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Abstract 
Background 
INDELs, especially those disrupting protein-coding regions of the genome, have been 

associated with human diseases. However, there are still many errors with INDEL variant 

calling, driven by library preparation, sequencing biases, and algorithm artifacts. We 

have recently developed a new INDEL-calling algorithm, Scalpel, with substantially 

improved accuracy. 

Results  

We characterized whole genome sequencing (WGS), whole exome sequencing (WES), 

and PCR-free sequencing data from the same samples to investigate false-positive and 

false-negative INDEL errors. We developed a classification scheme utilizing validation 

data to define a class of low-quality INDELs with ~2.7-fold higher error rates than high-

quality INDELs. The mean concordance of INDEL detection between WGS and WES 

data was ~52%, while WGS data uniquely identified ~10.8-fold more high-quality 

INDELs. Concordance of INDEL detection between standard	
  and PCR-free sequencing 

data was ~71%, while PCR-free data uniquely yielded ~6.3-fold fewer low-quality 

INDELs. We demonstrate that these INDEL errors are significantly reduced with a PCR-

free library protocol, implying that these errors are introduced with PCR amplification. 

We calculated that 60X WGS data from the HiSeq 2000 platform are needed to recover 

~95% of INDELs, much higher than that for SNP detection. Accurate detection of 

heterozygous INDELs requires ~1.2-fold higher coverage than that for homozygous 

INDELs. 
 

Conclusions 

Homopolymer A/T INDELs are a major source of low quality and/or uncertain INDEL 

calls, and these are highly enriched in the WES data. We recommend WGS for human 

genomes at 60X mean coverage with PCR-free protocols, which can substantially 

improve the quality of personal genomes. 

 

Keywords: INDEL, whole genome sequencing, exome sequencing, homopolymers, short 

tandem repeats, PCR amplification, personal genomes.  
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Background 
With the increasing use of next-generation sequencing (NGS), there is growing interest 

from physicians, patients and consumers to better understand the underlying genetic 

contributions to various conditions. For rare diseases and cancer studies, there has been 

increasing success with exome/genome sequencing in identifying mutations that have a 

large effect size for particular phenotypes [1, 2]. Some groups have been trying to 

implement genomic approaches to interpret disease status and inform preventive 

medicine [3-6]. However, we are still facing practical challenges for both analytic 

validity and clinical utility of genomic medicine [7-9]. In addition, the genetic 

architecture behind most human disease remains unresolved [10-15]. Some have argued 

that we should bring higher standards to human-genetics research in order to return 

results and/or reduce false-positive reports of “causality” without rigorous standards [16, 

17]. Others have reported that analytic validity for WES and WGS is still a major issue, 

because the accuracy and reliability of sequencing and bioinformatics analysis is too low 

for a clinical setting [8, 9, 18-20]. 

 

There is also debate whether we should use whole genome sequencing (WGS) or whole 

exome sequencing (WES) for personal genomes. Some have argued that a first-tier cost-

effective WES is a powerful way to dissect the genetic basis of diseases and to facilitate 

the accurate diagnosis of individuals with Mendelian disorders [21, 22]. Others argue that 

WGS could reveal structural variants (SVs), maintain a more uniform coverage, and is 

free of exome capture efficiency issues [23, 24]. One group directly compared WGS with 

WES, but investigation of INDEL errors was not the focus of this comparison [19, 20]. 

Substantial genetic variation involving INDELs in the human genome has been 

previously reported but accurate INDEL calling is still difficult [25-27]. There has been a 

dramatic decrease of sequencing cost over the past few years, and this cost might 

decrease further with the release of the Illumina HiSeq X Ten sequencers which have 

capacity for nearly twenty thousand whole human genomes per instrument per year. 

However, it is still unclear whether we can achieve a high-accuracy personal genome 
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with a mean coverage of 30X from the Illumina HiSeq X Ten sequencers. In addition, 

there has been controversy on the use of PCR amplification in the library preparations for 

NGS, although very few have characterized the PCR errors that might be complicating 

the detection of insertions and deletions (INDELs). 

 

Previously our group reported low concordance rates of multiple variant calling pipelines, 

and of all INDELs detected by GATK Unified Genotyper (v1.5), SOAPindel (v1.0) and 

SAMtools (v0.1.18), only 26.8% were in the intersection [8]. Some groups also reported 

low concordance rates for INDELs between different sequencing platforms, further 

showing the difficulties of accurate INDEL calling [17]. Other efforts have been made to 

understand the sources of variant calling errors [28]. Common INDEL issues, such as 

realignment errors, errors near perfect repeat regions, and an incomplete reference 

genome have caused problems for alignment-based callers [29]. De novo assembly using 

de Brujin graphs has been reported to tackle some of these limitations [30]. Fortunately, 

with the optimizations of micro-assembly, these errors have been reduced with a novel 

algorithm, Scalpel, which outperformed any other INDEL callers available. Based on 

validation data, positive prediction rate (PPV) of algorithm specific INDELs was high for 

Scalpel (~80%), but much lower for GATK HaplotypeCaller (v3.0) (~45%) and SOAP-

indel (v2.01) (~50%) [31].  

 

Thus, we set out to investigate the complexities of INDEL detection on Illumina reads 

using this most accurate INDEL-calling algorithm. Firstly, we used simulation data to 

understand the limits of how coverage affects INDEL calling with perfect Illumina-like 

reads. Secondly, we analyzed a dataset including high coverage WGS and WES data 

from two quad families (mother, father and two children), in addition to extensive high-

depth validation data on an in-house sample, K8101-49685s. In order to further 

understand the effects of PCR amplification on INDEL calling, we also downloaded and 

analyzed two WGS datasets prepared with and without PCR from the well-known 

HapMap sample NA12878. We characterized the data in terms of read depth, coverage 

uniformity, base-pair composition pattern, GC contents and other sequencing features, in 
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order to partition and quantify the INDEL errors. We were able to simultaneously 

identify both the false-positives and false-negatives of INDEL calling, which should be 

useful for population-scale experiments. We notice that homopolymer A/T INDELs are a 

major source of low quality INDELs and multiple signatures. As more and more groups 

start to use these new micro-assembly based algorithms, practical considerations for 

experimental design should be introduced to the community. Lastly, we explicitly address 

the question concerning the necessary depth of coverage for accurate INDEL calling for 

WGS. This provides important insights and guidelines to achieve a highly accurate 

INDEL call set and to improve the sequencing quality of personal genomes. 
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Results and discussion 

Simulated data: Comparisons with sub-alignments 
We started our study with the following question: how does depth of sequencing 

coverage affect INDEL calling? Thus, we simulated reads with known error rates across 

the genome to answer this question. Supplemental Figure S1A shows that better coverage 

improves sensitivity of detecting both general INDELs (i.e. any size starting from 1bp) 

and large INDELs (i.e. size greater than 5bp). For general INDEL detection, the increase 

of mean coverage effectively increased sensitivity although it seemed to saturate after a 

mean coverage of 28X. Furthermore, for large INDELs, the increase of sensitivity did not 

saturate until reaching a mean coverage of 42X. We also noticed that detection of large 

INDELs was uniformly more difficult than general INDELs. To achieve a sensitivity of 

90%, a mean coverage of 30X was required for general INDEL detection while 90X was 

needed to detect large INDELs at a similar sensitivity. This showed that much higher 

coverage is needed for large INDEL detection, especially to maintain coverage across the 

INDEL and to have enough partially mapping or soft-clipped reads to use for the micro-

assembly. However, the false discovery rates (FDR) remained almost the same as the 

mean coverage increased for general INDEL detection.  Furthermore, for the detection of 

large INDELs, the FDRs marginally decreased as the mean coverage increased from 5X 

to 28X, and remained basically the same again from 33X to 93X (Supplemental Figure 

S1B). This indicates that for large INDELs, insufficient coverage results in more 

assembly errors, which results in a higher error rate for micro-assembly variant calling. 

Based on the simulation data, one would need at least a mean coverage of 30X to 

maintain a reasonable FDR for micro-assembly based INDEL callers. However, since 

these results were based on simulation data, which does not include the effects of any 

sequencing artifacts on INDEL calling, these values establish the upper bound of 

accuracy and performance compared to genuine sequence data. 
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WGS vs. WES: Low concordance on INDEL calling 
We analyzed a dataset including high coverage WGS and WES data from eight samples. 

The mean INDEL concordance over eight samples between WGS and WES data using 

exact-match and position-match was 53%±0.8% and 55%±0.9%, respectively (Figure 1). 

Position-match means two INDELs have the same genomic coordinate, while exact-

match additionally requires that two INDELs also have the same base-pair change(s) 

(Methods). When we excluded regions with less than one read in either dataset, the mean 

concordance rates based on exact match and position-match increased to 62%±1.1% and 

66%±1.0%, respectively. If we excluded regions with base coverage in either dataset with 

less than 20, 40, 60, or 80 reads, the mean concordance rate based on exact-match and 

position-match both continued to increase until reaching a base coverage of 80 reads 

(Table 1). This showed that some INDELs were missing in either dataset because of low 

sequencing efficiency in those regions. Although WES data had higher mean coverage 

than WGS data, we were surprised to see that in regions requiring at least 80 reads, there 

was only 4%±1.5% of INDEL specific to WES but 21%±3.2% specific to WGS. Regions 

with excessive coverage might indicate problems of sequencing or library preparation 

and this highlights the importance of coverage uniformity in WGS. Based on exact-

match, the proportion of the WGS-specific INDELs was 34%±1.4%, which was ~2.5-fold 

higher than the proportion of WES-specific INDELs (14%±1.2%). This ratio was even 

higher based on position-match (~3-fold). Reasons for this could be either high 

sensitivity of INDEL detection with WGS data or high specificity of INDEL detection 

with WES data. We will further illustrate this in the downstream analysis.  
 

Coverage distributions of different regions in WGS and WES data 

We define the proportion of a region covered with at least X reads to be the coverage 

fraction at X reads for this region. Comparisons of the coverage distributions are shown 

in the following order: 1) Exonic targeted regions, i.e. the exons that exome capture kit 

was designed to pull down and enrich; 2) High confidence INDEL regions, i.e. the 

regions where WGS and WES revealed the identical INDELs based on exact-match; 3) 

WGS-specific INDEL regions, i.e. the regions where only WGS revealed INDELs based 

on position-match; 4) WES-specific INDEL regions, i.e. the regions where only WES 

revealed INDELs based on position-match. 
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In the exonic targeted regions, the mean coverages across eight samples were 71X±3.3X 

and 337X±18.2X for WGS and WES data, respectively (Figure 2). The coverage 

fractions at 20X were 98%±0.2% and 75%±0.1% in WGS and WES data, respectively. 

We noticed that there was a capture efficiency issue with WES in some regions, as the 

coverage fraction at 1X was 99.9%±0.08% in WGS data but only 84%±1.1% in WES 

data, indicating that ~16% of the exonic targeted regions were not captured for 

sequencing. In the high confidence INDEL regions, the mean coverage across eight 

samples were 58X±3.4X and 252X±7.0X for WGS and WES data, respectively (Figure 

3). The coverage fractions at 20X were 96%±1.1% and 97%±0.3% in WGS and WES 

data, respectively. We noticed that there was a significant increase of coverage 

uniformity for WES in the high confidence INDEL regions, relative to the exonic 

targeted regions. This increase was even more significant when we looked at the 

coverage fractions at 50X, which were 58%±6.0% and 86%±0.7% in WGS and WES 

data, respectively. This suggested that WGS was able to reveal high confidence INDELs 

at a much lower coverage and a better uniformity across the genome, relative to WES. 

Depth coverage distributions were skewed in the WES data, with some regions poorly 

covered and other regions over saturated with redudant reads. 

 

However, in WGS-specific INDEL regions, the mean coverages across eight samples 

were 61X±2.9X and 137X±12.1X for WGS and WES data, respectively (Figure 4). 

Compared to the targeted regions, the mean coverage for WES data was significantly 

reduced in these regions. The coverage fractions at 1X were 99.9%±0.03% and 

56%±0.3% in WGS and WES data, respectively. The difference became even larger for 

coverage fractions at 20X: 94%±1.4% for WGS and 31%±2.1% for WES data. The 

reason why WES data missed these INDELs could be: ~44% of these regions in WES 

data were not covered at all and ~69% were covered with fewer than 20 reads. 

Furthermore, in WES-specific INDELs regions, the mean coverages across eight samples 

were 41X±5.2X and 172X±10.0X for WGS and WES data, respectively (Figure 5). The 

coverage fractions at 20X were 87%±6.1% and 96%±1.0% in WGS and WES data, 
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respectively. We noticed in these regions, the depth coverage of WGS data was 

significantly lower than WES data because the coverage fractions at 50X decreased to 

29%±9.4%, while it was 79%±3.3% for WES data. It was difficult to directly understand 

the issues with these regions, so we used the high confidence INDEL set as a positive 

control and proceeded to assess each call set with newly developed quality criteria. 
 

Assessment of the INDEL calls sets from WGS and WES 

Based on previous validation data, we selected three combinations of thresholds to define 

the calling quality of an INDEL call as either high, moderate or low quality based on the 

following two metrics: the coverage of the alternative allele and the k-mer Chi-Square 

score of an INDEL (Methods). Using these criteria, 89% of the high confidence INDELs 

were considered as high quality, 9% as moderate quality, and only 2% as low quality 

(Figure 6, Supplemental Table S1). We noticed a similar pattern for WGS-specific 

INDELs: 78% were of high quality, 15% as moderate quality, and only 7% as low 

quality. However, for WES-specific INDELs, there was a striking enrichment of low 

quality events (41%), additionally with a ~4.1-fold decrease of the high quality events 

(22%). Notably, among these 8 samples. there were 991 WGS-specific INDELs and 326 

WES-specific INDELs, and from these, 769 of WGS-specific INDELs and 71 of the 

WES-specific INDELs were of high quality. This comparison suggested that WGS 

yielded ~10.8-fold more high quality INDELs than WES. Futhermore, WES produced 

133 low quality INDELs per sample, while WGS only produced 71 low quality INDELs 

per sample. That being said, WES yielded ~1.9-fold more low quality INDELs. This 

indicates WES tends to produce a larger fraction of error-prone INDELs, while WGS 

reveals a more sensitive and specific set of INDELs. 

 

In order to understand what was driving the error rates in different data sets, we 

partitioned the INDELs by the following six regions: homopolymer A (poly-A), 

homopolymer C (poly-C), homopolymer G (poly-G), homopolymer T (poly-T), short 

tandem repeats (STRs) except homopolymers (other STRs), and non-STRs. We noticed 

that for the high quality events, the majority of the high confidence INDELs (70%±1.2%) 

and WGS-specific INDELs (67%±1.1%) were within non-STRs regions (Figure 7). 
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Further, a majority of the high quality INDELs specific to WES were within poly-A 

(24%±3.0%) and poly-T regions (30%±3.5%). When we compared the low quality 

INDELs to the high quality INDELs, there were consistent enrichment of homopolymer 

A or T (poly-A/T) INDELs in all three call sets, ~2.3-fold for high confidence events, 

~2.1-fold for WGS-specific events, and ~1.5-fold for WES-specific events. The WES-

specific call set contained a much higher proportion (83%±4.8%) of Poly-A/T INDELs 

from the low-quality INDELs, relative to the high confidence call set (44%±16.8%), and 

the WGS-specific call set (45%±9.0%). This suggested that poly-A/T is a major 

contributor to the low quality INDELs, which gives rise to much more INDEL errors. We 

explored this further by a comparison of PCR-free and standard PCR-involved WGS data 

below. 
 

Sources of multiple signatures in WGS and WES data 

Another way of understanding INDEL errors is to look at multiple signatures at the same 

genomic location. Multiple signatures means that for the same genomic location, there 

are more than one INDELs called. If we assume only one signature can be the true 

INDEL in the genome, any additional signatures would represent false-positive calls. So 

if we have a higher number of multiple signatures, it means that these reads contained 

more INDEL errors or the algorithm tends to make more mistakes in these regions. We 

combined the call sets from both datasets and identified multiple signatures in the union 

for each sample. In order to understand the error behaviors in the above assessment, we 

also partitioned the signatures by the same regional criteria. We noticed that the poly-A/T 

INDELs are the major source of multiple signatures, which are enriched in WES data 

(72%±7.4% for WES vs. 54%±9.3% for WGS) (Figure 8). In particular, there are a 

higher number of both poly-A (35±5.9 vs. 25±5.7) and poly-T (36±5.3 vs. 16±4.0) 

INDEL errors in the WES data than in the WGS data.  

 

We tried to understand the source of multiple signatures by the numbers of reads 

containing homopolymer INDELs inferred by the CIGAR code (Figure 9). Figure 9 

showed that there is a much higher proportion of poly-A/T INDELs in the WES-specific 

regions from both WGS (56%±7.5%) and WES data (64%±5.8%), relative to other 
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regions. In addition, WES data has ~6.3-fold more reads than WGS data in the regions 

with INDELs specific to WES data (11251 vs. 1775, Supplemental Table S2). According 

to Qualimap, a large number of homopolymer indels might indicate a problem in 

sequencing for that region. Here we particularly identified the effects of these 

problematic sequencing reads on INDEL calling, which revealed more multiple 

signatures of poly-A/T INDELs. 
 

Applications of using filtering criteria to reduce false positive de novo INDELs 

Supplemental Table S3 shows the probabilities of seeing more than K INDELs from one 

of the 343 families reported in Iossifov et al. 2012 [32]. Scalpel has a de novo analysis 

mode; it could re-assemble each region associated with the candidate INDELs across the 

family members using a more sensitive parameter setting. This setting was indeed more 

sensitive for detecting de novo INDELs than single-sample calling. Due to this, we used 

the following more rigorous filtering criteria than the above assessment to exclude any 

spurious false-positive de novo INDELs: coverage of the alternative allele >10 and Chi-

Square score <4. Supplemental Table S4 showed the number of putative de novo 

INDELs in two families before and after applying this filtering criteria. All of the 

putative events in the two families were successfully excluded, which was consistent with 

the validated results in the variant database reported by Iossifov et al. 2012 [32]. We 

noticed that, in both families, the majority of these false-positive de novo INDELs were 

poly-A/T relevant (91% for WGS, 78% for WES), which was consistent with the above 

assessment. This suggested that if we used very sensitive callers, we should control for 

poly-A/T false-positive de novo INDELs by applying a more rigorous filtering criteria, 

especially in population-scale sequencing projects, where there is substantial expense 

with experimental validation.  
 

Validation of INDELs in WGS and WES data on the sample K8101-49685s 

We previously selected ~1400 INDELs called with multiple variant callers from the WES 

data on the sample K8101-49685s. 453 of those were called by Scalpel with this WES 

data and 372 of them were validated [31]. In this study, we called the INDELs with 

Scalpel again but from the WGS data on this sample.  The WGS data revealed 324 out of 

these 453 INDELs (72%). This sensitivity at 30X is consistent with what we predict in 
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the later discussion (75% at 30X). Among those, 286 INDELs were validated and 38 

INDELs were invalid according to the validation experiment. This showed that 43 (53%) 

of these false-positive INDELs were not called from the WGS data and thus specific to 

the WES data. The error rate of INDELS from the WGS data based on the validation 

subset was 12%, which was the same as the high quality INDELs discussed above. 

Furthermore, 126 of those 453 INDELs were specific to the WES data and 43 failed to 

pass the validation. The error rate of INDELs specific to the WES data is 34%, which 

was almost the same as the low quality INDELs discussed above. This validation data 

showed that the high confidence INDELs called by both data-types were indeed of high 

quality and low error rate, even though this WGS data was with a mean coverage of 30X. 

There is ~2.8-fold higher error rate for INDELs specific to the WES data, suggesting that 

INDELs specific to the WES data in fact are of low quality.  
 

PCR-involved vs. PCR-free: assessment of INDELs calling quality 

The concordance rate between PCR-involved and PCR-free data on NA12878 using 

exact-match and position-match were 71% and 76%, respectively (Figure 10). These 

concordance rates were higher than those between WGS and WES, even for regions 

having at least one read in both datasets. Based on exact-match, the proportion of 

INDELs specific to PCR-involved data was 18%, which is ~1.6-fold higher than the 

proportion of INDELs specific to PCR-free data (11%). This ratio was similar based on 

position-match (~1.7-fold). Like previous assessments, we classified the three call sets 

with respects to calling quality. We again used the high confidence INDEL call set as a 

positive control. Figure 11 shows that 89% of the high confidence INDELs are 

considered as high quality, 9% as moderate quality, and only 2% as low quality. 

However, for INDELs specific to PCR-involved data, there is a large proportion of low 

quality events (61%), and a very limited proportion are of high quality (7%). There were 

on average 310 INDELs specific to PCR-free data and 538 INDELs specific to PCR-

involved data. Notably, 177 of the PCR-free-specific INDELs and 40 of the PCR-

involved-specific INDELs were of high quality, suggesting that in these specific regions, 

PCR-free data yielded ~4.4-fold more high quality INDELs than PCR-involved data. 

Furthermore, 326 of the PCR-involved-specific INDELs were of low quality, while in the 
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PCR-free-specific call set, 52 INDELs were of low quality. That being said, in regions 

specific to data types, PCR-involved data yielded ~6.3-fold more low quality INDELs. 

Consistent with the comparisons between WGS and WES data, this suggested PCR 

amplification induced a large number of error-prone INDELs to the library, and we could 

effectively increase INDEL calling quality by reducing the rate of PCR amplification. 

 

To understand the behaviors of errors in the poly-A/T regions, we partitioned the INDEL 

call set by the same six regions again. We noticed that for the high quality events, a 

majority of the high confidence INDELs (68%) were within non-STRs regions (Figure 

12). The proportion of poly-A/T INDELs was small for the high confidence call set 

(20%), larger for PCR-free-specific call set (35%), and even larger for PCR-involved-

specific call set (51%). This was similar to the WGS and WES comparisons because 

there would be more poly-A/T INDELs when a higher rate of PCR amplification was 

performed. A majority of the high quality INDELs specific to PCR-involved data were 

within poly A (24%) and poly T regions (38%).  When we compared the low quality 

INDELs to the high quality ones, there was consistent enrichment of poly-A/T INDELs 

in all three call sets, 2.3-fold for high confidence events, 2.3-fold for PCR-free-specific 

events, and 1.3-fold for PCR-involved-specific events. For INDELs specific to PCR-

involved data and PCR-free data, poly-A/T INDELs represented a large proportion of the 

low quality INDELs: 80% and 62%, respectively. This again suggested that PCR 

amplification was a major source for low quality poly-A/T INDELs. 
 

What coverage is required for accurate INDEL calling? 

Ajay et al. 2011 reported that the number of SNVs detected exponentially increased until 

saturation at ~40-45X average coverage [28]. However, it was not clear what the 

coverage requirement should be for INDEL detection. To answer this question, we need a 

truth set to get accurate measurement. Fortunately, we were able to robustly measure 

sensitivity based on our high confidence INDELs. We down-sampled the reads, called 

INDELs again, and measured corresponding sensitivity for each sample (Methods). 

Figure 13 shows that we are missing 25% of the high confidence INDELs at a mean 

coverage of 30X. Even at 40X coverage recommended by Ajay et al. 2011 [28], we could 
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only discover 85% of the high confidence INDELs. At the level of a person’s whole 

genome, in order to achieve a sensitivity of 95% for INDEL detection, we recommend 

that the sequencing requirement, at least on the Illumina HiSeq2000 platform, should be 

WGS at a mean coverage of 60X, after removing PCR duplicates (Figure 13). Of course, 

due to the above results, a WGS at 60X mean coverage with PCR-free library preparation 

is even more ideal. 

 

Some groups previously reported that determining heterozygous SNPs requires higher 

coverage than homozygous ones [33]. The sensitivity of heterozygous SNP detection was 

limited by depth of coverage, which requires at least one read from each allele at any one 

site and in practice much more than one read to account for sequencing errors [34]. 

However, the read depth requirement of INDEL detection in terms of zygosity has not 

been well understood. To answer this question, we took the high confidence INDELs and 

partitioned them by zygosities. We first plotted the pair-wise coverage relationship 

between WGS and WES for each high confidence INDEL. Supplemental Figure S2 

shows that the detection of homozygous INDELs starts with a lower coverage, which is 

consistent in both WGS and WES datasets, although the rest of the homozygotes and 

heterozygotes were highly overlapping. To further quantitatively understand this 

phenomenon, we measured the sensitivity again for heterozygous INDELs and 

homozygous INDELs separately. At a mean coverage of ~20X, the false negative rates of 

high confidence INDELs was ~45% for heterozygous INDELs and ~30% for 

homozygous INDELs (Figure 14). Figure 14 also shows that detection of heterozygous 

INDELs indeed requires higher coverage than homozygous ones (sensitivity of 95% at 

60X vs. 50X). Notably, the number of heterozygous INDELs was ~1.6-fold higher than 

homozygous ones (~1600 vs. ~635 per sample). This re-affirms our recommendation of 

sequencing personal genome at 60X mean coverage to achieve a high accuracy INDEL 

call set.   
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Conclusions 
Despite the fact that both WES and WGS have been widely used in biological studies and 

rare disease diagnosis, limitations of these techniques on INDEL calling are still not well 

characterized. One reason is that accurate INDEL calling is in general much more 

difficult than SNP calling. Another reason is that many groups tend to use WES, which 

we have determined is not ideal for INDEL calling for several reasons. We report here 

our characterization of calling errors for INDEL detection using Scalpel. As expected, 

higher coverage improves sensitivity of INDEL calling, and large INDEL detection is 

uniformly more difficult than detecting smaller INDELs. For large INDELs, insufficient 

coverage can result in more assembly errors, which yields a higher error rate of INDEL 

calling. In simulations, if we have Illumina-like reads with minimal sequencing errors, 

Scalpel can achieve a sensitivity of only 90% at 30X mean coverage, while maintaining a 

reasonable false discovery rate even for large INDELs.  

 

There are several reasons for the low concordance for WGS and WES on INDEL 

detection. First, due to the low capture efficiency, WES failed to capture ~15% of 

candidate exons, subsequently missing possible INDELs in these regions. Second, even at 

sites that were successfully captured, there were more coverage biases in WES data, 

which led to only 30% of the regions being covered with 20 reads or more in regions with 

INDELs specific to WGS. Third, some microsatellite regions usually lacked coverage, 

which made it more difficult to assemble those regions. Fourth, PCR amplification 

introduces reads with higher INDEL error rate, especially in regions near homopolymer 

A/T’s. Fifth, STR regions, especially homopolymer A/T regions were more likely to 

result in multiple candidates at the same locus. Sixth, WGS was able to detect the high 

confidence INDELs at a much lower coverage and a better uniformity across the genome, 

relative to WES. WGS data uniquely identifies ~10.8-fold more high-quality INDELs, 

and WES data uniquely identifies ~1.9-fold more low-quality INDELs. Seventh, WES is 

more likely to introduce a larger number of error-prone INDELs, while WGS is able to 

reveal a more sensitive and specific set of INDELs.  
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Our validation data showed that INDELs called by both WGS and WES data were indeed 

of high quality and with a low error rate. Even though the WGS data has much lower 

depth coverage in general, it is able to eliminate about one half of the false-positive 

INDEL calls. Homopolymer A/T INDELs are a major source of low quality INDELs and 

multiple signature events, and these are highly enriched in the WES data. Homopolymer 

A/T played an important role in giving rise to the low quality INDELs, which contributed 

much more INDEL errors. This was confirmed by the comparison of PCR-free and PCR-

involved data on the sample NA12878. PCR-free data uniquely yields ~4.4-fold more 

high-quality INDELs and PCR-involved data uniquely yields ~6.3-fold more low-quality 

INDELs, implying that these errors are introduced with PCR amplification. Thus, one 

way to reduce the error rate of INDEL calling is to eliminate PCR amplification at the 

library preparation step. In terms of sensitivity, 95% of INDELs can be detected with 

60X mean coverage WGS data from the Illumina HiSeq 2000 platform. We also 

quantitatively showed that accurate detection of heterozygous INDELs naturally requires 

~1.2-fold higher coverage relative to that required for homozygous INDELs. 

 

As more and more groups are moving on to these new micro-assembly based algorithms, 

practical considerations for experimental design should be introduced to the community. 

Here we present a novel classification scheme utilizing the validation data, and we 

encourage researchers to use this guideline for evaluating their call sets. The combination 

of alternative allele coverage and the k-mer Chi-Square score is an effective filter 

criterion for reducing INDEL calling errors. One could easily apply this criterion to 

identify both high-quality and low-quality INDELs, which could help to quickly 

understand the characteristics of an INDEL call. If we use INDEL callers with a very 

sensitive setting, we should control for homopolymer false-positive INDELs by applying 

a more rigorous filtering criteria. This is essential for population-scale sequencing 

projects, because the expense of experimental validation scales with the sample size. For 

consumer genome sequencing purposes, we recommend sequencing human genomes at 

60X mean coverage with PCR-free protocols, which can substantially improve the quality 

of personal genomes. Although this recommendation might initially cost more than the 

current standard protocol of genome sequencing used by some facilities, we argue that 
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the significantly higher accuracy and decreased costs for validation with WGS at 60X 

with PCR-free protocols would ultimately be cost-effective as the sequencing costs 

continue to decrease, relative to either WES or WGS at a lower coverage. 
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Methods 
Analysis of Simulated Data 

We simulated  Illumina-like 2*101 paired-end reads with randomly distributed INDELs, 

which ranged from 1 bp to 100 bp. The simulated reads were mapped to human reference 

genome hg19 using BWA-mem v0.7-6a using default parameters [35]. The alignment 

was sorted with SAMtools (v0.1.19-44428cd) [36] and the duplicates were marked with 

Picard using default parameters (v1.106), resulting in a mean coverage of 93X. We 

down-sampled the reads with Picard to generate 19 sub-alignments. The minimum mean 

coverage of the sub-alignments was 4.7X and increased by 4.7X each time, before it got 

to the original coverage (93X). Scalpel (v0.1.1) was used to assemble the reads and call 

INDELs from each alignment separately, resulting in 20 INDEL call-sets from these 20 

alignments, using the following parameter setting: “--single --lowcov 1 --mincov 3 –

outratio 0.1 --numprocs 10 --intarget”. We then computed both the sensitivity and 

specificity of all and large (greater than 5bp) INDEL detection, respectively. The same 

versions and the same sets of parameter settings for BWA-mem, Picard, and Scalpel, 

were also used in the rest of the study, including the analysis of WGS/WES data, PCR-

involved and PCR-free data. 
 

Generation of WGS and WES data 

Blood samples were collected from eight humans of two quartets from the Simons 

Simplex Collection. Both WGS and WES were performed on the same genomic DNA 

isolated from these eight blood samples. The exome capture kit used was NimbleGen 

SeqCap EZ Exome v2.0, which was designed to pull down 36Mb (approximately 

300,000 exons) of the human genome hg19. The actual probe regions were much wider 

than these targeted regions, because probes also covered some flanking regions of genes, 

yielding a total size of 44.1Mb. All of the libraries were constructed with PCR 

amplification. We sequenced both sets of libraries on Illumina HiSeq2000 with average 

read length of 100 bp at the sequencing center of Cold Spring Harbor Laboratory 

(CSHL). 
 

Analysis of the INDELs from WGS and WES data 
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We excluded all of the low quality raw reads, aligned the remaining high quality ones 

with BWA-mem, and mark-duplicated with Picard. We used Scalpel to assemble the 

reads and identify INDELs under both single mode and quad mode. The single mode 

outputs all of the putative INDELs per person, and the quad mode outputs only the 

putative de novo INDELs in the children in a family. We expanded each of the exons by 

20bp upstream and 20bp downstream in order to cover the splicing sites and we called 

this set of expanded regions the “exonic targeted regions”. The exonic targeted regions 

are fully covered by the exome capture probe regions. We excluded INDELs that were 

outside the exonic targeted regions in the downstream analysis.  

 

We left-normalized the INDELs and compared the two call sets for the same person using 

two criteria: exact-match and position-match. Position-match means two INDELs have 

the same genomic coordinate, while exact-match additionally requires that two INDELs 

also have the same base-pair change(s). We called the INDELs in the intersection based 

on exact-match as high confidence INDELs because these INDELs were successfully 

sequenced, mapped, assembled, and called from two high coverage orthologous 

sequencing experiments. We named the INDELs only called from one dataset as “WGS-

specific” and “WES-specific” INDELs, respectively. Regions of the above three 

categories of INDELs were partitioned and investigated separately. In particular, we 

focused on regions containing short tandem repeats (STRs) and homopolymers. We used 

BedTools (v2.18.1) with the region file from lobSTR (v2.04) to identify homopolymeric 

regions and other STRs (dual repeats, triplets and etc.) in the human genome [37, 38].  
 

Generating summary statistics of alignment from WGS and WES 

We used Qulimap (v0.8.1) to generate summary statistics of the alignment files of 

interest [39]. The reference genome used here is hg19. There were four region files that 

we used for this part of the analysis. The first one is the exon region bed file from 

NimbleGen. We generated the other three region files by expanding 25bp upstream and 

downstream around loci of high confidence INDELs, WGS-specific INDELs, and WES-

specific INDELs, respectively. We followed all of the default settings except for 

requiring the homopolymer size to be at least five (-hm 5). Finally, we used Matplotlib to 
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generate the figures with the raw data from Qualimap under Python environment 2.7.2 

[40].  
 

Generation of MiSeq validation data 

In this study, we used the MiSeq validation data on the sample K8101-49685s that we 

previously reported [31]. For more technical details, please refer to the original paper. In 

brief, library construction for the MiSeq Personal Sequencer platform (Illumina Inc.) was 

performed based on the TruSeq DNA Sample Prep LS protocol. We generated high 

quality 250 bp paired-end reads with an average coverage of ~47,000X over the selected 

INDELs. We aligned the reads with BWA-MEM (v0.7.5a) to hg19, sorted the alignment 

with SAMtools (v0.1.18) and marked PCR duplicates with Picard (v1.91). INDELs were 

realigned with the GATK IndelRealigner (v2.6-4), base quality scores were recalibrated, 

and finally variants were called with GATK UnifiedGenotyper (v2.4-3). All of the MiSeq 

data can be downloaded from the Sequence Read Archive 

(http://www.ncbi.nlm.nih.gov/sra) under project accession number SRX386284. 
 

Classifications of INDEL with calling quality based on the validation data of 

sample K8101 

We previously benchmarked Scalpel with respect to the coverage of the alternative allele 

(C!!"#) and the k-mer Chi-Square scores (χ!). Scalpel applied the standard formula for the 

Chi-Square statistics and applied to the K-mer coverage of both alleles of an INDEL.  

χ! =
(C!!"# − C!!"#)!

C!!"#
+
(C!!"# − C!!"#)!

C!!"#
 

where C!!"#and C!!"# are the observed k-mer coverage for the reference and alternative 

alleles, C!!"#and C!!"# are the expected k-mer coverage, i.e. C!!"# = C!!"# =
!!!"#!!!!"#

!
. 

 

Among ~1400 INDELs that we selected for validation, 453 of them were called by 

Scalpel. Here we used all 453 INDELs to understand the relationship between the false 

discovery rate FDR and these two metrics (Supplemental Figure S3). Our validation data 

showed that with the same χ!, INDELs with a lower C!!"# tend to have a higher FDR, 

especially for INDELs with C!!"# not greater than 10 (Supplemental Figure S3). For 
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INDELs with relatively the same C!!"#, a higher χ! also made them less likely to pass the 

validation. We noticed that the calling quality could be determined by the error rate 

inferred by these two metrics. To achieve a consistent accuracy for INDELs with 

different C!!"#, we classified INDELs from the WGS and WES data and determined the 

calling quality with the below criteria: 

High quality INDELs: low error-rate (12%) INDELs meeting any of the three cutoffs: 

C!!"# >10 and χ! < 10.8, or 5 < C!!"# ≤ 10 and χ! ≤ 4.5, or C!!"# ≤ 5 and χ! ≤ 2; 

Low quality INDELs: high error-rate (32%) INDELs meeting the following cutoff: C!!"# ≤ 

10 and χ! >10.8; 

Moderate quality: The remaining INDELs that do not fall into the above two categories. 
 

Analysis of the effect of new filtering criteria on de novo INDEL calls 

The two families in this study were previously reported in a population-scale autism 

study, with  Sanger validation of de novo calls [32]. We used the de novo mode of 

Scalpel to identify de novo INDELs in these two families again, resulting in one de novo 

call set for WGS data and another de novo call set for WES data per family. We 

partitioned each call set by regions and filtered out the low quality INDELs. Iossifov et.al 

2012 reported a total of N=85 de novo exonic INDELs in 343 families, i.e. there was ~0.1 

de novo exonic INDEL per child [32].  If we assume a binomial distribution of the de 

novo exonic INDELs with an equal chance (p=1/343), the probability of seeing at least X 

de novo exonic INDELs in a given family in this study can be computed as below:  

P   X ≥ k  INDELs =   1− P X = k− 1  
!

!

= 1−
N
X p!q!!!

!!!

!

   

where P( X ≥ k ) is the probability of a given family having k or more de novo INDELs; 

N is the total number of exonic de novo INDELs reported, i.e. N=85; p is the probability 

of a hit on a given trial, i.e p=1/343; q=1-p. 
 

Analysis of PCR-free and PCR-involved data of NA12878 

We downloaded PCR-free WGS data of NA12878 (access Code: ERR194147), which is 

publicly available in the Illumina Platinum Genomes project. We also download a PCR-

involved WGS data of NA12878 from the Sequence Read Archive (SRA) (access Code: 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 10, 2014. ; https://doi.org/10.1101/006148doi: bioRxiv preprint 

https://doi.org/10.1101/006148


22	
  

SRR533281, SRR533965, SRR539965, SRR539956, SRR539947, SRR539374, 

SRR539357). Both data were generated on Illumina HiSeq 2000 platform. Although the 

PCR-free data was not supposed to have any PCR duplicates, we observed a duplication 

rate of 2% as reported by Picard, and we excluded these reads, yielding ~50X mean 

coverage for both datasets after removing PCR duplicates. We used the same methods for 

alignment, INDEL calling, and downstream analysis as described above. 
 

 Analysis of INDEL detection sensitivity in WGS data 

We were interested to know how depth of coverage affects the sensitivity of INDEL 

detection in WGS data. To accurately measure this sensitivity, one needs a robust call set 

as a truth set. Fortunately, we had exact-match INDELs concordant between high 

coverage WGS and high coverage WES data. We therefore measured sensitivity based on 

these high confidence INDELs, rather than on the whole set of INDELs, which might 

contain much more false positives. We down-sampled each WGS dataset to mean 

coverages of ~20X, ~32X, ~45X, and ~57X. We then used Scalpel to call INDELs from 

the resulting 4 sub-alignment files for each sample and computed the sensitivity at a 

certain mean coverage (X) for each sample by the equation:  

 

Sensitivity  at  X  coverage

=   
Number  of  high  confidence  INDELs  called  at  X  coverage

Number  of  high  confidence  INDELs  at  the  original  coverage 

 

This equation measures how many of the high confidence INDELs can be discovered as a 

function of read depth. We also analyzed the high confidence INDEL call set in terms of 

zygosity: high confidence heterozygous and homozygous INDEL, subsequently 

measuring the sensitivity with respect to different zygosities. 
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Figures legends 
 
Figure 1. Mean concordance of INDELs over eight samples between WGS (blue) and 

WES (green) data. Venn diagram showing the numbers and percentage of shared 

between data types based on (A) Exact-match (B) Position-match. The mean concordance 

rate increased when we required at least a certain number of reads in both data (Table 1).  

  

Figure 2. Coverage distributions of the exonic targeted regions in (A) the WGS data, 

(B) the WES data. The Y-axis for A) and B) is of log10-scale. The coverage fractions of 

the exonic targeted regions from 1X to 51X in (C) the WGS data, (D) the WES data. 

 

Figure 3. Coverage distributions of the high confidence INDELs regions in (A) the 

WGS data, (B) the WES data. The Y-axis for A) and B) is of log10-scale. The coverage 

fractions of the high confidence INDELs regions from 1X to 51X in (C) the WGS data, 

(D) the WES data. 

 

Figure 4. Coverage distributions of the WGS-specific INDELs regions in (A) the 

WGS data, (B) the WES data. The Y-axis for A) and B) is of log10-scale. The coverage 

fractions of the WGS-specific INDELs regions from 1X to 51X in (C) the WGS data, (D) 

the WES data. 

 

Figure 5. Coverage distributions of the WES-specific INDELs regions in (A) the 

WGS data, (B) the WES data. The Y-axis for A) and B) is of log10-scale. The coverage 

fractions of the WES-specific INDELs regions from 1X to 51X in (C) the WGS data, (D) 

the WES data. 

 

Figure 6. Percentage of high quality, moderate quality and low quality INDELs in 

three call set. (A) the high confidence INDELs, (B) the WGS-specific INDELs, (C) the 

WES-specific INDELs. The numbers on top of a call set represent the mean number of 

INDELs in that call set over eight samples. 
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Figure 7. Percentage of poly-A, poly-C, poly-G, poly-T, other-STRs, and none-STRs 

in three call set. (A) high quality INDELs, (B) low quality INDELs. In both figures, 

from left to the right are high confidence INDELs, WGS-specific INDELs, and WES-

specific INDELs. 

 

Figure 8.  Numbers of genomic locations containing multiple signature INDELs in 

WGS (blue) and WES data (green). The height of the bar represents the mean across 

eight samples and the error bar represent the standard deviation across eight samples. 

 

Figure 9. Percentage of reads near regions of Non-homopolymer, poly-N, poly-A, 

poly-C, poly-G, poly-T in (A) WGS data, (B) WES data. In both figures, from left to 

the right are exonic targeted regions, high confidence INDELs, WGS-specific INDELs, 

and WES-specific INDELs. 

 

Figure 10. Concordance of INDEL detection between PCR-free and PCR-involved 

data on NA12878. Venn diagram showing the numbers and percentage of shared 

between data types based on (A) Exact-match (B) Position-match.  

 

Figure 11. Percentage of high quality, moderate quality and low quality INDELs in 

two datasets. (A) the high confidence INDELs, (B) the PCR-free-specific INDELs, (C) 

the PCR-involved-specific INDELs. The numbers on top of a call set represent the 

number of INDELs in that call set. 

 

Figure 12. Percentage of poly-A, poly-C, poly-G, poly-T, other-STRs, and non-STRs 

in (A) high quality INDELs, (B) low quality INDELs. In both figures, from left to the 

right are high confidence INDELs, INDELs specific to PCR-free data, and INDELs 

specific to PCR-involved data. 

 

Figure 13. Sensitivity performance of INDEL detection with eight WGS datasets at 

different mean coverages on Illumina HiSeq2000 platform. The Y-axis represents the 

percentage of the high confidence INDELs revealed at a certain lower mean coverage. 
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Figure 14. Sensitivity performance of (A) heterozygous and (B) homozygous INDEL 

detection with eight WGS datasets at different mean coverages on Illumina 

HiSeq2000 platform. The Y-axis represent the percentage of the high confidence 

INDELs revealed at a certain lower mean coverage. 
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Tables 
 
Table 1 
Concordance 
Rate 

Without 
filtering 

≥ 1 
read 

≥ 20 
reads 

≥ 40 
reads 

≥ 60 
reads 

≥ 80 
reads 

Exact-match 53% (0.8%) 62% (1.1%) 69% (1.5%) 73% (2.3%) 76% (1.6%) 74% (1.3%) 
Position-match 55% (0.8%) 66% (1.0%) 73% (1.1%) 77% (1.8%) 79% (1.1%) 76% (1.3%) 

       

Discordance 
Rate 

Without 
filtering 

≥ 1 
read 

≥ 20 
reads 

≥ 40 
reads 

≥ 60 
reads 

≥ 80 
reads 

WGS-Specific  34% (1.4%) 20% (1.5%) 14% (1.6%) 14% (2.2%) 15% (2.5%) 20% (3.2%) 
WES-Specific  11% (1.2%) 14% (1.4%) 13% (1.3%) 9% (2.6%) 6% (2.2%) 4% (1.5%) 
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Table legends 
 
Table 1. Mean concordance and discordance rates of INDEL detection between 

WGS and WES data in different regions. The data is shown in the following order: 1) 

regions without filtering, and regions filtered by requiring base coverage to be at least 2) 

one read, 3) 20 reads, 4) 40 reads, 5) 60 reads, or 6) 80 reads in both data. The mean 

discordance rate is calculated based on position-match, which is the percentage of 

INDELs specific to either dataset. The standard deviation is shown in parenthesis. 
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Additional files 
	
  
Additional file 1 – Supplemental figures and tables 
This file includes supplemental figure S1-S3, supplemental table S1-S4, and their 

corresponding figure/table legends.  
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Additional	
  Data	
  File	
  1	
  
Supplemental Figures 

Supplemental Figure S1
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Supplemental Figure S2 
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Supplemental Figure S3 
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Supplemental figure legends 
 
Supplemental Figure S1. Performance of sensitivity (A) and false discovery rate (B) at 

different coverage based on simulation data. Each dot represent one down-sampled 

experiment. Blue dots represent performance of general INDELs (i.e. INDELs of size 

starting at 1bp) and green dots represent performance of large INDELs (i.e. INDELs of 

size greater than 5bp). 

 

Supplemental Figure S2. Pair-wise base coverage relationship of INDEL called by 

both WGS and WES data. These INDELs were partitioned by zygosities: homozygous 

(blue) and heterozygous INDELs (green). The X-axis shows the number of k-mer 

covering an INDEL in the WES data, and the Y-axis shows the number for WGS data. 

 

Supplemental Figure S3. Characterization of the false discovery rate (FDR) based on 

validation data. INDELs were partitioned based on k-mer coverage of the alternative 

allele and the INDEL Chi-Square scores. The X-axis shows Chi-Square scores of 

INDELs less than a certain threshold, and the Y-axis represents the FDR. 
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Supplemental Tables 

Supplemental Table S1 
	
  

 High quality Moderate quality Low quality 

High confidence INDELs 89% (0.7%) 
1454 (11.7) 

9% (0.5%) 
148 (7.3) 

2% (0.5%) 
31 (8.3) 

WGS-specific INDELs 78% (1.4%) 
769 (13.9) 

15% (1.1%) 
151 (10.7) 

7% (1.6%) 
71 (15.8) 

WES-specific INDELs 22% (3.4%) 
71 (11.2) 

37% (3.7%) 
121 (11.9) 

41% (3.3%) 
133 (10.9) 

 
Supplemental Table S2 
 
Number of 

reads 
Exonic targeted 

regions 
High confidence 
INDEL regions 

WGS-specific 
INDEL regions 

WES-specific 
INDEL regions 

WGS 241984 49008 26417 1775 
WES 815945 205698 44346 11251 

 
Supplemental Table S3 
	
  

Number of INDELs = 0 ≥ 1 ≥ 2 
Probability 0.78 0.22 0.03 

Number of INDELs ≥ 3 ≥ 4 ≥ 5 
Probability 0.0020 0.0001 0.000005 

 
Supplemental Table S4 
 
Putative 
de novo 

WGS 
(poly-A, poly-T, ms) 

WES 
(poly-A, poly-T, ms) 

WGS 
(After filtering) 

WES 
(After filtering) 

Family 1 45 (27,14,4) 5 (3,1,1) 0 0 
Family 2 49 (24,22,3) 17 (8,5,4) 0 0 
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Supplemental Table legends 
 

Supplemental Table S1. Mean percentage and mean number of high quality, 

moderate quality, low quality INDELs in each call set. The mean percentage and the 

mean number over eight samples are shown in the upper and the lower of a cell, 

respectively. The standard deviation is shown in parenthesis. 
 

Supplemental Table S2. Number of reads in the following four regions: Exonic 

targeted regions, high confidence INDEL regions, WGS-specific INDEL regions, 

WES-specific INDEL regions. 

 

Supplemental Table S3. Probabilities of seeing k or more INDELs in a given family 

assuming a binomial distribution. Here we assumed a binomial distribution of the de 

novo exonic INDELs in the 343 SSC families. 

 

Supplemental Table S4. Putative de novo exonic INDELs in these two families before 

and after applying filtering critiria. The number of INDELs within regions of 

homopolymer A (poly-A), homopolymer T (poly-T), and microsatellites (ms) are shown 

in the parenthesis. 
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