intersection154

of biophysics and evolution using models that treated the free energy of TF binding to DNA as a quan-155

titative phenotype, which served as the basis of an explicit fitness landscape. Evolutionary trajectories156

over this landscape were then considered [48–51] (see also [52]). Despite assuming an additive model157

for nucleotide-specific binding energies, the authors obtained highly nonlinear fitness landscapes, reflecting158

epistasis between regulatory nucleotides. In both prokaryotes and yeast, they found evidence for widespread159

compensatory mutations and relatively frequent gain and loss of binding sites.160

Following these observations, Moses developed statistical tests for natural selection in terms of changes161

in predicted binding affinity resulting from single nucleotide changes under standard position-weight-matrix162

(PWM) models of binding [53]. Another study showed that evolutionary events tended to preserve binding163

affinity in Drosophila [54]. More recently, Bullaughey studied the evolution of enhancers by combining a164

thermodynamic sequence-to-expression model [55] with a Gaussian expression-to-fitness model [56]. His165

simulation study suggested strong interdependencies between nucleotides and an important role for neutral166

substitutions in changes to the functional organization of enhancers. Finally, in an analysis of well character-167

ized cis-regulatory modules in Drosophila, He et al. found bulk evidence for positive selection contributing168

to both gain and loss of binding sites and for purifying selection maintaining existing TFBSs [57].169

Another recent series of papers has focused on the development of improved biophysical models of TF170

binding to DNA, generally without consideration of evolution. A full review of this literature is outside the171

scope of the present article, but examples include models that consider combinatorial interactions among172

TFs [58–62], nucleosome positioning and/or chromatin accessibility [63–66], and the three-dimensional173

structure of DNA binding sites [67] (see [47] for a related review). More work is needed to consider174

the evolutionary implications of biophysical models of this type, but it seems likely that inferences of the175

distribution of fitness effects of regulatory mutations in humans will change significantly when richer, more176

realistic models of binding site structure and function are considered.177

Improved Characterizations of Binding Affinity178

Even the sophisticated biophysical models discussed in the previous section have tended to maintain the179

assumption of additive contributions of individual nucleotides to TF binding affinity, corresponding to an180

assumption of site independence in statistical motif models [68, 69]. This assumption appears to be adequate181

for most TFs, but numerous violations have been observed [70–72]. Nevertheless, statistical methods that182

attempt to recover the full correlation structure of TF binding preferences from sequences [71, 73, 74] have183

not been widely adopted.184

These challenges have led to intense interest in harnessing high-throughput genomic technologies to185

produce direct measurements of binding affinity for all possible binding sites and large numbers of TFs.186

Widely variable strategies have been employed, including microwell-based assays [75, 76], protein-binding187

microarrays [67, 77–79], mechanically induced trapping of molecular interactions (MITOMI) [80], high-188

throughput systematic evolution of ligands by exponential enrichment (SELEX), [81–83], and, most re-189

cently, adaptation of the Illumina sequencing platform to directly measure binding affinities of proteins to190

DNA [84] (see [85] for a review as of 2010). In addition to finding further evidence of positional inter-191

dependence [79, 83, 84, 86, 87], studies based on these techniques have revealed, among other features,192
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unexpected dimeric modes of binding [82], numerous TFs that recognize multiple sequence motifs [79],193

and important influences of sequences flanking core binding sites owing to their effects on DNA shape194

[67, 83]. However, the rich models of binding affinity enabled by these powerful technologies have yet to195

be integrated into evolutionary models.196

Evolutionary Turnover of Cis-Regulatory Elements197

As alluded to in the previous section, there is strong evidence that individual CREs in many species,198

including humans, are gained and lost over time, a phenomenon known generally as “turnover” [88–90].199

Turnover of CREs has been extensively studied over the past decade [56, 57, 91–98] but, overall, it remains200

poorly understood. For example, it is still unclear how frequently turnover occurs overall, how much it201

varies across species, TFs, and genomic contexts, how commonly gains and losses are compensatory, and202

how all of these processes impact inferences of selection. Recent studies that make use of high-throughput203

functional genomic techniques applied uniformly across species [99, 100] have helped to shed additional204

light on turnover of CREs, but these studies also have limitations. For example, it is not clear how many of205

the assayed binding events directly influence gene expression, what role false negatives and false positives206

play in apparent differences, and in some cases sample sizes have been insufficient to distinguish within-207

species variation from between-species divergence. In our view, it will be essential to develop improved208

methods for integrating evolutionary and biophysical models with large-scale functional genomic data, to209

develop a more complete understanding of the complex processes by which CREs evolve.210
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[39] Hudson RR, Kreitman M, Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics

1987;116:153–9.
[40] McDonald JH, Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature 1991;351:652–4.
[41] Smith NG, Eyre-Walker A. Adaptive protein evolution in Drosophila. Nature 2002;415:1022–4.
[42] Torgerson DG, Boyko AR, Hernandez RD, Indap A, Hu X, White TJ, et al. Evolutionary processes acting on candidate

cis-regulatory regions in humans inferred from patterns of polymorphism and divergence. PLoS Genet 2009;5:e1000592.
[43] Bustamante CD, Nielsen R, Sawyer SA, Olsen KM, Purugganan MD, Hartl DL. The cost of inbreeding in Arabidopsis.

Nature 2002;416:531–4.
[44] Arbiza L, Gronau I, Aksoy BA, Hubisz MJ, Gulko B, Keinan A, et al. Genome-wide inference of natural selection on

7

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 28, 2014. ; https://doi.org/10.1101/005652doi: bioRxiv preprint 

https://doi.org/10.1101/005652


human transcription factor binding sites. Nat Genet 2013;45(7):723–9.
[45] Gusev A, Lee SH, Neale BM, Trynka G, Vilhjalmsson BJ, Finucane H, et al. Regulatory variants explain much more heri-

tability than coding variants across 11 common diseases. bioRxiv 2014;URL: http://dx.doi.org/10.1101/004309.
[46] Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M, Rockman MV, et al. The evolution of transcriptional regulation in

eukaryotes. Mol Biol Evol 2003;20(9):1377–419.
[47] Siggers T, Gordan R. Protein-DNA binding: complexities and multi-protein codes. Nucleic Acids Res 2014;42(4):2099–

111.
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Figure Legends

Figure 1: (A) Frequency as a function of time for hypothetical mutations experiencing neutral drift (gray),
weak negative (green), strong negative (blue), or positive (orange) selection. The plot assumes a new mu-
tation occurs in a single individual in the population at time 0. Neutral drift typically causes mutations
to be lost (lower gray fork) but occasionally drives them to fixation (upper gray fork). Negative selection
essentially guarantees eventual loss, but if it is sufficiently weak (green plot), mutations may segregate at
low frequencies for some time. Positive selection (orange plot) causes mutations to reach fixation at higher
rates than neutral drift. Notice that the time until fixation or loss is substantially reduced for mutations un-
der strong selection (positive or negative), implying that they are unlikely to be observed in a polymorphic
state. (B) Steady-state numbers of invariant sites, low frequency (derived allele) polymorphisms, high fre-
quency polymorphisms, and fixed differences under neutral drift, expressed as hypothetical percentages of
nucleotide sites. These represent equilibrium frequencies for the process depicted in panel (A) for a given
divergence time, assuming a steady flow of new mutations. Positive selection (orange arrows) increases
fixed differences, reduces invariant sites, and reduces polymorphisms. Strong negative selection (blue ar-
rows) reduces fixed differences and polymorphisms and increases invariant sites. Weak negative selection
(green arrows) is similar but allows some low frequency polymorphisms to remain. (C) Phylogenies with
branch lengths proportional to rates at which fixed differences occur along lineages. Positive or negative se-
lection can be identified by significant increases or decreases, respectively, in the fixation rates relative to the
neutral expectation. Different likelihood ratio tests can identify lineage-specific or recurrent/homogeneous
selective pressures. (D) Scatter plot of polymorphism vs. divergence rates under neutral drift, generated
by simulations based on parameters reflecting real human populations [44] (black points). Colored points
show hypothetical positions of sequences under positive (orange), strong negative (blue), and weak nega-
tive (green) selection. Notice that positive and negative selection are distinguishable by their joint effects on
polymorphism and divergence rates, but not by polymorphism rates alone. (E) 2× 2 contingency table used
for McDonald-Kreitman (MK) test for selection on a cis-regulatory element (CRE). The test evaluates the
probability of the observed data under the null hypothesis that the relative polymorphism and divergence
counts are independent of the labels “neutral” and “CRE”. The classes of sites are chosen to be similar
to one another to avoid potential biases from mutation rate variation and demography. Rejection of the
null hypothesis therefore implies a departure from the neutral expectation of equal fixation rates. Note the
connections with the visual representations used in panels (B) and (D). The MK test can be thought of as
comparing the relative heights of the first bar and the next two bars combined in panel (B), for neutral vs.
CRE sites (see arrows). It can also be thought of as testing for extreme departures from a diagonal line in
panel (D) running through the neutral points from bottom left to top right. In this case, the counts reflect an
excess of fixed differences in the CRE, suggesting positive selection. Notice that strong negative selection
is not a problem for the MK test, because it reduces the effective mutation rate, but weak negative selection
can bias the test by partially canceling the effects of positive selection.

Figure 2: Some of the many factors that may influence the evolution of cis-regulatory elements.
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