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In humans and many other species, while much is known about the extent and structure of genetic 

variation, such information is typically not used in assembling novel genomes.  Rather, a single 

reference is used against which to map reads, which can lead to poor characterisation of regions 

of high sequence or structural diversity.  Here, we introduce a population reference graph, which 

combines multiple reference sequences as well as catalogues of SNPs and short indels.  The 

genomes of novel samples are reconstructed as paths through the graph using an efficient hidden 

Markov Model, allowing for recombination between different haplotypes and variants.  By 

applying the method to the 4.5Mb extended MHC region on chromosome 6, combining eight 

assembled haplotypes, sequences of known classical HLA alleles and 87,640 SNP variants from the 

1000 Genomes Project, we demonstrate, using simulations, SNP genotyping, short-read and long-

read data, how the method improves the accuracy of genome inference.  Moreover, the analysis 

reveals regions where the current set of reference sequences is substantially incomplete, 

particularly within the Class II region, indicating the need for continued development of reference-

quality genome sequences. 

The current paradigm for analysing human genomes using high throughput sequence (HTS) data is to 

map to a single haploid reference sequence in which there is no representation of variation1-3.  

Across much of the genome, such exclusion has little effect on the accuracy of genome inference 

because of the relatively low genetic diversity of humans.  However, for some regions, such as the 

major histocompatibility complex (MHC) on chromosome 6, which contains the human leukocyte 

antigen (HLA) genes, there is very substantial sequence and structural variation4.  Such diversity can 

result in poor genomic characterisation in individuals who carry sequence that is either missing or 

highly divergent from the single reference.  Other locations of high diversity include the KIR5 region, 

olfactory gene clusters6, ancient inversions such as that on 17q21.317-9 and regions of recurrent 

genomic rearrangement10, many of which have substantial influence on phenotype and disease risk.  

In many of these cases, multiple alternative haplotypes have been characterised and are available.  

For example, there are eight alternative MHC haplotypes in the human reference (GRCh3711).  More 

generally, sequencing projects have greatly advanced our understanding of human genetic 

variation12-14; using such information to help characterise human genomes represents an important 

and unsolved problem 

The problem of the single reference approach and the potential of using known variation to 

characterise the MHC is demonstrated in Figure 1 for a single individual (CS1).  When the standard 

reference (carrying the PGF MHC haplotype) is used for mapping, large fluctuations in coverage and 

substantial read mismatches are observed (Fig. 1a, b).  However, when a more appropriate 

reference is used, (here identified by comparing the classical HLA genotypes of the sample with 
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those of the eight reference haplotypes and noting that one of the eight haplotypes was a close 

match), read coverage and alignment is greatly improved (Fig. 1c, d).   

In order to use prior information about variation there are five main challenges.  First, there needs 

to be a data structure for representing genomic variation that can accommodate multiple sources of 

information, from high quality assembled reference sequence (such as the ALT paths in GRCh37) to 

the lower-quality, but very extensive, catalogues of variation such as the 1000 Genomes Project12,14.  

Second, there have to be algorithms that match high-throughput sequencing (HTS) data from a 

subsequent sample to the reference structure in order to best characterise the haplotypes present. 

Third, and potentially simultaneously with step two, there have to be methods for detecting 

additional variation not yet represented in the reference data structure.  Fourth, because most 

functional information (such as the location and structure of genes) uses the coordinates of a single 

primary reference, there has to be a coherent way of projecting information from a variation-aware 

reference onto a primary sequence.  Finally, there need to be methods to validate and compare the 

output from a variation aware reference tool-chain to the genomic information provided by existing 

approaches that rely on a single reference genome.   

To date, limited progress has been made on addressing these challenges.  Graph structures of local 

sequence variation and/or prior knowledge of small-scale variants are used to aid read assembly by 

several variant-calling algorithms15-17.  However these make no attempt to build a re-usable 

reference structure and do not incorporate long or diverged haplotypes such as in the MHC.  The 

pragmatic approach of appending alternative sequences to the end of a reference has been 

proposed18 but cannot solve the fundamental problems of distinguishing between sequence 

similarity arising through orthology and paralogy. Conversely, the approach of identifying a best 

reference from among a set has been applied to Arabidopsis19, but cannot address the problem that 

novel genomes are likely to be closest to a mosaic (arising through recombination) of those already 

known.   Methods have been developed to represent multiple aligned genomes in a manner that 

allows inexact matching20, but these are impractical for human genomes because of memory 

requirements (greater than 1Tb of RAM).  Similarly, progress on variation aware data models has 

been made21, though with no implementation.  None of these methods represent a general and 

practical solution to the problem of describing and using information from multiple reference data 

sets.   

Here, we present a solution to the challenges described above.  We describe an approach for 

representing known variation called a population reference graph (PRG) and a series of algorithms 

that enable characterisation of the genomes present in an individual from HTS data.  We build on 

previous work for using coloured de Bruijn graphs for analysing sequence variation22, but also take 

advantage of the existing tool chain for read mapping and variant calling3,15.  To demonstrate the 

value of the method we develop a PRG for the MHC region and combine simulation with analysis of 

empirical data on SNP genotypes, classical HLA types, short-read and long-read Moleculo data from 

high coverage samples. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint 

https://doi.org/10.1101/006973


3 
 

The population reference graph 

A population reference graph (PRG) is a directed acyclic graphical model for genetic variation that is 

generated by combining information about known allelic relationships between sequences (Figs. 2a, 

2b).  The graph is constructed in three steps (see Supplementary Text for a detailed description).  

First, reference sequences are aligned using standard multiple sequence alignment (MSA) 

methods23,24.  Second, a graph structure is generated from the MSA by collapsing aligned regions 

with sequence identity over a defined kmer size.  Third, additional SNP information, which is 

encoded in VCF and related formats through a reference position and alternative sequences, is 

added to all paths with matching sequence at a given position (for example, a SNP cannot be added 

to a path where there is a deletion at a given position).  Here, all REF and ALT sequences from 

GRCh37 are used, along with the catalogue of SNPs from the Phase 1 release of the 1000 Genomes 

Project and the set of classical HLA allele sequences from the International Immunogenetics 

Information System (IMGT25) at key HLA Class I and Class II loci (Table S1).  The resulting graph 

structure can be thought of as a generative model for genome sequences.  From a limited set of 

input sequences, many different paths through the graph are possible, thus mimicking the effect of 

recombination.  In regions of high diversity, the size of the state space can become very large (Fig. 

S1).   

Using the PRG to infer individual genomes 

The development of HTS technologies in humans has largely relied on the notion that the genome(s) 

of the sample(s) in the experiment will be closely related to those of the reference, thus enabling 

reads to be mapped accurately and with appropriate certainty.  We extend this idea by attempting 

to infer the (diploid) path through the PRG that most closely resembles the two haplotypes of the 

sample.  Specifically, by comparing the HTS data from a sample to the PRG we construct a diploid 

personalised reference genome, here referred to as a chromotype. To infer novel variation not yet 

present in the PRG, we map reads to the chromotype and use existing variant calling software15. 

Chromotypes are inferred by considering the HTS data from a diploid sample to be emitted by a pair 

of paths through the PRG and approximating the emission process so as to benefit from the 

computational efficiency of hidden Markov model techniques.  Briefly, HTS data is summarised by 

the counts of each string of length k (kmer).  Similarly, the set of kmers that can be emitted from the 

PRG is enumerated, eliminating those that occur multiple times across the genome and that are 

therefore uninformative for local sequence inference (Fig. 2c).  Finally, by using a probabilistic model 

for the emission of kmers (see Methods), the Viterbi-algorithm infers the maximum-likelihood (ML) 

pair of paths (chromotype) through the PRG (Fig. 2d).  Note that this approach does not preserve 

any phase information across regions where paths merge. The diploid path is thus best understood 

as a bifurcating/merging sub-graph of the PRG, where heterozygous sites induce bubbles.  

To detect novel variation within the sample the inferred chromotype is decomposed into two 

sequences (with no attempt to establish phase between adjacent bubbles in the chromotype), which 

are used to replace the homologous region in the primary reference.  Reads are mapped to the two 

resulting reference genomes and each read is placed at its best position across the two reference 

genomes, as measured by mapping quality.  A standard variant caller15 is used to discover new 
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alleles independently in the two mappings and a heuristic algorithm modifies the chromotype 

accordingly.  We have also developed an approach for mapping reads directly to the chromotype, 

which is important for validation using long-read sequences (see below) though currently too slow 

for primary analysis at the scale of millions of reads. 

Validation and comparison to other methods 

To assess the value of the PRG approach in characterising variation within samples we used 

simulations and empirical data analysis.  We compare four approaches to characterising variation.   

1. As a base-line we use a single reference (the PGF haplotype within the MHC region from 

GRCh37) and look at the effect of calling a sample as everywhere homozygous-reference. 

2. We use a read-mapping approach (Stampy3 followed by Platypus15) in which the 

components were designed explicitly for high sensitivity detection and genotyping of short 

INDELs and clustered variants. 

3. From the PRG, we assess the Viterbi chromotype. 

4. From the PRG, we assess the results from mapping reads back to the Viterbi chromotype 

with BWA1 and calling using Platypus15 (i.e. the modified chromotype).   

The output of each approach can be represented as a chromotype, thus enabling comparison 

between PRG and single-reference based methods. 

Simulations 

We simulated high coverage HTS data (85bp error-free paired-end reads from a 30x genome) for 20 

individuals. The primary effect of read errors is to reduce kmer coverage, hence their omission.  Each 

simulated diploid genome consists of two random paths through the PRG for the extended MHC 

(xMHC). The simulated genomes carry a mixture of recombination events between the original eight 

MHC haplotypes, SNPs and structural variants of varying size (insertions and deletions from 1 – 

125,000bp). We assess the accuracy of the PRG approach through genotype concordance of the 

inferred paths through the PRG with the simulated paths (Table S2). Across all positions, 99.86% of 

alleles are correctly recovered. Accuracy at heterozygous SNP positions is similar (99.83%) and drops 

slightly for INDEL positions (ranging from 95.76% to 99.97%, Figs. 3a, 3b).   

Experiment 1: Comparison to SNP array data 

To assess the ability of the PRG approach to genotype variation at sites of high uniqueness within 

the genome, we compared metrics of accuracy at SNP positions independently interrogated through 

array genotyping and HTS (1 sample [NA12878] at 60x coverage with 100bp paired end-reads and 5 

clinical samples [CS2-6] at 30x coverage with 90bp paired-end reads; see Methods).  

The accuracy of all approaches is high (Fig. 3a), ≥97.38% concordance with the Illumina Omni 2.5M 

array (NA12878) and ≥99.53% allele concordance with the Illumina 1M array (CS2-6) for all 

approaches. Comparing the array genotype concordance of Platypus-generated genotypes and PRG-

generated genotypes, we find that both approaches yield comparable accuracies (97.75% vs 97.45% 

for the 2.5M array and 99.57% vs 99.66% for the 1M array, Fig. 3c, Table S3).  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint 

https://doi.org/10.1101/006973


5 
 

Of the 285 sites at which the array genotypes for NA12878 disagree with the Viterbi chromotype, in 

55 cases this difference is driven by the Viterbi chromotype specifying at least one gap character 

suggesting the presence of an indel that could interfere with array genotyping. We have manually 

inspected the reference alignment of NA12878 reads for these sites, and find clear evidence for the 

presence of at least one deletion in 33 of the 55 cases (we provide visualisations of read mapping at 

all positions in Supplementary File 1).   These findings suggest that a significant fraction of the 

discrepancy between array and PRG approaches results from array errors at polymorphic indels. 

Experiment 2: Comparison to classical HLA data 

In regions of high sequence diversity, such as the classical HLA alleles, single-reference mapping and 

variant calling methods may perform poorly because of the density of mismatches to the reference.  

To assess the accuracy of different methods at the classical HLA alleles, we compared the per-base 

diploid genotypes inferred by mapping and PRG approaches to those expected from the results of 

sequence-based typing (SBT) of the highly polymorphic exons of Class I (HLA-A, -B and –C) and Class 

II (HLA-DQA1, -DQB1 and –DRB1) genes in NA12878 and CS2-6.  We analysed agreement with the 

corresponding allele reference sequence for the reported allele (in HLA nomenclature this means 

XX:XX:01 or XX:XX:01:01 at 6 or 8 digit resolution respectively)  

Where diversity is relatively low and sequence coverage is very high, the accuracy of mapping-based 

approaches is high; for example 100% concordance for NA12878 at exon 2 of HLA-A and –C (Fig. 3d, 

Table S4).  However, when coverage is lower, or sequence divergence and / or complications from 

paralogy are greater (e.g. for HLA-B in the CS2-6 samples or HLA-DRB1 in all samples), the PRG 

approach typically outperforms mapping (e.g. 97.19% concordance with the PRG genotypes versus 

89.85% concordance with mapping-based genotypes at HLA-DRB1 in the CS2-6 samples).  Mapping 

reads to the chromotype has a marginal effect on accuracy (typically < 1% gain).  

Experiment  3:  kmer recovery from high coverage samples. 

Central to the use of the PRG in assembling individual genomes is the notion that it contains the 

majority of sequence that is likely to be found in any sample.  In the absence of full and independent 

de novo assemblies, we can assess the extent to which any given chromotype is an accurate 

representation of the sample by measuring the recovery of kmers from HTS data.  We apply this 

benchmark to NA12878 and the CS2-6 samples.  

Across the 4.75 Mb xMHC region, the PGF reference contains 4.52M unique kmers of which 4.8% are 

not recovered in the HTS data from NA12878 (Fig. 4a). The mapping-based approach predicts 4.94M 

kmers, of which 1.2% are not recovered while the two PRG approaches predict 4.98M and 4.97M 

kmers respectively and 0.63% and 0.57% are not recovered.  Results are comparable though slightly 

lower for all methods in the CS2-6 samples (Table S4).  Consequently, the PRG approach both 

predicts greater sequence diversity than the mapping approach and achieves a higher rate of 

sequence recovery.  Although the majority of the xMHC is accessible to all methods, there is 

substantial spatial heterogeneity in the rate of kmer recovery by all methods (Fig. 4b). Particularly in 

the HLA class II region, the PRG approach outperforms mapping approaches (Fig. 5), consistent with 

knowledge of genomic complexity involving the HLA-DRB paralogues. We also note that in some 

regions, in particular distal to HLA-DRB5, all approaches perform poorly in terms of kmer recovery 

(Fig. 5), suggesting that current catalogues of sequence within the xMHC are substantially 

incomplete.  
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Within the classical HLA loci, all methods perform well for class I loci, recovering 98-100% of kmers 

compared to 80-95% from the PGF reference haplotype (Fig. S2).  At Class II loci, however, the 

advantage of the PRG method is pronounced, with approximately 99% of all kmers recovered for 

HLA-DQA1, -DQB1 and -DRB1, compared to 88-95% for Platypus (against a base-line of 37-85% for 

the PGF reference haplotype). 

Experiment 4: Comparison to long-read Moleculo data 

To assess alternative strategies for genome assembly over longer physical distances, we analysed 

high coverage long-read Moleculo data (25x coverage) from NA12878 (see Methods).  We first 

identified 29,429 reads (median read length 3,165 bp) likely to have arisen from the MHC region 

through the presence of diagnostic kmers (see Supplementary Text), then aligned reads to the 

chromotypes generated by each approach.  Read-to-chromotype alignment was performed with a 

Needleman-Wunsch-like alignment algorithm that aligns to graphs instead of sequence, 

implemented using dynamic programming (see Supplementary Text).   We measure the scaled edit 

distance between reads and the chromotype (measured as non-identical characters in read to 

chromotype global alignment, divided by read length in kmers) as an indicator of genome accuracy. 

We find that the mapping-based approach achieves the highest number of read alignments with 

zero mismatches (11,338 vs 10,071 for the modified PRG method).  However, both PRG approaches 

result in significantly fewer reads with many mismatches and/or gaps (Fig. 6a, Table S5).  For 

example, the total number of alignment columns indicating a deletion in the chromotype decreases 

from 1,017,231 (mapping-based) to 586,852 (modified PRG chromotypes).  Likewise, the number of 

reads with very bad alignments (more than 150,000 gaps in the aligned read or ≥33% of the aligned 

chromotype string consisting of novel gaps) decreases from 303 to 134.  The modified PRG 

chromotype has a modest benefit over the Viterbi chromotype, increasing the number of perfectly 

mapped reads from 8,359 to 10,071.  Across the DRB5 region (identified from the kmer recovery 

analysis as being most poorly represented by the PRG) we find reads that suggest the presence of an 

inversion relative to known sequence (Fig. 6b). 

Discussion 

We have presented several innovations that address the problem of how best to represent and use 

information about known genetic variation in the assembly of HTS data from novel samples.  These 

are an approach for representing information through the population reference graph (PRG), a 

practical method for reconstructing personalised reference genomes by comparing HTS data to the 

PRG, a method for detecting variation not present in the PRG and a series of benchmarking tests 

that enable comparison of methods, whether PRG-based or otherwise, which can complement other 

benchmarking approaches26.  Our approach is both modular (such that progress can be made on 

each element independently) and maintains the ability to project information onto a canonical 

primary reference that is used as the basis of most functional annotation.   

In constructing the PRG, our approach has been to combine multiple sources of reference variation 

information including GRC37, the 1000 Genomes Project14 and IMGT25.  Importantly, we make no 

claim that the information contained within the graph is a full or accurate description of the 

variation within the region.  For example, the 1000 Genomes Project variant list is estimated to have 
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a false discovery rate of 1-5% depending on the variant type.  However, the presence of false 

variants within the PRG should have relatively little effect on accuracy, because paths through such 

variants will have no support in HTS data. The aim of the PRG approach is not to describe all human 

variation but simply improve genome assembly through representing the diversity of sequence that 

may be present in an individual. Importantly, we evaluate the approach using metrics that are 

independent of whether a PRG or simple reference approach is used (kmer recovery, genotype 

accuracy at known SNP and HLA variants and long-read alignment).  Future versions of the PRG 

could, however, more closely match observed patterns of variation, for example by removing paths 

never observed and weighting paths by population frequency.  However, whether such changes 

improve genome inference would have to be evaluated empirically.  What the approach has 

demonstrated is that graph based methods offer benefits in regions of high sequence diversity and 

that there are substantial stretches in the Class II HLA region of the MHC that are poorly 

characterised by all existing reference material, indicating the need for ongoing collection of 

reference variation data.   

The current implementation has several limitations.  First, by summarising information as kmers, we 

lose longer range information, particularly from read pairs.  Likewise, the process of separately 

mapping reads to each of the pair of chromosomes within the inferred reference chromotype is ad 

hoc and inefficient.  Both features arise from our attempts to maximise the usability of the PRG 

approach, notably efficient inference using HMMs and the desire to use as much of the existing tool-

chain as possible.  Both problems could also be solved potentially by using richer data structures that 

retain longer range information in both reference variation data and short-read data, for example 

the FM-index structure of SGA27 , augmented de Bruijn graphs that retain short-range path 

information or mapping directly to the graph.  Nevertheless, despite such limitations, we have 

demonstrated that in regions of the MHC with high structural and sequence diversity, the use of the 

current implementation can improve genome assembly.  

A more fundamental limitation of local graph approaches is that they fail to use the much longer-

range information arising from haplotype structure (linkage disequilibrium).  Sharing of SNP 

haplotypes over megabase scales is common even among samples of unrelated individuals, hence 

such information, which is used in applications such as imputation28-31  and refinement of low-

coverage sequencing data32 , has the potential to further improve genome inference.   Such 

information could, however, be included as a prior structure on paths through the PRG, for example 

in a generalisation of the HMM approaches used by imputation methods28-31.   

Methods 

A full description of the PRG algorithms can be found in the Supplementary Text, including (i) the 

algorithms used to build PRGs from a set of reference data, (ii) the algorithmic and statistical 

methods for inferring a best diploid path (chromotype) through the PRG, (iii) the algorithm to 

discover novel variation not presented in the PRG, (iv) the graph-mapping algorithm used for the 

contig analysis.  Data used are as follows.  CS1 and CS2-6 samples: germ-line DNA was extracted 

from peripheral blood samples collected from consented clinical trial subjects, previously 

determined to have evidence of a Class II HLA risk marker for drug induced liver injury33. DNA was 

fragmented and size selected to create 2 x 180 base pair (bp) libraries and 2 x 800 bp libraries. These 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 8, 2014. ; https://doi.org/10.1101/006973doi: bioRxiv preprint 

https://doi.org/10.1101/006973


8 
 

libraries were sequenced on a HiSeq 2000 to generate 90bp paired end (PE) reads at the BGI 

(Shenzen, China). For the CS1 sample approximately 200 Gb, and for each of the 5 samples in CS2-6 

approximately 100Gb, of sequence was generated.  For Fig. 1, CS1 data were initially aligned to 

GRCh37 on the CLC Genomics Workbench (version 6.5.1) and coverage and intact and broken PE 

read numbers determined for ~180 kb  surrounding HLA-DRB1. This process was repeated utilizing 

GRCh37 with the addition of the MANN alternative MHC haplotype.  For all remaining analyses on 

CS2-6, reads were mapped to GRCh37 using Stampy34 and BWA1 and variants were called using 

Platypus 0.1.815.  Read data for NA12878 from the Illumina Platinum genomes project (HiSeq 2000, 

~60x coverage, 100bp paired-end reads; www.illumina.com/platinumgenomes/) was obtained from 

the EBI (www.ebi.ac.uk/ena/data/view/ERP001775). Reads were aligned to GRCh37 using BWA 

0.6.21 and variants were called with Platypus 0.1.815.  Moleculo data is available from the 1000 

Genomes Project ftp site; 

ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20131209_na12878_moleculo.  
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Figure legends 

Figure 1.  Read-mapping in the MHC Class II region.  a. Summary of read alignment to a single 

reference (PGF) for a single sample (CS1) in the MHC Class II region (around HLA-DRB1) showing 

coverage (grey profile) and the proportion of ‘broken’ read-pairs (red line; defined as mapping to 

different chromosomes; incompatible strands; or implausible insert size).  b IGV screenshot showing 

variable coverage and high rate of sequence mismatch for reads aligned in the HLA-DRB6 / HLA-

DRB1 region.  c The same metrics as for part a, where mapping has been performed to GRCh37 

(including the PGF haplotype) augmented with the MANN haplotype, chosen because the combined 

classical HLA genotypes from PGF and MANN match those of the sample.  d. Number of mapped 

intact (green) and broken (red) read pairs demonstrating that the augmented reference results in 

many more well-mapped and many fewer broken read-pairs .   

Figure 2.  Schematic illustration showing the construction and application of a population 

reference graph. a. Multiple sources of information about genetic variation, including alternative 

reference haplotypes (lines),  classical HLA alleles (rectangles) and SNPs / short indels (triangles) are 

aligned.  Colours indicate divergent sequence, dashes indicate gaps.  b. A population reference graph 

(PRG) is constructed from the alignment, resulting in a generative model for variation within the 

region.  SNPs, indicated by diamonds, are added as alternative paths to all valid backgrounds (i.e. 

excluding sequence with gaps or a third allele at the position).  c. The PRG is compared to the de 

Bruijn graph constructed from reads obtained from a sample.  Kmers found in the sample are 

identified (dark blue) along with kmers found elsewhere in the genome that are uninformative about 

local sequence (yellow).  d. A hidden Markov model formulation is used to infer the most likely pair 

of paths through the PRG, allowing for read errors, resulting in an individualised reference 

chromotype for the sample.  e. Two haploid genomes are constructed from the reference 

chromotype and reads (light blue lines) from the sample are aligned, thus identifying places where 

the sample contains novel variation (red circles; only one path through the chromotype is shown).  f. 

Newly-discovered variants modify the reference chromotype, resulting in the inferred chromotype 

for the sample. 

Figure 3:  Simulation study and empirical validation.  a.  Concordance between simulated data (20 

simulated diploid individuals; 85bp error-free reads at 30x diploid coverage) and Viterbi path 

through the PRG stratified by simulated variant type (SNP or indel) and genotype.  b.  Genotype 

concordance in simulations at sites simulated to be heterozygous for structural variants of different 

lengths.  c.  Concordance between SNP array genotypes and chromotypes from each method for 

NA12878 (squares; Illumina Omni 2.5M array) and the CS2-6 samples (stars; Illumina 1M array), 

stratified by whether the array specifies the genotype as homozygous or heterozygous. Results 

shown for the mapping-based approach (Platypus, red), the Viterbi-path through the PRG (PRG-

Viterbi, pink) and after mapping to the reference chromotype (PRG-Mapped, blue).  d.  Concordance 

between classical HLA genotypes at HLA-A, -B, -C, -DQA1, -DQB1 and -DRB1 (measured at a per-base 

level) and chromotypes from each method for NA12878 and the CS2-6 samples (range of accuracy 

across CS2-6 displayed as vertical bars). Classical HLA genotypes were generated using sequence-

based HLA typing (see Methods).  
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Figure 4.  Recovery of chromotype kmers from high throughput sequencing data.  a.  Number of 

recovered and non-recovered kmers present in chromotypes inferred by the four methods (as for 

Fig. 3c with addition of single reference represented by the PGF MHC haplotype). A kmer is counted 

as recovered if it appears in HTS data from NA12878 (~60x coverage of 100bp paired-end reads 

represented by an un-cleaned Cortex22 graph; k = 31).  Chromotypes are disentangled using a greedy 

algorithm prior to evaluation, optimizing for the disentangled haplotypes to contain as many kmers 

recovered in the sample as possible (see Supplementary Text). b . Spatial pattern of kmer recovery 

along the extended MHC region for each of the four chromotypes showing the location of classical 

HLA loci.  Recovery fraction averaged over 1 kb windows. 

Figure 5.  Spatial recovery of kmers within the HLA Class II region.  a.  Blow-up of kmer recovery in 

Fig 4b in the MHC Class II region for the chromotypes inferred by the four approaches.  b.  Fraction 

of kmers predicted to be present along region that are also presented in the PGF reference 

haplotype (1 kb windows; PGF reference not shown).  c.  Fraction of positions in chromotype that 

correspond to gaps in the multiple sequence alignment used to construct the PRG (1 kb windows).  

Note that PRG-Complete chromotype is effectively identical to the PRG-Viterbi path. d.  Fraction of 

positions in inferred chromotypes that are heterozygous (lines; note this includes sites where one 

allele is a gap character) and the ending points of chromotype bubbles (points).   

Figure 6.  Alignment of long-read data to chromotypes.  a.  Histogram of scaled edit distance (the 

number of non-concordant columns in the alignment between read and chromotype, divided by the 

total number of bases in the read) between long-read data (Illumina NA12878 Moleculo xMHC-

specific reads, see Supplementary Text) to chromotypes inferred by four methods.  Lower boundary 

for each interval omitted for clarity.  Inset shows a blow-up for contigs with scaled edit distance 

>0.01.  b.  Dot-plot between the sequence of a Moleculo contig and the sequence of the non-gap 

branch of the Viterbi chromotype for NA12878 over the region highlighted in Fig. 5a (“target 

region”). There is a point (x, y) if and only if the 10-mer beginning at position x in the chromotype 

segment is identical to the 10-mer (or its reverse complement) beginning at position y in the 

Moleculo read. Green indicates the region of the contig which, according to the alignment, is 

matched to the target region (i.e. each green point represents a contig kmer between the leftmost 

and the rightmost contig kmers aligned to the target region). Blue indicates that the match between 

the kmer found at positions x in the chromotype and y in the Moleculo can be recovered from the 

alignment.  Middle, right: Analogous dot-plots for the contig and the chromotype against 

themselves, showing that there is no large-scale self-similarity along either sequence. 
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Supplementary Figures 

Supplementary Figure 1.  Complexity of the MHC population reference graph.  a.  Histogram 

showing the distribution of the number of kmers present in the PRG across sites within the extended 

MHC region.  b.  Spatial plot of graph complexity around HLA-B demonstrating peaks in complexity 

around classical HLA loci.   

Supplementary Figure 2.  Kmer recovery within the classical HLA loci HLA-A, -B, -C, -DQA1, -DQB1 

and –DRB1.  Each panel shows the fraction of kmers recovered at single nucleotide resolution from 

chromotypes inferred by the four methods using the high coverage data from NA12878.  The 

average over the locus is also shown.   
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Improved genome inference in the MHC 
using a population reference graph 
Alexander Dilthey, Charles Cox, Zamin Iqbal, Matthew R. Nelson, Gil McVean 

Supplementary Methods 

 

In this document, we give precise descriptions of the algorithms for population reference graphs 
(PRGs). 

High-level summary 

We describe the following subsequent steps: 

1. Construction of Population Reference Graphs (PRGs) to represent multiple genomes: 
• How to create a nucleotide PRG from a catalogue of variation, consisting of scaffold 

haplotypes for the whole region to be modeled and additional variant specifiers. 
 

2. Genome inference: 
• How to create a kMer-PRG, a kMer-emitting object with identical haplotype structure 

to nucleotide PRG. 
• How to compress the kMer-PRG in a way that reduces its size and improves its 

statistical properties for the model we describe (the compressed kMer-PRG is called 
“multi-PRG”, because states of the model can now emit multiple kMers). 

• How to define and parameterize a Hidden Markov Model (HMM) “on top” of the 
multi-PRG. 

• How to use the HMM to infer a sample’s chromotypes, and how to represent them in 
VCF format. 
 

3. Novel variant detection: 
• How to take pairs of inferred haplotypes (from the HMM on top of the multi-PRG) 

and use them as a basis for conventional mapping technologies, enabling the 
discovery of variants not present in the original catalogue of variation. 
 

4. Graph alignment and validation: 
• How to align sequence to PRGs, using a modified version of the Needleman-Wunsch 

algorithm. 
 

5. Experimental details: 
• The protocol followed to create a PRG for the extended human MHC. 
• Sample data, HLA types and availability. 
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1 Constructing a nucleotide PRG 
We define a population reference graph as a directed acyclic graph with one designated start vertex 
and a set of designated final vertices. There is a level function that returns a positive integer for each 
vertex; all edges are defined between vertices of consecutive levels; and all final vertices are of the 
same level. All edges are labeled either with a nucleotide or a gap symbol, and that label is emitted 
upon traversal. Each node has a (potentially improper) probability distribution over the edges 
emanating from it.  

The algorithm for building PRGs is based on a catalogue of scaffold haplotypes and additional variant 
specifiers (catalogue of variation, COV). Scaffold haplotypes span the region to be modeled, 
additional variant specifiers define allelic variation in the context of one or more of the scaffold 
haplotypes. SNPs, for example, are typically included as additional variant specifiers. 

Informally, we will construct a PRG that contains all scaffold haplotypes as paths, allowing for 
recombination between a set of haplotypes whenever there is a stretch of identity between the 
members of the set. Additional variant specifiers are represented as “bubbles” on top of the scaffold 
haplotype graph. 

PRG definitions and generative algorithm: 

• Let the directed connected graph G consist of the set of directed edges E and the set of 
vertices V, i.e. G = (V, E). For all e = (vx, vy) ∈ E, vx ∈ V and vy ∈ V; we call e the directed edge 
from vx to vy. For PRGs, we require that there is a well-defined level function function l(v) for 
each node v, according to the following definition. There is one and only one vertex v0 with 
no incoming edges and l(v0) = 0. This vertex is called the start vertex. For every (vx, vy) ∈ E, we 
define l(vy) = l(vx) + 1. All vertices with no outgoing edges are called “final vertices”, and we 
require that the level function returns the same value L for all final vertices. 
 

• Each edge e ∈ E is labeled with a nucleotide (A, C, G, T), a gap symbol (“_”) or possibly a 
wildcard character (“*”), which stands for any nucleotide. At each node n, there exists a 
(possibly improper) edge probability distribution over the edges emanating from that node, 
specifying the probability Pn(e) to follow edge e, conditional on being at node n. 
 
(For notational clarity, we do not explicitly consider the case here that there can be multiple 
edges between two nodes with different labels, or with the same label. However, all 
definitions made in this document are easily extended to cover these cases.) 
 

• To generate a haplotype from that model, carry out the following algorithm: 
1) Define a “current vertex” variable cv and initialize it as cv := v0. 
2) Select an edge (vx, vy) from the set of edges emanating from cv according to the edge 

probability distribution at cv. Emit the label of the edge and set cv = vy. 
3) If cv is a final vertex, terminate; otherwise, go to step 2. 

 
• The model so-specified is similar to the well-known class of haplotype graph models [1]. In 

particular, definition of a suitable emission probability distribution on top of each edge label 
will result in a Hidden Markov Model (HMM); and the model can easily be generalized to 
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emitting diploid data. For details, see [1, 2]. 
 

PRG construction algorithm, introductory definitions:   

A) Start with a multiple sequence alignment (MSA) of all SN scaffold haplotypes (constructed 
using external software, see section “Sequence Alignment”). The MSA has SN rows and L 
columns (L depends on the exact scoring configuration and algorithm used for creating the 
MSA; also, L is also the last level of the PRG to be constructed). 
 
Each level i > 0 in the PRG refers to the i-th column of the MSA. 
 

B) Sn,i denotes the i-th position of the row of the MSA for haplotype n. (n ∈ {1 .. SN}, i ∈ {1 .. L}). 
 

C) There is a set X of additional unique variant specifiers of the form (n,i1,i2,seq). n specifies 
which row of the MSA (which scaffold haplotype) the variant specifier refers to; i1 and i2 
define the column range within the MSA that the variant specifier refers to; and seq defines 
an alternative sequence of characters (constrained to the set of nucleotides, “_” and “*”)  to 
be available at these columns. For example, a SNP could be specified as (2, 5, 5, ”A”): this 
means that position 5 in scaffold haplotype 2 might also be an “A”, instead of, say, a “T”. 
Although in principle fully generalizable, the current version of the algorithm is specified only 
for variant specifiers of length 1 (i.e. i1 = i2); however, it is possible to specify independent 
variant specifiers at consecutive positions. Overlapping variant specifiers are not permitted. 
 

D) For each vertex v, we define a function H(v) which specifies a set of scaffold haplotypes 
“attached” to v. At each level of the PRG, each scaffold haplotype is attached to exactly one 
node. Informally, the set of attached scaffold haplotypes will determine which labels the 
edges reachable from n will carry. 
 
We also define a function suffix(v, r) for each vertex v at level l(v) ≤ (L – r) which returns the 
set of strings defined by 

a) For all n ∈ H(v), the concatenated symbols from columns l(v)+1 .. l(v) + r of row n of 
the MSA (i.e. from the scaffold haplotypes attached to v). 

b) The strings from a), modified by the set of relevant variant specifiers. Each distinct 
variant identifier for a particular position (i.e. relating to the same scaffold 
haplotype; at the same position; with a distinct seq) maps to at least one additional 
string, generated by substituting the specified position in the string from a) with the 
allele specified by the variant specifier.  
For performance reasons, however, we ignore recombination between variant 
specifier at different positions (this only applies to the function suffix(..), and not to 
the PRG itself). For example, two nearby tri-allelic positions might induce suffix(..) to 
return three strings. We note that the effect of this simplification is that suffix 
distributions from different nodes might look more distinct than they really are, but 
never more similar. 
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PRG construction algorithm: 

1) Construct a multiple sequence alignment from the scaffold haplotypes (using external 
software, see section “Sequence Alignment”). 
 

2) Initialize the PRG with a single start vertex v0 at level 0 and set H(v0) to be the set of all 
scaffold haplotypes. 
 

3) Iterate from i = 1 .. L: 
 

a) For each vertex v at level (i – 1): 
 
• For all scaffold haplotypes with index n from the set H(v): 

 
Determine the character Sn,i of the corresponding position / haplotype in the 
MSA and the set {(n,i,i,seq)} of relevant additional variant specifiers. If there 
exists an edge (v, v’) carrying the character Sn,i, follow that edge and add n to the 
set H(v’). Otherwise, create a new vertex v’ with l(v’) = i and the corresponding 
edges (v, v’), labeled with the Sn,i. Further ensure that for each element 
{(n,i,i,seq)} there is an edge (v, v’) labeled with seq.  
 

b) For all possible pairs (vx, vy) of (newly created) vertices at level i: 
 
We merge vx and vy if their suffix distributions suffix(vx, r) and suffix(vy, r) are similar. 
We use r = 20 and require that all r compared positions are non-gaps (i.e. ≠ “_”). 
If some of the r compared positions are gaps, we dynamically increase r (due to 
performance only up to a threshold– we assume that two suffix distributions are not 
identical if we reach this point). 
 
“Similar” in the currently implementation means “identical”. If the set of scaffold 
haplotypes was large and representative of a population, using similarity measures 
similar to those used when constructing haplotype graphs would be an alternative 
([1, 2]). 
 
Suffixes that contain wildcard characters are treated in a special way. We define that 
vertices with suffix distributions that contain only wildcard characters (“*”) are 
compatible with all other nodes; and that single suffix strings consisting exclusively of 
wildcard characters are not considered when determining suffix compatibility. 
 
To merge two vertices vx and vy, define H(vx) = H(vx) ∪ H(vy); redirect all edges going 
into vy to vx (and remove duplicate edges with identical labels, if necessary); and 
delete vy. 
 

c) If any vertices were merged during step b), repeat step b). 
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4) We have now constructed a PRG for the complete MSA. For post-processing, 
 

a) Mark all nodes and edges that are necessary to trace the path of the scaffold 
haplotype which is identical to the canonical reference genome in the region through 
the graph. 
 

b) Identify and remove arcs (sequences of connected nodes and edges, equivalent to a 
subpath through the graph; see Section “kMerification” for a formal definition of 
“subpath”) that consist exclusively of edges labeled with wildcard symbols (“*”) and 
that can be removed without affecting the reachability of any subpath that does not 
exclusively consist of wildcard symbols. (We remove as many wildcard symbols as 
possible because we ignore them in downstream analyses).  
 

1.1 Varying number of scaffold haplotypes 
The algorithm specified assumes a fixed number of scaffold haplotypes across the region to be 
modeled. This is, however, not always the case: in the extended MHC, for example, we have eight 
scaffold haplotypes across the region (see Section “Graph for the extended MHC”), but a much 
higher number of haplotypes for the six classical HLA loci. 
 
We deal with such situations by dividing the whole region to be modeled in stretches with an 
identical number of scaffold haplotypes; we then construct separate PRGs for each stretch; and 
finally we connect the separate PRGs (by fusing last-level nodes of one PRG with the first-level nodes 
of the next PRG) to obtain a combined region-wide PRG. 

2 Genome inference 
Before giving a formal description of the process of genome inference, we give an informal 
introduction. 

The object we have built – a nucleotide PRG – models population sequence variation at the level of 
individual nucleotides. While having many advantages (immediately intuitive representation of 
sequence; easy to visualize; clear preservation of gap homology from the MSA), there are also 
disadvantages to this approach.  Making genome inference (i.e. computing the two most likely paths 
through the PRG for some given sample data, and detection of additional variation) from the 
nucleotide PRG itself is not straightforward, for we don’t directly observe its most fundamental unit, 
the nucleotide in its full PRG-level context, from sequencing data.  

There are two ways around that: 

1) Computation of all possible micro-haplotypes (kMers) of specified length through the 
nucleotide PRG and counting how often each micro-haplotype occurs in sample data.  
 
We refer to this process as “kMerification” and use it as our main approach for genome 
inference.  
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2) Read alignment – in analogy to read-to-reference alignment, it is possible to align sequencing 
reads to a PRG, resulting in a labeling of each individual nucleotide with the level of the PRG 
it is assumed to be homologous to. 
 
Read alignment has many advantages over kMerification – it is more tolerant of sequencing 
errors and utilizes the full length of sequencing reads to establish homology. However, at 
least in our current implementations, it is much slower than kMerification-based inference. 
Hence we use read-to-graph alignment to validate (see Section 4) the genomes we have 
inferred, but not as a primary means of genome inference. 

As stated above, we rely on kMerification as the base for genome inference. 

That is, we “kMerify” the nucleotide PRG to obtain a kMer-PRG, a graph with equivalent haplotype 
structure but edges labeled with kMers instead of individual nucleotides. 

To improve some statistical properties of that graph for downstream inference, we further “edge-
compress” the kMer-PRG to obtain an object we refer to as “multi-PRG”. The main difference is that 
we have combined all non-branching stretches of levels in the kMer-PRG into single levels for the 
multi-PRG, with edges labeled with multiple kMers.  

Finally, by assuming that observed kMer counts in the sample data follow a Poisson distribution 
parameterized by how often a kMer appears in the genome (i.e., after some pruning: how often a 
kMer appears in a state of the multi-PRG) , we use the multi-PRG to derive an efficient Hidden 
Markov Model (HMM) to infer an individual’s two assumed haplotypes. 

The following figure illustrates the different steps of transformation from nucleotide PRG to multi-
PRG. 
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2.1 kMerification 
The PRG has a probability distribution over the space of possible emitted haplotypes. Each possible 
haplotype can be transformed into a sequence of kMers. A PRG thus also induces a probability 
distribution over possible sets of emitted kMers. We now describe the algorithm to transform the 
PRG into a kMer-PRG  that has the same distribution over the set of possible haplotypes and hence 
over the possible sets of emitted kMers. 
 
Informally, we are searching for an object with equivalent haplotype output distribution, but which 
explicitly specifies kMers. We call that process “kMerification”. 

In order to kMerify a nucleotide PRG, we need to define the set of nodes and edges that the kMer-
PRG is to consist of. We define the edges by finding all “micro-haplotypes” of length k (i.e. subwalks 
of k non-gap characters) specified by the nucleotide PRG.  In the process of kMerification, each such 
micro-haplotype will become one edge in the kMer-PRG. 
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Consider, for example, the two subwalks of length 3 starting at level 9 marked with blue lines in the 
figure above. In the kMer-PRG, both walks will be represented by separate edges.  Note that there 
will be two edges, even though they will be labeled with the same kMer – this is because the 
underlying walks through the nucleotide PRG are different. 

We now have an intuitive understanding of the edges that will be present in the kMer-PRG, but what 
about the nodes? Initially assume that (at a given level) each edge in the kMer-PRG ends in its own 
node. In order to ensure that the haplotype structure of the kMer-PRG reflects that of the nucleotide 
PRG, the question now becomes: which of these nodes have to be merged? Or, expressed differently: 
which kMer-PRG edges (reflecting walks of length k) need to end in the same kMer-PRG node? 

In order to analyze that question for our two example paths, consider subwalks of length k + 1 from 
level 9. In the figure above, these walks can be constructed by elongating the two blue walks of 
length k by adding the orange edge. We note that the two subwalks of length k + 1 are, apart from 
the first component, identical: by definition the next level of the kMer-PRG will contain exactly one 
edge to represent the corresponding walk of length k. From the structure of the nucleotide PRG, it is 
also clear that this one kMer-PRG edge (starting at level 10 in the nucleotide PRG) needs to be 
connected to the two original kMer-PRG edges (starting at level 9 in the nucleotide PRG). Hence the 
two original kMer-PRG edges starting at level 9 in the nucleotide PRG need to end in one node, and 
the kMer-PRG edge starting at level 10 in the nucleotide PRG will start at that node. 

Expressed more formally, at each level each edge in the kMer PRG, representing one walk through 
the nucleotide PRG, ends in a separate node, unless there is second edge in the kMer PRG at the 
same level which represents a walk that is, apart from the first component, identical to the walk of 
the first edge. 

kMerification algorithm, introductory definitions: 

A) A kMer is defined as a word (string) of length k, consisting of the characters A, C, G, T and the 
symbol for ambiguity (“*”), or as a string of length 0. We refer to 0-length kMers as “gap” 
kMers. 
 
To transform a sequence of characters (consisting of the four nucleotide characters, gap (“_”) 
and ambiguity (“*”) symbols) of length L into a sequence of kMers, carry out the following 
algorithm for i = 1 .. (L-k+1): Starting from i and extending to the right, extract a substring of 
length >= k which contains exactly k non-gap characters. If the first symbol of the so-
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extracted substring is the “gap” symbol, we define the kMer emanating from position i to be 
the “gap” kMer. Otherwise, remove all “gap” symbols from the substring and we define the 
kMer emanating from position i to be equivalent to the substring. 
 (To give an example, transformation of the sequence AC_TAG into kMers of length 3 yields: 
“ACT”, “CTA”, “_”, “TAG”. “_” represents the gap kMer.) 
 
Whenever a kMer contains one or more wildcard characters, we substitute all non-wildcard 
symbols in the kMer with the wildcard character. (One wildcard character makes the whole 
kMer ambiguous; we make that definition because it simplifies downstream statistical 
analyses.) 
 

B) The definition of kMer-PRGs is identical to that of PRGs, with the exception that edges are 
labeled with kMers of length k (“kMer-edges”). k remains constant across a kMer-PRG.  
 

C) A subpath in the PRG is defined as a sequence of edges e1, e2 … of the structure e1 = (vx, vy), 
e2 = (vy, vz) … (we could thus also call a subpath a “walk” through the graph). The set of 
possible subpaths from the start vertex to one of the final vertices defines the set of possible 
emitted haplotypes. We could measure the length of a subpath by either the total number of 
included edges or by the length of included edges which carry non-gap characters. Here we 
use the second measure (kMerification has to “jump over” gap characters), i.e. we define the 
length of a subpath to be the number of included edges that are not labeled with gap 
characters. 
 
A subpath defines a sequence of emitted symbols and can thus be transformed into a 
sequence of kMers (if it is long enough). Specifically, a subpath of length k induces a kMer of 
length k).  
 

D) It is clear that each subpath of length k in the PRG has to exist as one kMer-edge in the kMer-
PRG. While building the kMer-PRG, we keep track of each kMer-edge’s underlying subpath 
and of the nodes and edges in the PRG that this subpath traverses. 
 

E) We define a function K(v) for all vertices v of the PRG that specifies a set of kMer-edges of 
the kMer-PRG that are attached to v. A kMer-edge can be attached to a node in the normal 
PRG if v is its underlying subpath’s second node (but not all kMer-edges have to be attached 
to a vertex). In implementing the algorithm, K(v) is the empty set for all vertices in the 
beginning and then extended iteratively while creating the kMer-PRG. 
 

We now describe the core algorithm for kMerification. kMerification works incrementally, i.e. we will 
move through the nucleotide PRG from left to right, creating nodes and edges of the kMer-PRG as we 
walk along. 

Informally, to define the initial set of kMer edges, we carry out a forward search for subpaths of 
length k starting at v0 of the PRG. 

Then, conditional on an existing set of edges of the kMer-PRG (each representing a walk ending in a 
node in the nucleotide PRG), we create the next level of kMer-PRG edges by extending the walks of 
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the edges of the present level by one character each (or by all possible one-character extensions, if 
there are multiple possible extensions). 

To define the set of nodes required at each level of the kMer-PRG, we remove the first element from 
the walks (through the nucleotide PRG) corresponding to the kMer-PRGs edges at that level, and we 
create one kMer-PRG node for each unique reduced walk. 

We stop once we have covered the complete PRG.  

kMerification algorithm: 

1) We initialize the kMer-PRG by creating a start vertex v0;kMer (we use the additional subscript 
to distinguish between v0 of the PRG and the start vertex of the kMer-PRG). We carry out a 
forward search (using standard algorithms) for subpaths of length k starting at v0 of the PRG. 
We create a kMer-edge for each found subpath, transform the underlying subpath sequence 
into a kMer and use this kMer as a label for the edge. We attach each created kMer-edge of 
the form (v0;kMer, vn) to v0;kMer and leave the endpoint vn undefined for the moment. 
 
We note that it is possible to have multiple kMer-edges carrying the same kMer as label (if 
the underlying subpaths are different). 
 
The edge probability distribution for the start node of the kMer-PRG is induced by the 
probabilities of the corresponding subpaths in the PRG. 
 
After creating edges for all subpaths emanating from v0, we compute the set of required 
vertices for the next level of the kMer-PRG, and attach the created edges to those vertices. 
We give the precise algorithm under point “C)”. 
 
This completes the kMerification of level 0 of the PRG. 
 

2) To kMerify levels i = 1 … (L – k) of the PRG: 
a) For each vertex v of l(v) = i in the PRG: 

• For each kMer-edge e = (vx, vy) in the set K(v): 
 
Informally, the set of kMer-edges emanating from node vy in the kMer-PRG is 
determined by how we can extend the subpath underlying e. 
 
Formally, the subpath underlying e has a defined last vertex vz (vz is a node of 
the PRG). We carry out a forward search for subpaths of length 1 starting at 
vz. Each subpath defines one possible extension for e and thus induces the 
creation of a kMer-edge ex (as in step “A)”, the endpoint vertices for these 
edges remain undefined for the moment).  
 
The subpath underlying ex consists of the subpath underlying e with its first 
symbol removed and extended by the subpath (of length 1) that induced the 
creation of ex. The label for ex is generated by computing the kMer induced 
by the subpath underlying ex. (In particular, this means that the edge will be 
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labeled with the “gap kMer” if the first symbol of the underlying subpath is a 
gap). 
 
The edge probability distribution at vy is induced by the conditional 
probability to follow the found subpaths, conditional on being at node vz. 
 

b) For the set of all kMer-edges created during the previous step “a”: 
 
Compute the set of required vertices for the next level I + 1 in the kMer-PRG, 
conditional on the set of kMer-edges created during the previous step, and attach 
the edges to their corresponding endpoint vertices (so far, these have remained 
undefined). We give the precise algorithm under point “3)”. 
 
 

3) We describe how to compute the set of required vertices for a level i + 1 of the kMer-PRG, 
based on the set Ei of kMer-edges emanating from nodes of level i of the kMer-PRG.  
 
The result of this step (as explained above) will be that all edges that have “nearly” identical 
corresponding subpaths in the nucleotide PRG will end in the same node, with “nearly” here 
meaning that they are identical in all steps but the first. 
 
Each e = (vm, vn) ∈ Ei has an associated subpath in the PRG of the form (e1,e2,e3..). We define 
the m1-subpath of a subpath (e1,e2,e3..) as (e2, e3..), i.e. equal to the original subpath without 
the first edge. 
 
Clearly, there is a set of m1-subpaths induced by the set of subpaths associated with the 
kMer-edges in Ei. We will create one vertex v at level l + 1 of the kMer-PRG for each unique 
m1-subpath (e2, e3..), and attach each kMer-edge to the vertex corresponding to the m1-
subpath of its subpath. 
 
We note that this means that the original subpaths of the edges that end up attached to one 
vertex are identical from the second position onwards. We will thus attach one of the edges 
attached to the same vertex to K(vx), with the m1-subpath of the edge being of the form (e2, 
e3..) and e2 = (vx, vy). 
 

4) As a post-processing step, mark all kMer-edges for which the underlying subpath includes 
edges that were marked as parts of the canonical reference sequence (see post-processing 
for the PRG construction algorithm). 
 
We also remove all subpaths that both consist exclusively of edges labeled with the wildcard 
character (“*”) and that can be removed without affecting the reachability of any subpath 
that is not exclusively labeled with wildcard symbols. 
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2.2 Edge compression 
Edges in the kMer-PRG are labeled with single kMers. There are regions in the graph where each 
vertex has exactly one outgoing and one incoming edge, i.e. regions which consist of sets of non-
branching subpaths. In a final transformation, we “compress” all such regions of the kMer-PRG into 
single edges, which are then labeled with (unordered) sets of kMer counts. We call the resulting 
graph the multi-PRG (“multi” because edges can be labeled with multiple kMers). 

Formally, the definition of a multi-PRG is equivalent to the definition of kMers-PRGs, with the 
exception that each edge is now labeled with sets of the form {(kMer1, count1), (kMer2, count2), …}, 
where kMer1, kMer2 .. are unique kMers and count1, count2 .. specify how often the associated kMer 
is emitted upon edge traversal (we call these edges “multi-edges”). 

Constructing a multi-PRG from a kMer-PRG is trivial. We give a short description of the algorithm. 

1) Transform the kMer-PRG into a structurally equivalent multi-PRG, simply by 
substituting all edge labels kMer with {(kMer, 1)}. 
 

2) Determine which regions from level ix to level iy in the multi-PRG satisfy the following 
criteria: 

a) All nodes at level ix have exactly one outgoing edge 
b) All nodes at level iy have exactly one incoming edge 
c) All nodes with level > ix and < iy have exactly one outgoing edge and one 

incoming edge. 
 

This implies that there is one and only one subpath connecting each node from level 
ix with a node from level iy (and vice versa). 
 

3) For all such regions from level ix to level iy: 
a) For all vertices vx from level ix: 

• Determine the subpath connecting vx to a node vy from level iy 
• Create a new multi-edge by forming the union (with counts) of the 

labels of all edges traversed by the subpath. The new multi-edge 
connects the first and the last node traversed by the subpath. 

• Delete all edges traversed by the subpath and all vertices traversed 
by the subpath except for the first and the last vertex.  
 

4) The level function becomes temporarily ill-defined during the previous steps. There 
are different ways to deal with this in implementations. We use a temporary 
relaxation of the definition of the level function (specifically, dropping the 
requirement that vertices connected by one edge need to be assigned to subsequent 
levels) and a post-processing step to create a definition-consistent level structure 
(informally, by re-counting levels from the beginning of the graph). 
 

5) As a post-processing step, mark all multi-edges created from edges that were 
marked for being part of the canonical reference sequence. 
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2.3 HMM 
Multi-PRGs can be transformed into Hidden Markov Models (HMMs). One key challenge is that 
kMers which appear as edge labels on multiple levels of the graph violate the assumption that 
emissions from different states of the HMM to be created are independent. We deal with this by 
removing those kMers.  

We and others have previously described how haplotype graphs can be transformed into haploid and 
diploid HMMs (see [1] and [2]), and we will only give a short informal description of this process 
here: each edge of the haplotype graph becomes a state in the HMM, and the emission probability 
distribution for each state is based on the underlying edge’s label. The resulting HMM will have a 
level structure analogous to that of the graph. State transition probabilities for the HMM are induced 
by the probability to move from one edge (vx, vy) to another edge (vy, vz) in the graph, i.e. by the edge 
probability distribution at vy. 

We note that a modified version of that transformation can be applied to multi-PRGs. The structural 
transformations (i.e. from edges in the multi-PRG to states in the HMM and the state transition 
probabilities) are identical to the original transformation, and we refer the reader to [1] for details. 

We now define the emission probability structure of the HMM. Specifically, we define the emission 
probabilities of an HMM state s with underlying multi-edge e = (vx, vy). We assume that there is a 
coverage parameter α and an error rate parameter β. α specifies the expected haploid coverage on 
kMers that are present in a sample genome being sequenced, and β specifies the expected haploid 
coverage on kMers present in the multi-PRG which are not present in the sample genome being 
sequenced (We define how to estimate these parameters below). 

1. Identify and remove from all edge labels kMers which 
• occur in the label sets of edges emanating from more than one level of the multi-PRG 
• occur in a region of a canonical reference genome not covered by the PRG 
• fail plausibility-based checks (see below) 

 
2. Compute the set Oi of all remaining kMers used in the edge label sets of edges emanating 

from any node at level l(vx) = i, excluding 
 

• “gap kMer” kMers (as “gap kMers” represent the empty string, they cannot generate 
an emission) 

• kMers with ambiguous symbols (this is a simplification we make on practical grounds 
and one of the reasons for why we try to eliminate those as far as possible). 

 
Each kMer kMer ∈ Oi has an observed sample count o(kMer). o(kMer) is calculated by 
counting the number of occurrences of the word kMer in the sequencing reads from a 
sample.  
 

3. We define the observed sample counts o(kMer) ∀kMer ∈ Oi as the data we will model for all 
states at the level of state s. 
 

4. The state s that we want to define an emission probability distribution for has a label, and 
that label is a set of the form {(kMer1, count1), (kMer2, count2), ..}. 
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We note that each kMer in Oi either appears in the label set for e, or not. 
 
If it appears in the label set for Oi as (kMer, count), we model the observed count o(kMer) 
with a Poisson distribution, with expected value α x count . 
 
If it does not appear in the label set for Oi (i.e. it is an error if we assume that s is the 
underlying state and the multi-PRG is a faithful representation of genomic variation), we 
model o(kMer) with a Poisson distribution with expected value β. 

2.3.1 kMer count plausibility checks 
In the ideal case, the PRG is a comprehensive representation of genomic variation. However, in 
practice it is likely that there is genetic variation which is not captured by the PRG, which may distort 
our statistical approaches. 

One important class of potentially confounding uncaptured variation is sequence duplication. In 
making inference, we generally exclude all kMers which occur in other parts of the reference genome 
or in other levels of the multi-PRG. Sequence duplication can have the effect that a kMer which we 
believe to be exclusively originating from one level of the multi-PRG is also present in another 
genomic location. That is, observed coverage on such a kMer not only comes from the multi-PRG, but 
also from other uncharacterized sources. One important symptom of this happening is excessive 
observed coverage on a kMer. Hence, for each kMer, we 

• assume that observed coverage in read data is modeled  by a Poisson distribution, with mean 
proportional to general kMer coverage and the kMer’s underlying genomic count 

• assume a uniform prior on the kMer’s underlying genome count (ranging from 0 to at least 2 
x the maximum number of occurrences of the kMer in any state of the multi-PRG) 

• combine prior and Poisson model to obtain a posterior probability of underlying genome 
count for each kMer 

• sum over all values of that posterior between 0 and ( [maximum count of that kMer in any 
state of the multi-PRG] +2 )  

• exclude the kMer if that sum is < 0.5. 

2.3.2 Simplification 
It is not uncommon to observe levels with thousands of states in the haploid HMM, and the number 
of states at a particular level increases by power 2 in the diploid version of the HMM (see [1] for the 
algorithm for creating a diploid version of the HMM). 
 
We employ a simplification algorithm prior to applying the model to sample data: before creating the 
diploid HMM, we examine all edges of the multi-PRG. For each edge, we determine the fraction of 
kMers specified (weighted by counts) with no coverage in the sample (i.e. o(kMer) = 0). If this 
proportion is ≥ 0.5, we delete the edge – unless it was marked for being part of the canonical 
reference genome. (The rationale for this is to always have at least one remaining path even if 
coverage is 0. The canonical reference genome is thus the fallback path for the model.)  
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2.3.3 Estimation of α and β 
We estimate α, the coverage parameter, and β, the error rate parameter, from the multi-PRG. 

For estimating α, we identify levels of the multi-PRG at which there is only one edge defined per 
level. If the multi-PRG faithfully reflects the underlying genome, all of these edges have to have 
diploid coverage. We sum over the observed sample coverage of the kMers specified by these edges 
and divide them by the sum of the edge-label specified kMer counts and a factor of 2. 

For estimating β, we employ a simple greedy heuristic algorithm. We select (typically ~ 200) levels of 
the multi-PRG according to these criteria: 

• There are exactly two defined edges 
• Both edges have the same number of non-gap non-ambiguous kMers (the label set element 

(kMer, count) contributes count to the kMer count of an edge). 

We take α as estimated previously and start with an initial value for β (typically a small value below 
1%). 
 
At each selected level individually, we fit a simple Poisson model allowing for the three diploid 
“genotypes” defined by the two haploid edges (we use the same model as for the HMM emission 
probabilities, described earlier; this is conditional on current values of α and β). We select the 
maximum likelihood (ML) “genotype” call and treat coverage on edges not covered by the ML call as 
error. 

After application to all selected levels, we sum over the total coverage on kMers not present on the 
edges of the ML calls, and divide it by the total number of kMers not present on these edges (i.e. a 
rate specifying how much coverage the kMers on edges which are likely not in the underlying 
genome receive). This gives us a new estimate for β. We repeat the estimation procedure, now 
conditional on the updated value of β, until the improvement in “total likelihood” of the data (here 
defined as the product of the likelihoods of the per-level ML calls) from one iteration to the next falls 
below a threshold. 

2.4 Chromotypes 

2.4.1 Path inference 
Standard statistical algorithms for HMMs can be applied to the defined HMM. Specifically, the Viterbi 
algorithm enables inference of one (diploid) Maximum Likelihood path through the model, and the 
Forward algorithm can be used to sample from the posterior distribution of paths [3]. 

The inferred diploid path is initially based on the multi-PRG, but can be mapped back unambiguously 
to equivalent traversals of the kMer- and nucleotide PRGs (each state of the [diploid] HMM is 
equivalent to two edges [one for each haploid traversal of the PRG] in the multi-PRG, and the 
transformation process from nucleotide PRG to multi-PRG can be reversed). 

By concatenating the symbols emitted by the edges traversed by the ML diploid path through the 
nucleotide PRG, we create two “personalized reference haplotypes”. 

However, the inferred diploid ML path (and hence the personalized reference haplotypes) loses 
phase at positions at which the underlying haploid HMM states are identical (that is, at positions at 
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which both haplotypes traverse the same multi-PRG edge). “Loses phase” means that another diploid 
path, generated from the original path by flipping the two contained haploid paths after a position at 
which phase is lost, is statistically identical to the original path. For each Viterbi diploid path, we have 
thus a set of equally good diploid traversals which are identical to the Viterbi path in the edges that 
they traverse at each level, but not in haplotypic phase between different levels. 

2.4.2 Chromotypes 
Chromotypes are a data structure to represent chromosomal genotypes at different levels of 
haplotypic resolution. The formal definition of a chromotype is that it is a PRG with not more than 
two edges at each level (as shown in the pictures below).  

 

 
Chromotype A 
 

 
Chromotype B 
 

A diploid genome can be represented as two independent, completely resolved paths (“Chromotype 
B”), or as a sequence of homozygous stretches and heterozygous bubbles (“Chromotype A”) with 
phase lost whenever the chromotype enters a bubble – or as a mixture of the two approaches. 

Chromotypes are a data structure well-suited to represent the set of Viterbi-equivalent diploid PRG 
traversals: 

• Based on the state sequence of the diploid HMM, compute the equivalent two paths 
through the multi-PRG, and then the equivalent two paths through the kMer-PRG. 

• Each path (traversal) if a sequence of nodes and edges through the kMer-PRG. 
• Create a (kMer) chromotype by combining the nodes and edges (and their connectivity) 

from the two traversals into one new graph. Nodes and edges appearing in both paths will 
appear only once in the chromotype. If an edge or node appears in both haploid paths, it is 
to appear only once. 

• If desired, this (kMer) chromotype can be converted to a nucleotide chromotype, for every 
kMer edge is equivalent to a subpath through the nucleotide PRG. 

Chromotypes so-generated are subgraphs of the original PRG, describing an individual’s 
chromosomal genotype. 

Chromotypes can also be created from sets of aligned strings. In the pipeline described here, this 
happens after read re-mapping to the Viterbi chromotypes – we use the re-mapped reads to identify 
new variants not yet represented in the PRG, but the discovery pipeline cannot deal with diploid 
reference genomes. Hence, we map to the personalized reference haplotypes, and modify the two 
strings according to the variants discovered. As a final step, we recombine the two modified 
haplotype strings back into a chromotype. 
 
To create a (nucleotide) chromotype from two aligned strings, begin with a chromotype that has one 
start vertex and two completely resolved branches (encoding the two aligned strings) without 
branches.  At each level, fuse nodes and edges of the two branches if the next k edge labels are 
identical for both branches. 
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2.4.3 VCF creation 
We note that the two personalized haplotypes imply a genotype at each position of the original MSA. 
It is sometimes desirable to express this information in VCF format. We give a sketch of the heuristic 
that we use to express one personalized reference haplotype in VCF format (the diploid case with 
two haplotypes follows then immediately). 

There is a canonical reference which the VCF will refer to, also present as a row in the MSA used to 
create the PRG (in our case, this would be the chromosome 6 xMHC reference sequence “PGF”). At 
each column in the MSA, the canonical reference will either carry a specified non-gap character or a 
gap symbol. 

For positions in the MSA at which the canonical reference is non-gap, creating the VCF for an inferred 
genotype is trivial. This includes cases in which the genotype to be expressed is a gap, but the 
canonical reference is non-gap – this means that the genotype to be expressed carries a deletion 
with respect to the reference, and all that is necessary is to find the starting position of the deletion 
with respect to the canonical reference. This is usually the first non-gap position to the left of the 
deletion in the haplotype to be expressed in a VCF, at which the canonical reference is also non-gap. 

Positions where the haplotype to be expressed is non-gap, but the reference is gap, represent 
insertions in the haplotype with respect to the reference. In VCF format, insertions are usually 
expressed as longer alternative alleles at the position before the first inserted nucleotide. We can 
thus find the correct position for specifying an insertion by finding the first position to the left of the 
inserted sequence at which the reference row of the MSA is non-gap. 

When creating VCFs, our algorithm produces additional files and annotations, which specify the 
positions in the MSA a variant in the VCF refers to. 

3 Novel variant detection 

3.1 Mapping reads to the personalized reference 
After inferring two “personalized reference” haplotypes, using sequence read data from an 
individual, it is often desirable to use classical read-mapping tools to map the reads to the two 
personalized haplotypes. This enables the discovery of additional variants not yet present in the PRG, 
and can also be used as an additional step of quality control (regions of the personalized haplotypes 
with no coverage are generally less likely to faithfully represent the underlying genome than regions 
with good coverage). 

We apply the following pipeline steps: 

1. Create two “personalized reference genomes” by excising the region covered by the PRG and 
inserting the inferred personalized reference haplotypes. 

2. Map read data from an individual independently to both personalized reference genomes. 
Mate-pair information could be used in this step. Our current implementation, however, 
ignores mate-pair information, for it cannot be assumed that the two inferred reference 
haplotypes correctly reflect long-range phase. 
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3. For each read mapped to the region covered by the graph, make a decision as to what 
personalized reference haplotypes it is likely to correspond to. We employ the following 
heuristic: 

a) If a read is mapped to the region covered by the graph in only one personalized 
reference genome, assume that the read comes from the corresponding haplotype. 
As the rest of the reference genome remains unchanged, this implies that the 
mapping quality of the read over the region covered by the graph is higher than that 
of the read over alternative locations.  

b) If the read maps to the region in both personalized reference genomes, use the 
mapping quality produced by the alignment software (and possibly other criteria like 
edit distance between read and the employed reference genome) to decide which of 
the two haplotypes the read should map to. 

c) In cases of equal fit, choose uniformly. 
4. Create two BAM files, covering the two personalized reference sequences and containing the 

reads mapped to each haplotype (from step 3). 
5. Apply a variant-calling algorithm to the two BAM files, resulting in two VCF files. 
6. Modify the two personalized reference haplotypes according to the produced VCF files (see 

below). 
7. Finally, produce a VCF file representing the two modified personalized reference haplotypes 

(see Section “VCF creation”) and the corresponding chromotypes (see Section 
“Chromotypes”). 

3.2 VCF-based reference haplotype modification 
Step 6 of the algorithm specified above results in two VCF files, and we want to use the information 
from these VCF files to modify our personalized reference haplotypes. 

We have developed a heuristic that solves this task to satisfactory degrees of accuracy (see the 
validation results presented in the main paper). However, we recognize the limitations of our 
approach. On a fundamental level, existing read mapping and variant calling tools cannot deal with 
diploid references, and this leads to complications in downstream analyses of the results. 

The VCFs we want to use to modify the personalized haplotypes may specify insertions, deletions and 
single-nucleotide differences. We note that the two personalized reference haplotypes live in the 
coordinate space defined by the MSA. For each position in the MSA, we will now compute a set of 
implied novel genotypes (that is, implied by the VCFs based on the personalized reference 
haplotypes). We note that we need to allow for multi-character alleles in the columns of the MSA – 
to deal with insertions implied by the VCFs, for which there might be “no space” in the existing MSA 
coordinate system. The algorithm described under “VCF creation” can deal with multi-character 
alleles with small modifications. 

We now describe how to integrate variants of different types into the two haplotypes. For each 
variant, the VCF it comes from will specify a position that it begins at; this position is relative to the 
personalized reference used a base for mapping, and can thus be translated into MSA coordinates. 
Note that each VCF will specify two alleles for each position; we will thus end up with up to four 
specified alleles at each position. 
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• Single-nucleotide differences: add the implied alleles to the set of implied alleles in the 
corresponding column of the MSA. 

• Deletions: add the implied alleles (i.e., gap characters) to the set of implied alleles in the 
corresponding column of the MSA. 

• Insertions: it might be that our original personalized haplotype called a deletion where there 
really is no deletion; and the VCF we analyze might reflect this by specifying an insertion at 
that position. We want to make sure that we place the characters specified by the insertion 
in the right columns of the MSA. Thus, 

o Find the beginning of the insertion and the first character after the insertion, relative 
to the personalized haplotype, in the MSA. 

o If there are no gaps between these characters, simply amend the column relating to 
the beginning of the insertion with the inserted characters. 

o If there are gaps between these characters, temporarily fill the gap characters with 
the characters that the canonical reference specifies at these positions; use the 
Needleman-Wunsch algorithm [4] to align the canonical reference characters to the 
inserted allele; use this alignment to map each inserted character to a position in the 
MSA. 

In the algorithm described, we have made no attempt to determine whether novel alleles should be 
integrated into the first or the second personalized reference sequence. We use a heuristic that tries 
to integrate variants in the haplotype that led to the generation of the variant-implying VCF; in most 
cases, however, the novel variants are SNPs and there is no (locally phase-determining) information  
to determine the haplotype of origin. 

3.3 Current components 
The above description of the algorithm does not assume the utilization of particular read mapping or 
variant calling tool. In our current implementation, we use BWA [5] for mapping and Platypus for 
variant calling. We also use samtools [6] for some of the intermediate steps. 

4 Graph alignment and validation 

4.1 A mapping algorithm for PRGs 
The aim in conventional sequence alignment is to identify regions of homology (or more generally, 
similarity, according to a score function) between two sequences.  In the context of the analysis of 
next-generation sequencing data analysis, sequence alignment (or mapping) between the sequence 
of a read and the reference genome is used to identify the putative genomic origin of the read.  

The alignment problem exists for PRGs, too: identify regions of homology between a given sequence 
(henceforth called “query sequence”) and a population reference graph. There are two challenges. 
First, PRGs specify a set of possible paths through the graph, and the query sequence could align to 
any of these paths. Second, PRGs can comprise “gap” edges – so the optimal alignment would specify 
“gap” symbols whenever a “gap” edge is traversed, but without penalizing them in the way normal 
gaps in the alignment are typically penalized. 

To address these challenges, we have developed a generalization of the Needleman-Wunsch 
algorithm for global sequence alignment. We have also developed a set of approximations to reduce 
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the computational complexity of the algorithm, enabling the alignment of query sequences on the 
order of thousands of bases to PRGs on the order of millions of levels (i.e. regions or genomes 
Megabases in size). 

4.1.1 Statement of the problem 
There is a query sequence Q=(q1,…,qNQ) consisting of NQ characters from the alphabet  {“A”, “C”, 

“G”, “T”} and a PRG G = (V, E). 

Define Psub as the set of possible subpaths (va,vb)(vb,vc)…(vm,vn) through the graph (for definition of 
“subpath”, see Section “kMerification”) and let Ptraversal contain all elements of Psub for which va is the 
start vertex and vn is one of the final vertices. Informally, the set Ptraversal contains all complete 
traversals of the graph. 

Define a symbol g2 which is neither contained in the query alphabet nor exists in E or as a label of one 
of the edges in E. g2 denotes the “gap” symbols introduced during the alignment process, which will 
be penalized, and, importantly, it is by definition different from the “gap” symbols already contained 
in G. 

We call A = (Q’, E’) an alignment of query sequence Q to PRG G of length AL if  

(1) A = (Q’, E’) = ((Q’1, Q’2, ..,Q'𝐴𝐿), (E’1, E’2, .., E'𝐴𝐿)), with 
(2) Q’x ∈ {“A”, “C”, “G”, “T”, g2} ∀x ∈{1 … AL}, and 
(3) E’x  ∈ E ∪{g2} ∀x ∈{1 … AL } 
(4) Q’ can be formed by inserting an arbitrary number (including 0) of g2 elements into Q 
(5) E’ can be formed by inserting an arbitrary number of g2 elements into an element of Ptraversal 
(6) There is no position x in the alignment with Q’x = E’x = g2. 

 

For a given PRG and a given query sequence Q, define Aall(Q, G) as the (finite) set of possible 
alignments, 

The alignment problem is to maximize a score function SCORE(𝐴) → ℝ on the set of possible 
alignments Aall(Q, G). 

4.1.2 Scoring 
Alignment scoring functions SCORE(𝐴) → ℝ for A ∈ Aall(Q, G) can assume arbitrary form (we require 
that higher scores for a given pair A, G indicate better alignment quality, i.e. we want to maximize 
SCORE to find a good alignment). 

From standard sequence alignment, however, it is well-known [7] that scoring functions of certain 
forms are amenable to efficient optimization via dynamic programming, in particular those which 
assign a fixed score to every column in the alignment with identical characters (“matches”), a fixed 
score to every column in the alignment with non-identical, non-gap characters (“mismatches”), and 
either a fixed or a linear score to every column containing gap characters. In the linear gap score case 
(“affine gap penalties”), the first gap in a sequence typically gets a lower score (“gap opening 
penalty”) than all subsequent gaps in the same sequence (“gap extension penalty”). 
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We will now define equivalent scoring functions for graph alignment. We define the function label(x) 
as the label of edge x if x is an edge, and as the empty string “” if x is equal to g2. We need to make 
special provisions for the case where label(e) for an edge e is the “gap” symbol from the PRG. 

4.1.2.1 Non-affine gap penalties 
Let a score function SCORE(A) = SCORE(Q’, E’) assume the following form 

SCORE(𝑄′, 𝐸′) =  � SCORE_POS(𝑄′
𝑥 ,  𝐸′

𝑥)
𝐴𝐿

𝑥=1

 

with 

 

SCORE_POS�𝑄′
𝑥 ,  𝐸′

𝑥� 

=

⎩
⎪⎪
⎨

⎪⎪
⎧(label(𝐸′

𝑥) = "_") → �
(𝑄′

𝑥 = 𝑔2) → 0                                                                                                   
(𝑄′

𝑥 ≠ 𝑔2)→  𝑆𝐶𝑂𝑅𝐸_𝑀𝐼𝑆𝑀𝐴𝑇𝐶𝐻                                                                             
�

(label(𝐸′
𝑥) ≠ "_")→

⎩
⎪
⎨

⎪
⎧ (𝑄′

𝑥 = 𝑔2) ∨ (𝐸′
𝑥 = 𝑔2)  → SCORE_GAP                                                     

¬[(𝑄′
𝑥 = 𝑔2) ∨ (𝐸′

𝑥 = 𝑔2)]→ �
𝑄′

𝑥 = label(𝐸′
𝑥) →  𝑆𝐶𝑂𝑅𝐸_𝑀𝐴𝑇𝐶𝐻        

𝑄′
𝑥 ≠ label(𝐸′

𝑥) → 𝑆𝐶𝑂𝑅𝐸_𝑀𝐼𝑆𝑀𝐴𝑇𝐶𝐻
�
�  

� 

 

We note that we assign score 0 to columns in which the traversed edge carries the “gap” symbol and 
in which the corresponding sequence column carries the (alignment-induced) gap-symbol g2. Thus, 
the scoring function will neither reward nor penalize such columns, if SCORE_MATCH > 0 and 
SCORE_MISMATCH and SCORE_GAP< 0.  

4.1.2.2 Ends-free alignment scores 
Ends-free alignment as defined here is typically applied if the query sequence is much shorter than 
the graph; the effects are (1) that the gaps which are necessary to extend Q to at least the graph’s 
length do not get penalized and (2) to favour “dense” alignments in which there are not many gaps 
between the original characters of Q. 

Formally, in ends-free alignment, SCORE_GAP = 0 for position x if 𝑄′
𝑥 = 𝑔2 and 

∀𝑥2 ∈ {1 . . 𝑥}: 𝑄′
𝑥2

= 𝑔2 or if 𝑄′
𝑥 = 𝑔2 and ∀𝑥2 ∈ {𝑥 . . 𝐴𝐿}: 𝑄′

𝑥2
= 𝑔2. 

4.1.2.3 Affine gap penalties 
In affine-gap alignment, the first gap in a continuous sequence of gaps is typically scored differently 
from the subsequent gaps. “Opening” a gap is typically associated with a higher penalty than 
“continuing” a gap. Traversing a sequence of “graph gaps” should not end an affine gap in query 
sequence space. 

SCORE(𝑄′, 𝐸′) =  � SCORE_POS(𝑥, 𝑄′
𝑥 ,  𝐸′

𝑥)
𝐴𝐿

𝑥=1
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For x = 0, IS_IN_AFFINE_SEQUENCE_GAP(x) and IS_IN_AFFINE_GRAPH_GAP(x) are defined as false. 

We summarize the effect of these scoring functions: 

• For columns with two non-gap characters, we add either SCORE_MATCH or 
SCORE_MISMATCH. 

• g2 characters in E’ are always penalized as gaps, and the first such character in a sequence 
typically more strongly so than the following characters. 

• g2 characters in Q’ are only penalized as gaps if the corresponding character in E’ is not the 
“gap” character “_”. 
 
In this case (i.e. if the g2 character is penalized), it is determined whether this g2 character is 
the first one of an affine sequence gap, and a penalty is assigned accordingly. 
 
Affine sequence gaps can span columns in which E’ contains “_” symbols. In terms of the 
definitions made above, an alignment position 𝑥 is only part of an affine sequence gap if 
conditions  𝐶𝐴(𝑥, 𝑥2), 𝐶𝐵(𝑥, 𝑥2) and 𝐶𝐶(𝑥, 𝑥2) are all true for 𝑥 and a 𝑥2 < x: 
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o  𝐶𝐴(𝑥, 𝑥2): true if 𝑥2 < x 
o 𝐶𝐵(𝑥, 𝑥2): true if at  𝑥2 a sequence gap is initiated, i.e. there is a gap in the query 

sequence but no gap in the graph sequence at that position 
o 𝐶𝐶(𝑥, 𝑥2): true if the gap initiated at 𝑥2 can be extended to 𝑥, i.e. all graph alignment 

positions in between carry either a defined graph character or a “_” graph gap 
symbol, and all sequence alignment positions in between carry a gap symbol. 

 
Note that cases in which both Q’ and E’ carry the g2 character at a column are also invalid by 
definition.  

4.1.3 Maximization 
The solution to the alignment problem is found by maximizing the supplied scoring function over the 
set of all possible alignments Aall(Q, G). 

For the scoring functions described above, the maximization can be carried out by a dynamic 
programming algorithm, very similar to the Needleman-Wunsch algorithm. 

The main difference is that the Needleman-Wunsch algorithm utilizes a two-dimensional matrix of 
scalars, whereas we utilize a two-dimensional matrix of vectors. For the Needleman-Wunsch 
algorithm, the value in cell (x,y) of the scoring matrix is defined as the maximum score attainable 
after having consumed x characters from the reference sequence and y characters from the query 
sequence. For our algorithm, each cell carries a vector, and we index the values in this vector by a 
third coordinate. Value (x, y, z) is then defined as the maximum score attainable after having 
consumed x levels from the graph, y characters from the query sequence, and ending up in vertex z 
of level x of the graph. 

4.1.3.1 Computation for non-affine gap penalties 
PRG G has L levels, and query sequence Q has NQ characters. 

At each level l of G, let Zl be the number of vertices at this level. Use the integers 1 .. Zl to arbitrarily 
enumerate the vertices of each level l, and define two index functions that map between vertices 
and their associated indices and vice versa: 

vertex2index(v)  →  z, z ∈{1 .. Zl} 

index2vertex(l, z)  →  v, v ∈ V, l(v) = l 

Now define a (NQ + 1) x L matrix denoted M. Each cell (qi, l) contains a vector of length Zl. (We use l to 
index levels of the graph, and we use qi to index positions within query sequence Q). We use the 
notation M(qi, l, z) to denote the z-th value of the vector in cell (qi, l). 

For the purpose of this section, we use 0-based indices to index M, the graph and Zl. For example, Z0 
refers to the number of vertices at the first level of the graph. Individual vertices, however, are 
indexed using 1-based indices, i.e. the first vertex at a level has the index 1. 

We define auxiliary set functions that map a vertex to its potential ancestors and potential 
predecessors, along the graph. 

vertex_previous(v) = { v2 ∈V | (v2, v) ∈E } 
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vertex_next(v) = { v2 ∈V | (v, v2) ∈E } 

By definition, the previous and next vertices for v are one level below / one level above v. 

We will fill M cell-by-cell. (qi, l, z) shall be the maximum attainable score after having consumed qi 
characters from Q, l levels from G and ending up in the z-th node at level l of G. 

 We initialize M: 

• Origin: For all z∈ (1 .. Z0), set 
 
 M(0, 0, z) = 0. 
 

• Gaps along the graph coordinate: For all l ∈ (1 … [L – 1]) and z ∈ (1 .. Zl), set 
 

M(0, l, z) = 
 max
𝑣 ∈ vertex_previous(index2vertex(l, z))

�𝑀�0, 𝑙 − 1,vertex2index(𝑣)� + SCORE_POS(𝑔2,(v,index2vertex(l, z)))� 

 
• Gaps along the query sequence coordinate: For all qi ∈ (1 … NQ) and z ∈ (1 .. Z0), set 

 
M(𝑞𝑖 , 0, z) =  𝑀(𝑞𝑖 − 1,0, 𝑧) + SCORE_POS(𝑄𝑞𝑖 , 𝑔2) 

 

We progressively fill M using a nested loop, in the order specified: 
 

For each l ∈ (1 … [L – 1]), for each qi ∈ (1 … NQ), for each z ∈ (1 .. Zl): 
 
Define 𝑣𝑃 =  vertex_previous(index2vertex(𝑙, 𝑧)). 
 

MA = max𝑣 ∈ 𝑣𝑃�𝑀�𝑞𝑖 , 𝑙 − 1,vertex2index(𝑣)� + SCORE_POS(𝑔2,(v,index2vertex(l, z)))� 
 
MB =  𝑀(𝑞𝑖 − 1, 𝑙, 𝑧) + SCORE_POS(𝑄𝑞𝑖 , 𝑔2) 

MC = max𝑣 ∈ 𝑣𝑃�𝑀�𝑞𝑖 − 1, 𝑙 − 1,vertex2index(𝑣)� + SCORE_POS(𝑄𝑞𝑖 ,(v,index2vertex(l, z)))� 
 
M(𝑞𝑖 , 𝑙, 𝑧) = max (MA,MB,MC) 

(If there are pairs of vertices connected by more than one edge, the maximization in MA and MC 

needs to be carried out explicitly over edges, instead of nodes at the previous level). 

In this recursion, MA is the “gap in query sequence” step, MB is the “gap in graph” step, and MC is the 
“match or mismatch” step.   

The final maximum is max𝑧 ∈{1..𝑍𝐿−1} 𝑀(𝑁𝑄 , 𝐿 − 1, 𝑧), and backtracking, analogous to the classical 
Needleman-Wunsch, will identify the corresponding alignment. This is easily implemented by having 
a second matrix, in dimensionality equivalent to M, which stores which coordinates each maximum 
was drawn from. 
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4.1.3.2 Computation for affine gap penalties 
In classical sequence alignment, affine gap penalties are realized by progressively filling three 
matrices: one matrix for paths that end in an affine “query sequence” gap, one matrix for paths that 
end in an affine “reference sequence” gap, and finally one matrix for paths that end arbitrarily, 
including those that end with a match or mismatch. Jumps between these matrices are allowed 
where appropriate according to these definitions. For example, the third matrix would always 
contain the maximum value of all three matrices for any given coordinate. We shall now proceed 
accordingly, but extend the classical framework to deal with graphs. 

We use all definitions from the previous section where appropriate but instead of M, we now define 
three matrices MD, MG and MS, all of dimensionality (NQ + 1) x L. As for M, each cell in these matrices 
contains a vector with as many elements as there are nodes at the corresponding level of the graph. 

MG (qi, l, z) shall contain the maximum attainable score of all paths ending in an affine graph gap (i.e. 
a gap in between levels of the graph, consuming a character of the query sequence), after having 
consumed qi characters from Q, l levels from G and ending up in the z-th node at level l of G. MS (qi, l, 
z) shall contain the equivalent score for paths ending in an affine sequence gap. Finally, MD (qi, l, z) 
shall contain the equivalent score for paths ending arbitrarily. 

We note that we need to make sure that the algorithm implements the provisions we specified in 
Section “Scoring” for edges carrying the graph “gap” symbol. Importantly, affine sequence gaps can 
go “through” such edges, but they must not begin by traversing them. 

Initialization: 

• Origin: For all z∈ (1 .. Z0), set 
 
𝑀𝐷(0,0, 𝑧) = 0 
𝑀𝐺(0,0, 𝑧) = −∞ 
𝑀𝑆(0,0, 𝑧) = −∞ 
 

• Sequence gaps (along the graph coordinate): For all l ∈ (1 … [L – 1]) and z ∈ (1 .. Zl):  
 
Define: 
 
𝑣𝑃 =  vertex_previous�index2vertex(𝑙, 𝑧)� 
𝑒𝑃 = �(𝑣𝑥 , 𝑣𝑦)  ∈ 𝐸 � �𝑣𝑥 ∈ 𝑣𝑝� ∧ (𝑣𝑦 = index2vertex(𝑙, 𝑧)) } 
 

GAPSCORE ��𝑣𝑥, 𝑣𝑦�, 𝑚� =

⎩
⎪
⎨

⎪
⎧𝑚 = "𝑜" → �

label(�𝑣𝑥, 𝑣𝑦�) ≠ "_" → SCORE_GAP_OPEN

label ��𝑣𝑥, 𝑣𝑦�� = "_"→ -∞                               
�          

𝑚 = "𝑒" → �
label(�𝑣𝑥, 𝑣𝑦�) ≠ "_" → SCORE_GAP_EXTEND      

label ��𝑣𝑥, 𝑣𝑦�� = "_"→ 0                                             
�

� 

 
GAP_S_OPEN = max

(𝑣𝑥,𝑣𝑦) ∈𝑒𝑃
�𝑀𝐷�0, 𝑙 − 1,vertex2index(𝑣𝑥)� + GAPSCORE(�𝑣𝑥, 𝑣𝑦�, "𝑜")� 

GAP_S_EXTEND = max
(𝑣𝑥,𝑣𝑦) ∈𝑒𝑃

�𝑀𝑆�0, 𝑙 − 1,vertex2index(𝑣𝑥)� + GAPSCORE(�𝑣𝑥, 𝑣𝑦�, "𝑒")� 
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Set: 
 

𝑀𝑆(0, l, z) = max (GAP_S_OPEN, GAP_S_EXTEND) 
 
𝑀𝐺(0, l, z) = −∞ 
 
𝑀𝐷(0, l, z) = max (𝑀𝑆(0, l, z), 𝑀𝐺(0, l, z)) 
 

 

• Graph gaps: For all qi ∈ (1 … NQ) and z ∈ (1 .. Z0): 
 
Define: 
 
GAP_G_OPEN = 𝑀𝐷(𝑞𝑖 − 1, 0, 𝑧) + SCORE_GAP_OPEN 
GAP_G_EXTEND = 𝑀𝐺(𝑞𝑖 − 1, 0, 𝑧) + SCORE_GAP_EXTEND 
 
Set: 
 

𝑀𝐺(𝑞𝑖 , 0, z) = max(GAP_G_OPEN, GAP_G_EXTEND) 
 

𝑀𝑆(𝑞𝑖 , 0, z) = −∞ 
 

𝑀𝐷(𝑞𝑖 , 0, z) = max (𝑀𝑆(𝑞𝑖 , 0, z), 𝑀𝐺(𝑞𝑖 , 0, z))  

 
We progressively fill the three matrices using a nested loop, in the order specified: 

For each l ∈ (1 … [L – 1]), for each qi ∈ (1 … NQ), for each z ∈ (1 .. Zl): 

MS: 
 
Define: 
 
𝑣𝑃 =  vertex_previous�index2vertex(𝑙, 𝑧)� 
𝑒𝑃 = ��𝑣𝑥 , 𝑣𝑦� ∈ 𝐸 � �𝑣𝑥 ∈ 𝑣𝑝� ∧ (𝑣𝑦 = index2vertex(𝑙, 𝑧)) } 

GAPSCORE ��𝑣𝑥 , 𝑣𝑦�, 𝑚� =

⎩
⎨

⎧ 𝑚 = "𝑜" → �label(�𝑣𝑥 , 𝑣𝑦�) ≠ "_" → SCORE_GAP_OPEN
else → -∞

�

𝑚 = "𝑒" → �label(�𝑣𝑥 , 𝑣𝑦�) ≠ "_" → SCORE_GAP_EXTEND
else → 0

�
� 

GAP_S_OPEN = max
(𝑣𝑥,𝑣𝑦) ∈𝑒𝑃

�𝑀𝐷�𝑞𝑖 , 𝑙 − 1,vertex2index(𝑣𝑥)� + GAPSCORE(�𝑣𝑥, 𝑣𝑦�, "𝑜")� 

GAP_S_EXTEND = max
(𝑣𝑥,𝑣𝑦) ∈𝑒𝑃

�𝑀𝑆�𝑞𝑖 , 𝑙 − 1,vertex2index(𝑣𝑥)� + GAPSCORE(�𝑣𝑥, 𝑣𝑦�, "𝑒")� 

 

Set: 
 

𝑀𝑆(𝑞𝑖 , l, z) = max(GAP_S_OPEN, GAP_S_EXTEND) 
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MG: 

Define: 

GAP_G_OPEN = 𝑀𝐷(𝑞𝑖 − 1, 𝑙, 𝑧) + SCORE_GAP_OPEN 
GAP_G_EXTEND = 𝑀𝐺(𝑞𝑖 − 1, 𝑙, 𝑧) + SCORE_GAP_EXTEND 
 
Set: 
 

𝑀𝐺(𝑞𝑖 , l, z) = max(GAP_G_OPEN, GAP_G_EXTEND) 
 

MD: 

Define: 
 
𝑣𝑃 =  vertex_previous�index2vertex(𝑙, 𝑧)� 
𝑒𝑃 = ��𝑣𝑥 , 𝑣𝑦� ∈ 𝐸 � �𝑣𝑥 ∈ 𝑣𝑝� ∧ (𝑣𝑦 = index2vertex(𝑙, 𝑧)) } 

MSCORE ��𝑣𝑥 , 𝑣𝑦�, 𝑐� = �
label(�𝑣𝑥 , 𝑣𝑦� = 𝑐 → SCORE_MATCH)

label(�𝑣𝑥 , 𝑣𝑦� ≠ 𝑐 → SCORE_MISMATCH
� 

BESTM = max
(𝑣𝑥,𝑣𝑦) ∈𝑒𝑃

�𝑀𝐷�𝑞𝑖 − 1, 𝑙 − 1,vertex2index(𝑣𝑥)� + MSCORE(�𝑣𝑥, 𝑣𝑦�, 𝑞𝑖)� 

 
𝑀𝐷(𝑞𝑖 , l, z) = max�BESTM, 𝑀𝑆(𝑞𝑖 , l, z), 𝑀𝐺(𝑞𝑖 , l, z)� 

 

The final maximum is max𝑧 ∈{1..𝑍𝐿−1} 𝑀𝐷(𝑁𝑄 , 𝐿 − 1, 𝑧), and backtracking will identify the 
corresponding alignment. For the affine-penalty algorithm, it is necessary to keep track not only of 
coordinates but also of the movements between the matrices. 

4.1.4 Parameterization 
In our implementation, we use the following parameterization: 

SCORE_MATCH = 2 
SCORE_MISMATCH = -5 
SCORE_GAP_OPEN = -4 
SCORE_GAP_EXTEND = -2 

4.1.5 Implementation 
The complexity of the described algorithm in in the class O((NQ + 1) x L x max(Zl x Z(l-1))) – i.e. 
practically inapplicable to problems of the scale we are most interested in: PRGs with millions of 
levels and query sequences ranging from hundreds to tens of thousands of nucleotides. 

We have thus developed a “seed and extend” approximation to the full algorithm, the key 
components of which we outline here. 
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Informally, we utilize stretches of sequence we can uniquely localize to constrain the alignment 
search space. Each such uniquely localized stretch relates to a particular subpath through the full 
alignment matrix, i.e. a defined combination of matches and gaps connecting one particular point in 
the alignment matrix with a second particular point in the alignment matrix. In order to complete the 
alignment, we need to connect these subpaths (a) to each other and (b) to the top-left and bottom-
right corners of the matrix, at which point all graph levels and query sequence characters will have 
been incorporated. 

4.1.5.1 Step 1: Chaining 
We scan through the query sequence from left to right and identify all exact and contiguous matches 
between subpaths in the PRG and the query sequence. Each subpath we refer to as a “chain”. 
 
To speed up this process, we kMerify the PRG that we map to, keeping track of the subpath spanned 
by each kMer. We store kMers and corresponding subpaths in a hash table. 

We require that each chain begin with an exact kMer match, and we extend each chain until we hit a 
mismatch. Of note, each kMer can initiate multiple chains. 

4.1.5.2 Step 2: Global chain filtering and fixing 
Each chain specifies a path through the main scoring matrices. If the divergence between query 
sequence and PRG is not too high (which we assume as the PRG / chromotypes we map to contain 
many population / individual variants), connecting and extending these chains in a sensible manner 
should yield a good alignment. 

We rate each chain by kMer double-uniqueness. That is, for each kMer we determine whether it 
occurs exactly once in the query sequence and exactly once in the PRG we map to. If both conditions 
are satisfied, we say that the kMer is double-unique. For each chain we determine the proportion of 
double-unique kMers, and we rank the chains according to this criterion. We store the ranked chains 
together with their proportion of uniqueness in a list structure we call AVAILABLE_CHAINS. 

If the mapping algorithm is run in deterministic mode, we carry out the following steps: 

1. Determine whether there are still chains in AVAILABLE_CHAINS (optionally meeting the 
criterion that the absolute number of double-unique kMers per chain is above a certain 
threshold – we currently use 1) – if not, terminate. 
 

2. Select the highest-ranked chain from AVAILABLE_CHAINS and store the corresponding 
alignment matrix subpath (i.e. the induced sequence of matches and gaps). 
 

3. Remove the selected chain from AVAILABLE_CHAINS and remove all other chains from 
that set which are incompatible with the selection. 
 
Incompatibility can be induced 1) by basic alignment structure as well as 2) by the properties 
of the PRG we align to. 
 
For the first point, consider fixing a chain which maps the first 10 kMers of the query 
sequence to levels 10 – 15 of the graph. It is clear that no following kMer (to the right of the 
ones already fixed) can be mapped to levels 1 – 9 of the graph.  
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For the second point, consider that not all edges in the PRG are necessarily reachable from all 
other edges, even if they are compatible in terms of levels. PRGs can, for example, contain 
long haplotypic paths with no connecting edges. If a fixed chain maps to the first of two such 
paths, no other chain can map to the second. 
 

4. Go to step 1. 

 If the algorithm is run in probabilistic mode, step 2 is replaced with a probabilistic selection, the 
chains weighted by optimality. 

4.1.5.3 Step 3: Recursive local chain filtering and fixing 
We now deal with the “squares” in between the fixed chains from Step 2 (and the area between the 
origin of the alignment matrix and the first chain, and between the last chain and the bottom-right 
corner of the alignment matrix). 

Each fixed chain from Step 2 has start- and endpoints, defined in terms of their (qi, l, z) coordinates. 
Each region between two chains from Step 2 has thus defined start- and endpoints with (qi, l) 
coordinates assigned, and we refer to these regions as “squares” (the z coordinates matter, too, but 
we nevertheless we stick with the two-dimensional metaphor).  

We now apply the algorithm from Step 2 to each square so-defined, modifying the measure of kMer 
uniqueness to only take into account uniqueness within the square (along the qi and l coordinates, 
i.e. we reduce our notion of uniqueness both in terms of levels of the graph and in terms of the query 
sequence ). 

This will typically enable us to fix more chains, and we recursively repeat this procedure for each 
square in between the new sets of chains until we can’t fix any more chains. 

4.1.5.4 Step 4: Chain extension 
We now use the global graph alignment (described earlier in this section) algorithm to try to fill the 
space in the remaining squares (squares between chains from Step 2 and Step 3). 

More formally, for each remaining square, we start running the global alignment algorithm at the 
start coordinates and (in reverse direction) at the end coordinates. We use affine gap penalties with 
the parameterization described earlier. We terminate the algorithm if either the square boundaries 
have been reached or if the total score has fallen below a certain threshold (-11). The algorithm also 
differs from the one described earlier in a couple of other points, most of them aimed at eliminating 
unpromising areas of the search space: 

• The scoring matrices are filled in diagonals. Each diagonal counts as one iteration, and the 
termination threshold refers to the maximum value achieved during the computation of one 
diagonal. 
 

• We also measure how many iterations (i.e., filled diagonals) ago the achieved maximum 
value over the complete search space was last increased, and if this number crosses a 
threshold (40), we terminate. 
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• We measure the maximum value achieved in one diagonal, and we prune all cells in the 
diagonal if the difference between the maximum and the cell value (in MD) is bigger than a 
threshold (15). Pruned cells are not considered as sources for the recursion equations when 
computing the next diagonal. 
 

• If the total maximum over the scanned area is achieved in multiple cells, we store all 
corresponding coordinates. If the reverse run started from the end coordinates hits one of 
the maximum points of the forward run started from the start coordinates, we also store the 
coordinates and the achieved score. 

When the forward and backward extension runs have terminated, we have obtained 

(1) a maximum achieved score for each run and where this was achieved 

(2) (potentially) where the reverse run hit the maxima of the forward run, and the associated scores. 

For notational convenience, let RF denote the set of coordinates from (1) and (2) from the forward 
run, and let RB denote the set of coordinates from (1) and (2) from the backward run. If the total 
maximum (1), however, is < 0 for a run, we will only include the start coordinates of the run in the 
corresponding set. 

We now consider the cross product RF x RB. For each combination of ends points {(𝑓𝑞𝑖 , 𝑓𝑙 , 𝑓𝑧), 
(𝑏𝑞𝑖 , 𝑏𝑙 , 𝑏𝑧)} ∈ (RF x RB), we 

• examine whether the combination of forward- and backward-derived coordinates is 
compatible, i.e. whether it is possible to connect the forward end point (𝑓𝑞𝑖 , 𝑓𝑙 , 𝑓𝑧) to the 
backward end point �𝑏𝑞𝑖 , 𝑏𝑙 , 𝑏𝑧� via a PRG-consistent alignment path in positive direction 
along the l and qi coordinates. 
 
(This path is typically a long sequence gap followed by a graph gap, or vice versa, unless 
𝑓𝑞𝑖 =  𝑏𝑞𝑖  or (𝑓𝑙 , 𝑓𝑧) = (𝑏𝑙 , 𝑏𝑧)). 
 
If there is no such path, we discard this combination. 
 

• If there is such a path, however, we compute the score for 
 

o the path from the forward extension start point (i.e. the top-left corner of the 
square) to the particular forward extension end point (𝑓𝑞𝑖 , 𝑓𝑙 , 𝑓𝑧) 
 

o the path from (𝑓𝑞𝑖 , 𝑓𝑙 , 𝑓𝑧), to (𝑏𝑞𝑖 , 𝑏𝑙 , 𝑏𝑧) 
 

o the path from (𝑏𝑞𝑖 , 𝑏𝑙 , 𝑏𝑧) to the backward extension start point (i.e. the bottom-
right corner of the square). 
 

• The three paths combined connect the start coordinate of the square to the end coordinate 
of the square, and the three scores combined determine the optimality of that particular way 
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of connecting the coordinates. In summing up the scores, we need to keep track of where 
affine gaps open and close. 
 

We finally select the combination that achieved the maximum score and use the corresponding path 
to connect the start coordinate of the square to the end coordinate of the square. (If multiple 
combinations achieve the same score, we make a random selection; if no combinations are 
compatible, we connect the start and the end coordinate of the square with gaps). 

4.1.5.5 Step 5: Backtracking 
We choose max𝑧 ∈{1..𝑍𝐿−1} 𝑀𝐷(𝑁𝑄 , 𝐿 − 1, 𝑧) as the final score of the algorithm, and we backtrack 
accordingly. 

4.1.5.6 Further points 
• To speed up the algorithm, in particular for short or medium-sized query sequences, it can be 

helpful to omit the computation of the optimal gap paths between the top-left corner of the 
alignment matrix and the first chain and the last chain and the bottom-right corner of the 
alignment matrix. 
 
To see why this makes sense, consider aligning a fragment of 1000 bases against a PRG of 5m 
bases: In the resulting global alignment, approximately 4.999m positions would be used to 
specify the gaps before and after the query sequence, and computing these gaps would 
typically be much more resource-intensive than the parts relating to the query sequence. 
 
(Graph alignment requires traversal of the graph, even if a sequence gap is to be inserted at a 
particular position – for the final score is influenced by whether the sequence gaps sit below 
edges labeled with the “gap” symbol or not). 
 

• The algorithm described in Step 2 (and hence that for Step 3) can, as specified, be run in 
probabilistic mode. We typically carry out one “deterministic” run (always selecting the chain 
with maximum double-uniqueness) and a number of “probabilistic” iterations (randomly 
selecting from a uniqueness-weighted selection of chains). 
 
As final result we select the iteration that achieved the highest score, and compare across 
iterations to compute measures of confidence. 
 
For example, for each character in the query sequence, we count in how many iterations it 
ends up being assigned to the same level of the PRG as in the chosen maximum iteration. 
This (to an extent) quantifies the uncertainty in placement of query characters. 
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4.2 Validation 

4.2.1 Chromotype disentanglement for kMer recovery validation 
For any two (or more) positions at which a chromotype loses phase (i.e. at nodes with two outgoing 
edges) within distance k (where k is the chosen kMer length for validating the chromotype against 
some sequencing data), we need to disentangle the chromotype prior to validation. 

After disentanglement, a chromotype induces a set of well-defined kMers, which we expect to find in 
sample sequencing data if the chromotype is a correct representation of sequence present in the 
sample. 

We employ a simple greedy algorithm for disentanglement. As our final criterion for assessing a 
chromotype is how many of the kMers can be recovered from sample data, our disentanglement 
procedure (locally) optimizes for this criterion. 

To prepare for disentanglement, we compartmentalize our chromotype so that all stretches between 
the phase breakpoints become one compartment (i.e. the compartments are separated by nodes 
with more than one outgoing edge). Each compartment can be either homozygous or heterozygous, 
depending on whether the stretch it spans has one or two nodes at each level. 

Now we move through the chromotype from the left to the right, carrying with us a set of unresolved 
haplotype pairs. If the first compartment of the chromotype is homozygous with sequence s1, we 
initialize the set HAPSET of pairs of haplotypes as {(s1, s1)}, or as {(s1, s2)}  if it is diploid with 
sequences s1 and s2. 

Moving from compartment i to compartment i + 1, we carry out the following procedure: 

• If compartment i + 1 is homozygous, append sequence s1 of compartment i + 1 to all 
haplotype pairs in HAPSET. 
 
If s1 contained k or more non-gap characters, call REDUCE. 
 
Set i = i + 1. 
 

• If compartment i + 1 is heterozygous, append sequences s1 and s2 to all members of HAPSET, 
once matching s1 with the first member of each haplotype pair and once with the second. 
That is, HAPSET doubles in size. 
 
If HAPSET has more than 100,000 members, call RESOLVE. 
 
Set i = i + 1. 

Before defining REDUCE and RESOLVE, we define OPTIMALITY((s1, s2)). OPTIMALITY computes the 
optimality of a haplotype pair (s1, s2) by 

• Removing all gaps from (s1, s2). 
• Dividing the number of kMers in (s1, s2) found in the sample data by the total number of 

kMers in (s1, s2). 
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• If there are 0 kMers in (s1, s2) (e.g. because both sequences have length smaller than k), 
OPTIMALITY is defined as 0. 

RESOLVE orders HAPSET according to the values returned from OPTIMALITY and eliminates all 
members of HAPSET but the one with the best score. 

REDUCE orders HAPSET according to the values returned from OPTIMALITY and retains the 1000 
best-scoring haplotype pairs. 

After completing this algorithm for the last compartment (we need to call RESOLVE if HAPSET has 
more than one member), the chromotype is disentangled into two strings (the members of the only 
remaining element of HAPSET), which specify an unambiguous set of kMers. We call the chromotype 
equivalent to these two strings (i.e. one start vertex and two separate, non-connected branches 
encoding the two strings) the disentangled chromotype. 

4.2.2 Identification of xMHC-specific contigs 
For the Moleculo-based validation, we want to identify contigs that have originated from NA12878’s 
xMHC region. We thus filter and trim the raw contig sequence data prior to alignment, according to 
the following criteria: 

• We compute the set of all kMers (k = 31) occurring in the kMerified xMHC PRG. We call all 
kMers occurring in this set “xMHC kMers”. 

• We also compute the set of all kMers (k = 31) occurring in the human reference genome, 
excluding the region covered by the xMHC PRG. We call all kMers in this set “reference 
kMers”. Note that some kMers are both xMHC kMers and reference kMers. We call kMers 
which are xMHC kMers but not reference kMers “xMHC-unique kMers”. 

• We filter contigs according to the following criteria: 

• Fraction xMHC kMers >= 0.8 

• There are two xMHC-unique kMers spanning a stretch of at least 50 bases (in 
between the two kMers). For each contig, we select the maximum stretch 
MAXSTRETCH spanned by two such xMHC-unique kMers.  

• Within MAXSTRETCH, fraction of xMHC-unique kMers >= 0.5 

• Within MAXSTRETCH, fraction of reference kMers <= 0.3 

• If a contig passes these tests, we truncate the contig to MAXSTRETCH and align 
MAXSTRETCH. 
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4.3 Important symbols and abbreviations 
 

A Alignment A 
Q=(q1,…,qNQ)  Query sequence of NQ characters 

Aall(Q, G) Set of alignments between Q and G. 

PRG Population Reference Graph 

COV Catalogue of Variation 

 

G The specific PRG 

V Set of vertices 

E Set of edges 

Pn(e) Edge probability distribution at node n 

Psub Set of all subpaths 

Ptraversal Set of all subpaths, constrained to complete traversals 

Vm Two vertices 
vn 
 
e One edge 
 
l(v) The level of vertex v 

L Scaffold haplotype MSA length; last level of haplotype graph 

H(v) The set of scaffold haplotypes attached to v 

K(v) The set of kMer-edges attached to v 

cv  Current vertex 

 

r “Recombination” parameter 

SN Number of scaffold haplotypes 

Sn,i i-th position (MSA) of haplotype n 

Oi Set of kMers output from level i 

o(kMer) Sample count of kMer kMer 
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x Generic variable 

X  Additional variant specifiers. 

 

suffix(v, r) Suffix function for vertex v of length r 

 
Q Alignment query sequence 

NQ Length of Q 

qi Index for Q 

Q’ Aligned query sequence 

E’  Aligned edge sequence 

AL Alignment length 

M Alignment scoring matrix 

Zl Number of nodes at level 

node(l, z) Retrieve node z at level l. 
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5 Experimental details 

5.1 Simulation 
We carry out simulations by independently generating two paths through the PRG (uniform choices 
at junctions) and treating these as a sample’s underlying diploid genome. We concatenate the edge 
labels induced by each path, remove “gap” characters and use the strings so-generated as a sample’s 
two haplotypes to generate reads from. At each position, the number of starting reads (read length 
85bp) is given by a Poisson distribution, parameterized to match an expected total coverage of 30x. 
Accuracy is assessed by comparing the diploid true underlying genotype at each level of the PRG with 
the diploid genotype induced by the Viterbi genotype computed from the simulated reads. Our 
simulations are limited in that a) we ignore read error (the main effect of which is a slight reduction 
of coverage) and b) we treat the simulated paths as a sample’s complete genome.  

5.2 Graph for the extended MHC 
We define the extended MHC (xMHC) as the genomic region spanned by the “PGF” xMHC haplotype 
(identical to the canonical human reference in the region – in B37 coordinates: chr6:28,702,185-
33,451,429). 

We use the eight xMHC haplotypes from the MHC haplotype project [8] as scaffold haplotypes for 
the region. We create an MSA for the eight haplotypes using the programs FSA [9] and MAFFT for 
refinement [10] . We use the SNPs identified by the 1000 Genomes Project, Phase 1, Release 3 [11] 
as additional variant specifiers for the eight MHC haplotypes. 

We also use all available genomic HLA allele sequences from IMGT/HLA ([12], 
http://www.ebi.ac.uk/ipd/imgt/hla/, downloaded on 29/02/2012) for the classical HLA alleles at the 
loci HLA-A, -B, -C, -DQA1, -DQB1, -DRB1 as additional scaffold haplotypes (these scaffold haplotypes 
cover all exons and introns of the genes – for many known alleles, the genetic sequences are not 
completely specified over all exons and introns, but the PRG construction algorithm we have defined 
removes most of the wildcard characters found at the unspecified positions).  We do not specify any 
additional variant specifiers for the classical HLA genes. 

The edge probability distributions we specify at each vertex in the PRG are mostly improper. 
Specifically, we assign probability 1 to each edge. This is motivated by the downstream parts of our 
pipeline: we mostly rely on the Viterbi algorithm for inferring Maximum Likelihood personalized 
haplotypes. With the specified improper parameterization, each possible path through the model is 
equally likely under the Viterbi algorithm, independent of how many potential branching points 
(vertices where there is more than one possible edge to follow) it contains.  

We use kMer length k = 31 for creating the kMer-PRG. 

5.2.1 Ensembl inconsistency 
In the process of examining available annotation information for the eight xMHC haplotypes, we 
discovered an inconsistency in the Ensembl database [13]. On the SSTO haplotype, HLA-DRB1 and 
HLA-DRB4 were mapped to the same start coordinate, likely caused, according to Ensembl, by a mis-
mapping of exonic sequence of the two transcripts ENST00000549627 and ENST00000548105 (HLA-
DRB4 and HLA-DRB1 exon sequence is similar). The two transcripts will be deleted in release 72 or 
release 73 (personal communication). 
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5.3 Sample details and HLA types 
CS1 and CS2-6 samples: 

Next-generation sequencing data generated as described in the main text. Sample read data 
available at request from GlaxoSmithKline. 

NA12878: 

Next-generation sequencing for NA12878 from the Illumina Platinum genomes project 
(www.illumina.com/platinumgenomes/) was downloaded from the EBI 
(www.ebi.ac.uk/ena/data/view/ERP001775). Sample data details described in the main text. 

 

Sample HLA types (reported to 4-digit accuracy using ‘g’ nomenclature): 

HLA-A HLA-C HLA-B HLA-DRB1 HLA-DQB1 HLA-DQA1
CS1 0301g/0301g 0702g/1502g 0702g/5101g 1501/0701 0202/0602 0102/0201
CS2 0201g/2301g 0401g/1701g 4201/4403 0302/0701 0202/0402 0201/0401g
CS3 0101g/2301g 0401g/0701g 0801g/4403 1101/0701 0202/0301g 0201/0501g
CS4 0201g/0301g 0303g/0602 1501g/5001 0401/0701 0202/0302 0201/0301
CS5 0301g/3301 0702g/0802 0702g/1402 0301/1101 0201/0301 0501/0505
CS6 0201g/0301g 0602/0701g 5701/5801g 0701/0804 0303/0402 0201/0401
NA12878 1101/0101 0102/0701 5601/0801 0101/0301 0501/0201 0101/0501  
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Supplementary Table 1. The types and counts of different types of input data used to construct the PRG for the human 
xMHC. 
 

Input data type Number
Scaffold haplotypes 8
SNPs 87640
Classical HLA alleles 6602
(genomic sequence) HLAA 1729

HLAC 1291
HLAB 2327
HLADRB 1051
HLADQA 46
HLADQB 158  
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Supplementary Table 2.  Simulation-based assessment of PRG accuracy 
 

Graph structure constraints True paths constraints
* * 199,937,840 99.86% 99,968,920 0.03% 0.23% 99.74%
* heterozygous 24,051,922 99.26% 12,025,961 0.00% 1.49% 98.51%
Clean SNP positions * 3,246,880 99.83% 1,623,440 0.03% 0.28% 99.69%
Clean SNP positions heterozygous 1,560,760 99.83% 780,380 0.00% 0.33% 99.67%
SV and INDEL positions * 52,485,120 99.46% 26,242,560 0.11% 0.86% 99.03%
SV and INDEL positions heterozygous 22,473,412 99.22% 11,236,706 0.00% 1.57% 98.43%
SV and INDEL positions 1 "gap" genotype, heterozygous 22,198,112 99.23% 11,099,056 0.00% 1.54% 98.46%
SV and INDEL positions 2 "gap" genotypes 18,029,904 99.63% 9,014,952 0.18% 0.38% 99.44%
SV and INDEL positions 1 "gap" genotype, INDEL length 1 58,396 98.56% 29,198 0.21% 2.45% 97.34%
SV and INDEL positions 1 "gap" genotype,  SV length 5 22,370 98.29% 11,185 0.15% 3.11% 96.74%
SV and INDEL positions 1 "gap" genotype, heterozygous, within 10-19 SV region 89,044 95.76% 44,522 0.00% 8.49% 91.51%
SV and INDEL positions 1 "gap" genotype, heterozygous, within 100-149 SV region 260,550 96.23% 130,275 0.00% 7.53% 92.46%
SV and INDEL positions  1 "gap" genotype, heterozygous, within 1000-1999 SV region 1,432,310 99.37% 716,155 0.00% 1.26% 98.74%
SV and INDEL positions 1 "gap" genotype, heterozygous, within 60,000 - 60,999 SV region 1,029,088 99.97% 514,544 0.00% 0.06% 99.94%
SV and INDEL positions 1 "gap" genotype, heterozygous, within 124,000 -124,999 SV region 347,462 99.88% 173,731 0.00% 0.23% 99.77%
SV and INDEL positions 1 "gap" genotype, heterozygous, within 10,000 - 10,999 SV region 284,798 100.00% 142,399 0.00% 0.00% 100.00%

Positions with 2/2 
alleles correct

Category (per position) Alleles 
evaluated

Alleles 
correct

Positions 
evaluated

Positions with 0/2 
alleles correct

Positions with 1/2 
alleles correct

 

This table shows concordance between simulated true and inferred chromotypes (inferred from the reads simulated from the simulated true chromotypes; read length = 85bp, 30x diploid 
coverage; as the main effect of read errors is a slight reduction of kMer coverage, simulation was carried out without read error), stratified by the local properties of the chromotypes as well 
as of the graph at the evaluated positions. 

Each position is evaluated as a diploid genotype consisting of two one-character alleles. 

 “Graph structure constraints”: Properties of the utilized PRG at the level of the evaluated position. “*” means no constraints, “Clean SNP positions” are levels containing only edges labeled 
with “A”, “C”, “G” or “T”, “SV and INDEL positions” denote levels at which at least one edge is labeled with the gap character “_”. “True path constraints” refers to the properties of the 
simulated (true) chromotype at the evaluated position. “*” means no constraints; “heterozygous” means that the chromotype has two edges with different labels; “1 gap genotypes” means 
that the chromotype carries one gap label at the specified position and 1 non-gap label; “2 gap genotypes” means that the chromotype carries two gap symbols at the specified position; 
“within x – y SV region” means that it is possible to walk along the chromotype from the evaluated position a positions to the left and b positions to the right until hitting a position at which 
the chromotype does not carry a gap symbol, and x < (a + b) <= y.  

 “Alleles evaluated” is 2 x “Positions evaluated”. The remaining column headers are self-explanatory.  
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Supplementary Table 3.  Accuracy of approaches assessed from SNP array data 
 

NA12878 (Illumina Omni 2.5M) Platypus PRG-Viterbi PRG-Amended
Alleles Evalated alleles 17080 17080 17080

Correct alleles 16701 16632 16645
% Correct 97.78% 97.38% 97.45%
Array alleles not in graph - 128 -
Incorrect alleles not in graph, % - 28.57% -

PPV (Genotype): VCF: 0 Reference Alleles 96.51% 93.94% 94.03%
VCF: 1 Reference Alleles 98.57% 96.99% 96.92%
VCF: 2 Reference Alleles 96.87% 97.07% 97.30%

Sensitivity (Genotype): Array: 0 Reference Alleles 89.25% 88.89% 88.98%
Array: 1 Reference Alleles 97.57% 96.99% 97.39%
Array: 2 Reference Alleles 98.88% 98.20% 98.22%

Specificity (Genotype): VCF: 0 Reference Alleles 98.40% 98.50% 98.52%
VCF: 1 Reference Alleles 99.13% 99.16% 99.33%
VCF: 2 Reference Alleles 98.23% 97.20% 97.23%

CS2-6 (Illumina 1M) Platypus PRG-Viterbi PRG-Amended
Alleles Evalated alleles 47666 47666 47666

Correct alleles 47504 47443 47506
% Correct 99.66% 99.53% 99.66%
Array alleles not in graph - 24 -
Incorrect alleles not in graph, % - 10.76% -

PPV (Genotype): VCF: 0 Reference Alleles 99.52% 99.20% 99.07%
VCF: 1 Reference Alleles 99.33% 98.19% 98.95%
VCF: 2 Reference Alleles 99.42% 99.62% 99.74%

Sensitivity (Genotype): Array: 0 Reference Alleles 98.22% 98.41% 98.70%
Array: 1 Reference Alleles 98.86% 99.09% 99.30%
Array: 2 Reference Alleles 99.93% 99.38% 99.67%

Specificity (Genotype): VCF: 0 Reference Alleles 99.75% 99.80% 99.85%
VCF: 1 Reference Alleles 99.59% 99.71% 99.79%
VCF: 2 Reference Alleles 99.90% 99.10% 99.52%  

This table shows the results for the SNP array genotype concordance for NA12878 and the CS2-6 samples (combined). The three main columns “Platypus”, “PRG-Viterbi” and “PRG-
Amended” refer to chromotypes induced by the Platypus VCF; the VCF equivalent to the chromotypes produced by the Viterbi step of the PRG chromotype inference framework; and the 
VCF equivalent to the post-remapping amended PRG chromotypes (in that order). We are only evaluating positions which a) are specified by the SNP genotyping array, b) are within the 
region covered by the PRG. “VCF” in the details columns refers to the VCFs generated by the three approaches and NOT just the Platypus VCF. For all evaluations, if the Platypus VCF does 
not explicitly specify a position, we assume the genotype to be “REF/REF”. 

The “Alleles” section of the table shows how many of the specified alleles are concordant with the alleles specified by the SNP array genotypes. “PPV (Genotype)” shows the positive 
predictive value of the specified (specified by the chromotype) diploid genotype being correct, stratified by whether the chromotype-defined genotypes contains 0, 1 or 2 reference alleles. 
“Sensitivity (Genotype)” show sensitivity (i.e. P(specified_diploid_genotype = true_diploid_genotype | true_diploid_genotype) ), stratified by the three possible diploid true (i.e. array-
specified) genotypes. “Specificity (Genotype)” shows specificity of the chromotype-specified genotypes (i.e. P(gt_specified_as_not_A | true_gt_not_A) ) for the three possible chromotype-
specified genotypes (to give an example, the cell in the intersection of “Platypus” / “VCF: 2 Reference Alleles” specifies the probability that the Platypus VCF contains a non-(REF/REF) ==  
[(ALT/ALT) or (REF/ALT)] genotype, conditional on the array specifying a non-(REF/REF) ==  [(ALT/ALT) or (REF/ALT)] genotype.  
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Supplementary Table 4.  Accuracy of approaches assessed from classical HLA data 
 

NA12878 Platypus PRG-Viterbi PRG-Amended CS2-6 Platypus PRG-Viterbi PRG-Amended
HLA-A Exon 2 Total Base Pairs 540 540 540 HLA-A Exon 2 Total Base Pairs 2700 2700 2700

Number correct 540 533 529 Number correct 2680 2662 2660
% correct 100.00% 98.70% 97.96% % correct 99.26% 98.59% 98.52%

Exon 3 Total Base Pairs 552 552 552 Exon 3 Total Base Pairs 2760 2760 2760
Number correct 551 546 546 Number correct 2729 2692 2696
% correct 99.82% 98.91% 98.91% % correct 98.88% 97.54% 97.68%

HLA-B Exon 2 Total Base Pairs 540 540 540 HLA-B Exon 2 Total Base Pairs 2700 2700 2700
Number correct 540 535 536 Number correct 2613 2663 2667
% correct 100.00% 99.07% 99.26% % correct 96.78% 98.63% 98.78%

Exon 3 Total Base Pairs 552 552 552 Exon 3 Total Base Pairs 2760 2760 2760
Number correct 546 544 545 Number correct 2671 2679 2677
% correct 98.91% 98.55% 98.73% % correct 96.78% 97.07% 96.99%

HLA-C Exon 2 Total Base Pairs 540 540 540 HLA-C Exon 2 Total Base Pairs 2700 2700 2700
Number correct 540 537 538 Number correct 2682 2678 2682
% correct 100.00% 99.44% 99.63% % correct 99.33% 99.19% 99.33%

Exon 3 Total Base Pairs 552 552 552 Exon 3 Total Base Pairs 2760 2760 2760
Number correct 549 548 548 Number correct 2728 2701 2709
% correct 99.46% 99.28% 99.28% % correct 98.84% 97.86% 98.15%

HLA-DQA1 Exon 2 Total Base Pairs 498 498 498 HLA-DQA1 Exon 2 Total Base Pairs 2490 2490 2490
Number correct 491 495 495 Number correct 2327 2461 2463
% correct 98.59% 99.40% 99.40% % correct 93.45% 98.84% 98.92%

HLA-DQB1 Exon 2 Total Base Pairs 540 540 540 HLA-DQB1 Exon 2 Total Base Pairs 2700 2700 2700
Number correct 507 540 540 Number correct 2555 2599 2607
% correct 93.89% 100.00% 100.00% % correct 94.63% 96.26% 96.56%

HLA-DRB1 Exon 2 Total Base Pairs 540 540 540 HLA-DRB1 Exon 2 Total Base Pairs 2700 2700 2700
Number correct 522 535 534 Number correct 2426 2620 2624
% correct 96.67% 99.07% 98.89% % correct 89.85% 97.04% 97.19%  

This table shows the agreement between the chromotypes inferred for NA12878 and the CS2-6 samples, stratified both by chromotype generation method (Platypus, PRG-Viterbi, PRG-
Amended), and the genotypes expected from classical HLA typing. All comparisons are carried out on the level of one-base diploid genotypes: all samples have specified exon sequences 
(exon 2 and 3 for HLA-A/B/C, exon 2 for the other HLA genes), which we transpose onto the chromotypes (using the shared PGF reference as a shared coordinate system). That is, at each 
chromotype level, we have two one-character alleles (nucleotides and/or gaps), which we treat as “truth” and compare with the chromotype-specified alleles. If there are multiple 
compatible exon sequences for an HLA type (sequence-based HLA typing typically determines HLA types at 4-digit resolution, which characterizes the relevant exons at the level of encoded 
amino acids, but not at the level of synonymous mutations), we use the base allele (i.e. if an allele is specified as HLA*X-12:34, we use the sequence for HLA*X-12:34:01 or HLA*X-
12:34:01:01, if available). “Total base pairs” specifies the number of comparisons made and is (because of diploidy) twice the size of the region covered by the evaluated exon. 
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Supplementary Table 5.  Accuracy of approaches estimated from kmer recovery 
 

NA12878 Approach Total # kMers Invalid kMers kMers present Unweighted optimality Coverage-weighted optimality
PGF reference 4518629 0 4301668 95.20% 0.879789
Platypus VCF 4938471 0 4880820 98.83% 0.944959
PRG-Viterbi 4984797 118 4953174 99.37% 0.955071
PRG-Remapped 4971054 116 4942609 99.43% 0.956347

CS2-6
CS2
Method # kMers # kMers invalid # kMers present Unweighted optimality Coverage-weighted optimality
PGF reference 4518629 0 4255288 94.17% 0.815494
Platypus VCF 4950328 0 4860657 98.19% 0.879018
PRG-Viterbi 5073842 647 5042634 99.38% 0.889824
PRG-Remapped 5051678 647 5022085 99.41% 0.890793

CS3
Method # kMers # kMers invalid # kMers present Unweighted optimality Coverage-weighted optimality
PGF reference 4518629 0 4248008 94.01% 0.804703
Platypus VCF 4889852 0 4801145 98.19% 0.867138
PRG-Viterbi 5015592 824 4992734 99.54% 0.880588
PRG-Remapped 4989059 824 4966451 99.55% 0.880874

CS4
Method # kMers # kMers invalid # kMers present Unweighted optimality Coverage-weighted optimality
PGF reference 4518629 0 4282989 94.79% 0.80461
Platypus VCF 4830916 0 4729207 97.89% 0.853314
PRG-Viterbi 4931881 575 4893711 99.23% 0.865766
PRG-Remapped 4892548 575 4860145 99.34% 0.866445

CS5
Method # kMers # kMers invalid # kMers present Unweighted optimality Coverage-weighted optimality
PGF reference 4518629 0 4344265 96.14% 0.823199
Platypus VCF 4881754 0 4794764 98.22% 0.867788
PRG-Viterbi 4860787 627 4839312 99.56% 0.879141
PRG-Remapped 4837182 627 4817300 99.59% 0.879542

CS6
Method # kMers # kMers invalid # kMers present Unweighted optimality Coverage-weighted optimality
PGF reference 4518629 0 4273214 94.57% 0.784612
Platypus VCF 4913174 0 4818055 98.06% 0.843308
PRG-Viterbi 5015081 518 4971576 99.13% 0.855302
PRG-Remapped 4990040 518 4951327 99.22% 0.856028

CS2-6 comb.
Method # kMers # kMers invalid # kMers present Unweighted optimalityrage coverage-weighted optimality
PGF reference 22,593,145 0 21,403,764 94.74% 80.65%
Platypus VCF 24,466,024 0 24,003,828 98.11% 86.21%
PRG-Viterbi 24,897,183 3,191 24,739,967 99.37% 87.41%  

This table shows the results for kMer evaluation for the four chromotypes (PRG-Viterbi and PRG-Amended, the chromotype 
constructed from the VCF covering the PRG-covered region, and the [non-branching] chromotype constructed from the PGF 
reference for the region covered by the PRG).  
 
For any two positions along a chromotype where phase is lost (i.e. at positions where one node in the chromotype has two 
outgoing edges) within 31 bases distance, we need to resolve phase before applying the evaluation algorithm. We use a simple 
greedy algorithm which keeps track of the possible haplotype pairs induced by chromotype structure, until either the 
chromotype has reached a homozygous (i.e. one node, one edge at each level) stretch of 31 defined base pairs length (i.e. at 
least 31 non-gap characters) or the number of possible haplotype pairs has reached a threshold (see Supplementary Methods). 
At this point, we count how many of the kMers induced by each haplotype pair are present in the sample, and fix the pair with 
the highest number of kMers present in the sample. This process does not affect the “PGF reference” and the “PRG-Viterbi” 
chromotypes (because kMerification ensures that there is no loss of phase within the specified kMer size). 

As we have disentangled all positions with the potential to locally disrupt haplotypes, we can now count how often each kMer 
appears along a chromotype. “Unweighted optimality” is the percentage of the kMers present also found in the sample 
sequencing data. 

 “#kMers invalid” counts how many of the specified kMers are invalid, i.e. containing a non-nucleotide “*” symbol (the PRG 
construction algorithm tries to remove edges labeled with the “*” symbol, but not always successfully). Invalid kMers are 
counted as “not present”.  
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Supplementary Table 6.  Alignment metrics for Moleculo contig alignment to 
chromotypes 
 

Method TotalAlignmentLength AverageAlignmentSequenceCertainty AveragekMerUniqueness
Reference 566,390,766 0.99 0.85
VCF 365,509,324 0.97 0.93
PRG-Viterbi 294,127,027 0.99 0.86
PRG-Amended 272,355,664 0.97 0.94

Method graphIntrinsicGap_sequenceGap graphIntrinsicGap_sequenceCharacter Matches
Reference 0 0 114,518,701
VCF 555,158 109 115,059,507
PRG-Viterbi 30,268,853 844 115,688,453
PRG-Amended 25,871,037 1,218 115,519,131

Method Mismatches graphNovelGap graphNonGap_sequenceGap
Reference 540,803 1,101,559 450,229,703
VCF 84,216 1,017,231 248,793,103
PRG-Viterbi 91,288 380,478 147,697,111
PRG-Amended 53,862 586,852 130,323,564

 

This table shows the results from the alignment of the 29429 Moleculo contigs (median contig length 3165bp) to chromotypes 
from four sources. The numbers displayed are cumulative, i.e. sums over the individual values for all contigs. 

“TotalAlignmentLength” specifies the total length of the contig alignments, measured as columns in the alignments (the 
alignment algorithm optimizes for global alignment, but truncates the alignments at the positions of the last aligned contig 
characters).  

“AverageAlignmentSequenceCertainty” specifies how certain the algorithm is in its assignment of contig characters to 
chromotype levels (using a randomized sampling procedure, see Supplementary text). 

“AveragekMerUniqueness” specifies the percentage of kMers in the contig that are double-unique, i.e. unique in both contig 
and chromotype that the contig is aligned to. Double-unique kMers are used as initial anchors in the alignment procedure. 
“graphIntrinsicGap_sequenceGap” specifies how many columns in the alignment specify a graph gap symbol (i.e. a gap present 
in the PRG / VCF) in the chromotype row and gap symbol in the contig row. 

“graphIntrinsicGap_sequenceCharacter” specifies how many columns in the alignment specify a graph gap symbol (i.e. a gap 
present in the PRG / VCF) in the chromotype row and a non-gap symbol in the contig row. 

“Matches” counts how many positions in the alignments specify the same non-gap symbol for chromotype and contig. 

“Mismatches” counts how many positions in the alignments specify a pair (a, b) of symbols for chromotype and contig, with a != 
b and neither a nor b equal to a gap character. 

“graphNovelGap” counts how many positions in the alignments specify a non-gap symbol in the contig row and a novel gap in 
the chromotype (novel gap := gap symbol not coming from the PRG / VCF). These positions are indicative of insertions in the 
contig relative to the chromotype (or contig misassembly or alignment problems). 

“graphNonGap_sequenceGap” counts how many positions in the alignments specify a non-gap symbol in the chromotype row 
and a gap symbol in the contig row. These positions in the alignment are indicative of deletions in the contigs relative to the 
chromotypes, contig misassembly or alignment problems. Note that this number is a sum over all contigs – it is small for most 
contigs and very big for few contigs. The latter could derive either from problems with contig assembly or represent an artifact 
of our alignment algorithm – as we use a global scoring function, the algorithm sometimes produces small matches hundreds of 
thousands of kilobases apart, separated by “graphNonGap_sequenceGap” symbols 
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