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Abstract

We describe a novel computational method for estimating the probability that a point mu-

tation at each position in a genome will influence fitness. These fitness consequence (fit-

Cons) scores serve as evolution-based measures of potential genomic function. Our ap-

proach is to cluster genomic positions into groups exhibiting distinct “fingerprints” based

on high-throughput functional genomic data, then to estimate a probability of fitness conse-

quences for each group from associated patterns of genetic polymorphism and divergence.

We have generated fitCons scores for three human cell types based on public data from EN-

CODE. Compared with conventional conservation scores, fitCons scores show considerably

improved prediction power for cis-regulatory elements. In addition, fitCons scores indicate

that 4.2–7.5% of nucleotides in the human genome have influenced fitness since the human-

chimpanzee divergence, and, in contrast to several recent studies, they suggest that recent

evolutionary turnover has had limited impact on the functional content of the genome.
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During the past decade, two major developments—the emergence of massively parallel, ultra-

cheap DNA sequencing technologies and the use of these technologies as digital readouts for func-

tional genomic assays—have led to a profusion of data describing various features of genomes,

epigenomes, and transcriptomes1, 2. However, investigators still have only rudimentary tools for

integrating these diverse sources of information to obtain useful insights about genomic function

and evolution. The limitations of current methods are particularly evident in the vast noncoding re-

gions of eukaryotic genomes, which, despite important recent progress3–6, remain poorly annotated

and understood. These limitations hamper progress in many areas, ranging from basic molecular

genetics to disease association and personalized medicine7.

Many computational methods for gaining functional insights from sequence data are based

on the simple, but powerful, observation that functionally important nucleotides tend to remain un-

changed over evolutionary time, because mutations at these sites generally reduce fitness and are

therefore eliminated by natural selection7–15. A major strength of these conservation- or constraint-

based approaches is that they sidestep thorny questions about the relationship between the out-

comes of biochemical experiments and fitness-influencing functional roles16–19 by getting at fitness

directly through observations of evolutionary change. In essence, the “experiment” considered by

these methods is the one conducted directly on genomes by nature over millenia, and the outcomes

of interest are the presence or absence of fixed mutations. These conservation-based methods,

however, depend critically on the assumption that genomic elements are present at orthologous lo-

cations and maintain similar functional roles over relatively long evolutionary time periods. Evolu-

tionary turnover may cause inconsistencies between sequence orthology and functional homology
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that substantially limit this type of analysis.

This important limitation has led to two major alternative strategies for the identification and

characterization of functional elements. The first strategy is to augment information about inter-

species conservation with information about genetic polymorphism20–28. The shorter evolutionary

time scales associated with intraspecies variation make this approach more robust to evolutionary

turnover and less sensitive to errors in alignment and orthology detection. Polymorphic sites tend

to be sparse along the genome, however, so this approach requires some type of pooling of in-

formation across genomic positions, which can be difficult in the absence good-quality genomic

annotations. The second strategy is to forgo the use of evolutionary information and instead to

predict functional roles from genomic data alone, typically with machine-learning methods for su-

pervised classification29, 30 or clustering followed by labeling based on known examples31–33. This

approach has the limitation that it depends strongly on previously characterized elements, which,

in noncoding regions, are typically small in number and perhaps unrepresentative of the genome.

In this paper, we introduce a method for genomic analysis that combines many of the strengths

of these polymorphism-based and functional genomic approaches. Like functional genomic meth-

ods, our approach groups genomic regions according to functional genomic “fingerprints” across

multiple assays. Instead of relying on known examples for classification, however, we character-

ize each group by a probability of mutational fitness consequences—or fitCons score—inferred

from patterns of genetic variation. These fitCons scores are estimated using a recently developed

statistical method, called Inference of Natural Selection from Interspersed Genomically coHerent

elemenTs (INSIGHT), that contrasts patterns of polymorphism and divergence in a collection of

2

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 11, 2014. ; https://doi.org/10.1101/006825doi: bioRxiv preprint 

https://doi.org/10.1101/006825


dispersed genomic sites with those in nearby neutral sites, accounting for negative and positive

selection34. Thus, the method integrates both evolutionary and functional data in characterizing

the potential functional importance of genomic regions. We demonstrate that these fitCons scores

are useful for visualization, for prediction of cis-regulatory elements, and for measuring the global

influence of recent natural selection across the genome.

Results

General Features of the Prediction Problem. Information about genetic variation can be used

to estimate probabilities of fitness consequences for moderately large groups of genomic positions

but not for individual loci, owing to the sparsity of informative sites along the genome. This prop-

erty of “groupwise” but not “individual” predictivity is common to many statistical problems, but

it is complicated in our case by two additional features. First, an appropriate scheme for group-

ing or stratification is not clear a priori here. Second, the outcome of interest in our problem—

mutational fitness consequences—is not directly observable from the data. For contrast, consider

the problem of estimating the expected risk of an automobile accident. This problem must also

be addressed at the level of groups (either explicitly through stratification of drivers, or implic-

itly through regression), but in this case, the relevant features—such as the age, sex, and number

of traffic violations of the driver—are obvious. In addition, the outcomes of interest—the occur-

rence and cost of accidents—are directly observed. In our problem, the genomic “risk factors” for

fitness-influencing mutations, particularly in unannotated noncoding regions of the genome, are

much less clear. Furthermore, once a grouping is determined, it is still not possible to read off

the associated fitness consequences of mutations; instead they must be inferred from patterns of
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genetic variation using an evolutionary model.

Calculation of FitCons Scores. We have addressed these challenges using the following strategy.

Beginning with genome-wide functional genomic data sets obtained from each cell type (Fig. 1A),

we first cluster genomic positions by their joint functional genomic “fingerprints” (Fig. 1B). We ex-

pect three highly informative functional genomic data types—DNase-seq, RNA-seq, and ChIP-seq

data describing histone modifications—to represent largely orthogonal sources of information, de-

scribing DNA accessibility, transcription, and chromatin states, respectively. Therefore, we divide

genomic positions into three levels of DNase-seq “signal,” depending on whether they fall outside

of ENCODE-designated DNase-seq peaks (0), in broad peaks only (1), or in narrow peaks (2);

into four groups having no aligned RNA-seq reads (0) or low (1), medium (2) or high (3) mean

RNA-seq read depth; and into 26 distinct chromatin states categories based on the ChromHMM

method31, 33. In addition, we distinguish between sites that fall outside (0) or within (1) annotated

protein-coding sequences (CDSs), which we expect to show pronounced differences in selective

pressure. We then consider all possible combinations of these four types of assignments, obtaining

3× 4× 26× 2 = 624 distinct functional genomic classes. This clustering step was applied sepa-

rately to three karyotypically normal cell types: human umbilical vein epithelial cells (HUVEC),

H1 human embryonic stem cells (H1 hESC), and lymphoblastoid cells (GM12878), resulting in

443–447 usable classes of sites, with median numbers of 165 to 224 thousand sites per class (see

Supplementary Table S1 and Methods for details).

Next, we use INSIGHT to estimate the probabilities of mutational fitness consequences within

each of these classes based on patterns of polymorphism and divergence (Fig. 1C). This step yields

4

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 11, 2014. ; https://doi.org/10.1101/006825doi: bioRxiv preprint 

https://doi.org/10.1101/006825


an estimate of ρ for each of the analyzed classes, which serves as the fitCons score for that class.

Finally, we assign to each nucleotide position in the genome the score estimated for the correspond-

ing functional genomic class (Fig. 1D). Each genomic position is thus assigned a value between

0 and 1, representing the probability that the nucleotide at that position influences fitness, as es-

timated from patterns of variation at all genomic sites displaying the same functional genomic

fingerprint. These fitCons scores uniquely integrate information from evolutionary and cell-type-

specific functional genomic data.

Genomic Distribution of FitCons Scores. To obtain a general overview of the genomic distri-

bution of fitCons scores, we first considered the composition and coverage of nucleotide sites of

various annotation types as the fitCons score threshold was varied, focusing on HUVEC (see Dis-

cussion for other cell types). When the score threshold S = 0, all sites are included and the

composition of annotations reflects the overall genomic distribution (Fig. 2A). As S increases,

however, the sites in known functional classes become strongly enriched relative to the intergenic

and intronic sites. Regions such as 5′ and 3′ UTRs, promoters, and introns are most enriched at

intermediate scores, reflecting moderate levels of natural selection in these regions, while CDSs

dominate at the highest scores. The coverage properties (Fig. 2B) are best for CDSs, 3′ UTRs, and

5′ UTRs (in that order), but they are also considerably elevated above the intergenic background

for promoters, transcription factor binding sites (TFBS), long noncoding RNAs (lincRNAs), and

small noncoding RNAs (snRNAs). Notably, the enrichment for functionally annotated genomic re-

gions at high scores occurs despite no use of genomic annotations in the scoring scheme (with the

single exception of CDS annotations). Instead, these elevated scores reflect differences in patterns
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of polymorphism and divergence that arise naturally from the fitness consequences of mutations in

these regions.

We have developed UCSC Genome Browser tracks that display fitCons scores across the

genome for each cell type of interest. FitCons scores are clearly elevated in CDS and UTR exons,

like existing evolutionary conservation scores, but they are often better at highlighting candidate

regulatory elements, particularly outside the core promoter (Fig. 3). Many of these regulatory

elements may not be conserved across species because they have arisen recently in evolutionary

time, while others may have spuriously low conservation scores because of errors in orthology

detection or alignment. In agreement with anecdotal observations from the Genome Browser, the

fitCons scores are fairly well correlated with phyloP conservation scores15 genome-wide, with

some notable exceptions in noncoding regions (Supplementary Fig. S1).

The fitCons scores tend to increase with the strength of the DNase-seq signal (Fig. 4A),

probably due to an increasing density of cis-regulatory elements. They also increase with the

RNA-seq signal (Fig. 4B), evidently because of changes in the type of transcription unit identified

(e.g., non-CDS regions with high RNA-seq signal are enriched for relatively conserved 3′ UTRs).

When joint patterns of DNase-seq and RNA-seq are considered, however, a more complex pattern

emerges: fitCons scores increase with DNase-seq intensity at low RNA-seq intensities, as they

do overall, but this trend is reversed at high RNA-seq intensities (Fig. 4C). A closer examination

reveals that this pattern is explained by the enrichment for DNase-I-hypersensitivity near the 5′

ends of genes. In particular, conditional on a high RNA-seq signal, a high DNase-seq signal tends

to be associated with 5′ UTRs and upstream regions of genes, which are under somewhat weaker
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selection than the 3′ UTRs associated with lower DNase-seq signals. This example demonstrates

that the fitCons scores can capture non-additive and potentially surprising relationships between

functional genomic covariates and natural selection.

Predictive Power for Cis-Regulatory Loci. We evaluated the predictive power of the fitCons

scores for known cell-type-specific regulatory elements in comparison with three widely used

phylogenetic conservation scoring methods, the phastCons12, phyloP15 and Genomic Evolution-

ary Rate Profiling (GERP)13 programs. In addition, we considered a new program, called Com-

bined Annotation Dependent Depletion (CADD)35, that estimates relative levels of pathogenicity

of potential human variants using a support vector machine (SVM), many different genomic an-

notations, and simulations of nucleotide divergence rates. Where possible, we also considered

RegulomeDB, a scoring system for the regulatory potential of variant sites based on combined

experimental and computational data36. We evaluated the performance of these scoring methods

in predicting three types of functional elements with putative roles in transcriptional regulation:

(1) binding sites for various transcription factors supported by chromatin immunoprecipitation and

sequencing (ChIP-seq) data from the ENCODE project3, 28; (2) high-resolution expression quanti-

tative trait loci (eQTL) identified in a recent large-scale study6; and (3) enhancers based on charac-

teristic chromatin marks37 (see Methods for details). Importantly, these annotation sets are based

on different functional genomic data from that used by fitCons, with the exception of some overlap

between the data used in set (3) and that used in our classification of chromatin states.

To place the different scoring methods on equal footing, we plotted the basewise coverage

of each type of regulatory element as a function of the total coverage of the noncoding genome,
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varying score thesholds to include 0–20% of noncoding sites (Fig. 5). This strategy allows us to

measure the extent to which the elements of interest display “signals” that rise above the “noise”

of the noncoding genome, in a uniform manner across scoring methods. By this test, the fitCons

scores showed dramatically better sensitivity for noncoding elements than all of the other methods

considered. For example, at a total noncoding coverage of 2.5%, fitCons scores achieve nearly

70% coverage of TFBSs, whereas the other methods all have less than 15% coverage. Similarly,

the coverage of enhancers was about 40% at 2.5% noncoding coverage, while the other scoring

methods showed almost no signal above background. We also performed a more traditional eval-

uation of the trade-off between sensitivity and specificity using receiver operating characteristic

(ROC) curves and found that, in all cases, fitCons scores were considerably better predictors of

regulatory function than phastCons, phyloP, GERP, CADD, or RegulomeDB scores (see Methods

and Supplementary Fig. S2).

The tests above were based on regulatory elements that are putatively active in the cell type

for which the scores were produced, to exploit fitCons’s use of cell-type-specific functional data.

To evaluate how well these advantages carried across cell types, we created an “integrated” fitCons

score by combining information from three cell types (see Methods), and evaluated the perfor-

mance of this score in predicting regulatory elements pooled from multiple cell types. We found

that, in this less favorable setting, the fitCons scores still had better predictive performance for cis-

regulatory elements than any of the other scoring methods (Supplementary Fig. S3). In addition,

we carried out a second set of tests of ChIP-seq-supported TFBSs that considered only the subset

of nucleotide positions at which base preferences were especially strong, which should be enriched
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for sites at which mutations will have fitness consequences. The ROC curves based on this more

stringent test were very similar to the original curves (Supplementary Fig. S4), demonstrating that

the apparent performance of the fitCons scores was not artificially inflated by the inclusion of

neutral sites in our validation experiments and the relatively coarse resolution of the scores.

Proportion of the Human Genome Under Selection. The proportion of nucleotides in the human

genome that directly influence fitness—sometimes called the “share under selection” (SUS)—has

primarily been estimated using methods that consider divergence patterns among mammals, for

which turnover of functional elements may be an important confounding factor38–42. The fitCons

scores—in addition to being useful as predictors of function—could be useful in obtaining esti-

mates of the SUS that are less sensitive to turnover because they measure natural selection over

much shorter time scales.

An initial estimate of the SUS can be obtained by simply averaging the fitCons scores across

all nucleotide positions in the genome. Because each score represents a probability that an individ-

ual nucleotide influences fitness, their average represents an expected fraction of nucleotides in the

genome with fitness-influencing functions, or an expected SUS. This approach yields an estimate

of 7.5% (±0.1%) for HUVEC, or 7.5–7.8% across cell types. Among sites under selection, we

estimate that 9.0% are in CDS, 2.2% in 3′ UTRs, 35.2% in introns, 51.7% in intergenic regions,

and <1% in each of several other noncoding annotation classes (Supplementary Table S2). These

estimates are generally consistent with, but on the high end, of those based on cross-species diver-

gence, which generally have fallen between 3 and 8% and have suggested that noncoding bases

outnumber coding bases by factors of 2.5–812, 38, 42–44. Interestingly, our estimates are somewhat
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lower than estimates that have explicitly allowed for evolutionary turnover, which have been 2–3

times higher than the pan-mammalian estimates of ∼5%26, 42, 44–46 (see Discussion).

Furthermore, violations of modeling assumptions will tend to bias the fitCons scores upward,

particularly for functional classes for which the true fraction is close to zero (see Supplementary

Note). To address this problem, we performed a parallel calculation for “neutral” sites that inter-

sect the large class of genomic positions having a “null” functional genomic fingerprint (i.e., no

DNase-seq, RNA-seq, or histone modification signal). This results in an estimate of 3.3%, which

can be considered an upper bound on the contribution of error because these putatively neutral

sites undoubtedly include some sites under selection. By subtracting this 3.3% from our naive

estimate of 7.5%, we obtain an estimated lower bound for the SUS of 4.2%, with somewhat higher

fractions of selected sites in CDSs and 3′ UTRs (Supplementary Table S2). (These estimates are

for HUVEC, but the results for the other cell types were very similar.) Overall, our analysis of

the SUS suggests that between 4.2% and 7.5% of nucleotides in the genome have direct fitness-

influencing functions, and that the ratio of noncoding to coding functional sites is between 5.4 and

10.1, estimates that are remarkably consistent with those based on measures of divergence between

mammalian genomes (see Discussion).

Implications for Evolutionary Turnover of Functional Elements. To better understand the dif-

ferences between our new scores and scores based on divergence, we devised a set of alternative

scores (denoted “fitConsD”) based on the same clusters of sites but an estimator of the fraction of

nucleotides under selection that instead considers nucleotide divergence across primates (see Meth-

ods). Thus, the fitCons and fitConsD scores both represent probabilities of fitness consequences
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per nucleotide but over two different evolutionary time scales. Overall, these two measures are

remarkably well correlated, with R2 = 0.88 (Fig. 6A). Under both scoring systems, the scores for

coding sequences are generally higher than those for noncoding sequences, as expected. However,

the noncoding sites exhibit greater variance (R2 = 0.51 vs. R2 = 0.69 for coding), and a slight

excess of clusters with higher fitCons than fitConsD scores. These observations suggest that the

main signal for selection has been maintained over long evolutionary time periods, but that there

are some classes that show stronger recent than ancient natural selection.

The impact of turnover can be assessed more directly by subtracting the average fitConsD

score from the fitCons score for various annotation classes of interest. This difference between

average scores can be interpreted as the “net gain” in functional nucleotides on population genetic

time scales relative to primate-divergence time scales, with a negative value representing a net loss

(see Fig. 6B). This net gain can be further divided by the fitCons score for each annotation class of

interest to obtain a net gain rate per functional nucleotide (diagonal lines in Fig. 6B). We observe

relatively low amounts of turnover overall, with net gains for our standard set of annotation classes

ranging between −0.7% and 1.7% and net gain rates roughly between −10% and 10%. These

observations suggest that the net gain or loss of functional nucleotides in both coding and non-

coding functional elements accounts for no more than about 10% of all functional sites, although

these estimates do not exclude the possibility that offsetting gains and losses produce considerable

evolutionary flux in the functional composition of the genome (see Discussion).
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Discussion

We have presented a new approach that combines functional genomic data with data describing

variation within and between species. The essential idea of the approach is to use the functional

genomic data to group sites into classes that are relatively homogeneous in terms of their func-

tional roles, then to characterize the bulk influence of natural selection on those classes based on

their patterns of polymorphism and divergence. For our estimation of natural selection, we make

use of a recently developed probabilistic model of evolution and efficient algorithms for genome-

wide inference (INSIGHT). We interpret INSIGHT-based estimates of fractions of nucleotides under

selection as probabilities that each nucleotide influences fitness, or fitness consequence (fitCons)

scores. Even with a simple clustering scheme, these fitCons scores appear to be highly informative

about genomic function.

Based on our experiments, the fitCons scores have excellent predictive performance for puta-

tive cis-regulatory elements, outperforming several divergence-based methods (phastCons, phyloP,

GERP, and CADD) and one annotation-based method (RegulomeDB) by clear margins. In part,

this improvement in performance reflects the use of cell-type-specific data and, indeed, it is most

pronounced when considering elements active in the cell-type used to compute the scores (Fig. 5

and Supplementary Fig. S2). Nevertheless, the fitCons scores also show a clear performance advan-

tage when considering all annotated elements rather than just active ones (Supplementary Fig. S3).

The approach of grouping genomic sites by functional genomic signatures, and then measuring

groupwise fitness consequences based on patterns of genetic variation, appears to offer real ben-
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efits for prediction of regulatory function, as compared with methods that consider either genetic

divergence or functional genomic data alone. In addition, in at least some cases, the use of popula-

tion genomic data helps to identify elements that appear to have emerged recently in evolutionary

time and therefore display no significant reductions in interspecies divergence.

Interestingly, the recently published CADD method performed no better on our tests than

conventional conservation scores, despite reports by the authors of significant advantages over

phyloP, phastCons, GERP, and other methods35. This difference in CADD’s performance appears

to reflect several important distinctions between our validation experiments and those reported

in reference [35]. First, our tests focused specifically on putative cis-regulatory elements, while

many of their tests considered a mixture of coding and noncoding elements, in some cases, im-

plicitly enriched for coding regions. In particular, the ClinVar database, which figured promi-

nently in their experiments, includes very few noncoding variants (∼5% of pathogenic variants).

Our results suggest that CADD may perform considerably better in coding regions than in cis-

regulatory regions—not surprisingly, given the method’s use of numerous features derived from

annotations of protein-coding genes. Second, when Kircher et al. did consider noncoding regions,

they generally did not distinguish between cis-regulatory mutations and mutations that more di-

rectly influence the structure and content of protein-coding transcripts, such as mutations to splice

sites or UTRs. CADD has a natural advantage with these variants also due to its consideration

of gene annotations, whereas the annotation-free fitCons scores may perform better in completely

unannotated regions of the genome. Finally, the tests by Kircher et al. that explicitly considered

putative cis-regulatory elements were limited to a few loci and considered only correlations with
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saturation mutagenesis experiments, irrespective of a prediction threshold. We view our ROC-type

comparisons based on three separate genome-wide sets of elements as a more direct and compre-

hensive demonstration of predictive power in cis-regulatory elements. It is worth noting that the

goal of CADD is stated slightly differently from ours—its authors aim to predict pathogenicity

of alleles rather than probabilities of fitness consequences at nucleotide positions—but our mea-

sure of fitness consequences and their measure of pathogenicity are essentially the same (evidence

of negative selection from genetic variation), so we believe it is appropriate to compare the two

methods directly. In any case, the comparison of these two closely related, yet distinct, approaches

helps to reveal strengths and weaknesses of each of them, and may lead to new ideas for improved

methodologies.

A side benefit of our model-based approach is that the basewise probabilities of fitness con-

sequences lead in a straightforward manner to an estimate of the “share under selection” (SUS) in

the human genome. This estimate of the SUS reflects time scales since the divergence of humans

and chimpanzees, about 4–6 million years ago, unlike conventional estimates based on tens or

hundreds of millions of years of mammalian evolution. Nevertheless, our estimate of the SUS—

at 4.2–7.5%—ends up being remarkably similar to those based on longer time scales, which have

generally fallen between 3 and 8%12, 38–41, 43, 47. We take the general concordance of these estimates,

both with one another and with our fitCons- and fitConsD-based estimates, as an indication that the

SUS has been fairly stable at roughly 5% over various time-scales in mammalian evolution. This

finding stands in contrast to estimates of much higher functional contents in the genome, of 80% or

more, based on measures of “biochemical activity”3. However, it is important to bear in mind that
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these evolutionary and biochemical estimates reflect somewhat different definitions of “function,”

and this may explain some of the difference between them16, 18, 19. For example, the fitCons- and

conservation-based estimates of the functional content of the genome generally represent fractions

of positions at which a point mutation that alters the identity of a nucleotide will have fitness con-

sequences, but they do not account for sequences (such as spacer elements) that would have fitness

consequences if deleted but not mutated (see Supplementary Note for discussion).

Apart from the absolute fraction of functional DNA in the human genome is the question of

how much the functional content of the genome has changed over time through gains and losses of

functional elements. Several studies have attempted to estimate the impact of such “turnover,” and

have concluded that the current SUS in the human genome could be ∼2–3 times larger than esti-

mates based on comparisons across mammals26, 42, 44–46. Indeed, these findings have been proposed

to explain, in part, the discordance between evolution-based and biochemical estimates of the func-

tional fraction of the genome26, 48, 49. However, these analyses have accounted for turnover using

relatively crude methods, for example, by relying on an apparently near-linear relationship between

pairwise divergence and the estimated SUS44, 45 or by estimating functional content from mean

SNP densities or derived allele frequencies in genomic regions not conserved across mammals26.

Our analysis is more direct, by comparing analogous divergence-based and polymophism-based

estimates of the SUS based on exactly the same clusters of nucleotide positions. In addition, our

analysis focuses on the more restricted question of evidence for selection on the time scales of pri-

mate evolution, rather than attempting to account for turnover across the mammalian phylogeny,

where factors such as alignment error, orthology detection, and genomic rearrangements can be
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problematic. The similarity between our estimates based on polymorphism (fitCons) and diver-

gence (fitConsD) strongly suggests that evolutionary turnover has been modest during primate

evolution, because massive turnover would be expected to lead to a substantial downward bias in

the divergence-based estimates. Furthermore, our power experiments suggest that this observation

is not an artifact of reduced sensitivity in the fitCons scores. Nevertheless, we cannot rule out the

possibility that compensating gains and losses on very recent time scales maintain a similar SUS

while substantially altering the genomic composition of functional sequences.

An obvious area for improvement in our current methods is our approach to clustering. Our

strategy of considering the Cartesian product of discrete covariate categories will not scale to large

numbers of covariates. In addition, in some cases it results in overly coarse-grained clusters,

whereas in others it fails to group together small clusters with similar fitness consequences. An

iterative approach to clustering (Fig. 1) could enable the estimated fitCons scores to help guide the

clustering scheme. This approach would be computationally intensive because of the expense of

estimating model parameters from genome-wide data and the need for some type of regularization

method to constrain the coherence of functional classes while the variance in the classwise fitCons

scores is maximized, but it could support the use of much larger, richer sets of covariates.

We have focused on HUVEC in this paper, but we also generated fitCons scores for two other

cell types (H1 hESC and GM12878). A comparison across cell types (see Supplementary Note)

indicated that the genomic positions assigned to each functional class differed substantially across

cell types, but equivalently defined clusters had highly similar fitCons scores in the different cell

types (Supplementary Fig. S5). When cell-type-specific scores were examined, elements “active”
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in that cell type displayed significantly higher scores than inactive elements. Moreover, particular

elements had higher scores in cell types for which they were active than in cell types for which

they were inactive (Supplementary Fig. S6).

This property of cell-type-specificity in the scores is useful in some cases, but in others it is

desireable to have a single set of scores that integrate information from multiple cell types. We

found that a set of “integrated” scores based on a simple, heuristic procedure (see Methods) per-

formed nearly as well as the cell-type-specific scores in the target cell types, but much better on

elements from mismatched or pooled cell types (Supplementary Fig. S7). With more powerful

clustering techniques, it may be possible to improve these methods by considering all cell types

simultaneously, clustering sites by multi-cell-type functional genomic fingerprints, and then pro-

ducing a single set of scores reflecting these joint patterns. In this way, nucleotide sites that not

only exhibit similar functional genomic fingerprints, but that are active in similar cell types, would

be grouped together. Improvements in clustering, together with steady improvements in the res-

olution and quality of the available functional genomic data, should result in improved power for

individual functional elements and refined estimates of the share under selection.
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Online Methods

Functional Genomic Data. RNA-seq and DNase-seq data for HUVEC, H1 hESC, and GM12878

were downloaded from the University of California, Santa Cruz (UCSC) Genome Browser (http:

//genome.ucsc.edu). Chromatin states for the same three cell types were downloaded from the

European Bioinformatics Institute ftp site (see Supplementary Table S3). For DNase-seq, we con-

sidered two replicate experiments from University of Washington (UW) data for each cell type.

However, only one UW replicate was available for H1 hESC so additional DNase-seq data for this

cell line was obtained from Duke University. For each replicate experiment, we downloaded broad

and narrow peak calls. For RNA-seq, we selected Caltech poly-A+ 75 bp paired-end read data,

after examining several data sets and considering trade-offs among data quality, coverage and read

depth. A single RNA-seq replicate experiment was used per cell type. For chromatin states, we

used the 25-state ChromHMM segmentation generated in December, 201233. In addition, coding

sequences (CDS) were identified uniformly across cell types using GENCODE data (see below).

Clustering Approach. We produced a separate partitioning for each cell type based on the func-

tional genomic data. The broad and narrow DNase-seq peaks were used to partition sites in the

genome into the following three mutually exclusive classes: sites that fall in a narrow peak in both

replicate experiments (2); sites that fall in a broad peak in at least one of the two replicates and do

not fall in a narrow peak in both replicates (1); and sites that fall outside of all called peaks (0).

This three-level scheme was designed to allow for both high sensitivity (class 1) and high speci-

ficity (class 2). For H1 hESC, only one set of broad peak calls was available to define class 1. For
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the RNA-seq data, we partitioned sites in the genome into four mutually exclusive classes (0–3)

based on numbers of reads aligned at each position. Read depth thresholds were set separately for

each cell type through a process that aims to minimize the conditional entropy of concentrations of

predicted sites under selection (see Supplementary Note). The thresholds chosen, in RPM units,

were (1, 7, 36) for HUVEC, (1, 5, 20) for H1 hESC, and (1, 11, 38) for GM12878. Chromatin

states were defined directly from the 25 states in ChromHMM, except that a 26th state was defined

for sites not assigned to a chromatin class. The Cartesian product of these partitions, together with

the partition into coding and noncoding sequences (see below), resulted in 3 ×4×26×2 = 624

distinct functional classes.

Running INSIGHT. INSIGHT was used to compute the fitCons score for each non-empty site clus-

ter (see Table S1). The INSIGHT method infers the fraction of nucleotide sites under selection (ρ)

for a given collection of sites by comparing patterns of within-species polymorphism and between-

species divergence for that collection with the patterns observed in putatively neutral sites nearby.

A detailed description of the method, sequence data, and data-quality filters is given in refer-

ence [34]. Briefly, we used high-coverage genome sequences for 54 unrelated human individu-

als from the 69 sequences released by Complete Genomics (http://www.completegenomics.com/

public-data/69-Genomes/)50, as well as the chimpanzee (panTro2), orangutan (ponAbe2), and rhe-

sus Macaque (rheMac2) reference genomes. Various filters were applied to eliminate repetitive

sequences, recent duplications, CpG sites, and regions not showing conserved synteny with out-

group genomes. For each fitCons site cluster, INSIGHT was used to compute a maximum likelihood

estimate of ρ, as well as a standard error approximated using the curvature method. The estimate
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of ρ was used as the fitCons score associated with all sites in that cluster. To ensure that our re-

sults were not influenced by estimates with high uncertainty, we filtered out clusters for which the

estimated standard error was larger than 40% of the estimated value of ρ. To increase computation

efficiency, clusters larger than 20 Mb were partitioned into smaller subclasses, and INSIGHT was

applied separately to each of these subclasses. An estimate of ρ for the entire cluster was obtained

by taking the average of subclass estimates of ρ weighted according to the number of unfiltered

sites in each sub cluster. The standard error of an estimate of ρ averaged across several site clusters

was computed by taking the square root of the weighted mean of the site cluster standard errors

squared.

Neutral Sites. The collection of sites predicted to be free from the influence of natural selection

(“neutral” sites) used both by INSIGHT and in some our power analysis (see below) was derived

from a set identified previously28, 34, 51. Briefly, this set is obtained by starting with all sites in the

genome and eliminating several classes of sites likely to be under direct natural selection, including

(1) exons of annotated protein-coding genes and the 1000 bp flanking them on either side; (2) RNA

genes from GENCODE v11 and 1000 bp flanks; and (3) conserved non-coding elements (identified

by phastCons) and 100 bp flanks. We applied the quality filters described above to these sites as

well. INSIGHT matches positions in site clusters with putatively neutral sites using a 10 kb sliding

window, taking care to avoid matching sites on opposite sides of a recombination hotspot.

GENCODE Annotations. Transcript annotations from GENCODE v1552 were downloaded from

(ftp://ftp.sanger.ac.uk/pub/gencode/release 15/gencode.v15.annotation.gtf.gz), and used to define

eight site classes: coding sequences (CDS), 5′ untranslated regions (UTRs), 3′ UTRs, promoters,
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introns, long intergenic noncoding RNAs (lincRNA), short noncoding RNAs (sncRNA), and in-

tergenic (sites not falling within any protein-coding transcription unit). Transcripts annotated with

feature type=“CDS” and gene type=“protein coding” were used to define the CDS set for fitCons.

For subsequent analysis, we used a slightly more conservative set, obtained by additionally requir-

ing feature type=“gene”, gene status=“KNOWN”, transcript status=“KNOWN”, and the identifi-

cation of both start and stop codons within the transcript. UTRs were defined from transcripts

having feature type=“UTR” and gene type=“protein coding”. Each UTR was designated as 5′ or

3′ based on whether it was immediately upstream of the start codon or immediately downstream

of the stop codon, respectively. Introns were defined by positions that fall within a protein-coding

transcript but outside of the CDS and UTR regions. Promoters were defined as the 1000 bp immedi-

ately upstream of the first (i.e., most upstream) transcription start site for each protein-coding gene.

A similarly defined alternative set of 100 bp promoter regions was used in assessing differences be-

tween cell types (see Fig. S6). LincRNAs were identified by transcripts with feature type=“exon”

and gene type=“lincRNA”. Similarly, sncRNAs consisted of transcripts with feature type=“exon”

and gene type ∈ {“miRNA”, “snRNA”, “snoRNA”}. Positions in the more inclusive CDS set

were removed from all noncoding classes. When computing the composition of sites exceeding

various fitCons score thresholds by annotation type (Fig. 2A), if multiple annotations applied to

a nucleotide position, it was assigned to a single category in the following order of precedence:

CDS, TFBS, promoter, sncRNA, lincRNA, 5′ UTR, 3′ UTR, intron, and intergenic.

Cis-Regulatory Elements. Transcription factor binding sites (TFBSs) were drawn from a set for

78 transcription factors, based on chromatin immunoprecipitation and sequencing (ChIP-seq) data
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from ENCODE28 (downloadable at (http://genome-mirror.bscb.cornell.edu/). This set contains

roughly 1.4 million binding sites of mean length 11 bp, each of which is associated with the

cell types in which it was detected. For some tests, we considered only the subset of nucleotide

positions inside these TFBSs that corresponded to motif positions with strong base preferences,

defined as those positions at which the consensus allele appeared in at least 90% of all binding

sites (according to the inferred motif model). For enhancers, we used the distal regulatory mod-

ules described in reference [37]. We downloaded the file enets4.Distal cell line.txt from http:

//encodenets.gersteinlab.org/ and extracted from it a total of 19,005 enhancer-transcript associa-

tions, covering 5,834 unique autosomal loci with a mean length of 888 bp, along with the cell types

associated with each predicted enhancer. Expression quantitative trait loci (eQTL) described in ref-

erence [6] were downloaded from www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/analysis results/.

We used the four files {EUR373,YRI89}.{exon,gene}.cis.FDR5.best.rs137.txt.gz to identify 6,760

distinct autosomal positions and the associated transcripts. As with other noncoding classes, we

removed all positions overlapping CDS.

Identifying Active Elements per Cell Type. In several analyses, we considered the subset of

elements in each annotation class for which we had evidence of activity in a given cell type. To

identify the cell types in which TFBS and enhancers were active, we simply used the cell type

designations provided in the corresponding annotation files (see above). For other classes of el-

ements, e.g., eQTLs and promoters, we defined the active elements using a set of GENCODE

transcripts and genes that showed significantly elevated levels of RNA transcription in the Caltech

RNA-seq data. For this purpose, we downloaded from the UCSC Genome Browser files contain-
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ing normalized read counts in reads per kilobase per million at the levels of both transcripts and

genes for HUVEC, H1 hESC, and GM12878 (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/

encodeDCC/wgEncodeCaltechRnaSeq/). A transcript (or a gene) was defined as being active in a

cell type if the 95% confidence interval if its normalized read count in that cell type fell within the

top one third of normalized read counts for transcripts (or genes). The threshold determining the

top one third (1.477 for transcripts and 4.966 for genes) was computed by aggregating information

from all three cell types. We then determined the set of active eQTLs in each cell type as the ones

associated with an active gene, using the GENCODE gene identifier specified for each eQTL in the

data file. Similarly, we defined elements in our collections of promoters, UTRs, CDS, and introns,

as active if they were associated with an active transcript. For the comparison between cell types

(Fig. S6) we also used collections of eQTLs and promoters found to be inactive in a given cell

type. Those were defined in a similar way, by using transcripts and genes falling in the bottom

third of the distribution of normalized read counts.

Comparison with Other Scores. Base-wise scores from the Genomic Evolutionary Rate Profiling

(GERP)13 method were downloaded from http://mendel.stanford.edu/SidowLab/downloads/gerp/

(file hg19.GERP scores.tar.gz, generated in August, 2010). Scores from phastCons12 and phyloP15

for 46 placental mammals were downloaded from the UCSC Genome Browser (http://hgdownload.

cse.ucsc.edu/goldenPath/hg19/; subdirectories phastCons46way/placentalMammals/ and phyloP-

46way/placentalMammals/). The Combined Annotation Dependent Depletion (CADD) scores35

were downloaded from http://cadd.gs.washington.edu/download/ (file whole genome SNVs.tsv.gz,

downloaded in September, 2013). This file specifies for each genomic position a separate score
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for each of the three possible variant bases in that site. We took the maximum of these three

scores, which yielded the best performance for CADD in our comparisons. We also considered

RegulomeDB36 as a method for ranking single nucleotide polymorphisms (SNPs), such as eQTLs,

according to evidence from functional genomic data. RegulomeDB classifies each common SNP

into one of 13 categories (1a–f, 2a–b, 3–7) ranked from strongest (1a) to weakest (7) evidence for

function. We downloaded the thirteen categories from http://regulome.stanford.edu/downloads/ in

January, 2013.

Receiver Operating Characteristic (ROC) Curves. We used ROC curves to describe the ability

of each scoring scheme to discriminate between functional and nonfunctional TFBSs, enhancers,

and eQTLs. For TFBSs and enhancers, we used annotations to indicate the set of functional el-

ements (see above) and used as a non-functional control our filtered, putatively neutral sites (see

above). For eQTLs, our control set consisted of all 9.8 million variants tested in reference [6],

excluding indels and non-simple variants, and positions that showed possible associations at a

threshold of nominal p < 0.05 (7.6 million SNPs remained). In all three cases, we removed any

sites in our functional set from the negative control set. For each scoring scheme and annotation

type, a point on a ROC plot indicates the fraction of annotated genomic positions with scores

higher than a given score (true positive rate) versus the fraction of control genomic positions with

scores higher than that score (false positive rate). In computing the fractional coverage for each

scoring scheme, we ignore positions that are not scored, so as not to penalize methods such as

RegulomeDB that provide partial coverage. Note that the other four scoring schemes had similar

overall coverage to one another.
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Integrating fitCons Scores Across Cell Types. The main challenge in generating fitCons scores

that integrate functional genomic data across cell types, within the context of our simple partition-

ing scheme, is avoiding a combinatorial explosion in the number of functional genomic clusters

considered. We addressed this problem by fixing the partitioning scheme to the original 624 finger-

prints (see above), but altering the rule by which nucleotide sites are assigned to clusters to reflect

information from multiple cell types. In particular, we attempted to select, for each nucleotide site,

the single cluster—from all clusters to which that site was assigned across cell types—that was

likely to be most informative about the site’s function. Toward this end, we computed a cell-type

aggregated estimate of ρ for each of the 624 classes by running INSIGHT on the collection of all

sites associated with that class in any of the three cell types. Note that, unlike in the standard fit-

Cons pipeline (see Fig. 1), these collections of sites overlap with one another. We then partitioned

the sites into non-overlapping clusters by choosing, for each genomic position, the cluster (out of

the three) that had the highest cell-type aggregated ρ. Finally, we executed INSIGHT once more on

each of these disjoint clusters to obtain cell-type integrated fitCons scores.

Share Under Selection. Assume a partitioning of the genome into K mutually exclusive and

exhaustive clusters, C1, . . . , CK , and a corresponding set of fitCons scores, ρ(C1), . . . , ρ(CK).

Note that the expected number of genomic positions under selection in cluster Ci is given by

ρ(Ci)|Ci|, because ρ is an estimate of the fraction of sites under selection. Thus, for an arbi-

trary collection of sites, S, the expected number of sites in S that are under selection is given by

sel(S) =
∑

i ρ(Ci)|Ci ∩S|, and the average fitCons score for S is given by ρ(S) = sel(S)/|S|. To

avoid under-estimation of ρ(S), we do not filter out fitCons scores with high uncertainty in these
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calculations, as we do for other analyses (see above). In addition, to account for possible over-

estimation of ρ in very large clusters having low fractions of sites under selection, we ran INSIGHT

on the large collection of sites (790 Mb) obtained by intersecting the collection of putative neutral

sites used to fit the neutral model in INSIGHT (see above) with the cluster, Cnull, consisting of non-

coding sites in the ‘Quiescent’ chromatin state having no DNase-seq or RNA-seq signal (0 levels

defined above). We then subtracted the estimated value of ρ, denoted ρneut, from the raw fitCons

score to obtain a conservative lower bound, ρ(S) − ρneut, for the fraction of sites under selection

in S.

FitConsD and Evolutionary Turnover. Our measures of turnover are based on comparisons be-

tween fitCons scores, which estimate the fraction of sites under selection since divergence from

chimpanzee, with scores obtained using a parallel method, fitConsD, which measures natural se-

lection in longer evolutionary timescales, namely, since the divergence of human, chimpanzee,

orangutan, and rhesus macaque. To make this comparison as direct as possible, fitConsD scores

were computed using the same pipeline we developed for fitCons (see Fig. 1), except that in step

C we replaced the INSIGHT model with an evolutionary model that considers sequence divergence

between the four primate genomes.

Briefly, we obtained these divergence-based estimates as follows. We downloaded the multi-

ple genome alignment for 46 placental mammals from the UCSC Genome Browser (http://genome.

ucsc.edu), and extracted from it the subalignment for the four primates. In each of the three non-

human genomes, we filtered out nonsyntenic regions and positions with genotype quality below

20. Additionally, we masked out sites filtered in the INSIGHT analysis to eliminate repetitive se-
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quences, recent duplications, and CpG sites (see above). We assumed a fixed branch-weighted

phylogeny T for the four-species tree, which was obtained by fitting a phylogenetic substitution

model to fourfold degenerate sites in coding sequences, and we used the partitioning of the genome

into 624 clusters {Ci} defined using functional data from the HUVEC cell line (see above).

With these preparations, we estimated a divergence-based fraction of sites under selection,

ρdiv(Ci) for each cluster Ci, as follows. First, we created a pseudo-alignment consisting of the

columns from the original four-species alignment that correspond to positions in Ci. We then

used the phyloFit procedure from RPHAST53 to estimate a maximum-likelihood scaling factor

si for the tree T for this pseudoalignment. This scaling factor si is an estimate of the relative

evolutionary rate in cluster Ci, compared with the pre-estimated neutral model, but it does not yet

consider variation in the neutral substitution rate along the genome. Therefore, we additionally

computed similar scale factors for 10 kb blocks of neutral sites across the genome, using the same

neutral sites and windowing scheme as for the fitCons scores (see above). Specifically, for each

10 kb window w, we computed a maximum-likelihood neutral scaling factor sneut
w for T . We then

defined the neutral scale factor sneut
i for a cluster Ci as the weighted average of neutral scale factors

{sneut
w } in the associated neutral blocks (i.e., the average is weighted by the size of the intersection

of cluster Ci and each window w). Now the relative rate of substitution in Ci compared to the

expectation under neutrality could be computed as, si/sneut
i . Under the assumption that negative

selection dominates54, an estimate of the fraction of sites under selection in cluster Ci is therefore

given by ρdiv(Ci) = 1− si/sneut
i .
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Figure 1: Illustration of procedure for calculating fitCons scores. (A) Functional genomic
data, such as DNase-seq, RNA-seq and histone modification data, are arranged along the genome
sequence in tracks. (B) Nucleotide positions in the genome are clustered by joint patterns across
these functional genomic tracks. For example, one cluster might contain genomic positions with a
high DNase-seq signal, a moderate RNA-seq signal, and high signals for H3K4me1 and H3K27ac,
suggesting transcribed enhancers. Another might contain positions with a low DNase-seq signal,
a high RNA-seq signal, and a signal for H3K36me3, suggesting actively transcribed gene bodies.
Notice that clusters will generally contain genomic positions dispersed along the genome sequence.
(C) Patterns of polymorphism and divergence are analyzed using INSIGHT 34 to obtain an estimate
of the fraction of nucleotides under natural selection (ρ) in each cluster. This quantity is interpreted
as a probability that each nucleotide position influences the fitness of the organism that carries it, or
a fitness consequence (fitCons) score. (D) The fitCons score for each cluster is assigned to all ge-
nomic positions that were included in the cluster. In this way, all nucleotide positions are assigned
a score, but there can be no more distinct scores than there are clusters. Note that, in our initial
work, the clustering is of genomic positions is accomplished by a simple exhaustive partitioning
scheme that produces 624 distinct clusters. In future work, however, it may be desirable to iterate
between clustering and calculating scores (dashed line; see Discussion).
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Figure 2: Composition and coverage of high-scoring genomic regions according to fitCons.
(A) Composition by annotation type in regions that exceed a fitCons score threshold of S, as S is
varied across the range of possible scores. Each vertical cross-section of the plot can be thought of
as a narrow “stacked bar” representation of the composition by annotation type of all genomic po-
sitions at which the fitCons score> S. At the left side of the plot, when S is small, the composition
by annotation type is representative of the genome as a whole. As the threshold S increases, coding
sequences (CDS; navy) are increasingly enriched and intergenic (gray) sequences are increasingly
depleted. Regions experiencing moderate levels of selection, such as untranslated regions (UTRs;
purple and green), promoters (orange), small noncoding RNAs (sncRNAs; eggplant), and introns
(olive), are most enriched at intermediate scores. A logarithmic scale is used for the x-axis to
enable the differences at low score thresholds to be observed more clearly. (B) Coverage of the
same annotation types by genomic regions having fitCons score > S, with an x-axis matching that
in (A). The dashed line indicates the genome-wide average. At each value of S, the relative height
of a given curve in comparison to the dashed line indicates the enrichment (or depletion) of the
corresponding annotation type in genomic regions having score > S. The legend at the right lists
the annotation types in order of decreasing enrichment.

34

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 11, 2014. ; https://doi.org/10.1101/006825doi: bioRxiv preprint 

https://doi.org/10.1101/006825


 

RNA-seq Signal: Strong Medium WeakBroadDNase I-Hypersensitivity Peaks: Narrow

Transcription Promoter-Active Promoter-Weak Promoter-Poised Enhancer Polycomb RepressedChromatin States (ChromHMM):

rs6510725

A B C

MIER2

RNA-seq

DNase I-seq

RNA expr.
DNase I-HS

Chromatin St.

CDS

fitCons

Mammal Cons.

Figure 3: Genome browser display showing functional genomic fingerprints and fitCons
scores. Shown, from top to bottom, are the exons of the MIER2 gene (blue); the raw RNA-seq
(turquoise) and DNase-seq (brown) signals; the four discretized tracks used to define the 624 func-
tional genomic fingerprints, including annotation-based CDSs (black), RNA-seq signal (green),
DNase-seq signal (yellow and brown), and chromatin modifications (multiple colors; see key at
bottom); the fitCons scores based on those fingerprints (dark blue, with lighter blues less statisti-
cally significant); and, for comparison, phyloP-based conservation scores for mammals. (A) An
apparent enhancer, marked by a combination of enhancer-associated chromatin modifications and
a strong DNase-seq signal, displays elevated fitCons scores but no elevation in conservation scores.
A ChIP-seq-supported TFBS for AP-1 (red arrow) and a lung-cancer-associated SNP (green arrow)
are highlighted. (B) CDS exons show elevated scores according to both fitCons and phyloP. (C)
The 3′ UTR, marked by transcription-associated chromatin modifications, a high RNA-seq signal,
and an absense of DNase-I hypersensitivity or CDS annotations, displays moderately elevated fit-
Cons scores and patches of evolutionary conservation. Browser tracks are publicly available at
http://genome-mirror.bscb.cornell.edu (hg19 assembly).
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Figure 4: Average fitCons scores as a function of DNase-seq and RNA-seq intensity. Results
represent averages across all non-CDS clusters having the marginal or joint property of interest.
Error bars represent standard errors of the aggregated fitCons scores (see Methods). (A) FitCons
scores increase with DNase-seq intensity. 0: No DNase-seq signal; 1: broad peaks; 2: narrow
peaks. (B) FitCons scores increase with RNA-seq intensity. 0: no RNA-seq reads; 1-3: weak
to strong RNA-seq signal (see Methods). (C) FitCons scores behave in a non-additive manner as
joint combinations of DNase- and RNA-seq intensity are considered. In particular, at medium to
high RNA-seq read depth (classes 2 and 3), fitCons scores decrease (rather than increase) with
increasing DNase-seq signal.
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Figure 5: Coverage of active cis-regulatory elements as a function of total coverage of the
noncoding genome. Coverage of each type of element is shown as the score threshold is adjusted
to alter the total coverage of noncoding sequences in the genome, excluding sites annotated as
CDS or UTR. FitCons is compared with scores from the Combined Annotation Dependent De-
pletion (CADD)35, Genomic Evolutionary Rate Profiling (GERP)13, phastCons12, and phyloP15

programs (see Methods). (A) Coverage of transcription factor binding sites detected by ChIP-seq
in HUVEC28. (B) Coverage of high-resolution eQTLs identified in a recent large-scale study6,
restricted to eQTLs associated with genes transcribed in HUVEC. Coverage of eQTLs is also
shown for classification of single nucleotide variants by RegulomeDB36. The divergence-based
scores (phastCons, phyloP, GERP, and CADD) all perform poorly on the eQTL data set, probably
because the ascertainment for segregating sites creates a bias against evolutionary conservation.
Note also that the apparent performance of RegulomeDB, particularly at low total noncoding cov-
erage, is somewhat influenced by consideration of eQTL data in its scoring scheme. (C) Coverage
of enhancers identified by characteristic chromatin marks37 assayed in HUVEC.
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Figure 6: Comparison between fitCons and fitConsD scores. FitConsD is an alternative esti-
mate of fitness consequences, analogous to fitCons, but based on an estimator of the fraction of
sites under natural selection that considers divergence patterns across four primate genomes (see
Methods). (A) FitCons and FitConsD scores are shown for the clusters defined using functional
genomic data from HUVEC. Scores are shown for the 348 clusters of size 10 kb or larger, distin-
guishing between coding clusters (green triangles) and non-coding clusters (blue squares). Both
sets of scores are corrected by subtracting the possible contribution from model misspecification
(see Methods). Correlation between the two sets of scores is high (R2 = 0.88) overall, and is
somewhat higher for coding (R2 = 0.69) than for noncoding (R2 = 0.51) clusters. (B) The net
gain in the fraction of sites under selection on population genetic time scales relative to primate-
divergence time scales, computed by subtracting average fitConsD scores from average fitCons
score for different classes of functional elements. Net gain is plotted against average fitCons score,
and lines of constant slope radiating from the origin represent constant values of a “net gain rate,”
computed as NGR = (fitCons − fitConsD)/fitCons. The NGR can be interpreted as an estimate of
the net gain per functional site. Notice that the NGR is small (≤10%) for almost all annotation
classes considered. The main exception is driven by a few clusters associated with an absence
of DNase-seq or RNA-seq signal and chromatin modifications suggesting transcriptional elonga-
tion, which had net gain rates as high as 20% and were strongly enriched in the introns of active
genes (see “intron (HUVEC)”), suggesting the possibility of evolutionary innovation associated
with mRNA splicing or post-transcriptional regulation.
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Supplementary Figure S1. Comparison of fitCons scores and phyloP conservation scores. Each of the
624 clusters is represented by single point, with its x coordinate given by the mean placental mammalian
phyloP score for the associated genomic positions (Karolchik et al., 2014; Pollard et al., 2010) and its y
coordinate given by the fitCons score calculated as shown in Fig. 1. The clusters naturally fall in two
groups, corresponding to coding sequences (CDS) with lower scores (green crosses) and noncoding
sequences with higher scores (blue Xs). Three groups of outliers are shown, representing non-coding
clusters with elevated fitCons scores relative to their phyloP scores. Cluster (A) consists of 1200 genomic
positions in narrow DNase-seq peaks with no RNA-Seq signal, yet with chromatin modifications indicating
transcription activity. These sites are strongly enriched for ChIP-seq-supported TFBSs, and may contain
enhancers with weakly expressed eRNAs not detectable from the available RNA-seq data. The two clusters
in (B) contain 92.8 kb of sequence defined by high RNA-seq signals, broad DNase-seq peaks, and Pol II
binding, and are strongly enriched for 3′ UTR and ncRNA annotations. Cluster (C) contains 52.7 kb of
sequence with no DNase-seq but some RNA-seq signal, along with insulator-associated chromatin
modifications. This class is strongly enriched for eQTLs and CTCF binding sites, suggesting
transcriptional silencing activity. Thus, all four of these clusters appear to be rich in regulatory sequences
that could plausibly have experienced weak natural selection during most of mammalian evolution, but
come under stronger selection recently on the human lineage.
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Supplementary Figure S2. Receiver operating characteristic (ROC) curves for cell-type-specific
regulatory elements. Three types of regulatory elements were considered: (A) transcription factor binding
sites (TFBSs), (B) expression QTLs (eQTLs), and (C) enhancers identified by chromatin marks. Separate
curves are shown for fitCons, phastCons (Siepel et al., 2005), CADD (Kircher et al., 2014), GERP (Cooper
et al., 2005), and phyloP (Pollard et al., 2010) scores. In panel (B), a curve is also shown for the
RegulomeDB database (Boyle et al., 2012). True positive rates were estimated by the fraction of
nucleotides in annotated elements having scores that exceed a given score threshold and false positive rates
were estimated by the fraction of nucleotides in a matched set of “null” elements having scores that exceed
the same threshold (see Methods for details). Each curve is generated by varying this threshold across the
full range of scores for the corresponding method. In this case, only elements “active” in the cell-type for
which the fitCons scores were produced (HUVEC) were considered; see Supplementary Fig. S3 for results
for a pooled set of elements across cell types. AUC values, shown in parentheses, represent areas under the
ROC curve and provide an overall measure of predictive value. The apparent performance of RegulomeDB
on eQTLs, particularly at low false positive rates, is somewhat influenced by consideration of eQTL data in
its scoring scheme.
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Supplementary Figure S3. Receiver operating characteristic (ROC) curves for regulatory elements
pooled across cell types. Three types of regulatory elements were considered: (A) transcription factor
binding sites (TFBSs), (B) expression QTLs (eQTLs), and (C) enhancers identified by chromatin marks.
Separate curves are shown for fitCons, phastCons (Siepel et al., 2005), CADD (Kircher et al., 2014), GERP
(Cooper et al., 2005), and phyloP (Pollard et al., 2010) scores. In panel (B), a curve is also shown for the
RegulomeDB database (Boyle et al., 2012). The fitCons scores used here are computed by aggregating
functional information across HUVEC, H1 hESC, and GM12878 cells (see Methods). Note that some
regulatory elements might not be active in any of the three cell types. The apparent performance of
RegulomeDB on eQTLs, particularly at low false positive rates, is somewhat influenced by consideration
of eQTL data in its scoring scheme.
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Supplementary Figure S4. ROC and ROC-like curves for high-information-content positions in
transcription factor binding sites. These panels parallel previous figures except that, in this case, only
positions in ChIP-seq-annotated transcription factor binding sites with strong nucleotide preferences
(relative frequency of preferred allele ≥90% in motif model) are considered. Shown are (A) coverage as a
functional of total noncoding coverage (as in Fig. 5A); (B) a receiver operating characteristic (ROC) curve
for elements active in HUVEC (as in Supplementary Fig. S2A); and (C) a ROC curve based on elements
active in various cell types and integrated fitCons scores (as in Supplementary Fig. S3A). These curves
show little difference compared with the ones based on whole binding sites, despite known correlations
between natural selection and information content for at least some TFs (e.g., see Pollard et al. (2010);
Arbiza et al. (2013)), apparently because these correlations tend to be fairly weak and TF-specific, and
generally occur below the prediction thresholds of interest.
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Supplementary Figure S5. FitCons scores for all functional classes for (A) HUVEC vs. H1 hESC, (B)
HUVEC vs. GM12878 and (C) GM12878 vs. H1 hESC cells. While the individual positions assigned to
each class vary widely according to cell type, the fitCons scores remain relatively constant, with Pearson
correlations ≥ 0.93 and Spearman correlations ≥ 0.87 between pairs of cell types.
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Supplementary Figure S6. FitCons scores reflect cell-type specific activity. Mean fitCons score for (A)
100 bp promoters and (B) eQTL that are active in one cell type and inactive in another, based on RNA-seq
data for the associated gene (see Methods). Error bars represent standard errors of the aggregated fitCons
scores (see Methods). FitCons scores computed using functional genomic data from H1 hESC cells (gold
bars), elements active in H1 hESC and inactive in HUVEC (H1 hESC+/HUVEC−) are significantly higher
than those for elements inactive in H1 hESC and active in HUVEC (H1 hESC−/HUVEC+). The opposite
pattern is observed for fitCons scores computed using functional genomic data from HUVEC (purple bars).
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Supplementary Figure S7. Receiver operating characteristic (ROC) curves comparing integrated
fitCons scores with cell-type specific fitCons scores. The top row shows the predictive performance of
fitCons scores for elements “active” in the HUVEC cell type: (A) TFBS, (B) eQTL, and (C) Enhancers.
Three versions of the fitCons score are shown: cell-type-specific scores based on HUVEC (FitConsHU)
and H1-hESC (FitConsH), and scores based on integrated data from all three cell types (FitConsI). Notice
that the FitConsI scores perform as well as those based on the “active” cell type (FitConsHU), whereas
those based on a different cell type (FitConsH1) perform substantially worse. The bottom row shows the
same fitCons scores applied to elements aggregated from a broad range of cell types: (D) TFBS, (E) eQTL,
and (F) Enhancers. In this case, FitConsI outperforms both sets of cell-type-specific scores. Thus, the
integrated scores (FitConsI) appear to improve performance in a cell-type-general setting without much
cost in the cell-type-specific setting.
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Supplementary Tables

Supplementary Table S1. FitCons Site Clusters

Number of clusters
Cell type Non-empty a Viable b Confident c Coveraged Median sizee

HUVEC 560 502 295 99.5% 120 kb
H1 hESC 557 498 298 99.1% 121 kb
GM12878 556 496 287 99.4% 144 kb
Integrated 494 466 283 98.9% 198 kb

aNumber of non-empty clusters in partitioning.
bNumber of non-empty clusters after applying INSIGHT filters.
cNumber of clusters for which the ratio between the estimated standard error for ρ and the estimated value of ρ is at

most 0.4.
dPercentage of bases in confident clusters out of 2,881,033,286 bp in human autosomes.
eMedian size (in kilobases) of confident clusters.
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Supplementary Table S2. Share Under Selection for Various Annotation Classes

Class Size (Mbp) % genome % sites % sel. Adj. % sel.
under sel.a sitesb sitesc

genome 2,881.0 100.0% 7.5%±0.1% 100.0% 100.0%
coding 30.7 1.1% 63.3%±0.4% 9.0% 15.3%
3’ UTR 24.7 0.9% 19.5%±0.3% 2.2% 3.3%
5’ UTR 4.1 0.1% 13.3%±0.5% 0.3% 0.3%
promoter 21.5 0.7% 9.0%±0.3% 0.9% 1.0%
ncRNAd 8.0 0.3% 8.1%±0.1% 0.3% 0.3%
intron 1,008.8 35.4% 7.5%±0.1% 35.2% 35.1%
intergenic 1,768.2 61.5% 6.3%±0.1% 51.7% 44.1%

aFraction of sites under selection in a class computed using HUVEC fitCons scores (see Methods).
bFraction of total number of sites under selection in the genome that is estimated to fall in class.
cFraction of sites under selection estimated to fall in class, corrected by subtracting ρneut = 3.3% from the raw

estimate (see Methods).
dUnion of lincRNA set and sncRNA set.
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Supplementary Methods

Partitioning Genome Based on RNA-seq Data

The DNase-seq and histone modification data provided a natural partitioning of the genome into a small

number of classes: using broad and narrow peak calls for DNase-seq, and the 25 ChromHMM states for the

histone ChIP-seq data. Using the RNA-seq data to partition the genome, however, required developing a

framework that would allow us to determine how informative a given partition is on the distribution of sites

under selection in the genome. We used the measure of mutual information from information theory, and

applied an exhaustive search to find the most informative partition. This exhaustive search was carried out

by dividing the range of continuous values (normalized read depth in the case of RNA-seq) into a discrete

set of intervals, and assessing the fraction of sites under selection in each interval using INSIGHT. This

approach provides a relatively general framework for using fitCons scores computed by INSIGHT to refine

a given clustering scheme (see backward arrow from C to B in Fig. 1), and we imagine it will be useful in

parsing other complex data sets. The three sections below describe the information theoretic concepts used

in our approach, the implementation details of the exhaustive search, and the results for the RNA-seq data

for the three cell types.

Mutual Information and Conditional Entropy

Let X be a binary variable indicating whether or not a genomic position is under selection; that is, if a

mutation at that site will influence fitness then X = 1 and otherwise X = 0. In addition, let YC indicate the

cluster to which the same position is assigned in a given partitioning C (YC ∈ C = {C1, ...CK}). Assuming

that sites are selected uniformly at random from the genome and that ρ(Ci) denotes the fraction of sites

under selection in cluster Ci, the joint probability distribution of X and YC is given by:

P (X = 1 , YC = Ci) =
|Ci|∑
j |Cj |

ρ(Ci) (1)

For notational simplicity below, let ρ =
∑

i |Ci|ρ(Ci)∑
i |Ci| , the fraction of sites under selection in the genome.
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The mutual information of X and YC is given by the following expression (Cover and Thomas, 1991):

I(X;YC) =
k∑
i=1

1∑
x=0

P (X = x , YC = Ci) log
P (X = x , YC = Ci)

P (X = x)P (YC = Ci)
(2)

=
k∑
i=1

|Ci|∑
j |Cj |

(
ρ(Ci) log

ρ(Ci)

ρ
+ (1− ρ(Ci)) log

1− ρ(Ci)
1− ρ

)
(3)

=

k∑
i=1

|Ci|∑
j |Cj |

(ρ(Ci) log(ρ(Ci)) + (1− ρ(Ci)) log(1− ρ(Ci))) + H(X) . (4)

Note that H(X) = ρ log(ρ) + (1− ρ) log(1− ρ), the entropy of X , does not depend on the partitioning

C, and the remaining terms on the right hand side of equation (4) are equal to −H(X|YC), where H(X|YC)

denotes the conditional entropy of X given YC . Thus maximizing the mutual information of I(X;YC) is the

same as minimizing the conditional entropy H(X|YC).

Implementation

Our method for partitioning the genome into K read-depth bins (for a given K) is based on an exhaustive

search of allK-partitions, C, to find the one that results in the largest mutual information I(X;YC). To make

the exhaustive search tractable, we apply it to discretized partition boundaries using the procedure outlined

below:

1. Divide the continuous range of values (normalized RNA-seq read depth in our case) into N discrete

intervals, Ii, . . . , IN , such that intervals are of comparable size and large enough to produce confident

estimates of ρ using INSIGHT.

2. Run INSIGHT on the collection of sites corresponding to each interval Ii to obtain an estimate, ρ(Ii),

of the fraction of sites under selection in Ii.

3. For each of the
(
N
2

)
ordered pairs 1 ≤ i < j ≤ N , denote by Ii,j the union of all Ik such that

k ∈ [i, j], and estimate ρ(Ii,j) using the weighted average ρ(Ii,j) =
∑

k∈[i,j] |Ik|ρ(Ik)∑
k∈[i,j] |Ik|

.

4. For each of the
(
N−1
K−1

)
discretized K-partitions, C = {C1, C2, . . . , CK}, defined by K + 1 interval

boundaries, 0 = i1 ≤ i2 < i3 < . . . < iK < iK+1 = N , retrieve for each cluster Ck = Iik+1,ik+1
an

estimate of ρ(Ck) from the estimates pre-computed above, and use it to compute the mutual informa-

tion I(X;YC) using the expression in (4).
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5. Choose the K-partition with the highest mutual information.

Applying this procedure with increasing values of K should result in an increase in the resulting mutual

information, but a decrease in the size of clusters.

Application to RNA-seq data

We applied the procedure described above separately to the RNA-seq data of each of the three cell types. For

each cell type, we divided the range of normalized read depth (reads per million; RPM) into N=53 intervals

by taking increments of 1 RPM between 0 and 20, increments of 2 between 20 and 40, increments of 5

between 40 and 100, increments of 10 between 100 and 200, and allocating a single interval for RMP>200.

We computed ρ(Ii) for each of the 53 intervals (step 2 in the procedure described above), and used it to

compute estimates of ρ for each of the possible
(
53
2

)
discrete bins (step 3). Then we executed the exhaus-

tive search (steps 4–5) for K = 2, 3, 4, 5 (see table below). While the mutual information I(X;YC) kept

increasing as we increased K, partitioning into more than 4 bins resulted in small bins (less than 30 Mb)

for intermediate read depths, which we did not expect to be very informative. We thus chose K = 4 for our

final partitioning. Note that this partitioning results in one boundary at RPM=1, another boundary near the

deflection point for ρ(Ii), and a third boundary around the middle of the dynamic range ofρ estimates (see

figure below).

Partitioning Based on RNA-seq Read Depth

cell type C a ; I(X;YC)
b (K=2) C ; I(X;YC) (K=3) C ; I(X;YC) (K=4) c C ; I(X;YC) (K=5)

HUVEC {7} ; 0.0117 {1, 14} ; 0.0133 {1, 7, 36} ; 0.0138 {1, 6, 14, 50} ; 0.0140
H1 hESC {7} ; 0.0116 {2, 15} ; 0.0132 {1, 5, 20} ; 0.0139 {1, 3, 7, 20} ; 0.0141
GM12878 {20} ; 0.0093 {1, 28} ; 0.0120 {1, 11, 38} ; 0.0124 {1, 10, 28, 75} ; 0.0126

aPartition C is indicated by K − 1 thresholds of RPM from our pre-determined set of 52 boundary points.
bI(X;YC) is the mutual information of the partitioning C and the distribution of sites under selection, as defined in Equation 4.
cK = 4 was used for the partitioning in fitCons.

Controlling for Model Misspecification in INSIGHT

The INSIGHT model makes several simplifying assumptions that could potentially influence its estimates of

ρ. While these assumptions should not generally bias estimates in any particular direction, the fact that ρ is

restricted to be positive might lead to a slight bias when estimating ρ for site clusters that have a near zero
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Partitioning the genome into K=4 bins according to normalized read depth in RNA-seq experiments for
HUVEC (panel A), H1 hESC (panel B), and GM12878 (panel C). Each point in the scatter plot represents
one of N=53 (atomic) intervals Ii, plotting ρ(Ii)as a function of the fraction of the genome covered by the
union of intervals Ii, Ii+1, . . . , IN . The label next to each point corresponds to the lower boundary (in
RPM) of that interval. Note that ρ(Ii) typically increases with i, indicating a higher concentration of sites
under selection in highly transcribed sequences. The boundaries between the four resulting classes (0-3)
are indicated by vertical lines, with labels (top) representing the class desigbation and the number of
position in each class.

fraction of sites under selection. This slight bias might have a nonnegligible influence on our estimate of

the fraction of nucleotides under selection (7.5%), because this estimate is obtained by taking a weighted

average of estimates of ρ across all clusters, and the terms dominating this average belong to large clusters

with very low fractions of sites under selection. To estimate the potential effect of this bias, we ran INSIGHT

on the collection of sites that belong to our putatively neutral set and have a null functional fingerprint,

i.e., DNase-seq and RNA-seq classes 0, ‘quiescent’ chromatin state, and non-CDS. Our expectation is that

INSIGHT should infer ρ = 0 for this collection of sites, because it is depleted in functional sites, and more

importantly, the putatively neutral sites are used by INSIGHT to define the neutral model. Estimating ρ

for this very large collection of sites (790 Mb) was done by dividing it into sub-clusters smaller than 20
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Mb, running INSIGHT on each sub-cluster and taking the weighted average of the resulting estimates (same

approach was used in our main pipeline for large site clusters). The resulting estimate of ρneut = 0.033 was

then subtracted from the estimates of each site clusters to obtain a conservative lower bound for ρ for that

cluster.

Differences Between Cell Types.

Our main analysis focuses on HUVEC, but we also generated fitCons scores for H1 hESC and GM12878.

To compare the scores for different cell types, we began by examining the 624 functional genomic classes

across the three cell types, in terms of both the genomic positions assigned to each class, and the fitCons

scores estimated for those positions. (Note that our partitioning scheme ensures that the the same 624 class

definitions are used for each cell type.) Approximately 30% of genomic positions had a null functional

fingerprint in all three cell types. In the remainder, we found that genomic positions assigned to each

class differed substantially across cell types, with fewer than 4.5% of positions being assigned to the same

functional class across all three cell types, and more than a third being assigned to different functional classes

in all three cell types. Despite their association with different genomic positions, however, equivalently

defined clusters exhibited highly similar fitCons scores across cell types (Pearson correlation ≥ 0.93 for

all pairs; Supplementary Fig. S5). Thus, while the patterns of activity differ substantially across cell types,

the evolutionary signatures associated with genomic positions that display particular patterns of activity are

remarkably consistent across cell types.

To examine the degree to which the scores convey cell-type-specific information, we next considered

fitCons scores for elements that are active in one cell type an inactive in another. In particular, we examined

subsets of eQTL and proximal promoters (within 100bp of the annotated transcription start site) that appear

to be active in H1 hESC but inactive in HUVEC (H1 HESC+/HUVEC−) or inactive in H1 hESC and active

in HUVEC (H1 HESC−/HUVEC+) based on RNA-seq data for the same cell types (see Methods). For

each of these groups of elements, we compared mean fitCons scores computed for each of the two cell

types (H1 hESC and HUVEC). We found that, based on the scores computed for each cell type, the active

elements in that cell type had significantly higher scores than the inactive elements (compare the two gold

bars and the two purple bars in each panel in Supplementary Fig. S6). In addition, the same sets of functional

elements have significantly higher fitCons scores for the cell type in which they are active than for the one in

which they are inactive (compare adjacent gold and purple bars in Supplementary Fig. S6). Similar patterns
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were observed for comparisons involving GM12878 (results not shown). These findings demonstrate that,

while the fitCons scores for all cell types are based on the same polymorphism and divergence data, they

nevertheless convey cell-type-specific information through the use of cell-type-specific functional data for

clustering.

Evolutionary vs. Biochemical Measures of “Function”

Following the publications by the ENCODE Consortium in 2012, there has been a great deal of discussion in

the scientific literature, the scientific press, and social media about the discordance between evolution-based

estimates of the SUS and estimates of the “functional” content of the genome based on high-throughput

measures of biochemical activity, which have been reported to be as high as 80% (Dunham et al., 2012;

Kellis et al., 2014). For various reasons, the ENCODE-based claims do appear to require a rather generous

definition of “function” (Graur et al., 2013; Niu and Jiang, 2013; Doolittle, 2013; Eddy, 2013). Nevertheless,

it is worth emphasizing that the question of the functional content of the genome is inevitably dependent on

how function is defined.

Consider two possible definitions of “functional” DNA sequences: sequences that produce a phenotype

either (1) when mutated (by point mutations), or (2) when deleted. Under the first definition, genomic po-

sitions such as fourfold degenerate sites in coding regions or degenerate positions in TFBSs will generally

not be functional, whereas under the second definition they will be functional, because their presence is

required to maintain the functional coherence of a larger element (they are both examples of “spacer” ele-

ments). Other examples of functional sequences whose function does not depend on the precise identity of

each nucleotide at each position include sequences separating binding sites for interacting TFs, sequences in

short introns, and sequences that maintain the spacing properties of cis-regulatory elements relative to target

genes.

Importantly, most estimates of the SUS, including ours, have made use of definition (1), whereas mea-

sures of biochemical activity are more consistent with definition (2) in some respects (although not all spacer

elements will be biochemically active). In our view, it is unlikely that this distinction can account for the

difference between estimated genomic fractions of ∼80% and ∼5%. Nevertheless, it is worth bearing in

mind that our estimate of the SUS and those from comparative genomics are based on a fairly restrictive

definition of function. Indeed, our methods indicate that the SUS in annotated coding regions is only about

60%, a fraction that would undoubtedly rise under definition (2).
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