
1

Improved genome inference in the MHC
using a population reference graph

Alexander Dilthey, Charles Cox, Zamin Iqbal, Matthew R. Nelson, Gil McVean

In humans and many other species, while much is known about the extent and structure of genetic

variation, such information is typically not used in assembling novel genomes. Rather, a single

reference is used against which to map reads, which can lead to poor characterisation of regions

of high sequence or structural diversity. Here, we introduce a population reference graph, which

combines multiple reference sequences as well as catalogues of SNPs and short indels. The

genomes of novel samples are reconstructed as paths through the graph using an efficient hidden

Markov Model, allowing for recombination between different haplotypes and variants. By

applying the method to the 4.5Mb extended MHC region on chromosome 6, combining eight

assembled haplotypes, sequences of known classical HLA alleles and 87,640 SNP variants from the

1000 Genomes Project, we demonstrate, using simulations, SNP genotyping, short-read and long-

read data, how the method improves the accuracy of genome inference. Moreover, the analysis

reveals regions where the current set of reference sequences is substantially incomplete,

particularly within the Class II region, indicating the need for continued development of reference-

quality genome sequences.

The current paradigm for analysing human genomes using high throughput sequence (HTS) data is to

map to a single haploid reference sequence in which there is no representation of variation1-3.

Across much of the genome, such exclusion has little effect on the accuracy of genome inference

because of the relatively low genetic diversity of humans. However, for some regions, such as the

major histocompatibility complex (MHC) on chromosome 6, which contains the human leukocyte

antigen (HLA) genes, there is very substantial sequence and structural variation4. Such diversity can

result in poor genomic characterisation in individuals who carry sequence that is either missing or

highly divergent from the single reference. Other locations of high diversity include the KIR5 region,

olfactory gene clusters6, ancient inversions such as that on 17q21.317-9 and regions of recurrent

genomic rearrangement10, many of which have substantial influence on phenotype and disease risk.

In many of these cases, multiple alternative haplotypes have been characterised and are available.

For example, there are eight alternative MHC haplotypes in the human reference (GRCh3711). More

generally, sequencing projects have greatly advanced our understanding of human genetic

variation12-14; using such information to help characterise human genomes represents an important

and unsolved problem

The problem of the single reference approach and the potential of using known variation to

characterise the MHC is demonstrated in Figure 1 for a single individual (CS1). When the standard

reference (carrying the PGF MHC haplotype) is used for mapping, large fluctuations in coverage and

substantial read mismatches are observed (Fig. 1a, b). However, when a more appropriate

reference is used, (here identified by comparing the classical HLA genotypes of the sample with

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

2

those of the eight reference haplotypes and noting that one of the eight haplotypes was a close

match), read coverage and alignment is greatly improved (Fig. 1c, d).

In order to use prior information about variation there are five main challenges. First, there needs

to be a data structure for representing genomic variation that can accommodate multiple sources of

information, from high quality assembled reference sequence (such as the ALT paths in GRCh37) to

the lower-quality, but very extensive, catalogues of variation such as the 1000 Genomes Project12,14.

Second, there have to be algorithms that match high-throughput sequencing (HTS) data from a

subsequent sample to the reference structure in order to best characterise the haplotypes present.

Third, and potentially simultaneously with step two, there have to be methods for detecting

additional variation not yet represented in the reference data structure. Fourth, because most

functional information (such as the location and structure of genes) uses the coordinates of a single

primary reference, there has to be a coherent way of projecting information from a variation-aware

reference onto a primary sequence. Finally, there need to be methods to validate and compare the

output from a variation aware reference tool-chain to the genomic information provided by existing

approaches that rely on a single reference genome.

To date, limited progress has been made on addressing these challenges. Graph structures of local

sequence variation and/or prior knowledge of small-scale variants are used to aid read assembly by

several variant-calling algorithms15-17. However these make no attempt to build a re-usable

reference structure and do not incorporate long or diverged haplotypes such as in the MHC. The

pragmatic approach of appending alternative sequences to the end of a reference has been

proposed18 but cannot solve the fundamental problems of distinguishing between sequence

similarity arising through orthology and paralogy. Conversely, the approach of identifying a best

reference from among a set has been applied to Arabidopsis19, but cannot address the problem that

novel genomes are likely to be closest to a mosaic (arising through recombination) of those already

known. Methods have been developed to represent multiple aligned genomes in a manner that

allows inexact matching20, but these are impractical for human genomes because of memory

requirements (greater than 1Tb of RAM). Similarly, progress on variation aware data models has

been made21, though with no implementation. None of these methods represent a general and

practical solution to the problem of describing and using information from multiple reference data

sets.

Here, we present a solution to the challenges described above. We describe an approach for

representing known variation called a population reference graph (PRG) and a series of algorithms

that enable characterisation of the genomes present in an individual from HTS data. We build on

previous work for using coloured de Bruijn graphs for analysing sequence variation22, but also take

advantage of the existing tool chain for read mapping and variant calling3,15. To demonstrate the

value of the method we develop a PRG for the MHC region and combine simulation with analysis of

empirical data on SNP genotypes, classical HLA types, short-read and long-read Moleculo data from

high coverage samples.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

3

The population reference graph

A population reference graph (PRG) is a directed acyclic graphical model for genetic variation that is

generated by combining information about known allelic relationships between sequences (Figs. 2a,

2b). The graph is constructed in three steps (see Supplementary Text for a detailed description).

First, reference sequences are aligned using standard multiple sequence alignment (MSA)

methods23,24. Second, a graph structure is generated from the MSA by collapsing aligned regions

with sequence identity over a defined kmer size. Third, additional SNP information, which is

encoded in VCF and related formats through a reference position and alternative sequences, is

added to all paths with matching sequence at a given position (for example, a SNP cannot be added

to a path where there is a deletion at a given position). Here, all REF and ALT sequences from

GRCh37 are used, along with the catalogue of SNPs from the Phase 1 release of the 1000 Genomes

Project and the set of classical HLA allele sequences from the International Immunogenetics

Information System (IMGT25) at key HLA Class I and Class II loci (Table S1). The resulting graph

structure can be thought of as a generative model for genome sequences. From a limited set of

input sequences, many different paths through the graph are possible, thus mimicking the effect of

recombination. In regions of high diversity, the size of the state space can become very large (Fig.

S1).

Using the PRG to infer individual genomes

The development of HTS technologies in humans has largely relied on the notion that the genome(s)

of the sample(s) in the experiment will be closely related to those of the reference, thus enabling

reads to be mapped accurately and with appropriate certainty. We extend this idea by attempting

to infer the (diploid) path through the PRG that most closely resembles the two haplotypes of the

sample. Specifically, by comparing the HTS data from a sample to the PRG we construct a diploid

personalised reference genome, here referred to as a chromotype. To infer novel variation not yet

present in the PRG, we map reads to the chromotype and use existing variant calling software15.

Chromotypes are inferred by considering the HTS data from a diploid sample to be emitted by a pair

of paths through the PRG and approximating the emission process so as to benefit from the

computational efficiency of hidden Markov model techniques. Briefly, HTS data is summarised by

the counts of each string of length k (kmer). Similarly, the set of kmers that can be emitted from the

PRG is enumerated, eliminating those that occur multiple times across the genome and that are

therefore uninformative for local sequence inference (Fig. 2c). Finally, by using a probabilistic model

for the emission of kmers (see Methods), the Viterbi-algorithm infers the maximum-likelihood (ML)

pair of paths (chromotype) through the PRG (Fig. 2d). Note that this approach does not preserve

any phase information across regions where paths merge. The diploid path is thus best understood

as a bifurcating/merging sub-graph of the PRG, where heterozygous sites induce bubbles.

To detect novel variation within the sample the inferred chromotype is decomposed into two

sequences (with no attempt to establish phase between adjacent bubbles in the chromotype), which

are used to replace the homologous region in the primary reference. Reads are mapped to the two

resulting reference genomes and each read is placed at its best position across the two reference

genomes, as measured by mapping quality. A standard variant caller15 is used to discover new

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

4

alleles independently in the two mappings and a heuristic algorithm modifies the chromotype

accordingly. We have also developed an approach for mapping reads directly to the chromotype,

which is important for validation using long-read sequences (see below) though currently too slow

for primary analysis at the scale of millions of reads.

Validation and comparison to other methods

To assess the value of the PRG approach in characterising variation within samples we used

simulations and empirical data analysis. We compare four approaches to characterising variation.

1. As a base-line we use a single reference (the PGF haplotype within the MHC region from

GRCh37) and look at the effect of calling a sample as everywhere homozygous-reference.

2. We use a read-mapping approach (Stampy3 followed by Platypus15) in which the

components were designed explicitly for high sensitivity detection and genotyping of short

INDELs and clustered variants.

3. From the PRG, we assess the Viterbi chromotype.

4. From the PRG, we assess the results from mapping reads back to the Viterbi chromotype

with BWA1 and calling using Platypus15 (i.e. the modified chromotype).

The output of each approach can be represented as a chromotype, thus enabling comparison

between PRG and single-reference based methods.

Simulations

We simulated high coverage HTS data (85bp error-free paired-end reads from a 30x genome) for 20

individuals. The primary effect of read errors is to reduce kmer coverage, hence their omission. Each

simulated diploid genome consists of two random paths through the PRG for the extended MHC

(xMHC). The simulated genomes carry a mixture of recombination events between the original eight

MHC haplotypes, SNPs and structural variants of varying size (insertions and deletions from 1 –

125,000bp). We assess the accuracy of the PRG approach through genotype concordance of the

inferred paths through the PRG with the simulated paths (Table S2). Across all positions, 99.86% of

alleles are correctly recovered. Accuracy at heterozygous SNP positions is similar (99.83%) and drops

slightly for INDEL positions (ranging from 95.76% to 99.97%, Figs. 3a, 3b).

Experiment 1: Comparison to SNP array data

To assess the ability of the PRG approach to genotype variation at sites of high uniqueness within

the genome, we compared metrics of accuracy at SNP positions independently interrogated through

array genotyping and HTS (1 sample [NA12878] at 60x coverage with 100bp paired end-reads and 5

clinical samples [CS2-6] at 30x coverage with 90bp paired-end reads; see Methods).

The accuracy of all approaches is high (Fig. 3a), ≥97.38% concordance with the Illumina Omni 2.5M

array (NA12878) and ≥99.53% allele concordance with the Illumina 1M array (CS2-6) for all

approaches. Comparing the array genotype concordance of Platypus-generated genotypes and PRG-

generated genotypes, we find that both approaches yield comparable accuracies (97.75% vs 97.45%

for the 2.5M array and 99.57% vs 99.66% for the 1M array, Fig. 3c, Table S3).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

5

Of the 285 sites at which the array genotypes for NA12878 disagree with the Viterbi chromotype, in

55 cases this difference is driven by the Viterbi chromotype specifying at least one gap character

suggesting the presence of an indel that could interfere with array genotyping. We have manually

inspected the reference alignment of NA12878 reads for these sites, and find clear evidence for the

presence of at least one deletion in 33 of the 55 cases (we provide visualisations of read mapping at

all positions in Supplementary File 1). These findings suggest that a significant fraction of the

discrepancy between array and PRG approaches results from array errors at polymorphic indels.

Experiment 2: Comparison to classical HLA data

In regions of high sequence diversity, such as the classical HLA alleles, single-reference mapping and

variant calling methods may perform poorly because of the density of mismatches to the reference.

To assess the accuracy of different methods at the classical HLA alleles, we compared the per-base

diploid genotypes inferred by mapping and PRG approaches to those expected from the results of

sequence-based typing (SBT) of the highly polymorphic exons of Class I (HLA-A, -B and –C) and Class

II (HLA-DQA1, -DQB1 and –DRB1) genes in NA12878 and CS2-6. We analysed agreement with the

corresponding allele reference sequence for the reported allele (in HLA nomenclature this means

XX:XX:01 or XX:XX:01:01 at 6 or 8 digit resolution respectively)

Where diversity is relatively low and sequence coverage is very high, the accuracy of mapping-based

approaches is high; for example 100% concordance for NA12878 at exon 2 of HLA-A and –C (Fig. 3d,

Table S4). However, when coverage is lower, or sequence divergence and / or complications from

paralogy are greater (e.g. for HLA-B in the CS2-6 samples or HLA-DRB1 in all samples), the PRG

approach typically outperforms mapping (e.g. 97.19% concordance with the PRG genotypes versus

89.85% concordance with mapping-based genotypes at HLA-DRB1 in the CS2-6 samples). Mapping

reads to the chromotype has a marginal effect on accuracy (typically < 1% gain).

Experiment 3: kmer recovery from high coverage samples.

Central to the use of the PRG in assembling individual genomes is the notion that it contains the

majority of sequence that is likely to be found in any sample. In the absence of full and independent

de novo assemblies, we can assess the extent to which any given chromotype is an accurate

representation of the sample by measuring the recovery of kmers from HTS data. We apply this

benchmark to NA12878 and the CS2-6 samples.

Across the 4.75 Mb xMHC region, the PGF reference contains 4.52M unique kmers of which 4.8% are

not recovered in the HTS data from NA12878 (Fig. 4a). The mapping-based approach predicts 4.94M

kmers, of which 1.2% are not recovered while the two PRG approaches predict 4.98M and 4.97M

kmers respectively and 0.63% and 0.57% are not recovered. Results are comparable though slightly

lower for all methods in the CS2-6 samples (Table S4). Consequently, the PRG approach both

predicts greater sequence diversity than the mapping approach and achieves a higher rate of

sequence recovery. Although the majority of the xMHC is accessible to all methods, there is

substantial spatial heterogeneity in the rate of kmer recovery by all methods (Fig. 4b). Particularly in

the HLA class II region, the PRG approach outperforms mapping approaches (Fig. 5), consistent with

knowledge of genomic complexity involving the HLA-DRB paralogues. We also note that in some

regions, in particular distal to HLA-DRB5, all approaches perform poorly in terms of kmer recovery

(Fig. 5), suggesting that current catalogues of sequence within the xMHC are substantially

incomplete.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

6

Within the classical HLA loci, all methods perform well for class I loci, recovering 98-100% of kmers

compared to 80-95% from the PGF reference haplotype (Fig. S2). At Class II loci, however, the

advantage of the PRG method is pronounced, with approximately 99% of all kmers recovered for

HLA-DQA1, -DQB1 and -DRB1, compared to 88-95% for Platypus (against a base-line of 37-85% for

the PGF reference haplotype).

Experiment 4: Comparison to long-read Moleculo data

To assess alternative strategies for genome assembly over longer physical distances, we analysed

high coverage long-read Moleculo data (25x coverage) from NA12878 (see Methods). We first

identified 29,429 reads (median read length 3,165 bp) likely to have arisen from the MHC region

through the presence of diagnostic kmers (see Supplementary Text), then aligned reads to the

chromotypes generated by each approach. Read-to-chromotype alignment was performed with a

Needleman-Wunsch-like alignment algorithm that aligns to graphs instead of sequence,

implemented using dynamic programming (see Supplementary Text). We measure the scaled edit

distance between reads and the chromotype (measured as non-identical characters in read to

chromotype global alignment, divided by read length in kmers) as an indicator of genome accuracy.

We find that the mapping-based approach achieves the highest number of read alignments with

zero mismatches (11,338 vs 10,071 for the modified PRG method). However, both PRG approaches

result in significantly fewer reads with many mismatches and/or gaps (Fig. 6a, Table S5). For

example, the total number of alignment columns indicating a deletion in the chromotype decreases

from 1,017,231 (mapping-based) to 586,852 (modified PRG chromotypes). Likewise, the number of

reads with very bad alignments (more than 150,000 gaps in the aligned read or ≥33% of the aligned

chromotype string consisting of novel gaps) decreases from 303 to 134. The modified PRG

chromotype has a modest benefit over the Viterbi chromotype, increasing the number of perfectly

mapped reads from 8,359 to 10,071. Across the DRB5 region (identified from the kmer recovery

analysis as being most poorly represented by the PRG) we find reads that suggest the presence of an

inversion relative to known sequence (Fig. 6b).

Discussion

We have presented several innovations that address the problem of how best to represent and use

information about known genetic variation in the assembly of HTS data from novel samples. These

are an approach for representing information through the population reference graph (PRG), a

practical method for reconstructing personalised reference genomes by comparing HTS data to the

PRG, a method for detecting variation not present in the PRG and a series of benchmarking tests

that enable comparison of methods, whether PRG-based or otherwise, which can complement other

benchmarking approaches26. Our approach is both modular (such that progress can be made on

each element independently) and maintains the ability to project information onto a canonical

primary reference that is used as the basis of most functional annotation.

In constructing the PRG, our approach has been to combine multiple sources of reference variation

information including GRC37, the 1000 Genomes Project14 and IMGT25. Importantly, we make no

claim that the information contained within the graph is a full or accurate description of the

variation within the region. For example, the 1000 Genomes Project variant list is estimated to have

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

7

a false discovery rate of 1-5% depending on the variant type. However, the presence of false

variants within the PRG should have relatively little effect on accuracy, because paths through such

variants will have no support in HTS data. The aim of the PRG approach is not to describe all human

variation but simply improve genome assembly through representing the diversity of sequence that

may be present in an individual. Importantly, we evaluate the approach using metrics that are

independent of whether a PRG or simple reference approach is used (kmer recovery, genotype

accuracy at known SNP and HLA variants and long-read alignment). Future versions of the PRG

could, however, more closely match observed patterns of variation, for example by removing paths

never observed and weighting paths by population frequency. However, whether such changes

improve genome inference would have to be evaluated empirically. What the approach has

demonstrated is that graph based methods offer benefits in regions of high sequence diversity and

that there are substantial stretches in the Class II HLA region of the MHC that are poorly

characterised by all existing reference material, indicating the need for ongoing collection of

reference variation data.

The current implementation has several limitations. First, by summarising information as kmers, we

lose longer range information, particularly from read pairs. Likewise, the process of separately

mapping reads to each of the pair of chromosomes within the inferred reference chromotype is ad

hoc and inefficient. Both features arise from our attempts to maximise the usability of the PRG

approach, notably efficient inference using HMMs and the desire to use as much of the existing tool-

chain as possible. Both problems could also be solved potentially by using richer data structures that

retain longer range information in both reference variation data and short-read data, for example

the FM-index structure of SGA27 , augmented de Bruijn graphs that retain short-range path

information or mapping directly to the graph. Nevertheless, despite such limitations, we have

demonstrated that in regions of the MHC with high structural and sequence diversity, the use of the

current implementation can improve genome assembly.

A more fundamental limitation of local graph approaches is that they fail to use the much longer-

range information arising from haplotype structure (linkage disequilibrium). Sharing of SNP

haplotypes over megabase scales is common even among samples of unrelated individuals, hence

such information, which is used in applications such as imputation28-31 and refinement of low-

coverage sequencing data32 , has the potential to further improve genome inference. Such

information could, however, be included as a prior structure on paths through the PRG, for example

in a generalisation of the HMM approaches used by imputation methods28-31.

Methods

A full description of the PRG algorithms can be found in the Supplementary Text, including (i) the

algorithms used to build PRGs from a set of reference data, (ii) the algorithmic and statistical

methods for inferring a best diploid path (chromotype) through the PRG, (iii) the algorithm to

discover novel variation not presented in the PRG, (iv) the graph-mapping algorithm used for the

contig analysis. Data used are as follows. CS1 and CS2-6 samples: germ-line DNA was extracted

from peripheral blood samples collected from consented clinical trial subjects, previously

determined to have evidence of a Class II HLA risk marker for drug induced liver injury33. DNA was

fragmented and size selected to create 2 x 180 base pair (bp) libraries and 2 x 800 bp libraries. These

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

8

libraries were sequenced on a HiSeq 2000 to generate 90bp paired end (PE) reads at the BGI

(Shenzen, China). For the CS1 sample approximately 200 Gb, and for each of the 5 samples in CS2-6

approximately 100Gb, of sequence was generated. For Fig. 1, CS1 data were initially aligned to

GRCh37 on the CLC Genomics Workbench (version 6.5.1) and coverage and intact and broken PE

read numbers determined for ~180 kb surrounding HLA-DRB1. This process was repeated utilizing

GRCh37 with the addition of the MANN alternative MHC haplotype. For all remaining analyses on

CS2-6, reads were mapped to GRCh37 using Stampy34 and BWA1 and variants were called using

Platypus 0.1.815. Read data for NA12878 from the Illumina Platinum genomes project (HiSeq 2000,

~60x coverage, 100bp paired-end reads; www.illumina.com/platinumgenomes/) was obtained from

the EBI (www.ebi.ac.uk/ena/data/view/ERP001775). Reads were aligned to GRCh37 using BWA

0.6.21 and variants were called with Platypus 0.1.815. Moleculo data is available from the 1000

Genomes Project ftp site;

ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20131209_na12878_moleculo.

Acknowledgements

Funded by grants from GSK and 100956/Z/13/Z from the Wellcome Trust to GM, a Nuffield

Department of Medicine Fellowship to ZI, and a Sir Henry Dale Fellowship jointly awarded by the

Wellcome Trust and the Royal Society to ZI (102541/Z/13/Z). We thank Mike Eberle and colleagues

at Illumina for early access to the Moleculo data.

References

1. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform.
Bioinformatics 26, 589-95 (2010).

2. Li, H., Ruan, J. & Durbin, R. Mapping short DNA sequencing reads and calling variants using
mapping quality scores. Genome Res 18, 1851-8 (2008).

3. Lunter, G. & Goodson, M. Stampy: a statistical algorithm for sensitive and fast mapping of
Illumina sequence reads. Genome Res 21, 936-9 (2011).

4. Horton, R. et al. Variation analysis and gene annotation of eight MHC haplotypes: the MHC
Haplotype Project. Immunogenetics 60, 1-18 (2008).

5. Jiang, W. et al. Copy number variation leads to considerable diversity for B but not A
haplotypes of the human KIR genes encoding NK cell receptors. Genome Res 22, 1845-54
(2012).

6. Trask, B.J. et al. Large multi-chromosomal duplications encompass many members of the
olfactory receptor gene family in the human genome. Hum Mol Genet 7, 2007-20 (1998).

7. Steinberg, K.M. et al. Structural diversity and African origin of the 17q21.31 inversion
polymorphism. Nat Genet 44, 872-80 (2012).

8. Boettger, L.M., Handsaker, R.E., Zody, M.C. & McCarroll, S.A. Structural haplotypes and
recent evolution of the human 17q21.31 region. Nat Genet 44, 881-5 (2012).

9. Stefansson, H. et al. A common inversion under selection in Europeans. Nat Genet 37, 129-
37 (2005).

10. Lupski, J.R. & Stankiewicz, P. Genomic disorders: molecular mechanisms for rearrangements
and conveyed phenotypes. PLoS Genet 1, e49 (2005).

11. The Genome Reference Consortium.
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/. (2014).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

http://www.illumina.com/platinumgenomes/
http://www.ebi.ac.uk/ena/data/view/ERP001775
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20131209_na12878_moleculo
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/
https://doi.org/10.1101/006973

9

12. The 1000 Genomes Project Consortium. A map of human genome variation from population-
scale sequencing. Nature 467, 1061-73 (2010).

13. The International HapMap Consortium. A haplotype map of the human genome. Nature 437,
1299-320 (2005).

14. The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092
human genomes. Nature 491, 56-65 (2012).

15. Rimmer, A. et al. Integrating mapping, assembly and haplotype-based approaches for calling
variants in clinical sequencing applications. Nat Genet (In press).

16. Garrison, E.P. & Marth, G. Haplotype-based variant detection from short-read sequencing.
(http://arxiv.org/abs/1207.3907, 2012).

17. Kural, D. & Garrison, E.P. (https://github.com/ekg/glia).
18. Huang, L., Popic, V. & Batzoglou, S. Short read alignment with populations of genomes.

Bioinformatics 29, i361-70 (2013).
19. Schneeberger, K. et al. Simultaneous alignment of short reads against multiple genomes.

Genome Biol 10, R98 (2009).
20. Sirén, J., Valimäki, N. & Mäkinen, V. Indexing finite language representation of population

genotypes. Proc. WABI 6833, 270-281 (2011).
21. Paten, B., Novak, A. & Haussler, D. Mapping to a reference genome structure.

(http://arxiv.org/abs/1404.5010, 2014).
22. Iqbal, Z., Caccamo, M., Turner, I., Flicek, P. & McVean, G. De novo assembly and genotyping

of variants using colored de Bruijn graphs. Nat Genet 44, 226-32 (2012).
23. Katoh, K. & Frith, M.C. Adding unaligned sequences into an existing alignment using MAFFT

and LAST. Bioinformatics 28, 3144-6 (2012).
24. Bradley, R.K. et al. Fast statistical alignment. PLoS Comput Biol 5, e1000392 (2009).
25. Lefranc, M.P. et al. IMGT, the international ImMunoGeneTics information system. Nucleic

acids research 37, D1006-12 (2009).
26. Talwalkar, A. et al. SMaSH: A Benchmarking Toolkit for Human Genome Variant Calling.

(http://arxiv.org/abs/1310.8420, 2014).
27. Simpson, J.T. & Durbin, R. Efficient de novo assembly of large genomes using compressed

data structures. Genome Res 22, 549-56 (2012).
28. Li, Y., Willer, C.J., Ding, J., Scheet, P. & Abecasis, G.R. MaCH: using sequence and genotype

data to estimate haplotypes and unobserved genotypes. Genetic Epidemiology 34, 816-34
(2010).

29. Dilthey, A. et al. Multi-population classical HLA type imputation. PLoS Comput Biol 9,
e1002877 (2013).

30. Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of genomes. G3
1, 457-70 (2011).

31. Browning, S.R. & Browning, B.L. Rapid and accurate haplotype phasing and missing-data
inference for whole-genome association studies by use of localized haplotype clustering. Am
J Hum Genet 81, 1084-97 (2007).

32. Li, Y., Sidore, C., Kang, H.M., Boehnke, M. & Abecasis, G.R. Low-coverage sequencing:
implications for design of complex trait association studies. Genome Res 21, 940-51 (2011).

33. Spraggs, C.F., Parham, L.R., Hunt, C.M. & Dollery, C.T. Lapatinib-induced liver injury
characterized by class II HLA and Gilbert's syndrome genotypes. Clin Pharmacol Ther 91, 647-
52 (2012).

34. Lunter, G. & Goodson, M. Stampy: A statistical algorithm for sensitive and fast mapping of
Illumina sequence reads. Genome Res (2010).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

http://arxiv.org/abs/1207.3907
http://arxiv.org/abs/1404.5010
http://arxiv.org/abs/1310.8420
https://doi.org/10.1101/006973

10

Figure legends

Figure 1. Read-mapping in the MHC Class II region. a. Summary of read alignment to a single

reference (PGF) for a single sample (CS1) in the MHC Class II region (around HLA-DRB1) showing

coverage (grey profile) and the proportion of ‘broken’ read-pairs (red line; defined as mapping to

different chromosomes; incompatible strands; or implausible insert size). b IGV screenshot showing

variable coverage and high rate of sequence mismatch for reads aligned in the HLA-DRB6 / HLA-

DRB1 region. c The same metrics as for part a, where mapping has been performed to GRCh37

(including the PGF haplotype) augmented with the MANN haplotype, chosen because the combined

classical HLA genotypes from PGF and MANN match those of the sample. d. Number of mapped

intact (green) and broken (red) read pairs demonstrating that the augmented reference results in

many more well-mapped and many fewer broken read-pairs .

Figure 2. Schematic illustration showing the construction and application of a population

reference graph. a. Multiple sources of information about genetic variation, including alternative

reference haplotypes (lines), classical HLA alleles (rectangles) and SNPs / short indels (triangles) are

aligned. Colours indicate divergent sequence, dashes indicate gaps. b. A population reference graph

(PRG) is constructed from the alignment, resulting in a generative model for variation within the

region. SNPs, indicated by diamonds, are added as alternative paths to all valid backgrounds (i.e.

excluding sequence with gaps or a third allele at the position). c. The PRG is compared to the de

Bruijn graph constructed from reads obtained from a sample. Kmers found in the sample are

identified (dark blue) along with kmers found elsewhere in the genome that are uninformative about

local sequence (yellow). d. A hidden Markov model formulation is used to infer the most likely pair

of paths through the PRG, allowing for read errors, resulting in an individualised reference

chromotype for the sample. e. Two haploid genomes are constructed from the reference

chromotype and reads (light blue lines) from the sample are aligned, thus identifying places where

the sample contains novel variation (red circles; only one path through the chromotype is shown). f.

Newly-discovered variants modify the reference chromotype, resulting in the inferred chromotype

for the sample.

Figure 3: Simulation study and empirical validation. a. Concordance between simulated data (20

simulated diploid individuals; 85bp error-free reads at 30x diploid coverage) and Viterbi path

through the PRG stratified by simulated variant type (SNP or indel) and genotype. b. Genotype

concordance in simulations at sites simulated to be heterozygous for structural variants of different

lengths. c. Concordance between SNP array genotypes and chromotypes from each method for

NA12878 (squares; Illumina Omni 2.5M array) and the CS2-6 samples (stars; Illumina 1M array),

stratified by whether the array specifies the genotype as homozygous or heterozygous. Results

shown for the mapping-based approach (Platypus, red), the Viterbi-path through the PRG (PRG-

Viterbi, pink) and after mapping to the reference chromotype (PRG-Mapped, blue). d. Concordance

between classical HLA genotypes at HLA-A, -B, -C, -DQA1, -DQB1 and -DRB1 (measured at a per-base

level) and chromotypes from each method for NA12878 and the CS2-6 samples (range of accuracy

across CS2-6 displayed as vertical bars). Classical HLA genotypes were generated using sequence-

based HLA typing (see Methods).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

11

Figure 4. Recovery of chromotype kmers from high throughput sequencing data. a. Number of

recovered and non-recovered kmers present in chromotypes inferred by the four methods (as for

Fig. 3c with addition of single reference represented by the PGF MHC haplotype). A kmer is counted

as recovered if it appears in HTS data from NA12878 (~60x coverage of 100bp paired-end reads

represented by an un-cleaned Cortex22 graph; k = 31). Chromotypes are disentangled using a greedy

algorithm prior to evaluation, optimizing for the disentangled haplotypes to contain as many kmers

recovered in the sample as possible (see Supplementary Text). b . Spatial pattern of kmer recovery

along the extended MHC region for each of the four chromotypes showing the location of classical

HLA loci. Recovery fraction averaged over 1 kb windows.

Figure 5. Spatial recovery of kmers within the HLA Class II region. a. Blow-up of kmer recovery in

Fig 4b in the MHC Class II region for the chromotypes inferred by the four approaches. b. Fraction

of kmers predicted to be present along region that are also presented in the PGF reference

haplotype (1 kb windows; PGF reference not shown). c. Fraction of positions in chromotype that

correspond to gaps in the multiple sequence alignment used to construct the PRG (1 kb windows).

Note that PRG-Complete chromotype is effectively identical to the PRG-Viterbi path. d. Fraction of

positions in inferred chromotypes that are heterozygous (lines; note this includes sites where one

allele is a gap character) and the ending points of chromotype bubbles (points).

Figure 6. Alignment of long-read data to chromotypes. a. Histogram of scaled edit distance (the

number of non-concordant columns in the alignment between read and chromotype, divided by the

total number of bases in the read) between long-read data (Illumina NA12878 Moleculo xMHC-

specific reads, see Supplementary Text) to chromotypes inferred by four methods. Lower boundary

for each interval omitted for clarity. Inset shows a blow-up for contigs with scaled edit distance

>0.01. b. Dot-plot between the sequence of a Moleculo contig and the sequence of the non-gap

branch of the Viterbi chromotype for NA12878 over the region highlighted in Fig. 5a (“target

region”). There is a point (x, y) if and only if the 10-mer beginning at position x in the chromotype

segment is identical to the 10-mer (or its reverse complement) beginning at position y in the

Moleculo read. Green indicates the region of the contig which, according to the alignment, is

matched to the target region (i.e. each green point represents a contig kmer between the leftmost

and the rightmost contig kmers aligned to the target region). Blue indicates that the match between

the kmer found at positions x in the chromotype and y in the Moleculo can be recovered from the

alignment. Middle, right: Analogous dot-plots for the contig and the chromotype against

themselves, showing that there is no large-scale self-similarity along either sequence.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

12

Supplementary Figures

Supplementary Figure 1. Complexity of the MHC population reference graph. a. Histogram

showing the distribution of the number of kmers present in the PRG across sites within the extended

MHC region. b. Spatial plot of graph complexity around HLA-B demonstrating peaks in complexity

around classical HLA loci.

Supplementary Figure 2. Kmer recovery within the classical HLA loci HLA-A, -B, -C, -DQA1, -DQB1

and –DRB1. Each panel shows the fraction of kmers recovered at single nucleotide resolution from

chromotypes inferred by the four methods using the high coverage data from NA12878. The

average over the locus is also shown.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

Single, PGF

a
HLA−DRB5/4 HLA−DRB6 HLA−DRB1 HLA−DQA1 HLA−DQB1

Dual, PGF

c

Dual, MANN

Distance from HLA−DRB1
−50000 0 50000

b

Method

Re
ad

 p
ai

rs
0

40
00

0
80

00
0

Single
(PGF)

Dual
(PGF)

Dual
(MANN)

Dual
(PGF + MANN)

Well-aligned read-pairs
Broken read-pairs

d

Figure 1

Distance from HLA−DRB1
−50000 0 50000

Coverage

Fraction
broken reads

0

100

200

0

0.6

Coverage

Fraction
broken reads

0

100

200

0

0.6

Coverage

Fraction
broken reads

0

100

200

0

0.6

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

a b c

f e d

Figure 2

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

0.
98

0
0.

99
0

1.
00

0

Allele concordance (simulated)

Evaluated graph levels

Fr
ac

tio
n

co
nc

or
da

nt
 a

lle
le

s

All SNP SV

All
Heterozygous only

a

0.
93

0.
95

0.
97

0.
99

Allele concordance (simulated):
Heterozygous SV positions

Length of SV region [bp]
Fr

ac
tio

n
co

nc
or

da
nt

 a
lle

le
s

1 5 10 10
0

1e
4

1e
5

6e
5

1.
2e

7

b
0.

95
0.

97
0.

99

Low−diversity concordance
(SNP array genotypes)

Fr
ac

tio
n

co
nc

or
da

nt
 a

lle
le

s

NA12878
HOM

NA12878
HET

CS2-6
HOM

CS2-6
HET

Platypus
PRG−Viterbi
PRG−Mapped

c
0.

80
0.

85
0.

90
0.

95
1.

00

High−diversity concordance
(Classical HLA gene exons)

Fr
ac

tio
n

co
nc

or
da

nt
 b

as
es

A B C

D
Q
A1

D
Q
B1

D
RB

1

NA12878
CS2-6

Platypus
PRG−Viterbi
PRG−Mapped

0.
80

0.
85

0.
90

0.
95

1.
00

d

Figure 3

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

Chromosome 6 reference coordinate [Megabases]

km
er

 re
co

ve
ry

 ra
te

29 30 31 32 33

0.
0

0.
5

1.
0

PGF reference
Platypus
PRG−Viterbi
PRG−Mapped

HLA−F

HLA−F−AS1

HLA−G

HLA−H

HLA−A

HLA−J

HLA−L

HLA−E

HLA−C

HLA−B

MICA

MICB

HLA−DRA

HLA−DRB5

HLA−DRB6

HLA−DRB1

HLA−DQA1

HLA−DQB1

HLA−DQA2

HLA−DQB2

HLA−DOB

TAP2

TAPSAR1

TAP1

HLA−DMB

HLA−DMA

HLA−DOA

HLA−DPA1

HLA−DPB1

HLA−DPB2

TAPBP

b

a

N
um

be
r o

f k
m

er
s

(m
ill

io
ns

)

4.
0

4.
5

5.
0

PGF reference Platypus PRG-Viterbi PRG-Mapped

kmers recovered
kmers not recovered

Figure 4

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

NA12878 spatial kmer recovery rate

Chromosome 6 reference coordinate [Megabases]

km
er

 re
co

ve
ry

 ra
te

32.4 32.5 32.6 32.7 32.8

0.
0

0.
5

1.
0

Reference
Platypus
PRG−Viterbi
PRG−Mapped

HLA−DRA

HLA−DRB5

HLA−DRB6

HLA−DRB1

HLA−DQA1

HLA−DQB 1

HLA−DQA2

HLA−DQB2

HLA−DOB

Contig zoom−in

a

M
ea

n

Mean proportion reference kmers

0.
0

1.
0

b

M
ea

n

Mean proportion gaps

0.
0

1.
0

c

M
ea

n

Chromotype heterozygosity / bubble ends

0.
0

1.
0

d

Figure 5

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

b

Scaled edit distance

N
um

be
r o

f r
ea

ds

0
50

00
10

00
0

15
00

0
20

00
0

≤
0.

00
1

≤
0.

01

≤
0.

1

≤
1

≤
10

>
10

a

Reads with scaled edit distance >0.01

0 1000 2000 3000 4000 5000

Figure 6

Reference
Platypus
PRG−Viterbi
PRG−Mapped

Read / Chromotype Read / Read Chromotype / Chromotype

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

1

Improved genome inference in the MHC
using a population reference graph
Alexander Dilthey, Charles Cox, Zamin Iqbal, Matthew R. Nelson, Gil McVean

Supplementary Methods

In this document, we give precise descriptions of the algorithms for population reference graphs
(PRGs).

High-level summary

We describe the following subsequent steps:

1. Construction of Population Reference Graphs (PRGs) to represent multiple genomes:
• How to create a nucleotide PRG from a catalogue of variation, consisting of scaffold

haplotypes for the whole region to be modeled and additional variant specifiers.

2. Genome inference:
• How to create a kMer-PRG, a kMer-emitting object with identical haplotype structure

to nucleotide PRG.
• How to compress the kMer-PRG in a way that reduces its size and improves its

statistical properties for the model we describe (the compressed kMer-PRG is called
“multi-PRG”, because states of the model can now emit multiple kMers).

• How to define and parameterize a Hidden Markov Model (HMM) “on top” of the
multi-PRG.

• How to use the HMM to infer a sample’s chromotypes, and how to represent them in
VCF format.

3. Novel variant detection:
• How to take pairs of inferred haplotypes (from the HMM on top of the multi-PRG)

and use them as a basis for conventional mapping technologies, enabling the
discovery of variants not present in the original catalogue of variation.

4. Graph alignment and validation:
• How to align sequence to PRGs, using a modified version of the Needleman-Wunsch

algorithm.

5. Experimental details:
• The protocol followed to create a PRG for the extended human MHC.
• Sample data, HLA types and availability.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

2

1 Constructing a nucleotide PRG
We define a population reference graph as a directed acyclic graph with one designated start vertex
and a set of designated final vertices. There is a level function that returns a positive integer for each
vertex; all edges are defined between vertices of consecutive levels; and all final vertices are of the
same level. All edges are labeled either with a nucleotide or a gap symbol, and that label is emitted
upon traversal. Each node has a (potentially improper) probability distribution over the edges
emanating from it.

The algorithm for building PRGs is based on a catalogue of scaffold haplotypes and additional variant
specifiers (catalogue of variation, COV). Scaffold haplotypes span the region to be modeled,
additional variant specifiers define allelic variation in the context of one or more of the scaffold
haplotypes. SNPs, for example, are typically included as additional variant specifiers.

Informally, we will construct a PRG that contains all scaffold haplotypes as paths, allowing for
recombination between a set of haplotypes whenever there is a stretch of identity between the
members of the set. Additional variant specifiers are represented as “bubbles” on top of the scaffold
haplotype graph.

PRG definitions and generative algorithm:

• Let the directed connected graph G consist of the set of directed edges E and the set of
vertices V, i.e. G = (V, E). For all e = (vx, vy) ∈ E, vx ∈ V and vy ∈ V; we call e the directed edge
from vx to vy. For PRGs, we require that there is a well-defined level function function l(v) for
each node v, according to the following definition. There is one and only one vertex v0 with
no incoming edges and l(v0) = 0. This vertex is called the start vertex. For every (vx, vy) ∈ E, we
define l(vy) = l(vx) + 1. All vertices with no outgoing edges are called “final vertices”, and we
require that the level function returns the same value L for all final vertices.

• Each edge e ∈ E is labeled with a nucleotide (A, C, G, T), a gap symbol (“_”) or possibly a
wildcard character (“*”), which stands for any nucleotide. At each node n, there exists a
(possibly improper) edge probability distribution over the edges emanating from that node,
specifying the probability Pn(e) to follow edge e, conditional on being at node n.

(For notational clarity, we do not explicitly consider the case here that there can be multiple
edges between two nodes with different labels, or with the same label. However, all
definitions made in this document are easily extended to cover these cases.)

• To generate a haplotype from that model, carry out the following algorithm:
1) Define a “current vertex” variable cv and initialize it as cv := v0.
2) Select an edge (vx, vy) from the set of edges emanating from cv according to the edge

probability distribution at cv. Emit the label of the edge and set cv = vy.
3) If cv is a final vertex, terminate; otherwise, go to step 2.

• The model so-specified is similar to the well-known class of haplotype graph models [1]. In

particular, definition of a suitable emission probability distribution on top of each edge label
will result in a Hidden Markov Model (HMM); and the model can easily be generalized to

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

3

emitting diploid data. For details, see [1, 2].

PRG construction algorithm, introductory definitions:

A) Start with a multiple sequence alignment (MSA) of all SN scaffold haplotypes (constructed
using external software, see section “Sequence Alignment”). The MSA has SN rows and L
columns (L depends on the exact scoring configuration and algorithm used for creating the
MSA; also, L is also the last level of the PRG to be constructed).

Each level i > 0 in the PRG refers to the i-th column of the MSA.

B) Sn,i denotes the i-th position of the row of the MSA for haplotype n. (n ∈ {1 .. SN}, i ∈ {1 .. L}).

C) There is a set X of additional unique variant specifiers of the form (n,i1,i2,seq). n specifies
which row of the MSA (which scaffold haplotype) the variant specifier refers to; i1 and i2
define the column range within the MSA that the variant specifier refers to; and seq defines
an alternative sequence of characters (constrained to the set of nucleotides, “_” and “*”) to
be available at these columns. For example, a SNP could be specified as (2, 5, 5, ”A”): this
means that position 5 in scaffold haplotype 2 might also be an “A”, instead of, say, a “T”.
Although in principle fully generalizable, the current version of the algorithm is specified only
for variant specifiers of length 1 (i.e. i1 = i2); however, it is possible to specify independent
variant specifiers at consecutive positions. Overlapping variant specifiers are not permitted.

D) For each vertex v, we define a function H(v) which specifies a set of scaffold haplotypes
“attached” to v. At each level of the PRG, each scaffold haplotype is attached to exactly one
node. Informally, the set of attached scaffold haplotypes will determine which labels the
edges reachable from n will carry.

We also define a function suffix(v, r) for each vertex v at level l(v) ≤ (L – r) which returns the
set of strings defined by

a) For all n ∈ H(v), the concatenated symbols from columns l(v)+1 .. l(v) + r of row n of
the MSA (i.e. from the scaffold haplotypes attached to v).

b) The strings from a), modified by the set of relevant variant specifiers. Each distinct
variant identifier for a particular position (i.e. relating to the same scaffold
haplotype; at the same position; with a distinct seq) maps to at least one additional
string, generated by substituting the specified position in the string from a) with the
allele specified by the variant specifier.
For performance reasons, however, we ignore recombination between variant
specifier at different positions (this only applies to the function suffix(..), and not to
the PRG itself). For example, two nearby tri-allelic positions might induce suffix(..) to
return three strings. We note that the effect of this simplification is that suffix
distributions from different nodes might look more distinct than they really are, but
never more similar.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

4

PRG construction algorithm:

1) Construct a multiple sequence alignment from the scaffold haplotypes (using external
software, see section “Sequence Alignment”).

2) Initialize the PRG with a single start vertex v0 at level 0 and set H(v0) to be the set of all
scaffold haplotypes.

3) Iterate from i = 1 .. L:

a) For each vertex v at level (i – 1):

• For all scaffold haplotypes with index n from the set H(v):

Determine the character Sn,i of the corresponding position / haplotype in the
MSA and the set {(n,i,i,seq)} of relevant additional variant specifiers. If there
exists an edge (v, v’) carrying the character Sn,i, follow that edge and add n to the
set H(v’). Otherwise, create a new vertex v’ with l(v’) = i and the corresponding
edges (v, v’), labeled with the Sn,i. Further ensure that for each element
{(n,i,i,seq)} there is an edge (v, v’) labeled with seq.

b) For all possible pairs (vx, vy) of (newly created) vertices at level i:

We merge vx and vy if their suffix distributions suffix(vx, r) and suffix(vy, r) are similar.
We use r = 20 and require that all r compared positions are non-gaps (i.e. ≠ “_”).
If some of the r compared positions are gaps, we dynamically increase r (due to
performance only up to a threshold– we assume that two suffix distributions are not
identical if we reach this point).

“Similar” in the currently implementation means “identical”. If the set of scaffold
haplotypes was large and representative of a population, using similarity measures
similar to those used when constructing haplotype graphs would be an alternative
([1, 2]).

Suffixes that contain wildcard characters are treated in a special way. We define that
vertices with suffix distributions that contain only wildcard characters (“*”) are
compatible with all other nodes; and that single suffix strings consisting exclusively of
wildcard characters are not considered when determining suffix compatibility.

To merge two vertices vx and vy, define H(vx) = H(vx) ∪ H(vy); redirect all edges going
into vy to vx (and remove duplicate edges with identical labels, if necessary); and
delete vy.

c) If any vertices were merged during step b), repeat step b).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

5

4) We have now constructed a PRG for the complete MSA. For post-processing,

a) Mark all nodes and edges that are necessary to trace the path of the scaffold
haplotype which is identical to the canonical reference genome in the region through
the graph.

b) Identify and remove arcs (sequences of connected nodes and edges, equivalent to a
subpath through the graph; see Section “kMerification” for a formal definition of
“subpath”) that consist exclusively of edges labeled with wildcard symbols (“*”) and
that can be removed without affecting the reachability of any subpath that does not
exclusively consist of wildcard symbols. (We remove as many wildcard symbols as
possible because we ignore them in downstream analyses).

1.1 Varying number of scaffold haplotypes
The algorithm specified assumes a fixed number of scaffold haplotypes across the region to be
modeled. This is, however, not always the case: in the extended MHC, for example, we have eight
scaffold haplotypes across the region (see Section “Graph for the extended MHC”), but a much
higher number of haplotypes for the six classical HLA loci.

We deal with such situations by dividing the whole region to be modeled in stretches with an
identical number of scaffold haplotypes; we then construct separate PRGs for each stretch; and
finally we connect the separate PRGs (by fusing last-level nodes of one PRG with the first-level nodes
of the next PRG) to obtain a combined region-wide PRG.

2 Genome inference
Before giving a formal description of the process of genome inference, we give an informal
introduction.

The object we have built – a nucleotide PRG – models population sequence variation at the level of
individual nucleotides. While having many advantages (immediately intuitive representation of
sequence; easy to visualize; clear preservation of gap homology from the MSA), there are also
disadvantages to this approach. Making genome inference (i.e. computing the two most likely paths
through the PRG for some given sample data, and detection of additional variation) from the
nucleotide PRG itself is not straightforward, for we don’t directly observe its most fundamental unit,
the nucleotide in its full PRG-level context, from sequencing data.

There are two ways around that:

1) Computation of all possible micro-haplotypes (kMers) of specified length through the
nucleotide PRG and counting how often each micro-haplotype occurs in sample data.

We refer to this process as “kMerification” and use it as our main approach for genome
inference.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

6

2) Read alignment – in analogy to read-to-reference alignment, it is possible to align sequencing
reads to a PRG, resulting in a labeling of each individual nucleotide with the level of the PRG
it is assumed to be homologous to.

Read alignment has many advantages over kMerification – it is more tolerant of sequencing
errors and utilizes the full length of sequencing reads to establish homology. However, at
least in our current implementations, it is much slower than kMerification-based inference.
Hence we use read-to-graph alignment to validate (see Section 4) the genomes we have
inferred, but not as a primary means of genome inference.

As stated above, we rely on kMerification as the base for genome inference.

That is, we “kMerify” the nucleotide PRG to obtain a kMer-PRG, a graph with equivalent haplotype
structure but edges labeled with kMers instead of individual nucleotides.

To improve some statistical properties of that graph for downstream inference, we further “edge-
compress” the kMer-PRG to obtain an object we refer to as “multi-PRG”. The main difference is that
we have combined all non-branching stretches of levels in the kMer-PRG into single levels for the
multi-PRG, with edges labeled with multiple kMers.

Finally, by assuming that observed kMer counts in the sample data follow a Poisson distribution
parameterized by how often a kMer appears in the genome (i.e., after some pruning: how often a
kMer appears in a state of the multi-PRG) , we use the multi-PRG to derive an efficient Hidden
Markov Model (HMM) to infer an individual’s two assumed haplotypes.

The following figure illustrates the different steps of transformation from nucleotide PRG to multi-
PRG.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

7

2.1 kMerification
The PRG has a probability distribution over the space of possible emitted haplotypes. Each possible
haplotype can be transformed into a sequence of kMers. A PRG thus also induces a probability
distribution over possible sets of emitted kMers. We now describe the algorithm to transform the
PRG into a kMer-PRG that has the same distribution over the set of possible haplotypes and hence
over the possible sets of emitted kMers.

Informally, we are searching for an object with equivalent haplotype output distribution, but which
explicitly specifies kMers. We call that process “kMerification”.

In order to kMerify a nucleotide PRG, we need to define the set of nodes and edges that the kMer-
PRG is to consist of. We define the edges by finding all “micro-haplotypes” of length k (i.e. subwalks
of k non-gap characters) specified by the nucleotide PRG. In the process of kMerification, each such
micro-haplotype will become one edge in the kMer-PRG.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

8

Consider, for example, the two subwalks of length 3 starting at level 9 marked with blue lines in the
figure above. In the kMer-PRG, both walks will be represented by separate edges. Note that there
will be two edges, even though they will be labeled with the same kMer – this is because the
underlying walks through the nucleotide PRG are different.

We now have an intuitive understanding of the edges that will be present in the kMer-PRG, but what
about the nodes? Initially assume that (at a given level) each edge in the kMer-PRG ends in its own
node. In order to ensure that the haplotype structure of the kMer-PRG reflects that of the nucleotide
PRG, the question now becomes: which of these nodes have to be merged? Or, expressed differently:
which kMer-PRG edges (reflecting walks of length k) need to end in the same kMer-PRG node?

In order to analyze that question for our two example paths, consider subwalks of length k + 1 from
level 9. In the figure above, these walks can be constructed by elongating the two blue walks of
length k by adding the orange edge. We note that the two subwalks of length k + 1 are, apart from
the first component, identical: by definition the next level of the kMer-PRG will contain exactly one
edge to represent the corresponding walk of length k. From the structure of the nucleotide PRG, it is
also clear that this one kMer-PRG edge (starting at level 10 in the nucleotide PRG) needs to be
connected to the two original kMer-PRG edges (starting at level 9 in the nucleotide PRG). Hence the
two original kMer-PRG edges starting at level 9 in the nucleotide PRG need to end in one node, and
the kMer-PRG edge starting at level 10 in the nucleotide PRG will start at that node.

Expressed more formally, at each level each edge in the kMer PRG, representing one walk through
the nucleotide PRG, ends in a separate node, unless there is second edge in the kMer PRG at the
same level which represents a walk that is, apart from the first component, identical to the walk of
the first edge.

kMerification algorithm, introductory definitions:

A) A kMer is defined as a word (string) of length k, consisting of the characters A, C, G, T and the
symbol for ambiguity (“*”), or as a string of length 0. We refer to 0-length kMers as “gap”
kMers.

To transform a sequence of characters (consisting of the four nucleotide characters, gap (“_”)
and ambiguity (“*”) symbols) of length L into a sequence of kMers, carry out the following
algorithm for i = 1 .. (L-k+1): Starting from i and extending to the right, extract a substring of
length >= k which contains exactly k non-gap characters. If the first symbol of the so-

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

9

extracted substring is the “gap” symbol, we define the kMer emanating from position i to be
the “gap” kMer. Otherwise, remove all “gap” symbols from the substring and we define the
kMer emanating from position i to be equivalent to the substring.
 (To give an example, transformation of the sequence AC_TAG into kMers of length 3 yields:
“ACT”, “CTA”, “_”, “TAG”. “_” represents the gap kMer.)

Whenever a kMer contains one or more wildcard characters, we substitute all non-wildcard
symbols in the kMer with the wildcard character. (One wildcard character makes the whole
kMer ambiguous; we make that definition because it simplifies downstream statistical
analyses.)

B) The definition of kMer-PRGs is identical to that of PRGs, with the exception that edges are
labeled with kMers of length k (“kMer-edges”). k remains constant across a kMer-PRG.

C) A subpath in the PRG is defined as a sequence of edges e1, e2 … of the structure e1 = (vx, vy),
e2 = (vy, vz) … (we could thus also call a subpath a “walk” through the graph). The set of
possible subpaths from the start vertex to one of the final vertices defines the set of possible
emitted haplotypes. We could measure the length of a subpath by either the total number of
included edges or by the length of included edges which carry non-gap characters. Here we
use the second measure (kMerification has to “jump over” gap characters), i.e. we define the
length of a subpath to be the number of included edges that are not labeled with gap
characters.

A subpath defines a sequence of emitted symbols and can thus be transformed into a
sequence of kMers (if it is long enough). Specifically, a subpath of length k induces a kMer of
length k).

D) It is clear that each subpath of length k in the PRG has to exist as one kMer-edge in the kMer-
PRG. While building the kMer-PRG, we keep track of each kMer-edge’s underlying subpath
and of the nodes and edges in the PRG that this subpath traverses.

E) We define a function K(v) for all vertices v of the PRG that specifies a set of kMer-edges of
the kMer-PRG that are attached to v. A kMer-edge can be attached to a node in the normal
PRG if v is its underlying subpath’s second node (but not all kMer-edges have to be attached
to a vertex). In implementing the algorithm, K(v) is the empty set for all vertices in the
beginning and then extended iteratively while creating the kMer-PRG.

We now describe the core algorithm for kMerification. kMerification works incrementally, i.e. we will
move through the nucleotide PRG from left to right, creating nodes and edges of the kMer-PRG as we
walk along.

Informally, to define the initial set of kMer edges, we carry out a forward search for subpaths of
length k starting at v0 of the PRG.

Then, conditional on an existing set of edges of the kMer-PRG (each representing a walk ending in a
node in the nucleotide PRG), we create the next level of kMer-PRG edges by extending the walks of

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

10

the edges of the present level by one character each (or by all possible one-character extensions, if
there are multiple possible extensions).

To define the set of nodes required at each level of the kMer-PRG, we remove the first element from
the walks (through the nucleotide PRG) corresponding to the kMer-PRGs edges at that level, and we
create one kMer-PRG node for each unique reduced walk.

We stop once we have covered the complete PRG.

kMerification algorithm:

1) We initialize the kMer-PRG by creating a start vertex v0;kMer (we use the additional subscript
to distinguish between v0 of the PRG and the start vertex of the kMer-PRG). We carry out a
forward search (using standard algorithms) for subpaths of length k starting at v0 of the PRG.
We create a kMer-edge for each found subpath, transform the underlying subpath sequence
into a kMer and use this kMer as a label for the edge. We attach each created kMer-edge of
the form (v0;kMer, vn) to v0;kMer and leave the endpoint vn undefined for the moment.

We note that it is possible to have multiple kMer-edges carrying the same kMer as label (if
the underlying subpaths are different).

The edge probability distribution for the start node of the kMer-PRG is induced by the
probabilities of the corresponding subpaths in the PRG.

After creating edges for all subpaths emanating from v0, we compute the set of required
vertices for the next level of the kMer-PRG, and attach the created edges to those vertices.
We give the precise algorithm under point “C)”.

This completes the kMerification of level 0 of the PRG.

2) To kMerify levels i = 1 … (L – k) of the PRG:
a) For each vertex v of l(v) = i in the PRG:

• For each kMer-edge e = (vx, vy) in the set K(v):

Informally, the set of kMer-edges emanating from node vy in the kMer-PRG is
determined by how we can extend the subpath underlying e.

Formally, the subpath underlying e has a defined last vertex vz (vz is a node of
the PRG). We carry out a forward search for subpaths of length 1 starting at
vz. Each subpath defines one possible extension for e and thus induces the
creation of a kMer-edge ex (as in step “A)”, the endpoint vertices for these
edges remain undefined for the moment).

The subpath underlying ex consists of the subpath underlying e with its first
symbol removed and extended by the subpath (of length 1) that induced the
creation of ex. The label for ex is generated by computing the kMer induced
by the subpath underlying ex. (In particular, this means that the edge will be

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

11

labeled with the “gap kMer” if the first symbol of the underlying subpath is a
gap).

The edge probability distribution at vy is induced by the conditional
probability to follow the found subpaths, conditional on being at node vz.

b) For the set of all kMer-edges created during the previous step “a”:

Compute the set of required vertices for the next level I + 1 in the kMer-PRG,
conditional on the set of kMer-edges created during the previous step, and attach
the edges to their corresponding endpoint vertices (so far, these have remained
undefined). We give the precise algorithm under point “3)”.

3) We describe how to compute the set of required vertices for a level i + 1 of the kMer-PRG,
based on the set Ei of kMer-edges emanating from nodes of level i of the kMer-PRG.

The result of this step (as explained above) will be that all edges that have “nearly” identical
corresponding subpaths in the nucleotide PRG will end in the same node, with “nearly” here
meaning that they are identical in all steps but the first.

Each e = (vm, vn) ∈ Ei has an associated subpath in the PRG of the form (e1,e2,e3..). We define
the m1-subpath of a subpath (e1,e2,e3..) as (e2, e3..), i.e. equal to the original subpath without
the first edge.

Clearly, there is a set of m1-subpaths induced by the set of subpaths associated with the
kMer-edges in Ei. We will create one vertex v at level l + 1 of the kMer-PRG for each unique
m1-subpath (e2, e3..), and attach each kMer-edge to the vertex corresponding to the m1-
subpath of its subpath.

We note that this means that the original subpaths of the edges that end up attached to one
vertex are identical from the second position onwards. We will thus attach one of the edges
attached to the same vertex to K(vx), with the m1-subpath of the edge being of the form (e2,
e3..) and e2 = (vx, vy).

4) As a post-processing step, mark all kMer-edges for which the underlying subpath includes
edges that were marked as parts of the canonical reference sequence (see post-processing
for the PRG construction algorithm).

We also remove all subpaths that both consist exclusively of edges labeled with the wildcard
character (“*”) and that can be removed without affecting the reachability of any subpath
that is not exclusively labeled with wildcard symbols.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

12

2.2 Edge compression
Edges in the kMer-PRG are labeled with single kMers. There are regions in the graph where each
vertex has exactly one outgoing and one incoming edge, i.e. regions which consist of sets of non-
branching subpaths. In a final transformation, we “compress” all such regions of the kMer-PRG into
single edges, which are then labeled with (unordered) sets of kMer counts. We call the resulting
graph the multi-PRG (“multi” because edges can be labeled with multiple kMers).

Formally, the definition of a multi-PRG is equivalent to the definition of kMers-PRGs, with the
exception that each edge is now labeled with sets of the form {(kMer1, count1), (kMer2, count2), …},
where kMer1, kMer2 .. are unique kMers and count1, count2 .. specify how often the associated kMer
is emitted upon edge traversal (we call these edges “multi-edges”).

Constructing a multi-PRG from a kMer-PRG is trivial. We give a short description of the algorithm.

1) Transform the kMer-PRG into a structurally equivalent multi-PRG, simply by
substituting all edge labels kMer with {(kMer, 1)}.

2) Determine which regions from level ix to level iy in the multi-PRG satisfy the following
criteria:

a) All nodes at level ix have exactly one outgoing edge
b) All nodes at level iy have exactly one incoming edge
c) All nodes with level > ix and < iy have exactly one outgoing edge and one

incoming edge.

This implies that there is one and only one subpath connecting each node from level
ix with a node from level iy (and vice versa).

3) For all such regions from level ix to level iy:
a) For all vertices vx from level ix:

• Determine the subpath connecting vx to a node vy from level iy
• Create a new multi-edge by forming the union (with counts) of the

labels of all edges traversed by the subpath. The new multi-edge
connects the first and the last node traversed by the subpath.

• Delete all edges traversed by the subpath and all vertices traversed
by the subpath except for the first and the last vertex.

4) The level function becomes temporarily ill-defined during the previous steps. There
are different ways to deal with this in implementations. We use a temporary
relaxation of the definition of the level function (specifically, dropping the
requirement that vertices connected by one edge need to be assigned to subsequent
levels) and a post-processing step to create a definition-consistent level structure
(informally, by re-counting levels from the beginning of the graph).

5) As a post-processing step, mark all multi-edges created from edges that were
marked for being part of the canonical reference sequence.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

13

2.3 HMM
Multi-PRGs can be transformed into Hidden Markov Models (HMMs). One key challenge is that
kMers which appear as edge labels on multiple levels of the graph violate the assumption that
emissions from different states of the HMM to be created are independent. We deal with this by
removing those kMers.

We and others have previously described how haplotype graphs can be transformed into haploid and
diploid HMMs (see [1] and [2]), and we will only give a short informal description of this process
here: each edge of the haplotype graph becomes a state in the HMM, and the emission probability
distribution for each state is based on the underlying edge’s label. The resulting HMM will have a
level structure analogous to that of the graph. State transition probabilities for the HMM are induced
by the probability to move from one edge (vx, vy) to another edge (vy, vz) in the graph, i.e. by the edge
probability distribution at vy.

We note that a modified version of that transformation can be applied to multi-PRGs. The structural
transformations (i.e. from edges in the multi-PRG to states in the HMM and the state transition
probabilities) are identical to the original transformation, and we refer the reader to [1] for details.

We now define the emission probability structure of the HMM. Specifically, we define the emission
probabilities of an HMM state s with underlying multi-edge e = (vx, vy). We assume that there is a
coverage parameter α and an error rate parameter β. α specifies the expected haploid coverage on
kMers that are present in a sample genome being sequenced, and β specifies the expected haploid
coverage on kMers present in the multi-PRG which are not present in the sample genome being
sequenced (We define how to estimate these parameters below).

1. Identify and remove from all edge labels kMers which
• occur in the label sets of edges emanating from more than one level of the multi-PRG
• occur in a region of a canonical reference genome not covered by the PRG
• fail plausibility-based checks (see below)

2. Compute the set Oi of all remaining kMers used in the edge label sets of edges emanating

from any node at level l(vx) = i, excluding

• “gap kMer” kMers (as “gap kMers” represent the empty string, they cannot generate
an emission)

• kMers with ambiguous symbols (this is a simplification we make on practical grounds
and one of the reasons for why we try to eliminate those as far as possible).

Each kMer kMer ∈ Oi has an observed sample count o(kMer). o(kMer) is calculated by
counting the number of occurrences of the word kMer in the sequencing reads from a
sample.

3. We define the observed sample counts o(kMer) ∀kMer ∈ Oi as the data we will model for all
states at the level of state s.

4. The state s that we want to define an emission probability distribution for has a label, and
that label is a set of the form {(kMer1, count1), (kMer2, count2), ..}.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

14

We note that each kMer in Oi either appears in the label set for e, or not.

If it appears in the label set for Oi as (kMer, count), we model the observed count o(kMer)
with a Poisson distribution, with expected value α x count .

If it does not appear in the label set for Oi (i.e. it is an error if we assume that s is the
underlying state and the multi-PRG is a faithful representation of genomic variation), we
model o(kMer) with a Poisson distribution with expected value β.

2.3.1 kMer count plausibility checks
In the ideal case, the PRG is a comprehensive representation of genomic variation. However, in
practice it is likely that there is genetic variation which is not captured by the PRG, which may distort
our statistical approaches.

One important class of potentially confounding uncaptured variation is sequence duplication. In
making inference, we generally exclude all kMers which occur in other parts of the reference genome
or in other levels of the multi-PRG. Sequence duplication can have the effect that a kMer which we
believe to be exclusively originating from one level of the multi-PRG is also present in another
genomic location. That is, observed coverage on such a kMer not only comes from the multi-PRG, but
also from other uncharacterized sources. One important symptom of this happening is excessive
observed coverage on a kMer. Hence, for each kMer, we

• assume that observed coverage in read data is modeled by a Poisson distribution, with mean
proportional to general kMer coverage and the kMer’s underlying genomic count

• assume a uniform prior on the kMer’s underlying genome count (ranging from 0 to at least 2
x the maximum number of occurrences of the kMer in any state of the multi-PRG)

• combine prior and Poisson model to obtain a posterior probability of underlying genome
count for each kMer

• sum over all values of that posterior between 0 and ([maximum count of that kMer in any
state of the multi-PRG] +2)

• exclude the kMer if that sum is < 0.5.

2.3.2 Simplification
It is not uncommon to observe levels with thousands of states in the haploid HMM, and the number
of states at a particular level increases by power 2 in the diploid version of the HMM (see [1] for the
algorithm for creating a diploid version of the HMM).

We employ a simplification algorithm prior to applying the model to sample data: before creating the
diploid HMM, we examine all edges of the multi-PRG. For each edge, we determine the fraction of
kMers specified (weighted by counts) with no coverage in the sample (i.e. o(kMer) = 0). If this
proportion is ≥ 0.5, we delete the edge – unless it was marked for being part of the canonical
reference genome. (The rationale for this is to always have at least one remaining path even if
coverage is 0. The canonical reference genome is thus the fallback path for the model.)

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

15

2.3.3 Estimation of α and β
We estimate α, the coverage parameter, and β, the error rate parameter, from the multi-PRG.

For estimating α, we identify levels of the multi-PRG at which there is only one edge defined per
level. If the multi-PRG faithfully reflects the underlying genome, all of these edges have to have
diploid coverage. We sum over the observed sample coverage of the kMers specified by these edges
and divide them by the sum of the edge-label specified kMer counts and a factor of 2.

For estimating β, we employ a simple greedy heuristic algorithm. We select (typically ~ 200) levels of
the multi-PRG according to these criteria:

• There are exactly two defined edges
• Both edges have the same number of non-gap non-ambiguous kMers (the label set element

(kMer, count) contributes count to the kMer count of an edge).

We take α as estimated previously and start with an initial value for β (typically a small value below
1%).

At each selected level individually, we fit a simple Poisson model allowing for the three diploid
“genotypes” defined by the two haploid edges (we use the same model as for the HMM emission
probabilities, described earlier; this is conditional on current values of α and β). We select the
maximum likelihood (ML) “genotype” call and treat coverage on edges not covered by the ML call as
error.

After application to all selected levels, we sum over the total coverage on kMers not present on the
edges of the ML calls, and divide it by the total number of kMers not present on these edges (i.e. a
rate specifying how much coverage the kMers on edges which are likely not in the underlying
genome receive). This gives us a new estimate for β. We repeat the estimation procedure, now
conditional on the updated value of β, until the improvement in “total likelihood” of the data (here
defined as the product of the likelihoods of the per-level ML calls) from one iteration to the next falls
below a threshold.

2.4 Chromotypes

2.4.1 Path inference
Standard statistical algorithms for HMMs can be applied to the defined HMM. Specifically, the Viterbi
algorithm enables inference of one (diploid) Maximum Likelihood path through the model, and the
Forward algorithm can be used to sample from the posterior distribution of paths [3].

The inferred diploid path is initially based on the multi-PRG, but can be mapped back unambiguously
to equivalent traversals of the kMer- and nucleotide PRGs (each state of the [diploid] HMM is
equivalent to two edges [one for each haploid traversal of the PRG] in the multi-PRG, and the
transformation process from nucleotide PRG to multi-PRG can be reversed).

By concatenating the symbols emitted by the edges traversed by the ML diploid path through the
nucleotide PRG, we create two “personalized reference haplotypes”.

However, the inferred diploid ML path (and hence the personalized reference haplotypes) loses
phase at positions at which the underlying haploid HMM states are identical (that is, at positions at

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

16

which both haplotypes traverse the same multi-PRG edge). “Loses phase” means that another diploid
path, generated from the original path by flipping the two contained haploid paths after a position at
which phase is lost, is statistically identical to the original path. For each Viterbi diploid path, we have
thus a set of equally good diploid traversals which are identical to the Viterbi path in the edges that
they traverse at each level, but not in haplotypic phase between different levels.

2.4.2 Chromotypes
Chromotypes are a data structure to represent chromosomal genotypes at different levels of
haplotypic resolution. The formal definition of a chromotype is that it is a PRG with not more than
two edges at each level (as shown in the pictures below).

Chromotype A

Chromotype B

A diploid genome can be represented as two independent, completely resolved paths (“Chromotype
B”), or as a sequence of homozygous stretches and heterozygous bubbles (“Chromotype A”) with
phase lost whenever the chromotype enters a bubble – or as a mixture of the two approaches.

Chromotypes are a data structure well-suited to represent the set of Viterbi-equivalent diploid PRG
traversals:

• Based on the state sequence of the diploid HMM, compute the equivalent two paths
through the multi-PRG, and then the equivalent two paths through the kMer-PRG.

• Each path (traversal) if a sequence of nodes and edges through the kMer-PRG.
• Create a (kMer) chromotype by combining the nodes and edges (and their connectivity)

from the two traversals into one new graph. Nodes and edges appearing in both paths will
appear only once in the chromotype. If an edge or node appears in both haploid paths, it is
to appear only once.

• If desired, this (kMer) chromotype can be converted to a nucleotide chromotype, for every
kMer edge is equivalent to a subpath through the nucleotide PRG.

Chromotypes so-generated are subgraphs of the original PRG, describing an individual’s
chromosomal genotype.

Chromotypes can also be created from sets of aligned strings. In the pipeline described here, this
happens after read re-mapping to the Viterbi chromotypes – we use the re-mapped reads to identify
new variants not yet represented in the PRG, but the discovery pipeline cannot deal with diploid
reference genomes. Hence, we map to the personalized reference haplotypes, and modify the two
strings according to the variants discovered. As a final step, we recombine the two modified
haplotype strings back into a chromotype.

To create a (nucleotide) chromotype from two aligned strings, begin with a chromotype that has one
start vertex and two completely resolved branches (encoding the two aligned strings) without
branches. At each level, fuse nodes and edges of the two branches if the next k edge labels are
identical for both branches.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

17

2.4.3 VCF creation
We note that the two personalized haplotypes imply a genotype at each position of the original MSA.
It is sometimes desirable to express this information in VCF format. We give a sketch of the heuristic
that we use to express one personalized reference haplotype in VCF format (the diploid case with
two haplotypes follows then immediately).

There is a canonical reference which the VCF will refer to, also present as a row in the MSA used to
create the PRG (in our case, this would be the chromosome 6 xMHC reference sequence “PGF”). At
each column in the MSA, the canonical reference will either carry a specified non-gap character or a
gap symbol.

For positions in the MSA at which the canonical reference is non-gap, creating the VCF for an inferred
genotype is trivial. This includes cases in which the genotype to be expressed is a gap, but the
canonical reference is non-gap – this means that the genotype to be expressed carries a deletion
with respect to the reference, and all that is necessary is to find the starting position of the deletion
with respect to the canonical reference. This is usually the first non-gap position to the left of the
deletion in the haplotype to be expressed in a VCF, at which the canonical reference is also non-gap.

Positions where the haplotype to be expressed is non-gap, but the reference is gap, represent
insertions in the haplotype with respect to the reference. In VCF format, insertions are usually
expressed as longer alternative alleles at the position before the first inserted nucleotide. We can
thus find the correct position for specifying an insertion by finding the first position to the left of the
inserted sequence at which the reference row of the MSA is non-gap.

When creating VCFs, our algorithm produces additional files and annotations, which specify the
positions in the MSA a variant in the VCF refers to.

3 Novel variant detection

3.1 Mapping reads to the personalized reference
After inferring two “personalized reference” haplotypes, using sequence read data from an
individual, it is often desirable to use classical read-mapping tools to map the reads to the two
personalized haplotypes. This enables the discovery of additional variants not yet present in the PRG,
and can also be used as an additional step of quality control (regions of the personalized haplotypes
with no coverage are generally less likely to faithfully represent the underlying genome than regions
with good coverage).

We apply the following pipeline steps:

1. Create two “personalized reference genomes” by excising the region covered by the PRG and
inserting the inferred personalized reference haplotypes.

2. Map read data from an individual independently to both personalized reference genomes.
Mate-pair information could be used in this step. Our current implementation, however,
ignores mate-pair information, for it cannot be assumed that the two inferred reference
haplotypes correctly reflect long-range phase.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

18

3. For each read mapped to the region covered by the graph, make a decision as to what
personalized reference haplotypes it is likely to correspond to. We employ the following
heuristic:

a) If a read is mapped to the region covered by the graph in only one personalized
reference genome, assume that the read comes from the corresponding haplotype.
As the rest of the reference genome remains unchanged, this implies that the
mapping quality of the read over the region covered by the graph is higher than that
of the read over alternative locations.

b) If the read maps to the region in both personalized reference genomes, use the
mapping quality produced by the alignment software (and possibly other criteria like
edit distance between read and the employed reference genome) to decide which of
the two haplotypes the read should map to.

c) In cases of equal fit, choose uniformly.
4. Create two BAM files, covering the two personalized reference sequences and containing the

reads mapped to each haplotype (from step 3).
5. Apply a variant-calling algorithm to the two BAM files, resulting in two VCF files.
6. Modify the two personalized reference haplotypes according to the produced VCF files (see

below).
7. Finally, produce a VCF file representing the two modified personalized reference haplotypes

(see Section “VCF creation”) and the corresponding chromotypes (see Section
“Chromotypes”).

3.2 VCF-based reference haplotype modification
Step 6 of the algorithm specified above results in two VCF files, and we want to use the information
from these VCF files to modify our personalized reference haplotypes.

We have developed a heuristic that solves this task to satisfactory degrees of accuracy (see the
validation results presented in the main paper). However, we recognize the limitations of our
approach. On a fundamental level, existing read mapping and variant calling tools cannot deal with
diploid references, and this leads to complications in downstream analyses of the results.

The VCFs we want to use to modify the personalized haplotypes may specify insertions, deletions and
single-nucleotide differences. We note that the two personalized reference haplotypes live in the
coordinate space defined by the MSA. For each position in the MSA, we will now compute a set of
implied novel genotypes (that is, implied by the VCFs based on the personalized reference
haplotypes). We note that we need to allow for multi-character alleles in the columns of the MSA –
to deal with insertions implied by the VCFs, for which there might be “no space” in the existing MSA
coordinate system. The algorithm described under “VCF creation” can deal with multi-character
alleles with small modifications.

We now describe how to integrate variants of different types into the two haplotypes. For each
variant, the VCF it comes from will specify a position that it begins at; this position is relative to the
personalized reference used a base for mapping, and can thus be translated into MSA coordinates.
Note that each VCF will specify two alleles for each position; we will thus end up with up to four
specified alleles at each position.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

19

• Single-nucleotide differences: add the implied alleles to the set of implied alleles in the
corresponding column of the MSA.

• Deletions: add the implied alleles (i.e., gap characters) to the set of implied alleles in the
corresponding column of the MSA.

• Insertions: it might be that our original personalized haplotype called a deletion where there
really is no deletion; and the VCF we analyze might reflect this by specifying an insertion at
that position. We want to make sure that we place the characters specified by the insertion
in the right columns of the MSA. Thus,

o Find the beginning of the insertion and the first character after the insertion, relative
to the personalized haplotype, in the MSA.

o If there are no gaps between these characters, simply amend the column relating to
the beginning of the insertion with the inserted characters.

o If there are gaps between these characters, temporarily fill the gap characters with
the characters that the canonical reference specifies at these positions; use the
Needleman-Wunsch algorithm [4] to align the canonical reference characters to the
inserted allele; use this alignment to map each inserted character to a position in the
MSA.

In the algorithm described, we have made no attempt to determine whether novel alleles should be
integrated into the first or the second personalized reference sequence. We use a heuristic that tries
to integrate variants in the haplotype that led to the generation of the variant-implying VCF; in most
cases, however, the novel variants are SNPs and there is no (locally phase-determining) information
to determine the haplotype of origin.

3.3 Current components
The above description of the algorithm does not assume the utilization of particular read mapping or
variant calling tool. In our current implementation, we use BWA [5] for mapping and Platypus for
variant calling. We also use samtools [6] for some of the intermediate steps.

4 Graph alignment and validation

4.1 A mapping algorithm for PRGs
The aim in conventional sequence alignment is to identify regions of homology (or more generally,
similarity, according to a score function) between two sequences. In the context of the analysis of
next-generation sequencing data analysis, sequence alignment (or mapping) between the sequence
of a read and the reference genome is used to identify the putative genomic origin of the read.

The alignment problem exists for PRGs, too: identify regions of homology between a given sequence
(henceforth called “query sequence”) and a population reference graph. There are two challenges.
First, PRGs specify a set of possible paths through the graph, and the query sequence could align to
any of these paths. Second, PRGs can comprise “gap” edges – so the optimal alignment would specify
“gap” symbols whenever a “gap” edge is traversed, but without penalizing them in the way normal
gaps in the alignment are typically penalized.

To address these challenges, we have developed a generalization of the Needleman-Wunsch
algorithm for global sequence alignment. We have also developed a set of approximations to reduce

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

20

the computational complexity of the algorithm, enabling the alignment of query sequences on the
order of thousands of bases to PRGs on the order of millions of levels (i.e. regions or genomes
Megabases in size).

4.1.1 Statement of the problem
There is a query sequence Q=(q1,…,qNQ) consisting of NQ characters from the alphabet {“A”, “C”,

“G”, “T”} and a PRG G = (V, E).

Define Psub as the set of possible subpaths (va,vb)(vb,vc)…(vm,vn) through the graph (for definition of
“subpath”, see Section “kMerification”) and let Ptraversal contain all elements of Psub for which va is the
start vertex and vn is one of the final vertices. Informally, the set Ptraversal contains all complete
traversals of the graph.

Define a symbol g2 which is neither contained in the query alphabet nor exists in E or as a label of one
of the edges in E. g2 denotes the “gap” symbols introduced during the alignment process, which will
be penalized, and, importantly, it is by definition different from the “gap” symbols already contained
in G.

We call A = (Q’, E’) an alignment of query sequence Q to PRG G of length AL if

(1) A = (Q’, E’) = ((Q’1, Q’2, ..,Q'𝐴𝐿), (E’1, E’2, .., E'𝐴𝐿)), with
(2) Q’x ∈ {“A”, “C”, “G”, “T”, g2} ∀x ∈{1 … AL}, and
(3) E’x ∈ E ∪{g2} ∀x ∈{1 … AL }
(4) Q’ can be formed by inserting an arbitrary number (including 0) of g2 elements into Q
(5) E’ can be formed by inserting an arbitrary number of g2 elements into an element of Ptraversal
(6) There is no position x in the alignment with Q’x = E’x = g2.

For a given PRG and a given query sequence Q, define Aall(Q, G) as the (finite) set of possible
alignments,

The alignment problem is to maximize a score function SCORE(𝐴) → ℝ on the set of possible
alignments Aall(Q, G).

4.1.2 Scoring
Alignment scoring functions SCORE(𝐴) → ℝ for A ∈ Aall(Q, G) can assume arbitrary form (we require
that higher scores for a given pair A, G indicate better alignment quality, i.e. we want to maximize
SCORE to find a good alignment).

From standard sequence alignment, however, it is well-known [7] that scoring functions of certain
forms are amenable to efficient optimization via dynamic programming, in particular those which
assign a fixed score to every column in the alignment with identical characters (“matches”), a fixed
score to every column in the alignment with non-identical, non-gap characters (“mismatches”), and
either a fixed or a linear score to every column containing gap characters. In the linear gap score case
(“affine gap penalties”), the first gap in a sequence typically gets a lower score (“gap opening
penalty”) than all subsequent gaps in the same sequence (“gap extension penalty”).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

21

We will now define equivalent scoring functions for graph alignment. We define the function label(x)
as the label of edge x if x is an edge, and as the empty string “” if x is equal to g2. We need to make
special provisions for the case where label(e) for an edge e is the “gap” symbol from the PRG.

4.1.2.1 Non-affine gap penalties
Let a score function SCORE(A) = SCORE(Q’, E’) assume the following form

SCORE(𝑄′, 𝐸′) = � SCORE_POS(𝑄′
𝑥 , 𝐸′

𝑥)
𝐴𝐿

𝑥=1

with

SCORE_POS�𝑄′
𝑥 , 𝐸′

𝑥�

=

⎩
⎪⎪
⎨

⎪⎪
⎧(label(𝐸′

𝑥) = "_") → �
(𝑄′

𝑥 = 𝑔2) → 0
(𝑄′

𝑥 ≠ 𝑔2)→ 𝑆𝐶𝑂𝑅𝐸_𝑀𝐼𝑆𝑀𝐴𝑇𝐶𝐻
�

(label(𝐸′
𝑥) ≠ "_")→

⎩
⎪
⎨

⎪
⎧ (𝑄′

𝑥 = 𝑔2) ∨ (𝐸′
𝑥 = 𝑔2) → SCORE_GAP

¬[(𝑄′
𝑥 = 𝑔2) ∨ (𝐸′

𝑥 = 𝑔2)]→ �
𝑄′

𝑥 = label(𝐸′
𝑥) → 𝑆𝐶𝑂𝑅𝐸_𝑀𝐴𝑇𝐶𝐻

𝑄′
𝑥 ≠ label(𝐸′

𝑥) → 𝑆𝐶𝑂𝑅𝐸_𝑀𝐼𝑆𝑀𝐴𝑇𝐶𝐻
�
�

�

We note that we assign score 0 to columns in which the traversed edge carries the “gap” symbol and
in which the corresponding sequence column carries the (alignment-induced) gap-symbol g2. Thus,
the scoring function will neither reward nor penalize such columns, if SCORE_MATCH > 0 and
SCORE_MISMATCH and SCORE_GAP< 0.

4.1.2.2 Ends-free alignment scores
Ends-free alignment as defined here is typically applied if the query sequence is much shorter than
the graph; the effects are (1) that the gaps which are necessary to extend Q to at least the graph’s
length do not get penalized and (2) to favour “dense” alignments in which there are not many gaps
between the original characters of Q.

Formally, in ends-free alignment, SCORE_GAP = 0 for position x if 𝑄′
𝑥 = 𝑔2 and

∀𝑥2 ∈ {1 . . 𝑥}: 𝑄′
𝑥2

= 𝑔2 or if 𝑄′
𝑥 = 𝑔2 and ∀𝑥2 ∈ {𝑥 . . 𝐴𝐿}: 𝑄′

𝑥2
= 𝑔2.

4.1.2.3 Affine gap penalties
In affine-gap alignment, the first gap in a continuous sequence of gaps is typically scored differently
from the subsequent gaps. “Opening” a gap is typically associated with a higher penalty than
“continuing” a gap. Traversing a sequence of “graph gaps” should not end an affine gap in query
sequence space.

SCORE(𝑄′, 𝐸′) = � SCORE_POS(𝑥, 𝑄′
𝑥 , 𝐸′

𝑥)
𝐴𝐿

𝑥=1

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

22

SCORE_POS�𝑥, 𝑄′
𝑥 , 𝐸′

𝑥�

=

⎩
⎪⎪
⎨

⎪⎪
⎧(label(𝐸′

𝑥) = "_") → �
(𝑄′

𝑥 = 𝑔2) → 0
(𝑄′

𝑥 ≠ 𝑔2)→ 𝑆𝐶𝑂𝑅𝐸_𝑀𝐼𝑆𝑀𝐴𝑇𝐶𝐻 �

(label(𝐸′
𝑥) ≠ "_")→

⎩
⎪
⎨

⎪
⎧ (𝑄′

𝑥 = 𝑔2) ∨ (𝐸′
𝑥 = 𝑔2) → SCORE_GAP(𝑥, 𝑄′𝑥 , 𝐸′𝑥)

¬[(𝑄′
𝑥 = 𝑔2) ∨ (𝐸′

𝑥 = 𝑔2)]→ �
𝑄′

𝑥 = label(𝐸′
𝑥) → 𝑆𝐶𝑂𝑅𝐸_𝑀𝐴𝑇𝐶𝐻

𝑄′
𝑥 ≠ label(𝐸′

𝑥) → 𝑆𝐶𝑂𝑅𝐸_𝑀𝐼𝑆𝑀𝐴𝑇𝐶𝐻
�
�

�

SCORE_GAP(𝑥, 𝑄′𝑥, 𝐸′𝑥) = �
(𝑄′

𝑥 = 𝑔2) → �SCORE_GAP_EXTEND, if IS_IN_AFFINE_SEQUENCE_GAP(𝑥)
SCORE_GAP_OPEN, else

�

(𝐸′
𝑥 = 𝑔2) → �SCORE_GAP_EXTEND, if IS_IN_AFFINE_GRAPH_GAP(𝑥)

SCORE_GAP_OPEN, else
�

 �

IS_IN_AFFINE_SEQUENCE_GAP(𝑥) = �𝑡𝑟𝑢𝑒, if ∃𝑥2: [𝐶𝐴(𝑥, 𝑥2) ∧ 𝐶𝐵(𝑥, 𝑥2) ∧ 𝐶𝐶(𝑥, 𝑥2)]
𝑓𝑎𝑙𝑠𝑒, else

�

𝐶𝐴(𝑥, 𝑥2) = (𝑥2 < 𝑥)

𝐶𝐵(𝑥, 𝑥2) = �𝐸′
𝑥2 ≠ 𝑔2� ∧ �label�𝐸′

𝑥2� ≠ "_"� ∧ �𝑄′
𝑥2

= 𝑔2�

𝐶𝐶(𝑥, 𝑥2) = ∀𝑥3 ∈ (𝑥2. . 𝑥): ��𝐸′
𝑥3 ≠ 𝑔2� ∧ �label�𝐸′

𝑥3� ≠ "_"� ∧ �𝑄′
𝑥3

= 𝑔2��

∨ ��label�𝐸′
𝑥3� = "_"� ∧ �𝑄′

𝑥3
= 𝑔2��

IS_IN_AFFINE_GRAPH_GAP(𝑥) = �
𝑡𝑟𝑢𝑒, if (𝐸′

(𝑥) = 𝑔2) ∧ (𝐸′(𝑥−1) = 𝑔2)
𝑓𝑎𝑙𝑠𝑒, else

�

For x = 0, IS_IN_AFFINE_SEQUENCE_GAP(x) and IS_IN_AFFINE_GRAPH_GAP(x) are defined as false.

We summarize the effect of these scoring functions:

• For columns with two non-gap characters, we add either SCORE_MATCH or
SCORE_MISMATCH.

• g2 characters in E’ are always penalized as gaps, and the first such character in a sequence
typically more strongly so than the following characters.

• g2 characters in Q’ are only penalized as gaps if the corresponding character in E’ is not the
“gap” character “_”.

In this case (i.e. if the g2 character is penalized), it is determined whether this g2 character is
the first one of an affine sequence gap, and a penalty is assigned accordingly.

Affine sequence gaps can span columns in which E’ contains “_” symbols. In terms of the
definitions made above, an alignment position 𝑥 is only part of an affine sequence gap if
conditions 𝐶𝐴(𝑥, 𝑥2), 𝐶𝐵(𝑥, 𝑥2) and 𝐶𝐶(𝑥, 𝑥2) are all true for 𝑥 and a 𝑥2 < x:

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

23

o 𝐶𝐴(𝑥, 𝑥2): true if 𝑥2 < x
o 𝐶𝐵(𝑥, 𝑥2): true if at 𝑥2 a sequence gap is initiated, i.e. there is a gap in the query

sequence but no gap in the graph sequence at that position
o 𝐶𝐶(𝑥, 𝑥2): true if the gap initiated at 𝑥2 can be extended to 𝑥, i.e. all graph alignment

positions in between carry either a defined graph character or a “_” graph gap
symbol, and all sequence alignment positions in between carry a gap symbol.

Note that cases in which both Q’ and E’ carry the g2 character at a column are also invalid by
definition.

4.1.3 Maximization
The solution to the alignment problem is found by maximizing the supplied scoring function over the
set of all possible alignments Aall(Q, G).

For the scoring functions described above, the maximization can be carried out by a dynamic
programming algorithm, very similar to the Needleman-Wunsch algorithm.

The main difference is that the Needleman-Wunsch algorithm utilizes a two-dimensional matrix of
scalars, whereas we utilize a two-dimensional matrix of vectors. For the Needleman-Wunsch
algorithm, the value in cell (x,y) of the scoring matrix is defined as the maximum score attainable
after having consumed x characters from the reference sequence and y characters from the query
sequence. For our algorithm, each cell carries a vector, and we index the values in this vector by a
third coordinate. Value (x, y, z) is then defined as the maximum score attainable after having
consumed x levels from the graph, y characters from the query sequence, and ending up in vertex z
of level x of the graph.

4.1.3.1 Computation for non-affine gap penalties
PRG G has L levels, and query sequence Q has NQ characters.

At each level l of G, let Zl be the number of vertices at this level. Use the integers 1 .. Zl to arbitrarily
enumerate the vertices of each level l, and define two index functions that map between vertices
and their associated indices and vice versa:

vertex2index(v) → z, z ∈{1 .. Zl}

index2vertex(l, z) → v, v ∈ V, l(v) = l

Now define a (NQ + 1) x L matrix denoted M. Each cell (qi, l) contains a vector of length Zl. (We use l to
index levels of the graph, and we use qi to index positions within query sequence Q). We use the
notation M(qi, l, z) to denote the z-th value of the vector in cell (qi, l).

For the purpose of this section, we use 0-based indices to index M, the graph and Zl. For example, Z0
refers to the number of vertices at the first level of the graph. Individual vertices, however, are
indexed using 1-based indices, i.e. the first vertex at a level has the index 1.

We define auxiliary set functions that map a vertex to its potential ancestors and potential
predecessors, along the graph.

vertex_previous(v) = { v2 ∈V | (v2, v) ∈E }

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

24

vertex_next(v) = { v2 ∈V | (v, v2) ∈E }

By definition, the previous and next vertices for v are one level below / one level above v.

We will fill M cell-by-cell. (qi, l, z) shall be the maximum attainable score after having consumed qi
characters from Q, l levels from G and ending up in the z-th node at level l of G.

 We initialize M:

• Origin: For all z∈ (1 .. Z0), set

 M(0, 0, z) = 0.

• Gaps along the graph coordinate: For all l ∈ (1 … [L – 1]) and z ∈ (1 .. Zl), set

M(0, l, z) =
 max
𝑣 ∈ vertex_previous(index2vertex(l, z))

�𝑀�0, 𝑙 − 1,vertex2index(𝑣)� + SCORE_POS(𝑔2,(v,index2vertex(l, z)))�

• Gaps along the query sequence coordinate: For all qi ∈ (1 … NQ) and z ∈ (1 .. Z0), set

M(𝑞𝑖 , 0, z) = 𝑀(𝑞𝑖 − 1,0, 𝑧) + SCORE_POS(𝑄𝑞𝑖 , 𝑔2)

We progressively fill M using a nested loop, in the order specified:

For each l ∈ (1 … [L – 1]), for each qi ∈ (1 … NQ), for each z ∈ (1 .. Zl):

Define 𝑣𝑃 = vertex_previous(index2vertex(𝑙, 𝑧)).

MA = max𝑣 ∈ 𝑣𝑃�𝑀�𝑞𝑖 , 𝑙 − 1,vertex2index(𝑣)� + SCORE_POS(𝑔2,(v,index2vertex(l, z)))�

MB = 𝑀(𝑞𝑖 − 1, 𝑙, 𝑧) + SCORE_POS(𝑄𝑞𝑖 , 𝑔2)

MC = max𝑣 ∈ 𝑣𝑃�𝑀�𝑞𝑖 − 1, 𝑙 − 1,vertex2index(𝑣)� + SCORE_POS(𝑄𝑞𝑖 ,(v,index2vertex(l, z)))�

M(𝑞𝑖 , 𝑙, 𝑧) = max (MA,MB,MC)

(If there are pairs of vertices connected by more than one edge, the maximization in MA and MC

needs to be carried out explicitly over edges, instead of nodes at the previous level).

In this recursion, MA is the “gap in query sequence” step, MB is the “gap in graph” step, and MC is the
“match or mismatch” step.

The final maximum is max𝑧 ∈{1..𝑍𝐿−1} 𝑀(𝑁𝑄 , 𝐿 − 1, 𝑧), and backtracking, analogous to the classical
Needleman-Wunsch, will identify the corresponding alignment. This is easily implemented by having
a second matrix, in dimensionality equivalent to M, which stores which coordinates each maximum
was drawn from.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

25

4.1.3.2 Computation for affine gap penalties
In classical sequence alignment, affine gap penalties are realized by progressively filling three
matrices: one matrix for paths that end in an affine “query sequence” gap, one matrix for paths that
end in an affine “reference sequence” gap, and finally one matrix for paths that end arbitrarily,
including those that end with a match or mismatch. Jumps between these matrices are allowed
where appropriate according to these definitions. For example, the third matrix would always
contain the maximum value of all three matrices for any given coordinate. We shall now proceed
accordingly, but extend the classical framework to deal with graphs.

We use all definitions from the previous section where appropriate but instead of M, we now define
three matrices MD, MG and MS, all of dimensionality (NQ + 1) x L. As for M, each cell in these matrices
contains a vector with as many elements as there are nodes at the corresponding level of the graph.

MG (qi, l, z) shall contain the maximum attainable score of all paths ending in an affine graph gap (i.e.
a gap in between levels of the graph, consuming a character of the query sequence), after having
consumed qi characters from Q, l levels from G and ending up in the z-th node at level l of G. MS (qi, l,
z) shall contain the equivalent score for paths ending in an affine sequence gap. Finally, MD (qi, l, z)
shall contain the equivalent score for paths ending arbitrarily.

We note that we need to make sure that the algorithm implements the provisions we specified in
Section “Scoring” for edges carrying the graph “gap” symbol. Importantly, affine sequence gaps can
go “through” such edges, but they must not begin by traversing them.

Initialization:

• Origin: For all z∈ (1 .. Z0), set

𝑀𝐷(0,0, 𝑧) = 0
𝑀𝐺(0,0, 𝑧) = −∞
𝑀𝑆(0,0, 𝑧) = −∞

• Sequence gaps (along the graph coordinate): For all l ∈ (1 … [L – 1]) and z ∈ (1 .. Zl):

Define:

𝑣𝑃 = vertex_previous�index2vertex(𝑙, 𝑧)�
𝑒𝑃 = �(𝑣𝑥 , 𝑣𝑦) ∈ 𝐸 � �𝑣𝑥 ∈ 𝑣𝑝� ∧ (𝑣𝑦 = index2vertex(𝑙, 𝑧)) }

GAPSCORE ��𝑣𝑥, 𝑣𝑦�, 𝑚� =

⎩
⎪
⎨

⎪
⎧𝑚 = "𝑜" → �

label(�𝑣𝑥, 𝑣𝑦�) ≠ "_" → SCORE_GAP_OPEN

label ��𝑣𝑥, 𝑣𝑦�� = "_"→ -∞
�

𝑚 = "𝑒" → �
label(�𝑣𝑥, 𝑣𝑦�) ≠ "_" → SCORE_GAP_EXTEND

label ��𝑣𝑥, 𝑣𝑦�� = "_"→ 0
�

�

GAP_S_OPEN = max

(𝑣𝑥,𝑣𝑦) ∈𝑒𝑃
�𝑀𝐷�0, 𝑙 − 1,vertex2index(𝑣𝑥)� + GAPSCORE(�𝑣𝑥, 𝑣𝑦�, "𝑜")�

GAP_S_EXTEND = max
(𝑣𝑥,𝑣𝑦) ∈𝑒𝑃

�𝑀𝑆�0, 𝑙 − 1,vertex2index(𝑣𝑥)� + GAPSCORE(�𝑣𝑥, 𝑣𝑦�, "𝑒")�

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

26

Set:

𝑀𝑆(0, l, z) = max (GAP_S_OPEN, GAP_S_EXTEND)

𝑀𝐺(0, l, z) = −∞

𝑀𝐷(0, l, z) = max (𝑀𝑆(0, l, z), 𝑀𝐺(0, l, z))

• Graph gaps: For all qi ∈ (1 … NQ) and z ∈ (1 .. Z0):

Define:

GAP_G_OPEN = 𝑀𝐷(𝑞𝑖 − 1, 0, 𝑧) + SCORE_GAP_OPEN
GAP_G_EXTEND = 𝑀𝐺(𝑞𝑖 − 1, 0, 𝑧) + SCORE_GAP_EXTEND

Set:

𝑀𝐺(𝑞𝑖 , 0, z) = max(GAP_G_OPEN, GAP_G_EXTEND)

𝑀𝑆(𝑞𝑖 , 0, z) = −∞

𝑀𝐷(𝑞𝑖 , 0, z) = max (𝑀𝑆(𝑞𝑖 , 0, z), 𝑀𝐺(𝑞𝑖 , 0, z))

We progressively fill the three matrices using a nested loop, in the order specified:

For each l ∈ (1 … [L – 1]), for each qi ∈ (1 … NQ), for each z ∈ (1 .. Zl):

MS:

Define:

𝑣𝑃 = vertex_previous�index2vertex(𝑙, 𝑧)�
𝑒𝑃 = ��𝑣𝑥 , 𝑣𝑦� ∈ 𝐸 � �𝑣𝑥 ∈ 𝑣𝑝� ∧ (𝑣𝑦 = index2vertex(𝑙, 𝑧)) }

GAPSCORE ��𝑣𝑥 , 𝑣𝑦�, 𝑚� =

⎩
⎨

⎧ 𝑚 = "𝑜" → �label(�𝑣𝑥 , 𝑣𝑦�) ≠ "_" → SCORE_GAP_OPEN
else → -∞

�

𝑚 = "𝑒" → �label(�𝑣𝑥 , 𝑣𝑦�) ≠ "_" → SCORE_GAP_EXTEND
else → 0

�
�

GAP_S_OPEN = max
(𝑣𝑥,𝑣𝑦) ∈𝑒𝑃

�𝑀𝐷�𝑞𝑖 , 𝑙 − 1,vertex2index(𝑣𝑥)� + GAPSCORE(�𝑣𝑥, 𝑣𝑦�, "𝑜")�

GAP_S_EXTEND = max
(𝑣𝑥,𝑣𝑦) ∈𝑒𝑃

�𝑀𝑆�𝑞𝑖 , 𝑙 − 1,vertex2index(𝑣𝑥)� + GAPSCORE(�𝑣𝑥, 𝑣𝑦�, "𝑒")�

Set:

𝑀𝑆(𝑞𝑖 , l, z) = max(GAP_S_OPEN, GAP_S_EXTEND)

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

27

MG:

Define:

GAP_G_OPEN = 𝑀𝐷(𝑞𝑖 − 1, 𝑙, 𝑧) + SCORE_GAP_OPEN
GAP_G_EXTEND = 𝑀𝐺(𝑞𝑖 − 1, 𝑙, 𝑧) + SCORE_GAP_EXTEND

Set:

𝑀𝐺(𝑞𝑖 , l, z) = max(GAP_G_OPEN, GAP_G_EXTEND)

MD:

Define:

𝑣𝑃 = vertex_previous�index2vertex(𝑙, 𝑧)�
𝑒𝑃 = ��𝑣𝑥 , 𝑣𝑦� ∈ 𝐸 � �𝑣𝑥 ∈ 𝑣𝑝� ∧ (𝑣𝑦 = index2vertex(𝑙, 𝑧)) }

MSCORE ��𝑣𝑥 , 𝑣𝑦�, 𝑐� = �
label(�𝑣𝑥 , 𝑣𝑦� = 𝑐 → SCORE_MATCH)

label(�𝑣𝑥 , 𝑣𝑦� ≠ 𝑐 → SCORE_MISMATCH
�

BESTM = max
(𝑣𝑥,𝑣𝑦) ∈𝑒𝑃

�𝑀𝐷�𝑞𝑖 − 1, 𝑙 − 1,vertex2index(𝑣𝑥)� + MSCORE(�𝑣𝑥, 𝑣𝑦�, 𝑞𝑖)�

𝑀𝐷(𝑞𝑖 , l, z) = max�BESTM, 𝑀𝑆(𝑞𝑖 , l, z), 𝑀𝐺(𝑞𝑖 , l, z)�

The final maximum is max𝑧 ∈{1..𝑍𝐿−1} 𝑀𝐷(𝑁𝑄 , 𝐿 − 1, 𝑧), and backtracking will identify the
corresponding alignment. For the affine-penalty algorithm, it is necessary to keep track not only of
coordinates but also of the movements between the matrices.

4.1.4 Parameterization
In our implementation, we use the following parameterization:

SCORE_MATCH = 2
SCORE_MISMATCH = -5
SCORE_GAP_OPEN = -4
SCORE_GAP_EXTEND = -2

4.1.5 Implementation
The complexity of the described algorithm in in the class O((NQ + 1) x L x max(Zl x Z(l-1))) – i.e.
practically inapplicable to problems of the scale we are most interested in: PRGs with millions of
levels and query sequences ranging from hundreds to tens of thousands of nucleotides.

We have thus developed a “seed and extend” approximation to the full algorithm, the key
components of which we outline here.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

28

Informally, we utilize stretches of sequence we can uniquely localize to constrain the alignment
search space. Each such uniquely localized stretch relates to a particular subpath through the full
alignment matrix, i.e. a defined combination of matches and gaps connecting one particular point in
the alignment matrix with a second particular point in the alignment matrix. In order to complete the
alignment, we need to connect these subpaths (a) to each other and (b) to the top-left and bottom-
right corners of the matrix, at which point all graph levels and query sequence characters will have
been incorporated.

4.1.5.1 Step 1: Chaining
We scan through the query sequence from left to right and identify all exact and contiguous matches
between subpaths in the PRG and the query sequence. Each subpath we refer to as a “chain”.

To speed up this process, we kMerify the PRG that we map to, keeping track of the subpath spanned
by each kMer. We store kMers and corresponding subpaths in a hash table.

We require that each chain begin with an exact kMer match, and we extend each chain until we hit a
mismatch. Of note, each kMer can initiate multiple chains.

4.1.5.2 Step 2: Global chain filtering and fixing
Each chain specifies a path through the main scoring matrices. If the divergence between query
sequence and PRG is not too high (which we assume as the PRG / chromotypes we map to contain
many population / individual variants), connecting and extending these chains in a sensible manner
should yield a good alignment.

We rate each chain by kMer double-uniqueness. That is, for each kMer we determine whether it
occurs exactly once in the query sequence and exactly once in the PRG we map to. If both conditions
are satisfied, we say that the kMer is double-unique. For each chain we determine the proportion of
double-unique kMers, and we rank the chains according to this criterion. We store the ranked chains
together with their proportion of uniqueness in a list structure we call AVAILABLE_CHAINS.

If the mapping algorithm is run in deterministic mode, we carry out the following steps:

1. Determine whether there are still chains in AVAILABLE_CHAINS (optionally meeting the
criterion that the absolute number of double-unique kMers per chain is above a certain
threshold – we currently use 1) – if not, terminate.

2. Select the highest-ranked chain from AVAILABLE_CHAINS and store the corresponding
alignment matrix subpath (i.e. the induced sequence of matches and gaps).

3. Remove the selected chain from AVAILABLE_CHAINS and remove all other chains from
that set which are incompatible with the selection.

Incompatibility can be induced 1) by basic alignment structure as well as 2) by the properties
of the PRG we align to.

For the first point, consider fixing a chain which maps the first 10 kMers of the query
sequence to levels 10 – 15 of the graph. It is clear that no following kMer (to the right of the
ones already fixed) can be mapped to levels 1 – 9 of the graph.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

29

For the second point, consider that not all edges in the PRG are necessarily reachable from all
other edges, even if they are compatible in terms of levels. PRGs can, for example, contain
long haplotypic paths with no connecting edges. If a fixed chain maps to the first of two such
paths, no other chain can map to the second.

4. Go to step 1.

 If the algorithm is run in probabilistic mode, step 2 is replaced with a probabilistic selection, the
chains weighted by optimality.

4.1.5.3 Step 3: Recursive local chain filtering and fixing
We now deal with the “squares” in between the fixed chains from Step 2 (and the area between the
origin of the alignment matrix and the first chain, and between the last chain and the bottom-right
corner of the alignment matrix).

Each fixed chain from Step 2 has start- and endpoints, defined in terms of their (qi, l, z) coordinates.
Each region between two chains from Step 2 has thus defined start- and endpoints with (qi, l)
coordinates assigned, and we refer to these regions as “squares” (the z coordinates matter, too, but
we nevertheless we stick with the two-dimensional metaphor).

We now apply the algorithm from Step 2 to each square so-defined, modifying the measure of kMer
uniqueness to only take into account uniqueness within the square (along the qi and l coordinates,
i.e. we reduce our notion of uniqueness both in terms of levels of the graph and in terms of the query
sequence).

This will typically enable us to fix more chains, and we recursively repeat this procedure for each
square in between the new sets of chains until we can’t fix any more chains.

4.1.5.4 Step 4: Chain extension
We now use the global graph alignment (described earlier in this section) algorithm to try to fill the
space in the remaining squares (squares between chains from Step 2 and Step 3).

More formally, for each remaining square, we start running the global alignment algorithm at the
start coordinates and (in reverse direction) at the end coordinates. We use affine gap penalties with
the parameterization described earlier. We terminate the algorithm if either the square boundaries
have been reached or if the total score has fallen below a certain threshold (-11). The algorithm also
differs from the one described earlier in a couple of other points, most of them aimed at eliminating
unpromising areas of the search space:

• The scoring matrices are filled in diagonals. Each diagonal counts as one iteration, and the
termination threshold refers to the maximum value achieved during the computation of one
diagonal.

• We also measure how many iterations (i.e., filled diagonals) ago the achieved maximum
value over the complete search space was last increased, and if this number crosses a
threshold (40), we terminate.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

30

• We measure the maximum value achieved in one diagonal, and we prune all cells in the
diagonal if the difference between the maximum and the cell value (in MD) is bigger than a
threshold (15). Pruned cells are not considered as sources for the recursion equations when
computing the next diagonal.

• If the total maximum over the scanned area is achieved in multiple cells, we store all
corresponding coordinates. If the reverse run started from the end coordinates hits one of
the maximum points of the forward run started from the start coordinates, we also store the
coordinates and the achieved score.

When the forward and backward extension runs have terminated, we have obtained

(1) a maximum achieved score for each run and where this was achieved

(2) (potentially) where the reverse run hit the maxima of the forward run, and the associated scores.

For notational convenience, let RF denote the set of coordinates from (1) and (2) from the forward
run, and let RB denote the set of coordinates from (1) and (2) from the backward run. If the total
maximum (1), however, is < 0 for a run, we will only include the start coordinates of the run in the
corresponding set.

We now consider the cross product RF x RB. For each combination of ends points {(𝑓𝑞𝑖 , 𝑓𝑙 , 𝑓𝑧),
(𝑏𝑞𝑖 , 𝑏𝑙 , 𝑏𝑧)} ∈ (RF x RB), we

• examine whether the combination of forward- and backward-derived coordinates is
compatible, i.e. whether it is possible to connect the forward end point (𝑓𝑞𝑖 , 𝑓𝑙 , 𝑓𝑧) to the
backward end point �𝑏𝑞𝑖 , 𝑏𝑙 , 𝑏𝑧� via a PRG-consistent alignment path in positive direction
along the l and qi coordinates.

(This path is typically a long sequence gap followed by a graph gap, or vice versa, unless
𝑓𝑞𝑖 = 𝑏𝑞𝑖 or (𝑓𝑙 , 𝑓𝑧) = (𝑏𝑙 , 𝑏𝑧)).

If there is no such path, we discard this combination.

• If there is such a path, however, we compute the score for

o the path from the forward extension start point (i.e. the top-left corner of the
square) to the particular forward extension end point (𝑓𝑞𝑖 , 𝑓𝑙 , 𝑓𝑧)

o the path from (𝑓𝑞𝑖 , 𝑓𝑙 , 𝑓𝑧), to (𝑏𝑞𝑖 , 𝑏𝑙 , 𝑏𝑧)

o the path from (𝑏𝑞𝑖 , 𝑏𝑙 , 𝑏𝑧) to the backward extension start point (i.e. the bottom-
right corner of the square).

• The three paths combined connect the start coordinate of the square to the end coordinate
of the square, and the three scores combined determine the optimality of that particular way

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

31

of connecting the coordinates. In summing up the scores, we need to keep track of where
affine gaps open and close.

We finally select the combination that achieved the maximum score and use the corresponding path
to connect the start coordinate of the square to the end coordinate of the square. (If multiple
combinations achieve the same score, we make a random selection; if no combinations are
compatible, we connect the start and the end coordinate of the square with gaps).

4.1.5.5 Step 5: Backtracking
We choose max𝑧 ∈{1..𝑍𝐿−1} 𝑀𝐷(𝑁𝑄 , 𝐿 − 1, 𝑧) as the final score of the algorithm, and we backtrack
accordingly.

4.1.5.6 Further points
• To speed up the algorithm, in particular for short or medium-sized query sequences, it can be

helpful to omit the computation of the optimal gap paths between the top-left corner of the
alignment matrix and the first chain and the last chain and the bottom-right corner of the
alignment matrix.

To see why this makes sense, consider aligning a fragment of 1000 bases against a PRG of 5m
bases: In the resulting global alignment, approximately 4.999m positions would be used to
specify the gaps before and after the query sequence, and computing these gaps would
typically be much more resource-intensive than the parts relating to the query sequence.

(Graph alignment requires traversal of the graph, even if a sequence gap is to be inserted at a
particular position – for the final score is influenced by whether the sequence gaps sit below
edges labeled with the “gap” symbol or not).

• The algorithm described in Step 2 (and hence that for Step 3) can, as specified, be run in
probabilistic mode. We typically carry out one “deterministic” run (always selecting the chain
with maximum double-uniqueness) and a number of “probabilistic” iterations (randomly
selecting from a uniqueness-weighted selection of chains).

As final result we select the iteration that achieved the highest score, and compare across
iterations to compute measures of confidence.

For example, for each character in the query sequence, we count in how many iterations it
ends up being assigned to the same level of the PRG as in the chosen maximum iteration.
This (to an extent) quantifies the uncertainty in placement of query characters.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

32

4.2 Validation

4.2.1 Chromotype disentanglement for kMer recovery validation
For any two (or more) positions at which a chromotype loses phase (i.e. at nodes with two outgoing
edges) within distance k (where k is the chosen kMer length for validating the chromotype against
some sequencing data), we need to disentangle the chromotype prior to validation.

After disentanglement, a chromotype induces a set of well-defined kMers, which we expect to find in
sample sequencing data if the chromotype is a correct representation of sequence present in the
sample.

We employ a simple greedy algorithm for disentanglement. As our final criterion for assessing a
chromotype is how many of the kMers can be recovered from sample data, our disentanglement
procedure (locally) optimizes for this criterion.

To prepare for disentanglement, we compartmentalize our chromotype so that all stretches between
the phase breakpoints become one compartment (i.e. the compartments are separated by nodes
with more than one outgoing edge). Each compartment can be either homozygous or heterozygous,
depending on whether the stretch it spans has one or two nodes at each level.

Now we move through the chromotype from the left to the right, carrying with us a set of unresolved
haplotype pairs. If the first compartment of the chromotype is homozygous with sequence s1, we
initialize the set HAPSET of pairs of haplotypes as {(s1, s1)}, or as {(s1, s2)} if it is diploid with
sequences s1 and s2.

Moving from compartment i to compartment i + 1, we carry out the following procedure:

• If compartment i + 1 is homozygous, append sequence s1 of compartment i + 1 to all
haplotype pairs in HAPSET.

If s1 contained k or more non-gap characters, call REDUCE.

Set i = i + 1.

• If compartment i + 1 is heterozygous, append sequences s1 and s2 to all members of HAPSET,
once matching s1 with the first member of each haplotype pair and once with the second.
That is, HAPSET doubles in size.

If HAPSET has more than 100,000 members, call RESOLVE.

Set i = i + 1.

Before defining REDUCE and RESOLVE, we define OPTIMALITY((s1, s2)). OPTIMALITY computes the
optimality of a haplotype pair (s1, s2) by

• Removing all gaps from (s1, s2).
• Dividing the number of kMers in (s1, s2) found in the sample data by the total number of

kMers in (s1, s2).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

33

• If there are 0 kMers in (s1, s2) (e.g. because both sequences have length smaller than k),
OPTIMALITY is defined as 0.

RESOLVE orders HAPSET according to the values returned from OPTIMALITY and eliminates all
members of HAPSET but the one with the best score.

REDUCE orders HAPSET according to the values returned from OPTIMALITY and retains the 1000
best-scoring haplotype pairs.

After completing this algorithm for the last compartment (we need to call RESOLVE if HAPSET has
more than one member), the chromotype is disentangled into two strings (the members of the only
remaining element of HAPSET), which specify an unambiguous set of kMers. We call the chromotype
equivalent to these two strings (i.e. one start vertex and two separate, non-connected branches
encoding the two strings) the disentangled chromotype.

4.2.2 Identification of xMHC-specific contigs
For the Moleculo-based validation, we want to identify contigs that have originated from NA12878’s
xMHC region. We thus filter and trim the raw contig sequence data prior to alignment, according to
the following criteria:

• We compute the set of all kMers (k = 31) occurring in the kMerified xMHC PRG. We call all
kMers occurring in this set “xMHC kMers”.

• We also compute the set of all kMers (k = 31) occurring in the human reference genome,
excluding the region covered by the xMHC PRG. We call all kMers in this set “reference
kMers”. Note that some kMers are both xMHC kMers and reference kMers. We call kMers
which are xMHC kMers but not reference kMers “xMHC-unique kMers”.

• We filter contigs according to the following criteria:

• Fraction xMHC kMers >= 0.8

• There are two xMHC-unique kMers spanning a stretch of at least 50 bases (in
between the two kMers). For each contig, we select the maximum stretch
MAXSTRETCH spanned by two such xMHC-unique kMers.

• Within MAXSTRETCH, fraction of xMHC-unique kMers >= 0.5

• Within MAXSTRETCH, fraction of reference kMers <= 0.3

• If a contig passes these tests, we truncate the contig to MAXSTRETCH and align
MAXSTRETCH.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

34

4.3 Important symbols and abbreviations

A Alignment A
Q=(q1,…,qNQ) Query sequence of NQ characters

Aall(Q, G) Set of alignments between Q and G.

PRG Population Reference Graph

COV Catalogue of Variation

G The specific PRG

V Set of vertices

E Set of edges

Pn(e) Edge probability distribution at node n

Psub Set of all subpaths

Ptraversal Set of all subpaths, constrained to complete traversals

Vm Two vertices
vn

e One edge

l(v) The level of vertex v

L Scaffold haplotype MSA length; last level of haplotype graph

H(v) The set of scaffold haplotypes attached to v

K(v) The set of kMer-edges attached to v

cv Current vertex

r “Recombination” parameter

SN Number of scaffold haplotypes

Sn,i i-th position (MSA) of haplotype n

Oi Set of kMers output from level i

o(kMer) Sample count of kMer kMer

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

35

x Generic variable

X Additional variant specifiers.

suffix(v, r) Suffix function for vertex v of length r

Q Alignment query sequence

NQ Length of Q

qi Index for Q

Q’ Aligned query sequence

E’ Aligned edge sequence

AL Alignment length

M Alignment scoring matrix

Zl Number of nodes at level

node(l, z) Retrieve node z at level l.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

36

5 Experimental details

5.1 Simulation
We carry out simulations by independently generating two paths through the PRG (uniform choices
at junctions) and treating these as a sample’s underlying diploid genome. We concatenate the edge
labels induced by each path, remove “gap” characters and use the strings so-generated as a sample’s
two haplotypes to generate reads from. At each position, the number of starting reads (read length
85bp) is given by a Poisson distribution, parameterized to match an expected total coverage of 30x.
Accuracy is assessed by comparing the diploid true underlying genotype at each level of the PRG with
the diploid genotype induced by the Viterbi genotype computed from the simulated reads. Our
simulations are limited in that a) we ignore read error (the main effect of which is a slight reduction
of coverage) and b) we treat the simulated paths as a sample’s complete genome.

5.2 Graph for the extended MHC
We define the extended MHC (xMHC) as the genomic region spanned by the “PGF” xMHC haplotype
(identical to the canonical human reference in the region – in B37 coordinates: chr6:28,702,185-
33,451,429).

We use the eight xMHC haplotypes from the MHC haplotype project [8] as scaffold haplotypes for
the region. We create an MSA for the eight haplotypes using the programs FSA [9] and MAFFT for
refinement [10] . We use the SNPs identified by the 1000 Genomes Project, Phase 1, Release 3 [11]
as additional variant specifiers for the eight MHC haplotypes.

We also use all available genomic HLA allele sequences from IMGT/HLA ([12],
http://www.ebi.ac.uk/ipd/imgt/hla/, downloaded on 29/02/2012) for the classical HLA alleles at the
loci HLA-A, -B, -C, -DQA1, -DQB1, -DRB1 as additional scaffold haplotypes (these scaffold haplotypes
cover all exons and introns of the genes – for many known alleles, the genetic sequences are not
completely specified over all exons and introns, but the PRG construction algorithm we have defined
removes most of the wildcard characters found at the unspecified positions). We do not specify any
additional variant specifiers for the classical HLA genes.

The edge probability distributions we specify at each vertex in the PRG are mostly improper.
Specifically, we assign probability 1 to each edge. This is motivated by the downstream parts of our
pipeline: we mostly rely on the Viterbi algorithm for inferring Maximum Likelihood personalized
haplotypes. With the specified improper parameterization, each possible path through the model is
equally likely under the Viterbi algorithm, independent of how many potential branching points
(vertices where there is more than one possible edge to follow) it contains.

We use kMer length k = 31 for creating the kMer-PRG.

5.2.1 Ensembl inconsistency
In the process of examining available annotation information for the eight xMHC haplotypes, we
discovered an inconsistency in the Ensembl database [13]. On the SSTO haplotype, HLA-DRB1 and
HLA-DRB4 were mapped to the same start coordinate, likely caused, according to Ensembl, by a mis-
mapping of exonic sequence of the two transcripts ENST00000549627 and ENST00000548105 (HLA-
DRB4 and HLA-DRB1 exon sequence is similar). The two transcripts will be deleted in release 72 or
release 73 (personal communication).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

http://www.ebi.ac.uk/ipd/imgt/hla/
https://doi.org/10.1101/006973

37

5.3 Sample details and HLA types
CS1 and CS2-6 samples:

Next-generation sequencing data generated as described in the main text. Sample read data
available at request from GlaxoSmithKline.

NA12878:

Next-generation sequencing for NA12878 from the Illumina Platinum genomes project
(www.illumina.com/platinumgenomes/) was downloaded from the EBI
(www.ebi.ac.uk/ena/data/view/ERP001775). Sample data details described in the main text.

Sample HLA types (reported to 4-digit accuracy using ‘g’ nomenclature):

HLA-A HLA-C HLA-B HLA-DRB1 HLA-DQB1 HLA-DQA1
CS1 0301g/0301g 0702g/1502g 0702g/5101g 1501/0701 0202/0602 0102/0201
CS2 0201g/2301g 0401g/1701g 4201/4403 0302/0701 0202/0402 0201/0401g
CS3 0101g/2301g 0401g/0701g 0801g/4403 1101/0701 0202/0301g 0201/0501g
CS4 0201g/0301g 0303g/0602 1501g/5001 0401/0701 0202/0302 0201/0301
CS5 0301g/3301 0702g/0802 0702g/1402 0301/1101 0201/0301 0501/0505
CS6 0201g/0301g 0602/0701g 5701/5801g 0701/0804 0303/0402 0201/0401
NA12878 1101/0101 0102/0701 5601/0801 0101/0301 0501/0201 0101/0501

6 References

1. Dilthey, A., et al., Multi-Population Classical HLA Type Imputation. PLoS Comput Biol, 2013.
9(2): p. e1002877.

2. Browning, S.R. and B.L. Browning, Rapid and accurate haplotype phasing and missing-data
inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum
Genet, 2007. 81(5): p. 1084-97.

3. Rabiner, L.R., A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the Ieee, 1989. 77(2): p. 257-286.

4. Needleman, S.B. and C.D. Wunsch, A general method applicable to the search for similarities
in the amino acid sequence of two proteins. J Mol Biol, 1970. 48(3): p. 443-53.

5. Li, H. and R. Durbin, Fast and accurate long-read alignment with Burrows-Wheeler transform.
Bioinformatics, 2010. 26(5): p. 589-95.

6. Li, H., et al., The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009.
25(16): p. 2078-9.

7. Sankoff, D., Matching sequences under deletion-insertion constraints. Proc Natl Acad Sci U S
A, 1972. 69(1): p. 4-6.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

http://www.illumina.com/platinumgenomes/
http://www.ebi.ac.uk/ena/data/view/ERP001775
https://doi.org/10.1101/006973

38

8. Horton, R., et al., Variation analysis and gene annotation of eight MHC haplotypes: the MHC
Haplotype Project. Immunogenetics, 2008. 60(1): p. 1-18.

9. Bradley, R.K., et al., Fast statistical alignment. PLoS Comput Biol, 2009. 5(5): p. e1000392.

10. Katoh, K. and M.C. Frith, Adding unaligned sequences into an existing alignment using MAFFT
and LAST. Bioinformatics, 2012. 28(23): p. 3144-6.

11. Genomes Project, C., et al., An integrated map of genetic variation from 1,092 human
genomes. Nature, 2012. 491(7422): p. 56-65.

12. Holdsworth, R., et al., The HLA dictionary 2008: a summary of HLA-A, -B, -C, -DRB1/3/4/5, and
-DQB1 alleles and their association with serologically defined HLA-A, -B, -C, -DR, and -DQ antigens.
Tissue Antigens, 2009. 73(2): p. 95-170.

13. Flicek, P., et al., Ensembl 2013. Nucleic Acids Res, 2013. 41(Database issue): p. D48-55.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

Supplementary Table 1. The types and counts of different types of input data used to construct the PRG for the human
xMHC.

Input data type Number
Scaffold haplotypes 8
SNPs 87640
Classical HLA alleles 6602
(genomic sequence) HLAA 1729

HLAC 1291
HLAB 2327
HLADRB 1051
HLADQA 46
HLADQB 158

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

Supplementary Table 2. Simulation-based assessment of PRG accuracy

Graph structure constraints True paths constraints
* * 199,937,840 99.86% 99,968,920 0.03% 0.23% 99.74%
* heterozygous 24,051,922 99.26% 12,025,961 0.00% 1.49% 98.51%
Clean SNP positions * 3,246,880 99.83% 1,623,440 0.03% 0.28% 99.69%
Clean SNP positions heterozygous 1,560,760 99.83% 780,380 0.00% 0.33% 99.67%
SV and INDEL positions * 52,485,120 99.46% 26,242,560 0.11% 0.86% 99.03%
SV and INDEL positions heterozygous 22,473,412 99.22% 11,236,706 0.00% 1.57% 98.43%
SV and INDEL positions 1 "gap" genotype, heterozygous 22,198,112 99.23% 11,099,056 0.00% 1.54% 98.46%
SV and INDEL positions 2 "gap" genotypes 18,029,904 99.63% 9,014,952 0.18% 0.38% 99.44%
SV and INDEL positions 1 "gap" genotype, INDEL length 1 58,396 98.56% 29,198 0.21% 2.45% 97.34%
SV and INDEL positions 1 "gap" genotype, SV length 5 22,370 98.29% 11,185 0.15% 3.11% 96.74%
SV and INDEL positions 1 "gap" genotype, heterozygous, within 10-19 SV region 89,044 95.76% 44,522 0.00% 8.49% 91.51%
SV and INDEL positions 1 "gap" genotype, heterozygous, within 100-149 SV region 260,550 96.23% 130,275 0.00% 7.53% 92.46%
SV and INDEL positions 1 "gap" genotype, heterozygous, within 1000-1999 SV region 1,432,310 99.37% 716,155 0.00% 1.26% 98.74%
SV and INDEL positions 1 "gap" genotype, heterozygous, within 60,000 - 60,999 SV region 1,029,088 99.97% 514,544 0.00% 0.06% 99.94%
SV and INDEL positions 1 "gap" genotype, heterozygous, within 124,000 -124,999 SV region 347,462 99.88% 173,731 0.00% 0.23% 99.77%
SV and INDEL positions 1 "gap" genotype, heterozygous, within 10,000 - 10,999 SV region 284,798 100.00% 142,399 0.00% 0.00% 100.00%

Positions with 2/2
alleles correct

Category (per position) Alleles
evaluated

Alleles
correct

Positions
evaluated

Positions with 0/2
alleles correct

Positions with 1/2
alleles correct

This table shows concordance between simulated true and inferred chromotypes (inferred from the reads simulated from the simulated true chromotypes; read length = 85bp, 30x diploid
coverage; as the main effect of read errors is a slight reduction of kMer coverage, simulation was carried out without read error), stratified by the local properties of the chromotypes as well
as of the graph at the evaluated positions.

Each position is evaluated as a diploid genotype consisting of two one-character alleles.

 “Graph structure constraints”: Properties of the utilized PRG at the level of the evaluated position. “*” means no constraints, “Clean SNP positions” are levels containing only edges labeled
with “A”, “C”, “G” or “T”, “SV and INDEL positions” denote levels at which at least one edge is labeled with the gap character “_”. “True path constraints” refers to the properties of the
simulated (true) chromotype at the evaluated position. “*” means no constraints; “heterozygous” means that the chromotype has two edges with different labels; “1 gap genotypes” means
that the chromotype carries one gap label at the specified position and 1 non-gap label; “2 gap genotypes” means that the chromotype carries two gap symbols at the specified position;
“within x – y SV region” means that it is possible to walk along the chromotype from the evaluated position a positions to the left and b positions to the right until hitting a position at which
the chromotype does not carry a gap symbol, and x < (a + b) <= y.

 “Alleles evaluated” is 2 x “Positions evaluated”. The remaining column headers are self-explanatory.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

Supplementary Table 3. Accuracy of approaches assessed from SNP array data

NA12878 (Illumina Omni 2.5M) Platypus PRG-Viterbi PRG-Amended
Alleles Evalated alleles 17080 17080 17080

Correct alleles 16701 16632 16645
% Correct 97.78% 97.38% 97.45%
Array alleles not in graph - 128 -
Incorrect alleles not in graph, % - 28.57% -

PPV (Genotype): VCF: 0 Reference Alleles 96.51% 93.94% 94.03%
VCF: 1 Reference Alleles 98.57% 96.99% 96.92%
VCF: 2 Reference Alleles 96.87% 97.07% 97.30%

Sensitivity (Genotype): Array: 0 Reference Alleles 89.25% 88.89% 88.98%
Array: 1 Reference Alleles 97.57% 96.99% 97.39%
Array: 2 Reference Alleles 98.88% 98.20% 98.22%

Specificity (Genotype): VCF: 0 Reference Alleles 98.40% 98.50% 98.52%
VCF: 1 Reference Alleles 99.13% 99.16% 99.33%
VCF: 2 Reference Alleles 98.23% 97.20% 97.23%

CS2-6 (Illumina 1M) Platypus PRG-Viterbi PRG-Amended
Alleles Evalated alleles 47666 47666 47666

Correct alleles 47504 47443 47506
% Correct 99.66% 99.53% 99.66%
Array alleles not in graph - 24 -
Incorrect alleles not in graph, % - 10.76% -

PPV (Genotype): VCF: 0 Reference Alleles 99.52% 99.20% 99.07%
VCF: 1 Reference Alleles 99.33% 98.19% 98.95%
VCF: 2 Reference Alleles 99.42% 99.62% 99.74%

Sensitivity (Genotype): Array: 0 Reference Alleles 98.22% 98.41% 98.70%
Array: 1 Reference Alleles 98.86% 99.09% 99.30%
Array: 2 Reference Alleles 99.93% 99.38% 99.67%

Specificity (Genotype): VCF: 0 Reference Alleles 99.75% 99.80% 99.85%
VCF: 1 Reference Alleles 99.59% 99.71% 99.79%
VCF: 2 Reference Alleles 99.90% 99.10% 99.52%

This table shows the results for the SNP array genotype concordance for NA12878 and the CS2-6 samples (combined). The three main columns “Platypus”, “PRG-Viterbi” and “PRG-
Amended” refer to chromotypes induced by the Platypus VCF; the VCF equivalent to the chromotypes produced by the Viterbi step of the PRG chromotype inference framework; and the
VCF equivalent to the post-remapping amended PRG chromotypes (in that order). We are only evaluating positions which a) are specified by the SNP genotyping array, b) are within the
region covered by the PRG. “VCF” in the details columns refers to the VCFs generated by the three approaches and NOT just the Platypus VCF. For all evaluations, if the Platypus VCF does
not explicitly specify a position, we assume the genotype to be “REF/REF”.

The “Alleles” section of the table shows how many of the specified alleles are concordant with the alleles specified by the SNP array genotypes. “PPV (Genotype)” shows the positive
predictive value of the specified (specified by the chromotype) diploid genotype being correct, stratified by whether the chromotype-defined genotypes contains 0, 1 or 2 reference alleles.
“Sensitivity (Genotype)” show sensitivity (i.e. P(specified_diploid_genotype = true_diploid_genotype | true_diploid_genotype)), stratified by the three possible diploid true (i.e. array-
specified) genotypes. “Specificity (Genotype)” shows specificity of the chromotype-specified genotypes (i.e. P(gt_specified_as_not_A | true_gt_not_A)) for the three possible chromotype-
specified genotypes (to give an example, the cell in the intersection of “Platypus” / “VCF: 2 Reference Alleles” specifies the probability that the Platypus VCF contains a non-(REF/REF) ==
[(ALT/ALT) or (REF/ALT)] genotype, conditional on the array specifying a non-(REF/REF) == [(ALT/ALT) or (REF/ALT)] genotype.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

Supplementary Table 4. Accuracy of approaches assessed from classical HLA data

NA12878 Platypus PRG-Viterbi PRG-Amended CS2-6 Platypus PRG-Viterbi PRG-Amended
HLA-A Exon 2 Total Base Pairs 540 540 540 HLA-A Exon 2 Total Base Pairs 2700 2700 2700

Number correct 540 533 529 Number correct 2680 2662 2660
% correct 100.00% 98.70% 97.96% % correct 99.26% 98.59% 98.52%

Exon 3 Total Base Pairs 552 552 552 Exon 3 Total Base Pairs 2760 2760 2760
Number correct 551 546 546 Number correct 2729 2692 2696
% correct 99.82% 98.91% 98.91% % correct 98.88% 97.54% 97.68%

HLA-B Exon 2 Total Base Pairs 540 540 540 HLA-B Exon 2 Total Base Pairs 2700 2700 2700
Number correct 540 535 536 Number correct 2613 2663 2667
% correct 100.00% 99.07% 99.26% % correct 96.78% 98.63% 98.78%

Exon 3 Total Base Pairs 552 552 552 Exon 3 Total Base Pairs 2760 2760 2760
Number correct 546 544 545 Number correct 2671 2679 2677
% correct 98.91% 98.55% 98.73% % correct 96.78% 97.07% 96.99%

HLA-C Exon 2 Total Base Pairs 540 540 540 HLA-C Exon 2 Total Base Pairs 2700 2700 2700
Number correct 540 537 538 Number correct 2682 2678 2682
% correct 100.00% 99.44% 99.63% % correct 99.33% 99.19% 99.33%

Exon 3 Total Base Pairs 552 552 552 Exon 3 Total Base Pairs 2760 2760 2760
Number correct 549 548 548 Number correct 2728 2701 2709
% correct 99.46% 99.28% 99.28% % correct 98.84% 97.86% 98.15%

HLA-DQA1 Exon 2 Total Base Pairs 498 498 498 HLA-DQA1 Exon 2 Total Base Pairs 2490 2490 2490
Number correct 491 495 495 Number correct 2327 2461 2463
% correct 98.59% 99.40% 99.40% % correct 93.45% 98.84% 98.92%

HLA-DQB1 Exon 2 Total Base Pairs 540 540 540 HLA-DQB1 Exon 2 Total Base Pairs 2700 2700 2700
Number correct 507 540 540 Number correct 2555 2599 2607
% correct 93.89% 100.00% 100.00% % correct 94.63% 96.26% 96.56%

HLA-DRB1 Exon 2 Total Base Pairs 540 540 540 HLA-DRB1 Exon 2 Total Base Pairs 2700 2700 2700
Number correct 522 535 534 Number correct 2426 2620 2624
% correct 96.67% 99.07% 98.89% % correct 89.85% 97.04% 97.19%

This table shows the agreement between the chromotypes inferred for NA12878 and the CS2-6 samples, stratified both by chromotype generation method (Platypus, PRG-Viterbi, PRG-
Amended), and the genotypes expected from classical HLA typing. All comparisons are carried out on the level of one-base diploid genotypes: all samples have specified exon sequences
(exon 2 and 3 for HLA-A/B/C, exon 2 for the other HLA genes), which we transpose onto the chromotypes (using the shared PGF reference as a shared coordinate system). That is, at each
chromotype level, we have two one-character alleles (nucleotides and/or gaps), which we treat as “truth” and compare with the chromotype-specified alleles. If there are multiple
compatible exon sequences for an HLA type (sequence-based HLA typing typically determines HLA types at 4-digit resolution, which characterizes the relevant exons at the level of encoded
amino acids, but not at the level of synonymous mutations), we use the base allele (i.e. if an allele is specified as HLA*X-12:34, we use the sequence for HLA*X-12:34:01 or HLA*X-
12:34:01:01, if available). “Total base pairs” specifies the number of comparisons made and is (because of diploidy) twice the size of the region covered by the evaluated exon.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

Supplementary Table 5. Accuracy of approaches estimated from kmer recovery

NA12878 Approach Total # kMers Invalid kMers kMers present Unweighted optimality Coverage-weighted optimality
PGF reference 4518629 0 4301668 95.20% 0.879789
Platypus VCF 4938471 0 4880820 98.83% 0.944959
PRG-Viterbi 4984797 118 4953174 99.37% 0.955071
PRG-Remapped 4971054 116 4942609 99.43% 0.956347

CS2-6
CS2
Method # kMers # kMers invalid # kMers present Unweighted optimality Coverage-weighted optimality
PGF reference 4518629 0 4255288 94.17% 0.815494
Platypus VCF 4950328 0 4860657 98.19% 0.879018
PRG-Viterbi 5073842 647 5042634 99.38% 0.889824
PRG-Remapped 5051678 647 5022085 99.41% 0.890793

CS3
Method # kMers # kMers invalid # kMers present Unweighted optimality Coverage-weighted optimality
PGF reference 4518629 0 4248008 94.01% 0.804703
Platypus VCF 4889852 0 4801145 98.19% 0.867138
PRG-Viterbi 5015592 824 4992734 99.54% 0.880588
PRG-Remapped 4989059 824 4966451 99.55% 0.880874

CS4
Method # kMers # kMers invalid # kMers present Unweighted optimality Coverage-weighted optimality
PGF reference 4518629 0 4282989 94.79% 0.80461
Platypus VCF 4830916 0 4729207 97.89% 0.853314
PRG-Viterbi 4931881 575 4893711 99.23% 0.865766
PRG-Remapped 4892548 575 4860145 99.34% 0.866445

CS5
Method # kMers # kMers invalid # kMers present Unweighted optimality Coverage-weighted optimality
PGF reference 4518629 0 4344265 96.14% 0.823199
Platypus VCF 4881754 0 4794764 98.22% 0.867788
PRG-Viterbi 4860787 627 4839312 99.56% 0.879141
PRG-Remapped 4837182 627 4817300 99.59% 0.879542

CS6
Method # kMers # kMers invalid # kMers present Unweighted optimality Coverage-weighted optimality
PGF reference 4518629 0 4273214 94.57% 0.784612
Platypus VCF 4913174 0 4818055 98.06% 0.843308
PRG-Viterbi 5015081 518 4971576 99.13% 0.855302
PRG-Remapped 4990040 518 4951327 99.22% 0.856028

CS2-6 comb.
Method # kMers # kMers invalid # kMers present Unweighted optimalityrage coverage-weighted optimality
PGF reference 22,593,145 0 21,403,764 94.74% 80.65%
Platypus VCF 24,466,024 0 24,003,828 98.11% 86.21%
PRG-Viterbi 24,897,183 3,191 24,739,967 99.37% 87.41%

This table shows the results for kMer evaluation for the four chromotypes (PRG-Viterbi and PRG-Amended, the chromotype
constructed from the VCF covering the PRG-covered region, and the [non-branching] chromotype constructed from the PGF
reference for the region covered by the PRG).

For any two positions along a chromotype where phase is lost (i.e. at positions where one node in the chromotype has two
outgoing edges) within 31 bases distance, we need to resolve phase before applying the evaluation algorithm. We use a simple
greedy algorithm which keeps track of the possible haplotype pairs induced by chromotype structure, until either the
chromotype has reached a homozygous (i.e. one node, one edge at each level) stretch of 31 defined base pairs length (i.e. at
least 31 non-gap characters) or the number of possible haplotype pairs has reached a threshold (see Supplementary Methods).
At this point, we count how many of the kMers induced by each haplotype pair are present in the sample, and fix the pair with
the highest number of kMers present in the sample. This process does not affect the “PGF reference” and the “PRG-Viterbi”
chromotypes (because kMerification ensures that there is no loss of phase within the specified kMer size).

As we have disentangled all positions with the potential to locally disrupt haplotypes, we can now count how often each kMer
appears along a chromotype. “Unweighted optimality” is the percentage of the kMers present also found in the sample
sequencing data.

 “#kMers invalid” counts how many of the specified kMers are invalid, i.e. containing a non-nucleotide “*” symbol (the PRG
construction algorithm tries to remove edges labeled with the “*” symbol, but not always successfully). Invalid kMers are
counted as “not present”.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

Supplementary Table 6. Alignment metrics for Moleculo contig alignment to
chromotypes

Method TotalAlignmentLength AverageAlignmentSequenceCertainty AveragekMerUniqueness
Reference 566,390,766 0.99 0.85
VCF 365,509,324 0.97 0.93
PRG-Viterbi 294,127,027 0.99 0.86
PRG-Amended 272,355,664 0.97 0.94

Method graphIntrinsicGap_sequenceGap graphIntrinsicGap_sequenceCharacter Matches
Reference 0 0 114,518,701
VCF 555,158 109 115,059,507
PRG-Viterbi 30,268,853 844 115,688,453
PRG-Amended 25,871,037 1,218 115,519,131

Method Mismatches graphNovelGap graphNonGap_sequenceGap
Reference 540,803 1,101,559 450,229,703
VCF 84,216 1,017,231 248,793,103
PRG-Viterbi 91,288 380,478 147,697,111
PRG-Amended 53,862 586,852 130,323,564

This table shows the results from the alignment of the 29429 Moleculo contigs (median contig length 3165bp) to chromotypes
from four sources. The numbers displayed are cumulative, i.e. sums over the individual values for all contigs.

“TotalAlignmentLength” specifies the total length of the contig alignments, measured as columns in the alignments (the
alignment algorithm optimizes for global alignment, but truncates the alignments at the positions of the last aligned contig
characters).

“AverageAlignmentSequenceCertainty” specifies how certain the algorithm is in its assignment of contig characters to
chromotype levels (using a randomized sampling procedure, see Supplementary text).

“AveragekMerUniqueness” specifies the percentage of kMers in the contig that are double-unique, i.e. unique in both contig
and chromotype that the contig is aligned to. Double-unique kMers are used as initial anchors in the alignment procedure.
“graphIntrinsicGap_sequenceGap” specifies how many columns in the alignment specify a graph gap symbol (i.e. a gap present
in the PRG / VCF) in the chromotype row and gap symbol in the contig row.

“graphIntrinsicGap_sequenceCharacter” specifies how many columns in the alignment specify a graph gap symbol (i.e. a gap
present in the PRG / VCF) in the chromotype row and a non-gap symbol in the contig row.

“Matches” counts how many positions in the alignments specify the same non-gap symbol for chromotype and contig.

“Mismatches” counts how many positions in the alignments specify a pair (a, b) of symbols for chromotype and contig, with a !=
b and neither a nor b equal to a gap character.

“graphNovelGap” counts how many positions in the alignments specify a non-gap symbol in the contig row and a novel gap in
the chromotype (novel gap := gap symbol not coming from the PRG / VCF). These positions are indicative of insertions in the
contig relative to the chromotype (or contig misassembly or alignment problems).

“graphNonGap_sequenceGap” counts how many positions in the alignments specify a non-gap symbol in the chromotype row
and a gap symbol in the contig row. These positions in the alignment are indicative of deletions in the contigs relative to the
chromotypes, contig misassembly or alignment problems. Note that this number is a sum over all contigs – it is small for most
contigs and very big for few contigs. The latter could derive either from problems with contig assembly or represent an artifact
of our alignment algorithm – as we use a global scoring function, the algorithm sometimes produces small matches hundreds of
thousands of kilobases apart, separated by “graphNonGap_sequenceGap” symbols

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

0 1000 2000 3000 4000

Graph complexity

Bins [kMers at level]

lo
g1

0(
Bi

n
co

un
t)

0
1e

+0
2

1e
+0

4
1e

+0
6

a

2600000 2640000 2680000
0

50
10

0
15

0
20

0
25

0

Graph complexity
around HLA−B

PRG level

kM
er

s
at

 le
ve

l

HLA−B

b

Supplementary Figure 1

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

NA12878 spatial kMer recovery rate

Chromosome 6 reference coordinate [Megabases]

kM
er

 re
co

ve
ry

 ra
te

29.910 29.911 29.912 29.913 29.914

0.
0

0.
5

1.
0

Reference: 83.76%
Platypus: 99.21%
PRG−Viterbi: 99.95%
PRG−Amended: 99.78%

HLA−A

NA12878 spatial kMer recovery rate

Chromosome 6 reference coordinate [Megabases]

kM
er

 re
co

ve
ry

 ra
te

31.321 31.322 31.323 31.324 31.325

0.
0

0.
5

1.
0

Reference: 81.32%
Platypus: 98.49%
PRG−Viterbi: 98.68%
PRG−Amended: 99.02%

HLA−B

Supplementary Figure 2

NA12878 spatial kMer recovery rate

Chromosome 6 reference coordinate [Megabases]

kM
er

 re
co

ve
ry

 ra
te

31.236 31.237 31.238 31.239 31.240

0.
0

0.
5

1.
0

Reference: 95.17%

Platypus: 98.87%

PRG−Viterbi: 100.00%

PRG−Amended: 100.00%

HLA−C

NA12878 spatial kMer recovery rate

Chromosome 6 reference coordinate [Megabases]

kM
er

 re
co

ve
ry

 ra
te

32.606 32.608 32.610 32.612

0.
0

0.
5

1.
0

Reference: 85.02%
Platypus: 94.81%
PRG−Viterbi: 99.44%
PRG−Amended: 99.61%

HLA−DQA1

NA12878 spatial kMer recovery rate

Chromosome 6 reference coordinate [Megabases]

kM
er

 re
co

ve
ry

 ra
te

32.628 32.630 32.632 32.634

0.
0

0.
5

1.
0

Reference: 37.05%
Platypus: 88.58%
PRG−Viterbi: 99.33%
PRG−Amended: 99.35%

HLA−DQB1

NA12878 spatial kMer recovery rate

Chromosome 6 reference coordinate [Megabases]

kM
er

 re
co

ve
ry

 ra
te

32.546 32.548 32.550 32.552 32.554 32.556 32.558

0.
0

0.
5

1.
0

Reference: 57.01%
Platypus: 87.92%
PRG−Viterbi: 98.86%
PRG−Amended: 98.88%

HLA−DRB1

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint

https://doi.org/10.1101/006973

	combined_010714
	LATEST_Paper_2014_06_03
	Figure 1
	Fig2_002
	Figure 3
	Figure 4
	Figure 5
	Figure 6

	combined_supplement_010714
	Supplementary Methods
	1 Constructing a nucleotide PRG
	1.1 Varying number of scaffold haplotypes

	2 Genome inference
	2.1 kMerification
	2.2 Edge compression
	2.3 HMM
	2.3.1 kMer count plausibility checks
	2.3.2 Simplification
	2.3.3 Estimation of α and β

	2.4 Chromotypes
	2.4.1 Path inference
	2.4.2 Chromotypes
	2.4.3 VCF creation

	3 Novel variant detection
	3.1 Mapping reads to the personalized reference
	3.2 VCF-based reference haplotype modification
	3.3 Current components

	4 Graph alignment and validation
	4.1 A mapping algorithm for PRGs
	4.1.1 Statement of the problem
	4.1.2 Scoring
	4.1.2.1 Non-affine gap penalties
	4.1.2.2 Ends-free alignment scores
	4.1.2.3 Affine gap penalties

	4.1.3 Maximization
	4.1.3.1 Computation for non-affine gap penalties
	4.1.3.2 Computation for affine gap penalties

	4.1.4 Parameterization
	4.1.5 Implementation
	4.1.5.1 Step 1: Chaining
	4.1.5.2 Step 2: Global chain filtering and fixing
	4.1.5.3 Step 3: Recursive local chain filtering and fixing
	4.1.5.4 Step 4: Chain extension
	4.1.5.5 Step 5: Backtracking
	4.1.5.6 Further points

	4.2 Validation
	4.2.1 Chromotype disentanglement for kMer recovery validation
	4.2.2 Identification of xMHC-specific contigs

	4.3 Important symbols and abbreviations

	5 Experimental details
	5.1 Simulation
	5.2 Graph for the extended MHC
	5.2.1 Ensembl inconsistency

	5.3 Sample details and HLA types

	6 References

	Supplementary Tables
	Supplementary Table 1. The types and counts of different types of input data used to construct the PRG for the human xMHC.
	Supplementary Table 2. Simulation-based assessment of PRG accuracy
	Supplementary Table 3. Accuracy of approaches assessed from SNP array data
	Supplementary Table 4. Accuracy of approaches assessed from classical HLA data
	Supplementary Table 5. Accuracy of approaches estimated from kmer recovery
	Supplementary Table 6. Alignment metrics for Moleculo contig alignment to chromotypes

	Supplementary Figure 1
	Fig S2

