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Abstract

Neural circuit mapping is generating datasets of 10,000s of labeled neurons. New computa-
tional tools are needed to search and organize these data. We present NBLAST, a sensitive and
rapid algorithm, for measuring pairwise neuronal similarity. NBLAST considers both position and
local geometry, decomposing neurons into short segments; matched segments are scored using a
probabilistic scoring matrix defined by statistics of matches and non-matches.

We validated NBLAST on a published dataset of 16,129 singleDrosophila neurons. NBLAST
can distinguish neuronal types down to the finest level (single identified neurons) without a priori
information. Cluster analysis of extensively studied neuronal classes identified new types and un-
reported topographical features. Fully automated clustering organized the validation dataset into
1052 clusters, many of which map onto previously described neuronal types. NBLAST supports
additional query types including searching neurons against transgene expression patterns. Finally
we show that NBLAST is effective with data from other invertebrates and zebrafish.
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Introduction

Correlating the functional properties and behavioral relevance of neurons with their cell type is a basic
activity in the study of neuronal circuits. While there is no universally accepted definition of neuron
type, key descriptors include morphology, position within the nervous system, genetic markers, con-
nectivity and intrinsic electrophysiological signatures (Migliore and Shepherd, 2005; Bota and Swan-
son, 2007; Rowe and Stone, 1976). Despite this ambiguity, neuron type remains a key abstraction
helping to reveal organizational principles and enabling results to be compared and collated across
research groups. There is increasing appreciation that highly quantitative approaches are critical to
generate cell type catalogues in support of circuit research (Petilla Interneuron Nomenclature Group
et al., 2008; Nelson et al., 2006; Kepecs and Fishell, 2014)(http://www.nih.gov/science/brain/
11252013-Interim-Report-Final.pdf).

Since neuronal morphology and position strongly constrain connectivity, they have been mainstays
of circuit studies for over a century. Classic morphological techniques include the Golgi method used
by Cajal, microinjection, and intracellular fills during recording. Recently genetic approaches to sparse
and combinatorial labeling have enabled increasingly large-scale characterization of single neuron
morphology (Jefferis and Livet, 2012).

Classically, the position of neuronal somata or arbors was established by comparison with anatom-
ical landmarks, revealed by a general counterstain; this is especially effective in brain regions with
strong laminar organization e.g. the cerebellum (Cajal and Azoulay y, 1911), mammalian retina (e.g.
Badea and Nathans, 2004; Kong et al., 2005; Sümbül et al., 2014) or fly optic lobe (Fischbach and Dit-
trich, 1989; Morante and Desplan, 2008). Recently, 3D light microscopy and image registration have
enabled direct image fusion to generate digital 3D atlases of brain regions or whole brains (Jefferis
et al., 2007; Lin et al., 2007; El Jundi et al., 2009; Rybak et al., 2010; Cachero et al., 2010; Yu et al.,
2010b; Sunkin et al., 2013; Zingg et al., 2014; Oh et al., 2014). Such atlases can generate specific,
testable hypotheses about circuit organization and connectivity at large scales. For example Chiang
et al. (2011) combined geneticmosaic labeling and image registration to produce an atlas of over 16,000
single cell morphologies embedded within a standard Drosophila brain (http://flycircuit.tw).

Neuronal morphologies can be represented as directed graph structures embedded in 3D space;
usually this is the (arbitrary) physical space of the imaging system, rather than a brain atlas. For this
reason, databases such as NeuroMorpho.org (Parekh and Ascoli, 2013) contain > 27,000 neurons, but
do not include precise positional information. Data on this scale present both an acute challenge, finding
and organizing related neurons, but also an opportunity: quantitative morphology may help solve the
problem of cell type. A key requirement is a tool enabling rapid and sensitive computation of neuronal
similarity within and between datasets. This has clear analogies with bioinformatics: the explosion of
biological sequence information from the late 80s motivated the development of sequence similarity
tools such as BLAST (Altschul et al., 1990) enabling rapid database queries as well as hierarchically
organized protein family databases.

Several strategies for measuring neuronal similarity exist with distinct target applications and dif-
ferent underlying data structures. Mayerich et al. (2012) applied general graph similarity metrics (re-
viewed by Conte et al., 2004) to compare neurons represented as fully-connected graphs with a ground
truth reconstruction. Basu et al. (2011) decomposed neuronal trees into a family of unbranched paths
proposing a geometric measure of similarity that could include positional information. Further simpli-
fying the neuronal representation, Cardona et al. (2010) decomposed single unbranched neurites into
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sequences of vectors and used dynamic programming to find an optimal 3D alignment. Critically, they
validated this approach on a database of a few hundred traced structures, achieving very high clas-
sification accuracy. However, this algorithm treats each unbranched neuronal segment as a separate
alignment problem, so there is no natural way to handle trees with many such segments. Recently Wan
et al. (2015) have developed an elegant approach that combines graph matching with 3D positional in-
formation for sensitive global alignment of reconstructed neurons, albeit at significant computational
cost (minutes per pair of neurons).

The choice of data structure remains important: fully automatic 3D tracing of single neurons re-
mains unsolved (Peng et al., 2015), while expression patterns containing multiple neurons cannot be
represented as a single binary tree. We previously developed a pipeline that converts images consisting
of 100s of neurons to point clouds with tangent vectors defining the local heading of the neurons; we
used this as part of a supervised learning approach to the challenging problem of recognizing groups
of lineage-related neurons (Masse et al., 2012). Combining this simple data representation with a very
large single neuron dataset (Chiang et al., 2011) allowed us to validate a new algorithm, NBLAST,
that is flexible, extremely sensitive and very fast (pairwise search times of 2 ms). Critically, the algo-
rithm’s scoring parameters are defined statistically rather than by expert intuition, but generalize across
neuronal classes.

We first describe the NBLAST algorithm, providing an open source implementation and a web
query tool.We validate NBLAST for applications including neuron database search, unsupervised clus-
tering and expression pattern search. NBLAST can identify well-studied neuronal types inDrosophila
with sensitivity matching domain experts, in a fraction of the time. NBLAST can also identify new
neuronal types and reveal undescribed features of topographic organization. Finally, we apply our
method to 16,129 neurons from the FlyCircuit dataset, reducing this to a non-redundant set of 1,052
morphological clusters. Manual evaluation of a subset of clusters shows they closely match expert def-
inition of cell types. These clusters, which we organize into an online supercluster hierarchy, represent
a preliminary global cell type classification for the Drosophila brain.

Results

Algorithm

Our principal design goals were to develop a neuron similarity algorithm depending on both spatial lo-
cation (within a brain or brain region) and branching pattern, and that was both extremely sensitive and
very fast. We envisaged searching of large databases of neurons (10,000–100,000 neurons), clustering
of neurons into families by calculating all-against-all similarity matrices, and efficient organization
and navigation of datasets of this size. We eventually selected an approach based on direct pairwise
of comparison of neurons pre-registered to a template brain and represented as vector clouds. Further
details are provided in Supplemental Information.

The starting point for our algorithm is a representation in which neuron structures have been re-
duced to segments, represented as a location and an associated local tangent vector. This retains some
local geometry but does not attempt to capture the topology of the neuron’s branching structure. We
have found that a simplified representation of this sort can be constructed for image data that would
not permit automated reconstructions. In order to prepare data of this sort in quantity, we developed an
image processing pipeline summarized in Figure 1A and detailed in Experimental Procedures. Briefly,
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brain images from the FlyCircuit dataset (Chiang et al., 2011) were subjected to non-rigid image reg-
istration (Jefferis et al., 2007) against a newly constructed intersex template brain. Neuron images
were thresholded and subjected to a 3D skeletonization procedure (Lee et al., 1994) implemented in
Fiji (Schindelin et al., 2012). These thresholded images were then converted to the point and tangent
vector representation (Masse et al., 2012) using our R package nat (Jefferis and Manton, 2014); the
tangent vector (i.e. the local heading) of the neuron at each point was computed as the first eigenvector
of a singular value decomposition (SVD) of the point and its 5 nearest neighbors.

After pre-processing, 3D data could be visualized and analyzed in R using nat (Figure 1B). Neu-
rons were represented by median 1,070 points/vectors; the 16,129 neurons occupied 1.8 GB, fitting
comfortably into a laptop’s main memory. Since the fly brain is almost completely symmetric, but
neurons were labeled randomly in both hemispheres, we mapped all neurons to the left hemisphere
(defined primarily by cell body location, see Experimental Procedures and Figure 1B) using a non-
rigid mirroring procedure (Manton et al., 2014).

With a database of aligned neurons in an appropriate representation, we were then able to calculate
NBLAST pairwise similarity scores. One neuron is designated the query and the other the target. For
each query segment (defined by a midpoint and tangent vector) the nearest neighbor (using straight-
forward Euclidean distance) is identified in the target neuron (Figure 1C–D). A score for the segment
pair is calculated as a function of two measurements: 𝑑, the distance between the matched segments
(indexed by 𝑖), and | ⃗𝑢𝑖 ⋅ ⃗𝑣𝑖|, the absolute dot product of the two tangent vectors; the absolute dot prod-
uct is used because the orientation of the tangent vectors has no meaning in our data representation
(Figure 1C). The scores are then summed over each segment pair to give a raw score, 𝑆:

𝑆(query, target) =
𝑛

∑
𝑖=1

𝑓(𝑑𝑖, | ⃗𝑢𝑖 ⋅ ⃗𝑣𝑖|). (1)

The next question is what is an appropriate function 𝑓(𝑑𝑖, | ⃗𝑢𝑖⋅ ⃗𝑣𝑖|)?We developed an approach inspired
by the scoring system of the BLAST algorithm (Altschul et al., 1990). For each segment pair we defined
the score as the log probability ratio:

𝑓 = log2
𝑝match
𝑝rand

, (2)

i.e. the probability that the segment pair was derived from a pair of neurons of the same type, versus
a pair of unrelated neurons. We could then define 𝑝match empirically by finding the joint distribution
of 𝑑 and | ⃗𝑢𝑖 ⋅ ⃗𝑣𝑖| for pairs of neurons of the same type (Figure 1E–G). For our default scoring matrix,
we used a set of 150 olfactory projection neurons innervating the same glomerulus, unambiguously
the same neuronal type (Figure 1F). 𝑝rand was calculated simply by drawing 5,000 random pairs of
neurons from the database, assuming that the large majority of such pairs are unrelated neurons. Joint
distributions were calculated using 10 bins for the absolute dot product and 21 bins for the distance to
give two 21 row × 10 column matrices. The 2D histograms were then normalized to convert them to
probabilities and the log ratio defined the final scoring matrix (Figure 1G). Plotting the scoring matrix
emphasizes the strong distance dependence of the score but also shows that for segment pairs closer
than ~10 µm, the logarithm of the odds score increases markedly as the absolute dot product moves
from 0 to 1 (Figure 1H).

We implemented the NBLAST algorithm as an R package (nat.nblast) building on a high-
performance k-nearest neighbor library (nabor), that immediately enables pairwise queries, searches
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of a single query neuron against a database of target neurons (Figure 2) and all-by-all searches (Fig-
ure 1I). Runtimes on a single core laptop computer were 2 ms per comparison or 30 s for all 16,129
neurons. In order to enable interactive neuron clustering, we also pre-computed an all-by-all similarity
matrix for all 16,129 neurons (2.6 × 108 scores, 1.0 GB). We also developed a simple web application
(linked from jefferislab.org/si/nblast) to allow online queries for this test dataset (Figure 1I).

NBLAST finds whole or partial matches for diverse query objects

The NBLAST algorithm is flexible, identifying both global and partial matches for multiple classes
of queries (Figure 2). The only requirements are that these objects (or fragments) must be registered
against a template brain and can be converted to a point and vector representation.

As a first example we query a (whole) FlyCircuit neuron against the 16,129 FlyCircuit neurons.
The top hits are very similar neurons with small differences in length and neurite position (Figure 2B).
A second example uses part of the axon; top hits all follow the same axon tract, although their variable
axonal and dendritic arbors indicate that they are distinct neuron types (Figure 2C). In a third example
we query against 3501 FlyLight GAL4 lines (Jenett et al., 2012), finding lines that contain the query
neuron (Figure 2D).

User tracings can also be used as queries.We traced the characteristic bundle of 20-30 primary neu-
rites of the fruitless neuroblast clone pMP-e (which generates male-specific P1 neurons, (Kimura et al.,
2008; Cachero et al., 2010)). Our query returned many single P1 neurons from the FlyCircuit database
(Figure 2E) (for more details see Figure 7). A similar approach can be used to identify candidate neu-
ronal types labeled by genetic driver lines where the detailed morphology of individual neurons cannot
be ascertained. In this example we traced the main neurites of a cell cluster in a GAL4 line(Jenett et al.,
2012) (Figure 2F) and used that trace as the query. NBLAST identified three very similar FlyCircuit
neurons, which completely overlapped with the expression of GAL4 line. These three neurons appear
to be different subtypes, each varying in their terminal arborizations. Conversely, we used one tracing
from a published projectome dataset containing > 9000 neurite fibers (Peng et al., 2014) to find similar
FlyCircuit neurons (Figure 2G).

NBLAST scores are sensitive and biologically meaningful

Agood similarity algorithm should be sensitive enough to reveal identical neurons with certainty, while
having the specificity to ensure that all high scoring results are relevant. We used the full FlyCircuit
dataset to validate NBLAST performance.

Our first example uses an auditory interneuron, fru-M-300198 as query (Figure 3A–C). Ordering
search results by NBLAST score, the first returned object is the query neuron itself (since it is present
in the database), followed by the top hit (fru-M-300174) which completely overlaps with the query
(Figure 3A’). A histogram of NBLAST scores, showed that the top hit was clearly an outlier: scoring
96.1 % compared to the self-match score of the query neuron (Figure 3C). Further investigation re-
vealed that these “identical twins”, both derived from the same raw confocal image. The next 8 hits are
also very similar to the query but are clearly distinct specimens, having small differences in position,
length and neurite branching that are typical of sister neurons of the same type (Figure 3A”).

The score histogram shows that only a minority of hits (3 %) have a score above 0 (Figure 3B–C).
A score of 0 represents a natural cutoff for NBLAST, since it means that, on average, segments from
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this neuron have a similarity level that is equally likely to have arisen from a random pair of neurons in
the database as a pair of neurons of the same type. We divided the neurons with score > 0 into 8 groups
with decreasing similarity scores (Figure 3C’). Only the highest scoring real hits (group II) appear of
exactly the same type, although lower scoring groups contain neurons that would be ranked as very
similar.

Although raw NBLAST scores correctly identify similar neurons, they are not comparable from
one query neuron to the next: the score depends on neuron size and segment number. This confounds
search results for neurons of very different sizes or when the identity of query and target neurons is
reversed. For example, a search with a large neuron as query and a smaller one as target (pair 1) will
have a very low forward score, because the large neuron has many segments that are unmatched, but
a high reverse score, since most of target will match part of the query (Figure 3D). One approach
to correct for this is to normalize the scores by the size of the query neuron. Although normalized
scores are comparable, unequal forward and reverse scores between large and small neurons remain
an issue. One simple strategy is to calculate the mean of the forward and reverse scores (mean score).
Two neurons of similar size have a higher mean score than two neurons of unequal size (Figure 3D).
Repeating the analysis of Figure 3C–C’ using mean scores (Figure S2) eliminated some matches due
to unequal size that could be considered false positives.

During our analysis, we sporadically noticed cases where two database images were derived from
the same physical specimen (Figure S1). We tested if NBLAST could systematically reveal such in-
stances. We collected the top hit for each neuron and analyzed the distribution of forward (Figure 3E)
and reverse scores (data not shown). A small tail (~ 1 % of all top hits) have anomalously high scores
(over 0.8). Given this distribution, we examined neuron pairs with forward and reverse scores >0.8.
We classified these 72 pairs into 4 different groups. From highest to lowest predicted similarity, the
groups are: same segmentation, a segmented image of a neuron has been duplicated (Figure S1A); same
raw image, corresponding to a different segmentation of the same neuron (Figure 3B’); same speci-
men, when two images are from the same brain but not from the same confocal image (Figure S1B);
and different specimen, when two neurons are actually from different brains, (but of the same neuron
type). The distribution of NBLAST scores for these four categories matches the predicted hierarchy of
similarity (Figure 3F). These results underline the high sensitivity of the NBLAST algorithm to small
differences between neurons.

Taken together these results validate NBLAST as a sensitive and specific tool for finding similar
neurons.

NBLAST scores can distinguish Kenyon cell classes

Wewished to investigate whether NBLAST scores can be used to cluster neurons, potentially revealing
functional classes.We decided to begin our investigationwithKenyon cells (KCs), the intrinsic neurons
of the mushroom body neuropil and an intensively studied population given their key role in memory
formation and retrieval (reviewed in Kahsai and Zars, 2011).

There are around 2,000 KCs in each mushroom body Aso et al. 2009, and their axons form the me-
dial lobe, consisting of the γ, β′ and β lobes, and the vertical lobe, consisting of the α and α′ lobes. There
dendrites form the calyx around which cell bodies are positioned; the axon peduncle joins the calyx to
the lobes (Figure 4A). Three main classes of KCs and a few subclasses of neurons are recognized: γ
neurons are the first born and innervate only the γ lobe; α′/β′ neurons are generated next and project to

6

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 2, 2016. ; https://doi.org/10.1101/006346doi: bioRxiv preprint 

https://doi.org/10.1101/006346


the α′ and β′ lobes; α/β neurons are born last, and project to the α and β lobes. Four neuroblasts each
generate the whole repertoire of KC types (Lee et al., 1999).

We started with a dataset of 1,664 KCs, representing 10.3 % of the FlyCircuit dataset (see Sup-
plemental Results for selection protocol) and calcaulted raw NBLAST scores of each KC against all
others. An iterative hierarchical clustering approach allowed us to identify themain KC types, followed
by detailed analysis for that distinguished several subtypes for each type.

For γ neurons (Figure 4B’), we identified 2 subsets, one corresponding to the classical morphology
(Figure 4B”) (groups I and III) and another to recently described atypical neurons (γ dorsal neurons,
group II) (Aso et al., 2014). Analysis of the classical γ neurons revealed that there were differences
between the neurons in their medial to lateral position in the calyx (groups A-D). These differences
correlated to a certain degree with differences in the dorsal/ventral position of the projections in the γ
lobe, with the most medial, being also the most dorsal (Figure 4B”). These observations suggest that
the relative position of the projections of classical γ neurons is maintained at the calyx and γ lobe.
We experimented with clustering the classic γ neurons based only on the scores of the segments in
the peduncle. The overall organization almost fully recapitulated the positioning of the neurites in the
whole neuron analysis (see Figure S3 and ). Thus, the stereotypical organization of the classical γ
neurons is maintained throughout the neuropil.

The atypical γ neurons extended neurites posteriolaterally in the calyx and projected to the most
dorsal region of the γ lobe (Figure 4B”’). We isolated a previously identified subtype – γd neurons
(group a) (Aso et al., 2009) – that innervates the ventral accessory calyx (Aso et al., 2014). In addition,
we identified previously uncharacterized types (Groups b-c).

Analysis of α′/β′ neurons highlighted the characterized subtypes of these neurons (Figure 4C–C’)
which differ in their anterior/posterior position in the peduncle and β′ lobe (Tanaka et al., 2008; Aso
et al., 2014). Although we could not identify any unambiguous subtypes of α′/β′ neurons, there were
clear trends, with a subset of neurons (groups ii, iii) having more anterior neurites in both the peduncle
and β′ lobe.

The largest KC subset corresponds to α/β neurons (Figure 4D). We identified neurons from each
of the four neuroblast lineages (Figure 4D’) (Zhu et al., 2003) and for each of these, we distinguished
morphological subtypes that correlate to their birth time (Figure 4D”). There was a clear distinction
between the late born core (α/β core, α/β-c), on the inside stratum of the α lobe, and early born peripheral
neurons (α/β surface, α/β-s), on the outside stratum of the α lobe. We also identified the earliest born
α/β neurons – α/β posterior or pioneer (α/βp) – that innervate the accessory calyx and run along the
surface of the posterior peduncle into the β lobe but stop before reaching the medial tip (Tanaka et al.,
2008). A new clustering based on peduncle position of the neuron segments did not recapitulate the
relative positions of the calyx neurites for each of the neuroblast clones observed in the whole neuron
analysis suggesting that the relative position of the α/β neurons in the peduncle does not completely
reflect their stereotypical organization in the calyx (see Figure S3 and Kenyon cell analysis).

In summary, the hierarchical clustering of KCs using the rawNBLAST scores resolved the neurons
into the previously describedKC types and some of the subtypes, and isolated uncharacterized subtypes
in an extensively studied cell population. In addition, it revealed organizational principles that have
been previously described (Tanaka et al., 2008). These observation support our claim that the NBLAST
scores are a good metric when searching for similar neurons and organizing large datasets of related
cells.
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NBLAST identifies classic cell types at the finest level: olfactory projection neurons

We have shown that clustering NBLAST scores can identify the major classes and subtypes of Kenyon
cells. However it is rather unclear what corresponds to an identified cell type, which we take to be the
finest neuronal classification in the brain.We therefore analyzed a different neuron family, the olfactory
projection neurons (PNs), which represent one of the best defined cell types in the fly brain.

PNs transmit information between antennal lobe glomeruli, which receive olfactory input, and
higher brain centers, including themushroombody and the lateral horn (Masse et al., 2009). Uniglomeru-
lar PNs (uPNs), whose dendrites innervate just one glomerulus, are highly stereotyped in both mor-
phology and developmental origin. They are unambiguously classified into individual types based on
the glomerulus they innervate and the axon tract they follow; these features show fixed relationships
with their axonal branching patterns in higher centers and their parental neuroblast (Marin et al., 2002;
Jefferis et al., 2001; Wong et al., 2002; Jefferis et al., 2007; Yu et al., 2010a; Tanaka et al., 2012).

We manually classified the 400 FlyCircuit uPNs by glomerulus in an iterative process that took
several days (for details see ). We found a very large number of DL2 uPNs (145 DL2d and 37 DL2v),
in a total of 397 classified neurons. Nevertheless, our final set of uPNs broadly represents the total vari-
ability of described classes and contains neurons innervating 35 out of 56 different glomeruli (Tanaka
et al., 2012), as well as examples of the three main lineage clones and tracts.

We computed mean NBLAST scores for each uPN against the remaining 16,128 neurons and
checked whether the top hit was exactly the same type of uPN, another uPN or a match to another
class of neuron (Figure 5A). We restricted our analysis to types with at least two examples in the
dataset and to unique pairs (if PN A and PN B were top hits for each other, we only counted them
once) (n=327). There were only 8 cases in which the top hit did not match the query’s class. Of these,
four hadmatches to a uPN innervating a neighboring glomerulus with identical axon projections (DL2d
vs DL2v, VM5d vs VM5v) that are challenging even for experts to distinguish. There were a further
four matches to multi-glomerular PNs that innervated the same glomerulus as well as some others.
This exercise encapsulates a very simple form of supervised learning (k-nearest neighbor with k=1
and leave one out cross-validation) and shows that NBLAST scores are a suitable metric for this form
of machine learning with an error rate of 2.4% for 35 classes; it also noteworthy that this was in the
face of a huge amount of distracting information since uniglomerular PNs represented on only 2.47%
of the 16128 test neurons.

We also compared how the top 3 hits matched the query type (Figure 5B). For uPN types with
more than three examples (non DL2, n=187), we collected the top three NBLAST hits for each of
these neurons. We achieved very high matching rates: in 98.9 % of cases (i.e. all except two) at least
one of the top hits matched the query type, and all three hits matched the query type in 95.2% of cases.

Given the very high prediction accuracy, we wondered if an unsupervised clustering based on
NBLAST mean scores would group uPNs by type. To test this, we clustered uPNs (non DL2, n=214)
and divided the dendrogram at a height of 0.725: as this level most groups corresponded to single and
unique neuron types. For types with more than one representative neuron, all neurons co-clustered,
with three exceptions (Figure 5C). In one case there was substantial mis-registration of the antennal
lobe overlooked by our image registration quality control; in the other 2 cases, neurons of the same
type were split into two adjacent clusters. The cluster organization also reflects higher level features
such as the axon tract / neuroblast of origin (Figure 5C’). Thus, unsupervised clustering of uPNs based
on NBLAST scores gives an almost perfect neuronal classification: our two expert annotators took
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three iterative rounds of consensus-driven manual annotation to better this error rate of 1.4%.
In conclusion, these results demonstrate that morphological comparison by NBLAST is powerful

enough to resolve differences at the finest level of neuronal classification. Furthermore, they suggest
that unsupervised clustering by NBLAST scores could help reveal new neuronal types.

NBLAST can be used to define new cell types

Visual projection neurons

Visual projection neurons (VPNs) relay information between optic lobe and the central brain. They are
a morphologically diverse group with 44 types already described (Otsuna and Ito, 2006). We explored
whether clustering of these neurons based on NBLAST scores would find previously reported neuron
classes and identify new ones.

We isolated a set of VPNs including 1,793 unilateral VPNs, 72 bilateral VPNs and 2,892 intrinsic
optic lobe neurons. Hierarchical clustering of the unilateral VPNs (uVPNs) resulted in a dendrogram,
which we divided into 21 groups (I-XXI), in order to isolate one or a few cell types by group based both
directly on morphological stereotypy and on previous literature (Otsuna and Ito, 2006)(Figure 6A–A’
and Figure S4A–A’). We further investigated these groups to determine if central brain innervation was
a major differentiating characteristic between classes.

Lobula-, AOTU- and PVLP-innervating uVPNs We took neuron skeletons from groups I–III
uVPN and isolated the axon arbors innervating the anterior optic tubercle (AOTU) and posterior ven-
trolateral protocerebrum (PVLP) (Figure 6B). A new clustering based on the scores of these partial
skeletons, allowed us to identify 7 different groups (1-7). A clear distinction between neurons that
innervated the PVLP (groups 1, 2) and those that extensively innervated the AOTU (groups 3–6) was
evident. Our analysis divides the LC10 uVPN class into 5 subgroups, 4 of them not previously identi-
fied ( Table S1 and Figure 6C).

Lobula-, PVLP- and PLP-innervating uVPNs We performed a similar analysis with uVPN groups
that had dendritic innervation restricted to the lobula and axons projecting to the PVLP and posterior
lateral protocerebrum (PLP) (groups IV, VI, VII and XI) (Figure S4A’). Following the same strategy,
we re-clustered neurons based on the scores calculated only for the axon arbors that overlapped with
the PVLP or PLP (Figure S4B). We obtained 5 distinct types, including a new subtype (Figure S4B–C
and Figure S4).

Bilateral VPNs In addition to the analysis of the uVPNs, we also performed a hierarchical clustering
of the bilateral VPNs (Figure 6A”). Of the resulting 8 distinct groups (i–viii), one matched the bilateral
LC14 neurons (Otsuna and Ito, 2006).

VPN summary Our analysis of VPN neurons has demonstrated that similarity searches performed
with neuron fragments are useful to highlight morphological features that might be important for defin-
ing neuron classes. We were able to match 11 of our defined groups to known VPN types, and further-
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more described 3 new subclasses and four subtypes of uVPNs, showing that this type of analysis is
able to identify new cell types even for intensively studied neuronal classes.

Auditory neurons

Auditory projection neurons (PNs) are characterized by their innervation of the primary or secondary
auditory neuropils, the antennal mechanosensory and motor center (AMMC) and the inferior ventrolat-
eral protocerebrum (IVLP or wedge). Several distinct types have been described based on anatomical
and physiological features (Yorozu et al., 2009; Lai et al., 2012; Kamikouchi et al., 2006, 2009). Just
as for the VPNs, we tested NBLAST’s ability to identify known and new cell types. In this case, we
employed a two-step search strategy using a previously identified FlyCircuit neuron named by Lai
et al. (2012) as the seed neuron for the first search (for details see Auditory neuron analysis). For each
of the 5 types we analyzed, hierarchical clustering of the hits revealed new subtypes of known auditory
PN types that differed mainly in their lateral arborizations (Figure S5E and Table S2 ).

mAL neurons

The fruitless-expressingmALneuronswere the first population of neurons in the brain shown to be sex-
ually dimorphic in number andmorphology (Koganezawa et al., 2010; Kimura et al., 2005).Males have
around 30 neurons, females only 5. Differences in dendritic arborisations likely alter input connectiv-
ity including pheromone information detected by chemoreceptors on the male forelegs (Koganezawa
et al., 2010; Kohl et al., 2015) and they regulate wing extension by males during courtship song (Ko-
ganezawa et al., 2010). We investigated whether clustering could distinguish male and female neurons
and identify male subtypes. Clustering a set of 41 mAL neurons (for dataset collection see ) cleanly
separated male from female neurons (Figure 7A–B). Clustering analysis of the male neurons using
partial skeletons that only contained the axonal and dendritic arbors (Figure 7C), identified 3 main
types and 2 subtypes of male mAL neurons. The 3 types differed in the length of the ipsilateral ventral
projection; this feature has previously been proposed as the basis of a qualitative classification of mAL
neurons (Kimura et al., 2005). However all types and subtypes also showed reproducible differences
in the exact location of their axon terminal arbors. Our analysis therefore suggests that the population
of male neurons includes types with correlated differences in input-output connectivity.

P1 neurons

P1 neurons are the most significantly dimorphic fruitless-expressing neurons. Male P1 neurons are
involved in the initiation of male courtship behavior while female P1 neurons degenerate during de-
velopment due to the action of doublesex (Kimura et al., 2008). There are around 20 P1 neurons that
develop from the pMP-e fruitless neuroblast clone. They have extensive bilateral arborizations in the
PVLP and ring neuropil, partially overlapping with the male-specific enlarged brain regions (MER)
(Kimura et al., 2008; Cachero et al., 2010) (Figure 7D).

Despite their critical role, P1 neurons have been treated as an homogeneous neuronal class. We
therefore investigated whether clustering could identify anatomical subtypes. Hierarchical clustering
of the P1 neuron set (for dataset collection see ), distinguished 10 groups (Figure 7D’). Nine of these
(1–9) contain only male fru-GAL4 neurons as expected. The 9 male groups have the same distinctive
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primary neurite and send contralateral axonal projections through the arch (Yu et al., 2010b) with
extensive arborizations in theMER regions (Cachero et al., 2010). However each group shows a highly
distinctive pattern of dendritic and axonal arborisations suggesting that they are likely to integrate
distinct sensory inputs and to connect with distinct downstream targets.

Intriguingly, group 10 consists only of female neurons, including two neurons labeled by fru-
GAL4. Their morphology is clearly similar to but distinct from group 9 P1 neurons, suggesting that
a small population of female neurons share anatomical features (and likely originate from the same
neuroblast) as these key regulators of male behavior.

Superclusters and exemplars to organize huge data

In the previous examples we have shown that NBLAST is a powerful tool to identify known and
uncover new neuron types in specific neuron superclasses. However, subsetting the dataset in order
to isolate chosen neurons requires considerable time. We wished to establish a method that would
organize large datasets, extracting the main types automatically, and retain information on the similar-
ity between types and subtypes, while allowing quicker navigation. We used the affinity propagation
method of clustering (Frey and Dueck, 2007), combined with hierarchical clustering to achieve this.
Applying affinity propagation to the 16,129 neurons in the FlyCircuit dataset resulted in 1,052 clusters
(Figure 8A–B). Using hierarchical clustering of the exemplars and by manually removing a few stray
neurons, we isolated the central brain neurons (groups B–C) (Figure 8C). Another step of hierarchical
clustering of central brain exemplars revealed large superclasses of neuron types (groups I–XIV), each
one containing a distinct subset including, for example, central complex neurons (I), P1 neurons (II),
2 groups of KCs (γ and α′/β′ and α/β) (IV–V) and auditory neurons (VIII) (Figure 8D–D’).

The affinity propagation clusters are also useful for identifying neuronal subtypes by comparing all
clusters that contain a specified neuronal type (Figure 8E). We present examples for the neuronal types
AMMC-IVLP projection neuron 1 (AMMC-IVLP PN1) (Lai et al., 2012), and the uVPNs LC10B and
LC4. For each of these, morphological differences are clear between clusters, suggesting that each one
might help to identify distinct subtypes.

We have shown that combining affinity propagation with hierarchical clustering is an effective
way to organize and explore large datasets, by condensing information into a single exemplar and by
retaining the ability to move up or down in the hierarchical tree, allowing the analysis of superclasses
or more detailed subtypes.

NBLAST extensions

NBLAST is a powerful tool for working with single neurons from the adult fly, however the algorithm
was designed to be general. We now illustrate NBLAST in a wide variety of experimental contexts. We
first use 40 neurons reconstructed from a complete serial section electron microscopy (EM) volume
of the Drosophila larva. Clustering NBLAST scores recovers functional groups of neurons within a
multimodal escape circuit (see Figure 9A) (Ohyama et al., 2015) . Pruning fine terminal branches from
the EM reconstructions (mimicking light level reconstructions) has little impact on cluster assignments;
therefore NBLAST clustering of coarsely skeletonized neurons could be an important step to organize
electron microscopy connectome data.
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We next show two examples applying NBLAST to single cell data from another invertebrate, the
monarch butterfly, and a vertebrate, the larval zebrafish (Figure 9B, C and ). Clustering 29 monarch
butterfly neurons from the central complex (Heinze et al., 2013) largelymatches neuronal types defined
by expert neuroanatomists – the few discrepancies were reviewed with the data provider (S. Heinze,
personal communication) and determined to be cases where computationally defined cell groups re-
vealed features that were orthogonal to expert classification but still a valid classification.

The zebrafish data consisted of 55 mitral cells (second order olfactory neurons) projecting to a
variety of higher brain areas (Miyasaka et al., 2014). NBLAST clustering identified clearly distinct
morphological groups (Figure 9C). Very similar neurons were co-clustered both by our algorithm and
that of the original authors, but clustering of distantly related neurons was distinct. Only future exper-
iments will show if one clustering has more functional relevance.

In our final example, we applyNBLAST to a distinct but experimentally vital form of neuroanatom-
ical image data. Circuit neuroscience in many model organisms depends on manipulating circuit com-
ponents with cell type specific driver lines. We have registered (Manton et al., 2014) and processed
image data from the most widely used Drosophila collection, 3501 GMR driver lines generated at the
Janelia Research Campus (Jenett et al., 2012). We applied an image processing pipeline emphasizing
tubular features (Masse et al., 2012), generating a vector cloud representation identical to that used
elsewhere in this paper. These data (9Gb for 3501 image stacks) can be queried with single neurons
or tracings in less than 30 seconds on a desktop computer. To demonstrate this approach at scale we
mapped these GAL4 data to the same template space (Manton et al., 2014) as the FlyCircuit single
neurons and computed NBLAST scores for 16129 neurons against 3501 driver lines. We provide a
simple web server for these queries at jefferislab.org/si/nblast/on-the-fly. We showcase this by identi-
fying GAL4 driver lines targeting the sexually dimorphic mAL neuron population (Figure 9D, D’, see
also 7). We selected 10 mAL neurons and then examined the 10 GAL4 lines with the highest mean
scores. The top hit line R43D01 has just been identified as targeting this population (Kallman et al.,
2015) and all the top 10 hits target the same population.

As a second example, we looked at driver lines labeling olfactory projection neurons targeting the
CO2-responsive V glomerulus. Comprehensive single cell labeling identified classes critical for behav-
ioral responses to different CO2concentration (Lin et al., 2013). However one class highly selective
for the V glomerulus could not be functionally studied because no GAL4 line was identified. Search-
ing this neuron we found the fourth hit (R86A05) was highly selective for this cell type (Figure 9E).
Finally, we take an auditory interneuron (AMMC-AMMC PN1, see S5 and S2) and a presumptive
visual interneuron of the anterior optic tubercle. The top 10 hits for both neurons included numerous
matching GAL4 lines; we display one example for each in Figure 9F. Although all of these lines label
multiple neuronal classes, NBLAST enables very rapid identification of lines containing a neuronal
population of interest that could be used for the construction of completely cell-type specific lines by
intersectional approaches (Luan et al., 2006).

Discussion

The challenge of comprehensive mapping neuronal types in the brain depends on establishing methods
that facilitate unbiased identification of neuron types from pools of thousands or millions of individual
neurons. Comparison of neurons relies on morphology and brain position, essential determinants of
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their function and synaptic partners. A neuron search algorithm should be: (1) accurate, generating
biologically meaningful hits; (2) computationally inexpensive; (3) enable interactive searches for data
exploration (4) generally applicable. We have described NBLAST, a neuron search algorithm that
satisfies all these criteria.

First, the algorithm correctly distinguishes closely related subtypes across a range of major neuron
groups, achieving 97.6 % accuracy for 35 classes of olfactory projection neuron. Unsupervised neuron
clustering based on NBLAST scores, correctly organized neurons into known types. We did find that
neuron sizes (especially when very small) can influence the algorithm: one future research area will
be to convert the raw scores that we have used into an expectation (E) value (cf. BLAST), that would
directly account for the size of a neuron and the database.

Second, NBLAST searches are very fast, with pairwise comparisons taking about 2 ms on a laptop.
Furthermore, for defined datasets all-by-all scores can be pre-computed allowing immediate retrieval
of NBLAST scores for highly interactive analysis. With data volumes increasing, strategies to query
and store these data need to be investigated. One effective approach to handle much larger numbers
of neurons will be to compute sparse similarity matrices, storing the top 𝑛 hits for a given neuron. Al-
ternatively, queries could be computed only against the non-redundant set of neurons that collectively
embody the structure of the brain (similar to the strategy employed by UniProt (Suzek et al., 2007)).
For the fly brain this could not exceed 50,000 neurons (due to strong bilateral symmetry) and we ex-
pect the actual number to be < 5,000. Our clustering of all ~16,000 neurons of the FlyCircuit dataset
identified ~1,000 exemplars providing a non-redundant data set that we use for rapid searches.

Third NBLAST permits multiple search strategies and types of analysis. Searches can use neuron
fragments, or tracings from complex image data as queries and databases of GAL4 lines as targets.
Closely related neuronal types can be distinguished by clustering of only their terminal arbors without
considering common features such as axon tracts.

Finally, one important question is the extent to which our approach generalizes. This issue largely
reduces to the relationship between length scales of neurons being examined and their absolute spatial
stereotypy. Our method implicitly assumes spatial co-localization of related neurons; this is enforced
by the use of image registration. Our strategy should be appropriate for any situation in which neuronal
organization is highly stereotyped at the length scale of the neurons themselves. There is already strong
evidence that this is true across large parts of the brain for simple vertebrate models like the larval
zebrafish; indeed we show that our NBLAST method can be applied directly to olfactory projectome
data (Miyasaka et al., 2014). Mouse gene expression (Lein et al., 2007) and long range connectivity
also show global spatial stereotypy as evidenced by recent atlas studies combining sparse labeling
and image registration (Zingg et al., 2014; Susaki et al., 2014; Oh et al., 2014)). Our method could
be adapted for querying and hierarchical organization of these datasets by calculating an appropriate
scoring matrix.

However there are situations in which global brain registration is not appropriate For example the
vertebrate retina has both laminar and tangential organization. Sümbül et al. (2014) recently introduced
a registration strategy that showed that lamination of retinal ganglion cells is spatially stereotyped to the
nearest micron. However retinal interneurons and ganglion cells are organized in mosaics tangential to
the retinal surface; global registration is not appropriate in this plane. The situation is similar for parallel
columns of the outer Drosophila optic lobe. We see two possible approaches: local re-registration,
mapping neurons onto a single canonical column or, amassing sufficient data so that neurons from
neighboring columns/mosaics tile the brain, enabling identification of related groups by clustering or
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graph theoretic approaches.
Cataloguing all neuron types in the brain will rely not only on effective measures of neuronal

similarity, but also on simple, unbiased methods for automated classification of neurons into func-
tionally relevant types. This is a challenging problem: it may be necessary to combine morphological
approaches with other data such as connectivity patterns, single neuron gene expression patterns or
physiological properties to provide unambiguous automated classification (reviwed by Armañanzas
and Ascoli, 2015). We have shown that NBLAST scores define a highly effective similarity metric
that can be combined with hierarchical clustering and a specific dendrogram cut height to define a
very wide range of neuronal classes. This approach enables very rapid exploratory analysis of new cell
types even without expert neuroanatomical knowledge. Indeed for Drosophila neurons it seems that
NBLAST clustering is sufficient to define cell type.

Sümbül et al. (2014) recently explored the issue of defining the optimal dendrogram cut height for
morphological clustering of 363 mouse retinal ganglion cells, establishing a reliable approach for these
specific neurons. Nevertheless, our experience from the 16,129 neuron validation set is that differences
in similarity levels within classically defined neuronal types preclude the existence of a universal value
for dendrogram cut height. Some of this range (0.7 to 2 in this study) is probably due to differences
in definitions: classic neuronal types may in some cases require splitting for consistency – we see
evidence for this in the Kenyon cell and visual projection neuron datasets.More sophisticated statistical
criteria may enable automated classification, especially when combined with measurements of e.g.
physiological or gene expression data (Armañanzas and Ascoli, 2015). However all approaches to
defining cluster numbers (i.e. statistically-based cell types) depend on biological priors that must be
acknowledged. Nevertheless NBLAST’s speed and sensitivity and the size of this validation dataset
represent a significant step towards fully automated classification.

Finally we note that NBLAST can identify genetic driver lines labeling a given query neuron.
The pre-computed NBLAST result matrix that we provide for the GMR GAL4 collection will be of
immediate utility to ourDrosophila colleagues planning experimental studies of particular cell classes.
Thus NBLAST can provide a vital link between studies of anatomical logic and neural circuit function.

Experimental Procedures

Image Preprocessing

flycircuit.twsupplied 16,226 raw confocal stacks in Zeiss LSM format on a single 2 TB hard drive in
April 2011. Each stack was uncompressed, then read into Fiji/ImageJ (http://fiji.sc/Fiji) where
channels were split and resaved as individual NRRD (http://teem.sourceforge.net/nrrd) files.
Where calibration information was missing in the LSM metadata, we used a voxel size of (0.318427,
0.318427, 1.00935) microns as recommended by the FlyCircuit team. There were two issues to solve
before images could be used for registration: 1) identifying which image channel contained the anti-
Dlg (discs large 1) counterstaining 2) determining whether the brains had been imaged from anterior
to posterior, or the reverse. The first issue was solved by exporting metadata associated with each
LSM using the LOCI bioformats (http://loci.wisc.edu/software/bio-formats) plugin and
developing heuristics to automate the identification of the channel sequence; for a minority of images
metadata wasmissing and channel order was determinedmanually. Slice order could not be determined
automatically from the image metadata. We therefore made maximum intensity Z projections (using
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the unu tool, http://teem.sourceforge.net/unrrdu) for the labeled neuron channel for each
stack. Each projection was then compared with the matching thumbnail available from the flycircuit.tw
website. The correlation score between the projection and thumbnail images was calculated both with
andwithout amirror flip across the YZ plane; a large correlation score for only one orientationwas used
as evidence for a given slice ordering. A small number of ambiguous results were verified manually.
We successfully preprocessed 16,204/16,226 total images i.e. a 0.14 % failure rate. 12 failures were
due to mismatches that could not be resolved between the segmented neuron present in the LSM file
and the thumbnail image on the flycircuit.tw website; the remaining 10 failures were due to physical
offsets between the brain and GFP channels or corrupt image data.

Template Brain

The template brain (FCWB) was constructed by screening for whole brains within the FlyCircuit
dataset and manually selecting a pool of stacks that appeared of good quality. Separate average fe-
male and average male template brains were constructed from 17 and 9 brains, respectively using the
CMTK (http://www.nitrc.org/projects/cmtk) avg_adm tool which takes a single brain as a
seed. After five iterations the resultant average male and average female brains were placed in an
affine symmetric position within their image stacks so that a simple horizontal (𝑥-axis) flip of either
template brain resulted in an almost perfect overlap of left and right hemispheres. Finally the two sex-
specific template brains were then averaged (with equal weight) to make an intersex template brain
using avg_adm. Since this template was designed to provide an optimized registration target for the
FlyCircuit dataset, no correction was made for the disparity between the XY and Z voxel dimensions
common to all images in the dataset. The scripts used for the construction of the template are available
at https://github.com/jefferislab/MakeAverageBrain.

Image Registration

Image registration of Dlg neuropil staining used a fully automatic intensity-based (landmark free)
3D image registration implemented in the CMTK toolkit (Rohlfing and Maurer, 2003; Jefferis et al.,
2007). An initial linear registration with 9 degrees of freedom (translation, rotation and scaling of each
axis) was followed by a non-rigid registration that allows different brain regions to move indepen-
dently, subject to a smoothness penalty (Rueckert et al., 1999). It is our experience that obtaining a
satisfactory initial linear registration is crucial. All registrations were therefore manually checked by
comparing the reformatted brain with the template in Amira (academic version, Zuse Institute, Berlin),
using ResultViewer https://bitbucket.org/jefferis/resultviewer. This identified about 10
% of brains with poor initial registrations. For these images a new affine registration was calculated
using a Global Hough Transform (Ballard, 1981; Khoshelham, 2007) with an Amira extension module
available from 1000shapes GmbH; the result of this affine transform was again manually inspected. In
the minority of cases where this approach failed, a surface based alignment was calculated in Amira
after manually aligning the two brains. Following satisfactory initial affine registration, a non-rigid reg-
istration was calculated. Finally each registration was checked manually in Amira against the template
brain. This sequential procedure was resulted in successfully registration of 16,129/16,204 prepro-
cessed images, giving a registration failure rate of 0.46 %.
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Image Postprocessing

The confocal stack for each neuron available at http://flycircuit.tw includes an 8 bit image
containing a single (semiautomatically) segmented neuron prepared byChiang et al. (2011). This image
was downsampled by a factor of 2 in 𝑥 and 𝑦, binarized with a threshold of 1 and skeletonized using the
Fiji plugin ‘Skeletonize (2D/3D)’ (Doube et al., 2010). Dot properties for each skeleton Masse et al.
(2012), were extracted using the dotprops function of our new nat package for R. This converted
each skeleton into segments, described by its location and tangent vector. Neurons on the right side
of the brain were flipped to the left by applying a mirroring and a flipping registration as described
in Manton et al. (2014). The decision to flip a neuron depended on earlier assignment of each neuron
to a brain hemisphere using a combination of automated and manual approaches. Neurons whose cell
bodies were more than 20 µm away from the mid-sagittal YZ plane were automatically defined as
belonging to the left or right hemisphere. Neurons with cell bodies inside this 40 µm central corridor
were manually assigned to a hemisphere, based on cell body position (right or left side), path taken
by the primary neurite, location and length of first branching neurite. For example, neurons that had
a cell body on the midline with significant innervation from the first branching neurite near the cell
body on the left hemisphere, with the rest of the arborization on the right, were assigned to the left
side and not flipped. The cell body positions used were based on those published on the http://
flycircuit.twwebsite for each neuron; these positions are in the space of the FlyCircuit female and
male template brains (typical_brain_female and typical_brain_male). In order to transform them into
the new FCWB template that we constructed, affine bridging registrations were constructed from the
typical_brain_female and typical_brain_male brains to FCWB and the cell body positions were then
transformed to this new space. Since these cell body positions depend on two affine registrations (one
conducted by Chiang et al. (2011) to register each sample brain onto either their typical_brain_female
or typical_brain_male templates and a second carried out by us to map those template brains onto our
FCWB template) these positions are likely accurate only to ±5 microns in each axis.

Neuron Search

The neuron search algorithm is described in detail in Results and Figure 1. The reference implemen-
tation that we have written is the nblast function in the R package nat.nblast, which depends on our
nat package (Jefferis and Manton, 2014). Fast nearest neighbor search, an essential primitive for the
algorithm uses the nabor package (Jefferis, 2015), a wrapper for the nabo C++ library (Elseberg et al.,
2012). The scoring matrix that we used for FlyCircuit neurons was constructed by taking 150 DL2
projection neurons, defining a neuron type at the finest level, and calculating the joint histogram of
distance and absolute dot product for the 150 × 149 combinations of neurons, resulting in 1.4 × 107
measurement pairs; the number of counts in the histogram was then normalized (dividing by 1.4 ×
107) to give a probability density, 𝑝match. We then carried out a similar procedure for 5,000 random
pairs of neurons sampled from the FlyCircuit dataset to give 𝑝rand. Finally the scoring matrix was
calculated as log2

𝑝match+𝜖
𝑝rand+𝜖 where ε (a pseudocount to avoid infinite values) was set to 1 × 10−6.

Clustering

We employed two different methods for clustering based on normalized NBLAST scores. We used
Ward’s method for hierarchical clustering, using the default implementation in the R function hclust.
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This method minimizes the total within-cluster variance, and at each step the pair of entities or clusters
with the minimum distance between clusters are merged (Ward Jr, 1963). The resulting dendrograms
were cut at a single selected height chosen for each case. This value is shown as a dashed line in all
dendrograms. By default, R plots the square of the Euclidean distance as the 𝑦 axis, but in the plots
shown, the height of the dendrogram corresponds to the unsquared distance.

For the analysis of the whole dataset, we used the affinity propagation method. This is an iterative
method which finds exemplars which are representative members of each cluster and does not require
any a priori input on the final number of clusters (Frey and Dueck, 2007) as implemented in the
R package apcluster (Bodenhofer et al., 2011). The input preference parameter (𝑝) can be set before
running the clustering. This parameter reflects the tendency of data samples to become an exemplar, and
controls the final number of clusters. We used 𝑝 = 0, since this is the value where on average matched
segments are equally likely to have come from matching and non-matching neurons. Empirically this
parameter produced clusters that mostly grouped neurons of the same type according to biological
expert opinion.

Neuron Tracing

Neuron tracing was carried out in Amira (commercial version, FEI Visualization Sciences Group,
Merignac, France) using the hxskeletonize plugin (Evers et al., 2005) or in Vaa3D (Peng et al., 2014)
on registered image data. Traces were loaded into R using the nat package.When necessary, they were
transformed into the space of the FCWB template brain Manton et al. (2014).

Computer Code and Data

The image processing pipeline used two custom packages for the R statistical environment (http://
www.r-project.org): https://github.com/jefferis/nat and https://github.com/jefferis/
nat.as that coordinated processing by the low level registration (CMTK) and image processing (Fiji,
unu) software mentioned above. NBLAST neuron search is implemented in R package nat.nblast
available at https://github.com/jefferislab/nat.nblast. Analysis code specific to the fly-
circuit dataset is available in a dedicated R package https://github.com/jefferis/flycircuit,
with a package vignette showcasing themain tools that we have developed. Further details of these sup-
plemental software and the associated data are presented at http://jefferislab.org/si/nblast.
The registered image dataset can be viewed in the stack viewer of the http://virtualflybrain.
org website and all 16,129 registered single neuron images and corresponding skeletonized neurons
will be available at http://jefferislab.org/si/nblast or on request to GSXEJ on a hard drive;
the unregistered data remain available at http://flycircuit.tw.

Precomputed score matrices of all by all FlyCircuit neurons and all FlyCircuit neurons against all
GMRGAL4 lines are distributed through the https://github.com/jefferis/flynblastscores
R package or available via a remote web service that can return the top n hits for any neuron (see
vfb_nblast function in package https://github.com/jefferis/vfbr). Finally a fully interactive
web application is available by following the link http://bit.ly/nblast.
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Figure 1: Image preprocessing, registra-
tion and similarity score (NBLAST) algo-
rithm
(A) Flowchart describing the image pre-
processing and registration procedure. Fly-
Circuit images were split into 3 channels.
The Dlg-stained brain (discs large 1) im-
ages were registered against the FCWB tem-
plate. Successful registrations were applied
to the skeletonized neuron images. Neuron
skeletons were converted into points and vec-
tors. (B) Neurons on the right side of the
brain were flipped onto the left. Brain plots
showing 50 random neurons before and af-
ter flipping. On the right, cases for which the
neuron flipping was assessed manually. (C)
NBLAST algorithm. The similarity of two
neurons (query and target), is given by a func-
tion of the distance and absolute dot prod-
uct between the nearest neighbor points of
the query/target pair. This distance function
reflects the probability of a match between
a pair of points (pmatch), relative to any two
random points (prand). (D) Diagram illustrat-
ing how nearest neighbor points are calcu-
lated. For a query (N1)/target (N2) pair, each
point of N1 (ui) is paired to the N2 point (vi)
that minimizes the distance (di) between the
points. (E) Calculating the distance function.
Random pairs of neurons within two groups,
DL2 uPNs and all remaining neurons, were
compared. (F) Brain plot of DL2 uPNs. (G)
Calculation of the distribution for matching
and non-matching pairs of segments. For all
segment pairs of all neuron pairs of each
group, the distance and absolute dot prod-
uct were plotted in a distance histogram. The
distribution probability for matching (pmatch)
or non-matching pairs (prand) was calculated
by normalizing the distance histogram to 1.
(H) Plot showing that the similarity score de-
pends on the spatial location of the points
(distance between points) and the direction of
the vectors (absolute dot product). (I) Sum-
mary diagram of the NBLAST implementa-
tion, for desktop and online uses.
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Figure 2: NBLAST allows different types
of searches
(A) Searching for neurons with NBLAST.
Pair comparisons between the query and tar-
get neurons in the dataset return a similar-
ity score, allowing the results to be ordered.
(B) NBLAST search using a whole neuron
as a query against the FlyCircuit dataset. The
query neuron (fru-M-400121), top hit and top
10 hits in anterior view. (C) NBLAST search
using a neuron fragment as a query against
the FlyCircuit dataset. The query neuron and
top 10 hits are shown. (C’) Search with the
mALT tract from an olfactory PN (Cha-F-
000239). Lateral oblique view is shown, the
inset shows the mALT tract of the top 10 hits.
(C”) Search with the lALT tract from an ol-
factory PN (Gad1-F-200095). Anterior view
is shown, the inset shows the lALT tract of
the top 10 hits. (D) NBLAST search against
FlyLight GAL4 lines using a query neuron.
(D’) From left to right: query neuron (Trh-
M-300069), volume rendering of query and
best GAL4 hit (R52H12), maximum Z pro-
jection of line R52H12. (E) NBLAST search
for neurons with matching neurites to a frag-
ment from a fruitless neuroblast clone (pMP-
e). The target is the FlyCircuit dataset. (E’)
Volume rendering of pMP-e clone with the
selected fragment – the characteristic stalk of
P1 neurons. An anterior and lateral view are
shown. (E”) Query fragment in lateral view.
Top 10 hits in anterior and lateral view. (F)
NBLAST search for neurons with matching
neurites to a fragment traced from a GAL4
image (R18C12) ((Jenett et al., 2012)). The
target is the FlyCircuit dataset. (F’) Maxi-
mum Z projection of line R18C12. (F”) The
fragment used as query (traced in Vaa3D)
in anterior view. Top 3 hits in anterior and
dorsal view. (G) NBLAST search for GAL4
traces (Peng et al., 2014) matching a se-
lected FlyCircuit neuron (VGlut-F-500818).
The top 10 trace hits are shown in anterior
and dorsal view.
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Figure 3:NBLAST scores are accurate and
meaningful
(A) NBLAST search with fru-M-300198
(black). (A’)Neuron plot of the query (black)
and top hit (red). The top hit corresponds to a
different segmentation of the query, from the
same raw image. (A”) Neuron plot showing
the top 8 hits. There are differences in neu-
rite branching, length and position. (B) All
hits with a forward score over 0, colored by
score, as shown in C. (C)Histogram of scores
for a forward search with fru-M-300198 as
query. Only hits with scores over −5,000 are
shown. The left inset shows the histogram
of scores for all search hits. The right inset
shows a zoomed view of the top hits (score >
6,500). For more examples see S1. (C’)Neu-
ron plots corresponding to the score bins in
C. (D) Comparison of the raw, normalized
and mean score, for two pairs of neurons: one
of unequal (Q1, T1) and one of similar size
(Q2, T1). (E) Histogram of the normalized
score for the top hit for each neuron in the
whole dataset. The mean and 99th percentile
are shown as a dashed red and green lines,
respectively. (F) Plot of reverse and forward
normalized scores for 72 pairs of neurons for
which both the forward and reverse scores are
higher than 0.8. These pairs were classified
into four categories: images correspond to a
segmented image that is duplicated (‘Same
segmentation’); images correspond to dif-
ferent neuron segmentations from the same
raw image (‘Same raw image’); images cor-
respond to two different segmented images
from the same brain (‘Same specimen’); im-
ages correspond to segmented images of the
same or similar neurons in different brains
(‘Different specimen’). The inset plot shows
the normalized reverse and forward scores
for all top hits. The threshold of 0.8 is indi-
cated by two black lines.
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Figure 4: NBLAST search and classifica-
tion of hits reveals Kenyon cell subtypes
(A) Hierarchical clustering (HC) of Kenyon
cells (n=1664). Bars below the dendrogram
indicate the γ (in green), α′/β′ (in blue) and
α/β neurons (in magenta), h=8.9. Inset shows
the mushroom body neuropil. (B) Neuron
plot of γ neurons. (B’) HC of γ neurons (I–
III), h=3. Neuron plots of groups I to III. A
lateral oblique and a posterior view of the
neurons and a lateral view of a horizontal
lobe slice are shown. (B”)HC of the classic γ
neurons, corresponding to groups I and III in
B’, divided into four groups (A–D). Neuron
plots of groups A–D, A–B and C–D. (B”’)
HC of atypical γ neurons corresponding to
group II in B’, divided into three groups (a–
c). Neuron plots of groups a–c, a, and b–c.
Group a corresponds to subtype γd neurons.
(C) Neuron plot of α′/β′ neurons. (C’) HC of
α′/β′ neurons, divided into four groups (i–iv),
h=1.43. (D) Neuron plot of α/β neurons. (D’)
HC of α/β neurons, divided into four groups
(1–4), h=3.64. Neuron plots of groups 1 to
4, which correspond to the neuroblast clones
(AM, AL, PM, PL). Lateral oblique, poste-
rior view and posterior view of a peduncle
slice of these groups are shown. (D”) HC
of groups 1 and 2. Lateral oblique, posterior
oblique and a dorsal view of a peduncle slice
views are shown. HC of group 1 divided into
2 subgroup, separating the neurons into sur-
face (cyan) and core (red). Similar analysis
to groups 3 and 4 is shown in Figure S3A.
HC of group 2 divided into 3 subgroups. The
red and blue subgroups match the core and
surface neurons, respectively; the green sub-
group corresponds to the α/β posterior sub-
type (α/βp). AcCa: accessory calyx. Neurons
in grey: Kenyon cell exemplars.
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Figure 5: NBLAST search and classification of hits reveals uniglomerular olfactory projection neuronal types
(A) Plot of the reverse and forward normalized scores for the top hit in an NBLAST search using the uniglomerular olfactory projection neurons (uPNs) as queries (n=327). For each query neuron, we identified cases
for which both the top hit and query were of the same class (True) (n=319); the top hit is a uPN but does not match the class of the query (False) (n=4), or the top hit is not a uPN (Not uPN) (n=4). (B) Percentage of
neuron type matches in the top hit and top 3 hits for each uPN. The top three hits for each uPN (mean score) were collected and the neuron type of each hit and query was compared.(C) Hierarchical clustering of uPNs
(non-DL2s) (n=214) divided into 35 groups (1–35), h=0.725. Dendrogram showing the innervated glomerulus for each neuron. Inset shows the uPNs colored by dendrogram group. Below the leaves, the number of neurons
that innervate each glomerulus is indicated by the black rectangles. Neurons that innervate DA1 and VA1lm glomeruli but originate from the ventral lineage instead of the lateral or anterodorsal, respectively, are indicated
as vVA1lm and vDA1. The dendrogram groups correspond to single and unique neuron types except for DL1 and DA1 neurons which are split into 2 groups (12–13, 15–16, respectively) (red arrowhead) and the outlier
neuron VM5v in group 9 (red asterisk). (C’) Neuron plots corresponding to dendrogram groups 1–5 and to each of these individual groups. The antennal lobe is in green, the lateral horn in purple.
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Figure 6: NBLAST search and classifi-
cation of hits uncovers visual projection
neuronal types
(A) Clustering analysis of unilateral
(uVPNs) and bilateral visual projection
neurons (bilVPNs). Inset on the dendrogram
shows the neuropils considered for the
overlap. To the right, neuron plots of the
indicated groups, showing the neuropils
with the most overlap. Other neuron plots
are shown in Figure S4. (A’) Hierarchical
clustering (HC) of uVPNs, divided into
21 groups (I–XXI), h=3.65. (A”) HC of
bilVPNs, divided into 8 groups (i–viii),
h=1.22. Group ii corresponds to the LC14
neuron type. (B) Reclustering of uVPN
groups I, II and III from A’. The neuron
segments that co-localize with either the
anterior optic tubercle (AOTU) or posterior
ventrolateral protocerebrum (PVLP) were
isolated, followed by HC of the neurons
based on the NBLAST score of these neuron
segments. The dendrogram was divided into
seven groups (1–7), h=1.69. Below, neuron
plots matching the dendrogram groups to
known uVPN types neuron types. Group 1:
LC6 neurons; group 2: LC9. Groups 3 and
4: two new subtypes of LC10B. Groups 5
and 7: possible new subclasses of LC10.
Group 6: LC10A neurons. (C) Overlay of
Z projections of registered image stacks of
example neurons from the types identified
in B on a partial Z projection of the template
brain (a different one for each panel). The
white rectangle on the inset shows the
location of the zoomed in area. LC: lobula
columnar neuron.
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expressing mAL and P1 neurons
(A) Analysis of the mAL neurons. Hierar-
chical clustering (HC) of the hits, divided
into 2 groups (h=1.25). The mAL neuron
used as query (fru-M-500159) is shown in
the inset. The leaf labels indicate the gen-
der of the neuron: ’F’ for female and ’M’
for male. (B) Neuron plot of the 2 den-
drogram groups: male (in cyan) and fe-
male (in magenta). (C)Analysis of the male
mAL neurons. The neuron segments corre-
sponding to the terminal arbors (ipsi- and
contralateral) were isolated and the neu-
rons were clustered based on the score of
these segments. HC of neurons, divided into
3 groups (groups I–III) (h=0.83). Differ-
ences in arborization indicated by arrow-
heads. Group I (red) can be further subdi-
vided into two different subtypes. (D)Anal-
ysis of the P1 neurons. Neuron plot of a P1
neuron, fru-M-400046. The male enlarged
region (MER) is shown in red. Anterior and
posterior views are shown. Volume render-
ing of the pMP-e fruitless neuroblast clone,
which gives rise to P1 neurons. The distinc-
tive primary neurite was traced and used
on a NBLAST search. (D’) HC of hits for
a search against the P1 primary neurite di-
vided into 10 groups (1–10) (h=0.92). This
group of neurons corresponds to a subset
of neurons obtained after a first HC analy-
sis. Hits with a normalized score over 0.25
were collected and further selected. The in-
set shows a neuron plot with groups 1–10.
The leaf labels show the GAL4 driver used
to obtain that neuron; the colors follow the
gender: cyan for male and magenta for fe-
male. Below the dendrogram, neuron plots
of each group. The MER is shown in grey
for groups 9 and 10.
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Figure 8: Organizing NBLAST scores by
affinity propagation clustering
(A) Clustering by affinity propagation gen-
erated 1,052 clusters, with an average of 10
neurons per cluster and a similarity score of
0.559. Exemplars, representative neurons of
each cluster, were also generated. (B) Plot
of the mean cluster score versus cluster size.
(C)Hierarchical clustering (HC) of the 1,052
exemplars, divided into three groups (A–C).
Group A corresponds mostly to optic lobe
and VPN neurons; groups B and C to cen-
tral brain neurons. The insets on the den-
drogram show the neurons of these groups.
The main neuron types or innervated neu-
ropils are noted. (D) HC of central brain ex-
emplars (groups B and C, inset on dendro-
gram), divided into 14 groups, h=2.7. (D’)
Neuron plots corresponding to the dendro-
gram groups in D. (E) Affinity propaga-
tion clusters of defined neuron types. Neu-
ron plot of exemplars (top row) or all neu-
rons (bottom row) for auditoryAMMC-IVLP
PN1 neurons (compare with Figure S5D) and
VPN types LC10B (compare with Figure 6B)
and LC4 (compare with Figure S4B). The
number of exemplars and neurons is indi-
cated on the top left corner. AMMC (antennal
mechanosensory and motor center) in green;
wedge in magenta; AOTU (anterior optic tu-
bercle) in green; LO: lobula; PVLP (posterior
ventrolateral protocerebrum) in purple; PLP
(posterior lateral protocerebrum) in cyan.
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Figure 9: NBLAST extensions
(A) Larval basin goro neurons. The tan-
glegrams, with the dendrogram and corre-
sponding neurons plots are shown. In the
middle, the original neurons and cluster-
ing; on the left, clustering using network in-
formation and on the right, after removing
the neurons first and second order terminal
branches. The left tanglegram compares the
network clustering to the original, whereas
the right one, compares the original to the
pruned clusters. (B)Monarch butterfly cen-
tral complex neurons. Plot of all neurons.
(B’) Neurons after mirroring and cluster-
ing. The colors correspond to the dendro-
gram groups. A few of of the brain neu-
ropils are shown in grey. (B”) Hierarchi-
cal clustering after mirroring neurons. (C)
Zebrafish mitral neurons. On the left, hier-
archical clustering after mirroring neurons.
On the right, 4 examples of pairwaise com-
parisons of neuron groups. The colors cor-
respond to the dendrogram groups. (D)Dot-
props representation of R43D01 expression
pattern (blue) with best matched FlyCircuit
mAL neurons (red). (D’) R43D01 expres-
sion pattern. (E) Candidate V-glomerulus-
selective GAL4 line expression pattern with
single neuron (VGlut-F-100184). (F) Iden-
tified GAL4 line expression patterns found
with AMMC-AMMC PN1 auditory neuron
(Trh-M-300069) and an AOTUv2 lineage
neuron (fru-F-200039).
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Supplemental Information

Supplemental Experimental Procedures and Results

Algorithm Design Process

The algorithm design process was primarilymotivated by a requirement for rapid and sensitive searches
of neuron databases. It was necessary to consider both the data structure and the similarity algorithm
jointly in the face of the design requirements.

Our first application would be data acquired in Drosophila, where previous studies using image
registration have shown a high degree of spatial stereotypy (standard deviation of landmarks ~2.5 µm
in each axis for a brain of 600 µm in its longest axis, Jefferis et al., 2007). Therefore one key design
decision was to use co-registered data rather than calculating similarity using features of the neuron
that are independent of absolute spatial location.

On the algorithm side, the key initial design decision was whether to develop a direct pairwise
comparison algorithm or to use a form of dimensional reduction to map neuronal structure into a lower-
dimensional space. The major advantage of the latter approach is that the similarity between neurons
can be computed directly and almost instantaneously in the low dimensional space. However, the con-
struction of a suitable embedding function either requires existing knowledge of neuronal similarity
(likely supplied by experts in the form of large amounts of training data), huge amounts of unlabeled
data that enable direct learning of features (e.g. Le et al., 2012), or a strategy based on successful
extraction of key image features.

A number of considerations made us favor the approach of direct pairwise comparison. First, we
suspected that it would be possible to make a more sensitive algorithm by working with the original
data. Second, the amounts of image data available did not seem large enough to avoid a requirement
for extensive labeled training data. Third, we reasoned that our own intuitions about neuronal similar-
ity could be better expressed in the original physical space of the neuron than in a low dimensional
embedding. Our own exploratory analysis in which we summarized each neuron in different ways as
feature vectors of the same dimension and used a comparison function in the feature space (SP, GSXEJ
unpublished observations) confirmed that constructing a sensitive metric of this sort is challenging.

The selection of a pairwise similarity metric meant that we had to give particularly careful con-
sideration to performance issues in the design phase. We set two practical performance targets: 1)
being able to carry out searches of a single neuron against a database of 10,000 neurons in less than a
minute on a simple desktop or laptop computer. 2) Being able to complete all-against-all searches for
10,000 neurons (108 comparisons) in < 1 day on a powerful desktop computer. These targets meant
that each elementary comparison operation should take around 5 ms or less. Image pre-processing car-
ried out once per neuron would therefore be a good investment if it reduced the time taken for each
pairwise comparison. These considerations prompted us to generate a spatially registered, compact
representation of each neuron as a separate pre-processing step, rather than develop an algorithm that
simultaneously solved both the spatial alignment and similarity problem.

Algorithm Scoring

As described in the main results section, we defined NBLAST raw scores as the sum of segment pair
scores:

36
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𝑆(query, target) =
𝑛

∑
𝑖=1

𝑓(𝑑𝑖, | ⃗𝑢𝑖 ⋅ ⃗𝑣𝑖|). (3)

We initially experimented with a function based on expert intuition:

𝑓 = √| ⃗𝑢𝑖 ⋅ ⃗𝑣𝑖| exp (−𝑑2
𝑖 /2𝜎2). (4)

This includes a negative exponential function of distance (related to the normal distribution), with a
free parameter 𝜎 based on our previous estimates of the variability in position within the fly brain of
landmarks after registration (Jefferis et al., 2007; Yu et al., 2010b) set to 3 µm. Although this provided
a useful starting point, we were unhappy with a scoring system that required parameters to be specified
rather than derived empirically from data. This then motivated us to investigate the statistical scoring
approach described in based on log probability ratios. This single parameter approach may still be
helpful in some situations where insufficient neurons are available in order to define a statistical scor-
ing matrix (we used 150 similar neurons and 5,000 random pairs). It can also enable a bootstrapping
approach for new datasets in order to help identify similar pairs of neurons that can then be used to
define a full scoring matrix.

Kenyon cell analysis

Dataset collection and dividing into types We collected the dataset of initial KCs by performing
a forward and reverse search against all neurons using one identified KC (fru-M-500225). We then
selected neurons that had both raw scores above −2,500 (2,088 neurons). We performed affinity prop-
agation clustering (Frey and Dueck, 2007) of these neurons, obtaining 59 clusters, and manually veri-
fied each one, resulting in 1,562 neurons being identified as KCs. An additional search for high scorers
against these KC exemplars uncovered an extra 102 neurons, bringing the total number of KCs used
in our analysis to 1,664, representing 10.3 % of the FlyCircuit dataset.

We performed hierarchical clustering of the KCs, based on the NBLAST scores, and divided the
dendrogram into two groups (Figure 4A). Contrary to expectations, one group contained both the γ and
α′/β′ neurons, whereas the other group consisted exclusively of α/β neurons (Figure 4B–D), the largest
subset in our sample. We separated α′/β′ from the γ neurons in a subsequent hierarchical clustering of
this group. We performed additional analysis for each of the neuron types.

Analysis of γ neurons Hierarchical clustering of the 470 γ neurons resulted in a dendrogram which
we divided into three groups (I–III) (Figure 4B’). The number of clusters was chosen by visual inspec-
tion in order to reveal differences in morphology and organization between the groups. Groups I and
III corresponded to the classical γ neurons while group II matched atypical γ neurons. There were dif-
ferences in neurite positioning in the calyx, from medial to lateral, with group I being the most medial,
followed by groups II and III. There were also differences in the gamma lobe, with group II occupying
the anterodorsal region, while groups I and III were mostly mixed in the rest of the lobe. A subsequent
clustering analysis of the classical γ neurons divided into 4 groups (groups A-D) revealed that there
were differences between the groups in their medial to lateral position in the calyx. These differences
correlated to a certain degree with differences in the dorsal/ventral position of the projections in the
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γ lobe, with groups C and D, the most medial, being also the most dorsal (Figure 4B”). These obser-
vations suggest that the relative position of the projections of classical γ neurons is maintained at the
calyx and γ lobe.

In order to understand if the relative position of the classical γ neurites was maintained in between
the calyx and the γ lobe, we clustered the neurons based on the scores of the segments in the peduncle.
We took neuron skeletons from classical γ neurons and isolated the axon arbors that co-localized with
the peduncle volume (Figure S3B’). We then carried out a new clustering based on all-by-all NBLAST
scores of these partial skeletons, cutting the dendrogram at a level defined by visual inspection (4
groups). The overall organization almost fully recapitulated the positioning of the neurites in the whole
neuron analysis (compare Figure 4B’–B” with Figure S3B’). A clear and expected lamination was
found in the peduncle, with neurites occupying the most outer stratum. Differences in the medial to
lateral positioning of neurites in the calyx followed the previously observed organization, with the most
medial groups occupying the dorsal region of the gamma lobe. The overall organization almost fully
recapitulated the positioning of the neurites in the whole neuron analysis (for more information see
Figure S3 and Supplemental Results). Thus, the stereotypical organization of the classical γ neurons
is maintained throughout the neuropil.

Group II of the γ neurons matched atypical γ neurons (γ dorsal neurons) (Aso et al., 2014) with
neurons that extended neurites posteriolaterally in the calyx and projected to the most dorsal region
of the γ lobe (Figure 4B”’). Hierarchical clustering of these neurons resulted in a dendrogram that we
divided into 3 groups (a–c). This number of groups isolated the previously identified subtype of atypical
γ neurons – γd neurons (Aso et al., 2009) – into one group (group a). These neurons extend neurites
ventrolaterally at the level of the calyx (identified as ventral accessory calyx) (Aso et al., 2014). The
other 2 groups (b, c) correspond to uncharacterized types. Although they project to a similar region in
the γ lobe, their dendrites do not extend laterally and their calyx neurites are longer than γd neurons.

Analysis of α′/β′ neurons Hierarchical clustering analysis of the α′/β′ neurons and separation into
4 groups highlighted the characterized subtypes of α′/β′ neurons (Figure 4C–C’). They differ in their
anterior/posterior position in the peduncle and β′ lobe with three types described - α′/β′ anterior and
posterior (α′/β′ap) and α′/β′ medial (α′/β′m) (Tanaka et al., 2008, Y. Aso, personal communication)).
Although we were unable to unambiguously assign a α′/β′ subtype to each group i–iv because our
sample was too small, there were clear trends. Neurites of neurons in groups i and iv were more anterior
than the other 2 groups (ii, iii) in both the peduncle and β′ lobe. These relative positions were not
maintained in the calyx, with the two the anterior groups (i, iv) occupying either a medial or a lateral
position.

Analysis of α/β neurons The largest subset of KCs corresponds to α/β neurons (Figure 4D). During
the analysis of this groupwe found 18 neurons that did not correspond to α/β cells, since they innervated
either only the β or the α lobes, and they were removed from the analysis. We performed hierarchical
clustering on the remaining 1,091 cells and divided the resulting dendrogram into four groups (1–4)
(Figure 4D’), which matched the four neuroblast lineages from which they originate (Zhu et al., 2003).
The relative position of the neurites of the four groups within the calyx is somewhat maintained in the
peduncle, with the lateral neuroblast clones (group 1 AL; group 2 PL) extending along the dorsolateral
peduncle, while the medial clones (group 3 AM; group 4 PM) occupy a more ventromedial region.
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Hierarchical clustering of each group revealed an expected common organization for all neuroblast
clones (Figure 4D” and Figure S3A). For all groups there was a clear distinction between the late
born core (α/β core, α/β-c) and early born peripheral neurons (α/β surface, α/β-s). Core neurons are on
the inside stratum of the α lobe. They are also reported to occupy the inside stratum of the peduncle
and β lobe (Tanaka et al., 2008). We were unable to observe this, although the projections of α/β core
neurons were ventral to α/β surface neurons in both the peduncle and β lobe. There was also a trend
for α/β surface neurons to occupy a more medial position in the calyx in comparison to α/β core ones.
A subgroup of group 2 corresponded to the α/β posterior or pioneers neurons (α/βp). The α/βp neurons
are the earliest born α/β and they innervate the accessory calyx, run along the surface of the posterior
peduncle into the β lobe but stop before reaching the medial tip (Tanaka et al., 2008). A new clustering
based on peduncle position of the neuron segments did not recapitulate the relative positions of the
calyx neurites for each of the neuroblast clones observed in the whole neuron analysis suggesting that
the relative position of the α/β neurons in the peduncle does not completely reflect their stereotypical
organization in the calyx (for more information see Figure S3 and Supplemental Results).

In order to investigate the stereotypical organization of α/β neurites, we performed a similar analy-
sis as for the classic γ neurons, isolating the axon arbors that co-localized with the peduncle for groups
1 to 4 (Figure S3B”). The new clustering based on peduncle position of these partial neuron skeletons
did not recapitulate the relative positions of the calyx neurites for each of the neuroblast clones ob-
served in the whole neuron analysis (compare Figure 4D’ with Figure S3B”). In addition, there was no
clear organization of neurites in the α lobe that correlated with their position in the peduncle.

Olfactory projection neuron analysis

We started by manually classifying the 400 uPNs in the FlyCircuit dataset by glomerulus, neuroblast
lineage, and axon tract, using the original image stacks. The definition of the manual gold standard
annotations was an iterative process that took several days. The first round accuracy was about 95
%. Numerous discrepancies were revealed by subsequent NBLAST analysis and difficult cases were
resolved by discussion between two expert annotators before finalizing assignments. We excluded 3
neurons for which no conclusion could be reached. We found a very large number of DL2 uPNs, 145
DL2d and 37 DL2v neurons, in a total of 397 neurons. Nevertheless, our final set of uPNs broadly rep-
resents the total variability of described classes and contains neurons innervating 35 out of 56 different
glomeruli (Tanaka et al., 2012), examples of the three main lineage clones (adPNs, lPNs and vPNs)
in addition to one bilateral uPN, and neurons that follow each of the three main tracts (medial, medi-
olateral and lateral antennal lobe tracts). For subsequent analysis, we removed 3 neurons for which
registration failed.

Visual projection neuron analysis

We started with the 1,052 exemplars found by affinity propagation clustering of NBLAST scores (Fig-
ure 8). We then clustered those exemplars using hierarchical clustering and found that extrinsic and
intrinsic optic lobe neurons together formed a distinct “optic lobe” group within this (Figure 8C). We
then collected all neurons associated with those “optic lobe” exemplars and calculated the overlap of
neurons with each of the standard neuropils defined by Ito et al. (2014) (see Experimental Procedures
and Manton et al., 2014 for technical details). This then allowed us to separate neurons by innervation
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pattern into 3 groups: 1) ipsilateral optic lobe neuropils only (see Figure S4D), 2) ipsilateral and central
brain neuropils (unilateral VPNs, uVPNs) or 3) both optic lobes and central brain neuropils (bilateral
VPNs). This selection procedure resulted in a set of 1,793 uVPNs and 72 bilateral VPNs.

Auditory neuron analysis

We employed a two-step search strategy. First, for 5 of the auditory types, we used the FlyCircuit
neuron named by Lai et al. (2012) as the seed neuron for the first search. Candidate neurons were
selected using strict anatomical criteria. A second search was then done using these candidates as
query neurons and collecting all high scorers (score over 0.5). These neurons corresponded to our set
for each of the types.

mAL neuron analysis

The set of maL neurons resulted from a search with a seed mAL neuron, fru-M-500159. We then
collected 41 hits with a mean NBLAST score greater than 0.2.

P1 neuron analysis

The set of P1 neurons was identified by searching the FlyCircuit dataset with a tracing of the distinc-
tive primary neurite of a pMP-e clone (Cachero et al., 2010). Hierarchical clustering of the top hits,
after manual verification, identified a subset consisting solely of P1 neurons which was used in the
subsequent analysis.

A.1.9 NBLAST extension analysis

The 29 monarch butterfly neurons were scaled by a factor of 5 before clustering. The 55 zebrafish
mitral cells where mapped onto the right hand side of the larval fish brain before clustering.

Online resources

The online resources provided in the paper are listed at http://jefferislab.org/si/nblast. In addition to
the open source software described in the Experimental Procedures we also provide:

• Code and instructions to generate some of the figure panels used in the paper. Instructions can
be found at https://github.com/jefferislab/NBLAST_figures. A video demo is also available at
http://youtu.be/LJgZejabqqg.

• The affinity propagation clustering of the flycircuit.tw dataset (as in Figure 8D), excluding in-
trinsic optic lobe neurons. This can be viewed online at http://jefferislab.org/si/nblast/clusters,
including interactive 3D rendering of clusters powered by WebGL.

• The clusters identified by affinity propagation clustering (including intrinsic optic lobe neurons)
are all indexed by the Virtual Fly Brain (http://www.virtualflybrain.org, VFB) website, which
links to 3DWebGL renderings of each cluster hosted at jefferislab.org. Clusters can be identified
by VFB queries for the neuropil region that they innervate. For example, search from the VFB
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homepage for “AMMC”. From the results page, choose the query “Images of neurons with: some
part here (clustered by shape)”. A list of clusters, with thumbnail images is displayed; single
exemplars are also displayed for each cluster, hyperlinked to the original data at flycircuit.tw.
The images of the individual neurons that are part of this cluster can also be displayed in the
stack browser from this page (“List individual members” or “Open all in viewer”). Clicking on
a cluster thumbnail links to a page which includes a snapshot and 3D rendering of the cluster,
and information about the neurons that are part of this cluster, including links to the appropriate
Neuron ID pages at flycircuit.tw; a second table provides links to result pages for themost similar
clusters. A video demo is available at http://youtu.be/YFsxjkdr5y8.

• An online web-app allowing on-the-fly NBLAST queries of FlyCircuit neurons against other
FlyCircuit neurons, as well as queries of user-uploaded neurons against the FlyCircuit dataset,
available at http://jefferislab.org/si/nblast/on-the-fly/.

• Video demos for the online resources are available at http://jefferislab.org/si/nblast/www/demos.
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Figure S1: Neuron search with NBLAST, related to Figure 3
(A) NBLAST search with VGlut-F-000493 as query. Neuron plots of (from higher to lower score): the query (black) and top
hit (red), top 8 hits, hits with a score over 50,000 and hits with a score over 25,000. The top hit corresponds to a segmented
image that was duplicated. It perfectly overlays the query neuron. As the score decreases, so does the similarity of the hits
to the query. On the right, histogram of forward scores. Only hits with scores over −100,000 are shown. The score of the
query, top hit and top 8 hits are indicated. A dashed purple line marks 25,000. The left inset shows a zoomed view of the top
hits (score > 50,000) (dashed blue rectangle in main plot). The score of the query, top hit and top 8 hits are indicated. (B)
NBLAST search with Cha-F-600134 as query (black). Neuron plots of (from higher to lower score): the query and top hit,
top 8 hits, hits with a score over 5,000 and hits with a score over 0. The top hit corresponds to an image of a neuron from
the same brain but from a different raw image. It is very similar to the query neuron. As the score decreases, so does the
similarity of the hits to the query. On the right, histogram of forward scores. Only hits with scores over −8,000 are shown.
The score of the query and top hit are indicated. A dashed purple line marks 0. The left inset shows a zoomed view of the top
hits (score > 5,000) (dashed blue rectangle in main plot). The score of the query, top hit and second top hits are indicated.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 2, 2016. ; https://doi.org/10.1101/006346doi: bioRxiv preprint 

https://doi.org/10.1101/006346


A

Queryfru-M-300198

Score > 0

Mean score 1

0.8

0.6

0.4

0.2

0Query
Top hit

I II III IV V

VI VII VIII

A'' B

B'

A'
I

II
III

IV
V

VI

VII

VIII

Figure S2: NBLAST search using mean scores, related to Figure 3
(A) The query neuron fru-M-300198 (same as in Figure 3B). (A’)Neuron plot of the hits with a mean score over 0 for a search against the query. Hits are
colored by score bin (10), as in A”. (A”) Histogram of mean scores for hits against fru-M-300198 with a score over 0 divided into 10 bins (indicated in
the scale bar in B). (B) Hierarchical clustering of hits with a mean score over 0. The leaves of the dendrogram are colored by score (same as in A”), and
as shown in the scale bar. The dendrogram was divided into eight groups (I–VIII), with each one being assigned a color, shown on the colored rectangle
below the leaves. The query neuron is in group III, and the hits with the higher scores are in groups II and III. (B’) Neuron plots corresponding to the
dendrogram groups (I–VIII), following the colors assigned to each group. Groups II and III, corresponding to the highest scores, are the most similar
neurons to the query.
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Figure S3: NBLAST search and classification of hits reveals Kenyon cells subtypes, related to Figure 4
(A) Hierarchical clustering (HC) of the α/β neurons, divided into four groups (1–4) (h=3.64) (same as in Figure 4D’). The inset on the dendrogram
shows the α/β neurons. Groups 3 and 4 were clustered and divided into 2 groups each. This separates the neurons into peripheral (cyan) and core (red)
in the α lobe. Peripheral neurons occupied a more lateral calyx position and were dorsal to core neurons in the peduncle and β lobe. Similar analysis to
group 1 is shown in Figure 4D”. Lateral oblique, posterior oblique and a dorsal view of a peduncle slice (position indicated by dashed rectangle) are
shown. (B) Reclustering of Kenyon cells based on the co-localization of neurons segments in the peduncle. The neuron segments that co-localize with
the peduncle were isolated, followed by HC of the neurons based on the NBLAST score of the segments. (B’) HC of the neurons segments of classic γ
neurons, groups I and III (see Figure 4B”) divided into 4 groups, h=3.16. Neuron plot of the 4 groups. A posterior view of a slice of the peduncle shows
an expected clear organization. It correlates to the position of the neurons in the calyx, with more medial neurons (cyan and green) being dorsal and
ventral in the peduncle than more lateral neurons (red and purple). No clear structural organization is discernible in a lateral view of a slice of the γ lobe.
(B”) HC of the neurons segments of classic α/β neurons, groups 1 to 4 (see Figure 4D’) divided into 4 groups, h=4.16. Neuron plot of the 4 groups.
A posterior view of a peduncle slice shows an expected clear organization. It correlates to the position of the neurons in the calyx, with more medial
neurons (cyan and green) being ventrolateral in the peduncle than more lateral neurons (red and purple). No structural organization is discernible in a
dorsal view of a slice of the α lobe. For all neuron plots, the neurons in grey correspond to the Kenyon cell exemplars.
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Dendrogram group Neuron type Comments
1 LC6 Lobula innervation, dorsal cell bodies, axons follow

the anterior optic tract to the AOTU, turning
ventrally midway to innervate the lateral PVLP.

2 LC9 As group 1, but terminating in the medial PVLP
rather than extending laterally.

3 LC10B (possibly
different subtype to 4)

Dorsal AOTU innervation, ventral to group 4.

4 LC10B (possibly
different subtype to 3)

Dorsal AOTU innervation, dorsal to group 3.

5 New LC10 subtype The most ventral AOTU innervation. Similar to
group 7, but ventral to it in the AOTU.

6 LC10A Axons project through ventral AOTU, turn sharply
dorsally to terminate in the dorsal AOTU.

7 New LC10 subtype Ventral AOTU innervation, dorsal to group 5.
A LC12 subtype Innervation in most lateral and anterior PVLP

glomerulus. Note: corresponds to LC17 in Panser
et al. (2015).

B LC12 subtype Innervation in more posterior and medial PVLP
glomerulus than group A. Note: corresponds to
LC12 in Panser et al. (2015).

C LC4 Innervates a more medial PVLP glomerulus than
LC12.

D LT12 Tentative match. Class was identified in Otsuna and
Ito (2006) based on a single neuron.

E New LC class Innervates more dorsal PVLP glomerulus than
LC12. Extends along the posterior PVLP, with a
sharp anterior turn. Terminates with a blunt-stick
like ending in the lateral PVLP. Corresponds to
LC18 in Panser et al. (2015).

F New LT class Similar to LT12, but with projections posterior to it,
terminating in the lateral region of the superior
posterior slope.

G Unmatched Do not correspond to a single type.

Table S1: Correspondences between hierarchical clustering groups of AOTU- and PVLP-innervating (groups 1-7) and PVLP- and PLP-innervating
(groups A-G) uVPNs via NBLAST scores and previously determined neuron types (Otsuna and Ito, 2006). Related to Figure 6 and Figure S4.
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Figure S4: NBLAST search and classi-
fication hits uncovers unilateral visual
projection neurons neuronal types, re-
lated to Figure 6
(A) Hierarchical clustering (HC) analy-
sis of unilateral visual projection neurons
(uVPNs). The dendrogramwas divided into
21 groups (I–XXI), h=3.65. Inset on the
dendrogram shows the neuropils consid-
ered for the overlap. Below, neuron plots of
groups I to XXI. The neuropils that contain
the most overlap are shown. (B) Reclus-
tering of uVPN groups IV, VI, VII and
XI from A. The neuron segments that co-
localize with either the PVLP or PLP were
isolated, followed by HC of the neurons
based on the NBLAST score of these neu-
ron segments. The dendrogram was divided
into seven groups (A–G), h=2.04. Neuron
plots matching the dendrogram groups to
known uVPN types. An anterior, a lat-
eral or lateral oblique views are shown.
Groups A and B possibly correspond to two
LC12 subtypes. Group B innervates a more
anterior and medial glomeruli than group
A (see also C). Group C corresponds to
LC4. Group D corresponds to LT12 neu-
rons. Group E corresponds to a new LC
type. Group F corresponds to a possibly
new LT subclass. (C) Overlay of Z projec-
tions of registered image stacks of example
neurons from the types identified in B on
a partial Z projection of the template brain
(a different one for each panel). The white
rectangle on the inset shows the location
of the zoomed in area. LC: lobula colum-
nar neuron; LT: lobula tangential neuron.
(D) Hierarchical clustering of intrinsic op-
tic lobe neurons. This neuron set was de-
fined as any neuron that overlapped only
one of the optic lobes and with no arboriza-
tion in the central brain neuropils. Dendro-
gram of the intrinsic optic lobe neurons,
divided into into 20 groups (I–XX) with
the corresponding heatmap calculated from
the neuropil overlap in the different neu-
ropils: medulla (ME), lobula (LO), lobula
plate (LOP) and accessory medulla (AME).
Neuron plots corresponding to the dendro-
gram groups are shown below. The neu-
ropils for which the overlap is more sig-
nificant are plotted. Although some organi-
zational structure is seen, the dendrogram
groups to do not represent unique types.
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Figure S5: NBLAST search and classifi-
cation hits reveals auditory neuron types,
related to Figure 6
On the left, a neuron of the types identi-
fied by Lai et al. (2012) (A-E) which was
used as query. The dendrogram and neuron
plots for each type (anterior, posterior and
lateral views) showing either one or all neu-
rons from each clustering group are shown
on the middle and right panels. Main differ-
ences in arborization between neurons are
indicated by arrowheads and arrows. (A)
Hierarchical clustering (HC) of AMMC-
AMMC projection neuron 1 (PN1). The 34
top scorers were clustered and divided into
2 groups, h=0.72. Neuron plot of the query
neuron (black), and one neuron from each
group (red and cyan). To the right, neuron
plots of of each group. (B) HC of AMMC-
VLP PNs. The 34 top scorers were clustered
and divided into 2 groups, h=1.2. Neuron
plot of the query neuron (black), and one
neuron from each group (red and cyan). On
the left, neuron plots of each group. (C)HC
of AMMC-B1 PNs. Five hits of the 204 top
scorers are shown on the left. The 204 top
scorers were clustered and divided into 2
groups, h=3.46. Group I was matched to an
unidentified type of AMMC local neurons
(LN). It was clustered and divided into 2
groups, h=0.77. Group II corresponds to a
mix of AMMC-B1 PNs and AMMC-IVLP
PN1. After selecting the AMMC-B1 PNs,
the neurons were clustered and divided into
3 groups, h=1.5. Neuron plot of the query
neuron (black), and one neuron from each
group (purple and green). Below, neuron
plots of the 3 groups. (D) HC of AMMC-
IVLP PN1. The 79 top scorers were clus-
tered and divided into 3 groups, h=1.03.
Neuron plot of the query neuron (black),
and one neuron from each group (red, green
and blue). Below, anterior, posterior and
lateral view neuron plots of the 3 groups.
(E) HC of AMMC-IVLP PN2. Six hits of
the 170 top scorers are shown on the left.
The 170 top scorers were clustered and di-
vided into 6 groups, h=1.02. Neuron plot
of the query neuron (black), and one neu-
ron from each group (red, yellow, green,
cyan, blue, magenta). Below, anterior, pos-
terior and lateral view neuron plots of the
6 groups. Arrows and arrowheads indicate
differences between groups. wedge in ma-
genta, AMMC in green or PVLP in purple
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Panel Neuron type Comments
A AMMC-AMMC PN1

(2 possible subtypes)
These neurons innervate both AMMCs, with a
ventral cell body. Group I extends more dorsally
than group II.

B AMMC-VLP
(2 possible subtypes)

These neurons innervate the ipsilateral AMMC and
the contralateral VLP. Group II extends more
laterally than group I.

C AMMC-B1 PN
(3 possible subtypes)

These neurons innervate the ipsilateral AMMC and
IVLP and the contralateral IVLP. Blue group
innervates more medial regions and has more
extensive innervation contralaterally; purple group
innervates more anterior and posterior regions
ipsilaterally, and the green group innervates the
dorsal regions in the ipsilateral AMMC.

C New AMMC-LN type
(2 subtypes)

A type of AMMC LN, with a dorsal cell body. Two
possible subtypes: the magenta group innervates
more dorsal regions than the orange group.

D AMMC-IVLP PN1
(3 possible subtypes)

These neurons innervate the ipsilateral AMMC and
the contralateral IVLP. Red group has a more
dorsomedial ipsilateral innervation more medial
regions, with some dorsal medial branches in the
contralateral hemisphere; some neurons extend a
long neurite ventrally ipsilaterally. The green group
innervates the more ventromedial regions
ipsilaterally. The blue group is similar to the green
one, although it does not extend as ventrally in the
ipsilateral side, and a few neurons extend a long
neurite ventrally (similar to red group).

E AMMC-IVLP PN2
(6 possible subtypes)

These neurons innervate the ipsilateral AMMC and
the contralateral IVLP, with a posterior cell body.
Group I innervates the more lateral regions in both
hemispheres. Group II has a long dorsal branch in
the contralateral hemisphere, at the lateral edge of
the neuron. Group III and IV are very similar, with
the latter innervating more dorsal regions in both
hemispheres. Group V corresponds to the strict
definition of the neuron type by Lai et al. (2012),
showing a short dorsal branch just medial to the
contralateral IVLP. Group VI are similar to group
V, with a few neurons showing a short dorsal
branch, and innervating a more ventral region in the
contralateral IVLP.

Table S2: Correspondence between hierarchical clustering of auditory neuron via NBLAST scores and previously determined neuron types (Lai et al.,
2012). Related to Figure S5.
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