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Abstract

In studies of gene regulation, it is often tacitly assumed that the interactions between transcriptional
regulators and their target promoters are finely tuned to ensure condition-appropriate gene expression
of the targets. However, how natural selection might evolve such precise regulation from an initial
state without regulation, is rarely discussed. In addition, the accuracy of gene regulation is affected by
noise in gene expression [1]. Expression noise varies greatly across genes [2H5], suggesting that natural
selection has affected noise levels, but the role of expression noise in gene regulation is currently poorly
understood [6]. Here we present a combination of experimental evidence and theoretical modeling showing
that the transmission of expression noise from regulators to their targets can function as a rudimentary
form of gene regulation that facilitates the evolution of more finely tuned gene regulation. To assess
how natural selection has affected transcriptional noise in E. coli, we evolved a large set of synthetic
promoters under carefully controlled selective conditions and found, surprisingly, that native E. coli
promoters show no signs of having been selected for minimizing their noise. Instead, a subset of native
promoters, which are characterized by high expression plasticity and high numbers of regulatory inputs,
show elevated noise levels. A general theoretical model, which recognizes that target genes are not only
affected by the condition-dependent activities of their regulators, but also by the regulators’ noise, explains
these observations. Noise transmission from regulators to their targets is favored by selection whenever
regulation is imprecise, and may even constitute the main function of coupling a promoter to a regulator.
Our theory provides a novel framework for understanding the evolution of gene regulation, demonstrating
that in many situations expression noise is not the mere unwanted side-effect of regulatory interactions,
but a beneficial function that is key to the evolvability of regulatory interactions.

Introduction

Studies of gene expression noise in several different model organisms have shown that the promoters of
some genes exhibit much more transcriptional noise than others [214]. It is unclear, however, how these
differences in noise levels have been shaped by natural selection. On the one hand, it can be argued that
in each condition there is an optimal expression level for each protein, such that variations away from
this optimal level are detrimental to an organism’s fitness, implying that selection will act to minimize
noise. Indeed, many studies have used circumstantial evidence to suggest that selection generally acts
to minimize noise |23,|7H9]. In this interpretation, genes with lowest noise have been most strongly
selected against noise, whereas high noise genes have experienced much weaker selection against noise.
On the other hand, gene expression noise generates phenotypic diversity between organisms with identical
genotypes, and there are well-established theoretical models showing that such phenotypic diversity can
be selected for in fluctuating environments [10,[11]. In addition, there is empirical evidence that selection
has acted to increase expression noise in some cases [12H15]. It is thus possible that some of the genes
with elevated noise may have been selected for phenotypic diversity.
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Figure 1. Experimental evolution of functional promoters de novo. a: We created an initial library of
approximately 10° unique synthetic promoters by cloning random nucleotide sequences, of approximately

100 — 150 base pairs (bp) in length, upstream of a strong ribosomal binding site followed by an open reading frame
for GFP as used to quantify the expression of native E. coli promoters , and transformed this library into a
population of cells (Methods). We evolved populations of synthetic promoters by performing 5 rounds of
selection and mutation on this library. In each round we used fluorescence activated cell sorting (FACS) to select
2 % 10° cells that lie within a gate comprising the 5% of the population closest in fluorescence to a given target
level. The plasmids were isolated from the selected cells and PCR mutagenesis was used to introduce new genetic
variation into the promoter regions. We then re-cloned the mutated promoters into fresh plasmids, and
transformed them into a fresh population of cells. We performed this evolutionary scheme on three replicate
populations in which we selected for a target expression level equal to the median expression level (50th percentile)
of all native E. coli promoters, and three replicate populations in which we selected for a target expression level at
the 97.5th percentile of all native promoters (referred to here as medium and high expression levels, respectively).
b: Changes in the fluorescence distribution for one evolutionary run selecting for medium target expression (top)
and one evolutionary run selecting for high target expression (bottom). The curves show the population’s
expression distributions before selection, with the numbers above each curve indicating the selection round. The
colored bars at the top indicate the FACS gates that were used to select cells from the populations at each
corresponding round. c: Examples of fluorescence distributions for individual clones obtained after five rounds of
evolution. Microscopy pictures of two individual clonal promoter populations are shown as insets. d: For each
native E. coli promoter (blue) and synthetic promoter (red) the mean (x-axis) and variance (y-axis) of
log-fluorescence intensities across cells were measured using flow cytometry. Fluorescence values are expressed in
units of number of GFP molecules. The green curve shows the theoretically predicted minimal variance as a
function of mean expression (Supplementary Text). The insets show the log-fluorescence distributions for two
example promoters (corresponding to the larger dark blue and light blue dots). e:, Cumulative distributions of
excess noise levels of native (blue) and synthetic (red) promoters.
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Results

In order to assess how natural selection has acted on the transcriptional noise of promoters, it is critical
to determine what default noise levels would be exhibited by promoters that have not been selected for
their noise properties. To address this, we evolved a large set of synthetic F. coli promoters de novo
in the laboratory using an experimental protocol in which promoters were selected on the basis of the
mean expression level they conferred, while experiencing virtually no selection on their noise properties
(Fig. 1 and Supplementary Text). Starting with an initial library of 100-150 base pair long random
sequences, we performed five rounds of mutation and selection, resulting in a genetically diverse collection
of functional promoters that conferred expression close to a pre-specified target level (Fig. la-c and
Suppl. Fig. S1). We selected a subset of 479 synthetic promoters from the third and fifth rounds,
choosing equal numbers of promoters from each of six replicate lineages we evolved (Fig. 1; Methods).
We then used flow cytometry, as described previously [3], to measure the distribution of fluorescence levels
per cell for each synthetic promoter, as well as for all native E. coli promoters [16].

Observing that the fluorescence distributions across cells were well approximated by log-normal
distributions (Fig. 1c), we characterized each promoter’s distribution by the mean and variance of
log-fluorescence, defining the latter as the promoter’s noise level (Fig. 1d). This definition of noise is
equivalent to the square of the coefficient of variation whenever fluctuations are small relative to the mean,
which applies to most promoters. Using quantitative Western blotting and qPCR we confirmed that the
mean fluorescence levels were directly proportional to GFP molecule numbers and that protein levels were
determined primarily by mRNA levels, demonstrating that fluorescence reflected transcriptional activity
(Suppl. Figs S2 and S3 and Supplementary Text). Noise levels were reproducible across biological
replicates (Suppl. Fig. S4), and noise levels estimated using microscopy were consistent with those
measured by flow cytometry (Suppl. Fig. S5).

As expected [2}{17] we observed a strong relationship between the mean and variance of expression levels
of each promoter (Fig. 1d). In particular, we observed a strict lower bound on variance as a function
of mean expression. This lower bound is well described (Fig. 1d, green curve) by a simple model that
incorporates background fluorescence, and intrinsic and extrinsic noise components [18] (Supplementary
Text). We defined the ezcess noise of a promoter as its variance above and beyond this lower bound,
allowing us to compare the noise levels of promoters with different means (Suppl. Fig. S6). We found,
surprisingly, that most of the synthetic promoters exhibited noise levels close to the minimal level exhibited
by the native promoters (Fig. 1d). Additionally, a substantial fraction of native promoters exhibited
excess noise levels significantly greater than the synthetic promoters (Fig. 1le and Suppl. Figs. 6 and
7). For example, only 26.1% of the synthetic promoters exhibited excess noise above 0.05, compared to
41.6% of the native E. coli promoters (p < 7.7 * 10710, hypergeometric test). Given that the synthetic
promoters were evolved from random sequence fragments, and had not been selected on their noise
properties (Supplementary Text), we concluded that constitutively expressed E. coli promoters exhibit
low excess noise levels by default. Importantly, this implies that the native promoters with elevated excess
noise must have experienced selective pressures that caused them to increase their noise.

To understand how selection might have acted to increase noise, we first investigated whether excess
noise was associated with other characteristics of the promoters. Previous studies in S. cerevisiae have
shown that promoters with high noise tend to also show high expression plasticity, i.e. large changes in
mean expression level across environments [2]. Although we did not clearly observe this association in data
from our previous study [3], a recent re-analysis of this data did uncover a significant association between
expression plasticity and noise |19], which we confirmed using our present data (Fig. 2a). In addition,
we found that there is an equally strong relationship between excess noise and the number of regulators
known to target the promoter [20] (Fig. 2b). In particular, whereas the excess noise levels of promoters
without known regulatory inputs are very similar to those of our synthetic promoters, promoters with one
or more regulatory inputs have clearly elevated noise levels (Fig. 2c).

We next considered what the origin of this general association between noise and regulation could
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Figure 2. Promoters with elevated noise exhibit high expression plasticity and large
numbers of regulatory inputs. a: Native promoters were sorted by their excess noise x and, as a
function of a cut-off on z (horizontal axis), we calculated the mean and standard-error (vertical axis) of
the variation in mRNA levels across different experimental conditions (data from
http://genexpdb.ou.edu/) of all promoters with excess noise larger than x. b: Promoters were sorted by
excess noise x as in panel a, and mean and standard-error of the number of known regulatory inputs
(vertical axis, data from RegulonDB [20]) for promoters with excess noise larger than z is shown. c:
Cumulative distributions of excess noise levels of synthetic promoters (red) and native promoters without
known regulatory inputs (black), with one known regulatory input (green), and with two or more known
regulatory inputs (purple).

be. It is important to recognize that, when a promoter couples to a transcription regulator by evolving
cognate binding sites, the expression of the associated gene will be affected in two separate ways. First,
the gene’s mean expression will become correlated with the activity of the regulator in a condition-specific
manner. Second, in addition to this ‘condition-response’ effect, the noise in the expression or activity
of the regulator will be transmitted to the target gene. This ‘noise-transmission’ effect will cause an
increase in expression noise of the target [21]. Based on this noise-transmission effect, and in analogy
with fluctuation-dissipation theorems from physics, it has been proposed that elevated expression noise is
simply an unwanted but unavoidable side-effect of regulation [22].

However, there is no reason to assume that the condition-response and noise-transmission effects must
always be in selective conflict with each other. Several theoretical treatments have shown that phenotypic
variability may be selectively beneficial when environments change in ways that cannot be accurately
sensed or are too rapid for organisms to respond [10,{11}23]. Although such theoretical studies are typically
less concerned with the mechanisms by which such increased noise could be genetically encoded, the
noise-transmission effect is one obvious candidate mechanism. It would thus seem that, at least in some
situations, the condition-response and noise-transmission effects could act in concert. To quantify how
selection might act on the combination of these two effects, we developed a general model that considers a
gene whose optimal expression levels vary across conditions, and calculated how the condition-response
and noise-transmission effects of coupling to a given regulator conspire to affect fitness (Supplementary
Text). Although our model applies very generally (Supplementary Text), we illustrate it here using a
simple scenario (Fig. 3).

The expression of an unregulated promoter is characterized by a distribution with a given mean and
variance (Fig. 3a, blue curve). We assume that the organism experiences different environments and
that, in each environment, cells with expression levels within a certain range are selected. In the simple
scenario of Fig. 3 there are 3 environments (red, gold, and green), with the green environment requiring
up-regulation of the expression and the red environment requiring down-regulation of the expression (Fig.
3a). The fitness in each environment corresponds to the fraction of cells with expression levels within the
selected range, i.e. the unregulated promoter has reasonably high fitness in the gold environment but very
low fitness in the green and red environments. Since the organisms experience all 3 environments, a poor
overlap between the expression distribution and the selected range in any one environment leads to low
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overall fitness.

To improve fitness, a promoter may evolve binding sites for an existing regulator, such that its expression
becomes dependent on the activity of this regulator, which will generally vary across environments. Our
modeling shows that the resulting fitness depends only on 2 effective parameters of the regulator: The
correlation R between the condition-dependent expression levels (or, more generally, activities) of the
regulator and the desired levels of the promoter, and the signal-to-noise parameter S that characterizes
the accuracy of the regulator’s expression.

As intuitively expected, the highest fitness is obtained when coupling to an accurate regulator with
high signal-to-noise S, i.e. whose activities correlate precisely with the desired expression levels (cyan dot
in Fig. 3b and Fig. 3c,f). The resulting expression distributions of the promoter accurately track the
desired levels, with only moderately increased noise in the promoter’s expression (Fig. 3f). However,
regulators that track the desired expression levels of the promoter with such high accuracy may often
not be available. Interestingly, coupling to a noisy regulator whose activity is entirely uncorrelated with
the desired expression levels (blue dot in Fig. 3b and Fig. 3e,h) also substantially increases fitness. In
this regime, the increased fitness results exclusively from the noise-transmission mechanism. Surprisingly,
coupling to the uncorrelated noisy regulator (blue dot in Fig. 3b and Fig. 3e,h) outperforms coupling
to a moderately correlated regulator (magenta dot in Fig. 3b and Fig. 3d,g). This is due to the fact
that the magenta regulator is not noisy enough given its correlation R, i.e. lowering S for this TF would
result in an increase of the promoter’s noise, and this would lead to an increase in fitness in the green
and gold conditions (see Fig. 3g). This illustrates that regulators may be under selection to become
noisy themselves and the red curve in Fig. 3b shows the optimal signal-to-noise S of a regulator as
a function of its correlation R. Whereas to the right of this curve the noise-transmission is too large,
and too small to the left of it, along the curve the condition-response and noise-transmission effects are
optimally acting in concert. This clarifies how accurate gene regulation can evolve smoothly, starting
from a noisy regulator with low R and S whose benefits come entirely from the noise-transmission, by
increasing both R and S in small steps, until reaching highly accurate regulation with high R and .S for
which the condition-response effect dominates.

Our model also predicts how the final noise of a promoter depends on the variance in its desired
expression levels (Supplementary Text). In particular, assuming the best available regulator in the
genome has a given correlation R with the desired levels, there will be a critical variance such that below
this variance the final noise will be equal to the noise of the unregulated promoter, and above this critical
variance the final noise of the promoter will be proportional to (Suppl. Fig. S8). That is, our model
explains the observation that expression noise increases with expression plasticity. Similarly, in our simple
model the increase in expression noise is directly due to coupling to regulators, such that our model also
explains the observed general association between expression noise and regulatory inputs.

Discussion

Because genotype-phenotype relationships for complex phenotypic traits are poorly understood, it is often
difficult to assess how observable variation in a particular trait has been affected by natural selection. Here
we have shown that by comparing naturally observed variation in a particular trait with variation observed
in synthetic systems that were evolved under well-controlled selective conditions, definite inferences can
be made about the selection pressures that have acted on the natural systems. In particular, by evolving
synthetic E. coli de novo using a procedure in which promoters are strongly selected on their mean
expression and not on their expression noise, we have shown that native promoters must have experienced
selective pressures that increased their noise levels. To account for this, we have proposed a theoretical
model that provides a simple mechanistic framework for understanding how selection can act to couple
transcriptional regulators and target genes, and which quantifies the parameter regimes in which we expect
promoters to exhibit high levels of noise. This framework vastly expands the evolutionary conditions
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Figure 3. A model of the evolution of gene expression regulation in a variable
environment. a: Expression distribution of an unregulated promoter (blue curve) and selected
expression ranges in 3 different environments, i.e. the red, gold, and green dashed curves show fitness as a
function of expression level in these environments. Although our model applies more generally, for
simplicity we here visualize selection as truncation selection (i.e. a rectangular fitness function). The
fitness of the promoter in the gold environment is proportional to the shaded area. b: Contour plot of the
log-fitness of a promoter that is optimally coupled to a transcription factor (TF) with signal-to-noise ratio
S and correlation R. Contours run from —0.5 at the top right to —7.5 at the bottom right. The three
colored dots correspond to the TFs illustrated in panels c-h. The red curve shows optimal S as a
function of R. c-e: Each panel shows the expression distributions of an example TF across the 3
environments (red, gold, and green curves). The corresponding values of correlation R and signal-to-noise
S are indicated in each panel. f-h: Each panel shows the expression distributions across the 3
environments for a promoter that is optimally coupled to the TF indicated in the inset. The shaded areas
correspond to the fitness in each environment. The total noise levels of the regulated promoters are also
indicated in each panel. The unregulated promoter has total noise o,y = 0.1.
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under which novel regulatory interactions will be selected for; instead of assuming that the regulators and
their targets must evolve in a tightly coordinated fashion, the model shows that genes may often benefit
from coupling to regulators whose activities do not correlate with the gene’s expression requirements at all.
In particular, the condition-response and noise-transmission effects of coupling to a regulator, rather than
being in conflict with each other, may often act in concert. Finally, our model shows quite generally that
unless regulation is very precise, regulatory interactions that act to increase noise are beneficial. Thus,
high levels of expression noise can be expected whenever the accuracy of regulation is limited.

Methods

Ab initio promoter library construction from random sequences

We obtained chemically synthesized nucleotide sequences of random nucleotides 200 bp in length (Purimex,
Germany). Each sequence had defined 5’ and 3’ ends to allow PCR amplification. Within these constant re-
gions, restriction sites for BamHI and Xhol were present. The intervening sequence was made up of 157 bp of
random nucleotides (5-CCTTTCGTCTTCACCTCGAG-(N157)-GGGATCCTCTGGATGTAAGAAGG-
3’). However, as coupling of base pairs during oligonucleotide synthesis is not always successful and strand
breaks can frequently occur in long oligonucleotides, many oligonucleotides were shorter than 200 bp in
length. We used PCR to generate double stranded DNA from the single stranded oligonucleotides using
forward and reverse primers matching the defined 5’ and 3’ ends. We gel-purified the double-stranded
PCR product and double-digested it using BamHI and Xhol. After column-purification, sequences were
ligated into a version of the low-copy plasmid pUA66, which contains a gfpmut2 open reading frame
downstream of a strong ribosomal binding site [16]. The vector was modified to remove a weak o70
binding site present 24 bp upstream of the GFP open reading frame (two point mutations, A—G and
T—G@G, were introduced, changing the putative 070 binding site from TAGATT to TGGATG, with the
consensus o070 binding site being TATAAT). The ligation was performed using T4 DNA ligase (NEB) at
16 °C for 24 hours. The ligation product was then column purified and electroporated into E. coli DH10B
cells. This protocol resulted in extremely high transformation yields (approximately 10° individual clones
per transformation).

Selection on expression level using flow cytometry

Cultures of transformed cells were regenerated for one hour in 1 mL SOC medium (Super Optimal Broth
supplemented with 20mM glucose) and afterwards 1mL SOC containing 50ug/ml kanamycin was added
for overnight growth, ensuring that only cells containing the plasmid could grow. These cultures were
then diluted 500-fold (approximately 5 * 108 cells in total) into M9 minimal media supplemented with
0.2% glucose and grown for 2.5 hours with shaking at 200 rpm. The distribution of GFP fluorescence
levels was measured for each culture using fluorescence activated cell sorting (FACS) in a FACSAria ITTu
(BD Biosciences), with excitation at 488nm and a 513/17nm bandpass filter used for emission.

We used this distribution of fluorescence values to designate a selection gate. The position of the gate
was determined by measuring the mean fluorescence of two reference promoters [16]: gyrB which exhibits
a mean expression level that is at the 50th percentile all E. coli promoters; and rpmB, which exhibits
a mean expression level that is at the 97.5th percentile of all E. coli promoters [3]. For each of these
reference genes, the mean fluorescence level was measured, and a selection gate was constructed, centered
on this mean expression level, such that 5% of all clones in the population fell within the gate. For each
round of selection, we sorted 200’000 cells contained within this gate. Sorted cells were then transferred
to 4mL Luria Broth (LB) media (containing 50ug/m! Kanamycin) and grown overnight. These cultures
were stored supplemented with 7.5% glycerol at —80°C for subsequent analysis.

For each expression level (i.e. reference gene), we evolved three replicate populations. We refer to
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these as the medium expressers (those promoters selected based on the gyrB reference gate) and high
expressers (those promoters selected based on the rpmB reference gate).

PCR mutagenesis

Following FACS-based selection on fluorescence, we introduced novel genetic variation into the populations
using PCR mutagenesis. We first re-grew the cells overnight and used this culture to prepare plasmid DNA.
We amplified the promoter sequences from these plasmids using the GeneMorph IT Random Mutagenesis
Kit (Stratagene) with the primers referred to previously that matched the defined regions of the promoters.
We used 0.01 ng of DNA as starting material and 35 cycles for amplification. This resulted in a mutation
rate of around 0.01 per bp (such that we expect that in 200 bp, 95% of the promoters will contain between
zero and four mutations). These PCR products were then digested with Xhol and BamHI, ligated back
into the vector, and again transformed into DH10B cells. We repeated this entire process (selection, PCR
mutagenesis, and transformation) five times in total. At this point, the plasmid libraries of synthetic
promoters were isolated and transformed into E. coli K12 MG1655 for comparison to a library of native
E. coli promoters (see below).

Quantification of fluorescence

To quantify fluorescence on a single-cell level, we used flow cytometry with a FACSCanto II (BD
Biosciences), with excitation at 488nm and a 513/17nm band-pass filter used for emission. We collected
data for at least 50’000 events. We then gated this data as outlined in [3], identifying approximately
5’000 cells most similar in FSC and SSC. We then calculated the mean and variance in log-fluorescence
using these cells, using a Bayesian procedure that accounts for outliers (Supplementary Text). We
randomly selected 479 promoters from the evolved set (72 medium expressers and 72 high expressers after
3 rounds of selection; 168 medium expressers and 167 high expressers after 5 rounds of selection) and
quantified mean and variance in fluorescence. We used the same measurement procedures to calculate
mean and variance for all promoters contained in a library of E. coli promoters also placed upstream
of the gfpmut2 open reading frame on the pUA66 plasmid [16]. We refer to the promoters from this
library as native E. coli promoters. For 288 promoters, we quantified fluorescence in three independent
cultures and found that both mean and variance in expression were reproducible across replicate biological
experiments (Suppl. Fig. S4). Additionally, we sequenced 378 sequences from our set of 479 promoter
sequences, which showed that even after five rounds of selection, the promoters were quite diverse (Suppl.
Fig. S1). To confirm the sensitivity and accuracy of the FACS measurements, we selected ten promoters
and used fluorescence microscopy to measure their mean and variance in fluorescence. The cells were
grown in the same conditions described above, placed on 1% agarose pad, and images were obtained using
a CoolSNAP HQ CCD camera (Photometrics) connected to a DeltaVision Core microscope (Applied
Precision) with a UPlanSApo 100X /1.40 oil objective (Olympus). Image-processing was done in soft-WoRx
v3.3.6 (Applied Precision) and fluorescence values were extracted based on DIC-image mediated cell
detection in MicrobeTracker Suite [24]. For each cell, we calculated fluorescence per cell volume by
summing all pixel values and dividing by the volume of the cell as estimated by MicrobeTracker. Cells
undergo substantial phenotypic changes when they are put on agar, including changes in the distribution
of cell sizes. Consequently, it is problematic to compare absolute variance measurements directly between
FACS and microscope. We therefore compared the relative noise levels of different promoters. The 10
selected native promoters consist of 5 pairs with almost identical mean expression values (as measured by
the FACS) but with noise levels that vary by different amounts. For each of the 5 pairs, we calculated
the ratio of the noise levels of the higher and the lower noise promoter as measured by both the FACS
and the microscope. As shown in Suppl. Fig. S5, with the exception of one pair of promoters that
showed almost equal noise levels in the FACS but a 50% difference in noise in the microscope, all other
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pairs showed good correlation of the relative noise levels in the FACS and in microscope, confirming that
relative noise levels are similar in FACS and microscope measurements.

Quantitative Western analysis

To determine the correspondence between fluorescence intensities and absolute GFP numbers per cell,
eight individual promoter clones were grown in three biological replicates using the same media conditions
as in the experimental evolution. The cells were then re-suspended in SDS sample buffer, heated for 5
minutes at 95°C, and proteins were resolved by 12% SDS-PAGE. Quantification was done by loading a
standard curve consisting of 10, 25, 50, 75, and 100 nanograms of GFP (Clonetech, #632373). Proteins
were transferred to a Hybond ECL membrane (GE Healthcare, Life Sciences), which was then blocked in
TNT (20 mM Tris pH 7.5, 150 mM NaCl, 0.05% Tween 20) with 1% BSA and 1% milk powder. Detection
was performed with the ECL system after incubation with rabbit anti-GFP and polyclonal pig anti-rabbit.
Western intensities for each sample were extracted using ImageJ (Suppl. Fig. S2). The number of cells
loaded was estimated by calculating the relationship between OD600 and CFU counts. Details of the data
analysis procedures are in the Supplementary Text.

Correlating protein and RNA levels per cell by quantitative PCR

Native and evolved single-promoter populations were grown in three biological replicates by diluting
overnight LB cultures 500-fold into M9 media supplemented with glucose. These cultures were grown
for 2.5 hours, stabilized with an equal volume of RNA Later (Sigma-Aldrich) and RNA was extracted
using the Total RNA Purification 96-Well Kit (Norgen Biotek Corp.) with on-column DNAse I digestion.
Reverse transcription was done using random hexamers and qPCR with TagMan probes and performed by
Eurofins Medigenomix GmbH (Germany). Three technical replicates were performed. The efficiency of the
primers and probes used were validated in a dilution series. Relative RNA levels per cell were obtained by
normalizing to the reference gene ihfB using a Bayesian procedure for integrating data from the replicates
and accounting for failed measurements (Supplementary Text). The primers and probes used were: GFP
forward primer: 5-CCTGTCCTTTTACCAGACAA-3’; GFP reverse primer: 5- GTGGTCTCTCTTTT-
CGTTGGGAT-3’; GFP probe: 5-TACCTGTCCACACAATCTGCCCTTTCG-3’, ihfB forward primer:
5-GTTTCGGCAGTTTCTCTTTG -3’, ihfB reverse primer: 5- ATCGCCAGTCTTCGGATTA-3’, ihfB
probe: 5-ACTACCGCGCACCACGTACCGGA-3).

Minimal variance as a function of mean expression and excess noise

In a simple model of gene expression in which there are constant rates of transcription, translation, mRNA
decay, and protein decay, the probability distribution for the number of proteins per cell is a negative
binomial with variance proportional to the mean (n): var(n) = (b + 1){n), where the constant b is the
ratio between the mRNA translation rate and the mRNA decay rate, which is often referred to as ‘burst
size’ |25]. However, in general there are also cell-to-cell fluctuations in the transcription, translation, and
decay rates, which are proportional to these rates themselves. These fluctuations lead to an additional
term in the variance var(n) which is proportional to the square of the mean: var(n) = B(n) + 02,(n)?,
where [ is a renormalized burst size and ng is the relative variance of the product of transcription,
translation, and decay rates across cells (Supplementary Text).

The total fluorescence in a cell (measured in units equivalent to number of GFP proteins) nmeas can
then generally be written as: Neas = Nbg + €1/ var(n), where npg is background fluorescence and ¢ is a
fluctuating quantity with mean zero and variance one. Assuming that the fluctuations are small relative
to the mean, we then find for the variance of the logarithm of neas:

var (10g[nmeas]) = o2y (1 - >)2 + ( . (1 = T ) .

<nmeas nmeas> <nmeas>
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We fit this functional form to the minimum variance var (1og[nmeas]) as a function of the mean, with
02, =0.025 and 3 = 450. We defined the excess variance as the difference between the measured variance
and this fitted minimal variance. A more detailed derivation is given in the Supplementary Text.

The FACS selection function

By comparing the distributions of the population’s expression levels before and after rounds of selection
(without intervening mutation of the promoters), we found that the probability that a cell with expression

272 ’
expression level and 7 the width of the selection window. For the last 3 rounds of selection for medium
expression, we estimated 7 ~ 0.03 and p, fluctuated slightly around an average value of u, ~ 8.1.
With this selection function, a promoter genotype that exhibits a distribution of expression values
with mean g and standard-deviation o has a fitness (fraction of cells selected in the FACS) of

72 exp [_ (1= pa)? } .

T2 4 o2 2(12 + 02?)

level z is selected by the FACS is well-approximated as f(z|u«, 7) = exp {—M} with u, the desired

f(/,é,0'|/,b*,7') = (1)
This estimated fitness function indicated that the fitness of promoter genotypes strongly depends on
their mean p and is almost independent of their excess noise. In addition, applying additional rounds of
selection of varying strengths to the population of evolved promoters did not systematically alter their
distribution of excess noise levels. Details of the analysis of the FACS selection are in the Supplementary
Text.

Model for the evolution of gene regulation in a fluctuating environment

Although the model we present can be extended to include the evolution of gene regulation for multiple
genes, for simplicity we focused on the evolution of a single gene and its promoter. We assumed that the
population experienced a sequence of different environments and that, in each environment, the fitness
of each organism is a function of its gene expression level. We characterized the fitness function in each
environment by two parameters: the desired level p. that maximizes the fitness and a parameter 7 that
quantifies how quickly fitness falls away from this optimum and, for simplicity and analytical tractability,

we assumed a Gaussian form: f(z|ue,T) = exp [—%] Note that this is the same form as the FACS

selection function. Consequently, the fitness f(u, 0|, ) of a promoter with mean u and variance o is

given by equation as well, with u. replacing pi.

The total number of offspring that a promoter will leave behind after experiencing all environments is
given by the product of its fitness in each of the environments. Equivalently, the log-fitness of a promoter
is proportional to its average log-fitness across all environments. We then find for the log-fitness:

(M — </’Le>)2 + Var(ue)

2
IOg [f(/% 0)] = 2(7.2 + 0-2) %IOg |:7—2T+0-2:| ’

where (pi.) is the average of the desired expression levels across environments, and var(u,.) is the variance
in the desired expression levels across conditions. If we do not consider gene regulation, but simply
optimize the promoter’s mean expression and noise level, then we find optimal log-fitness occurs when
p = {p.) and o = 0 (when var(u.) < 72) or 02 = var(u.) — 72 otherwise. That is, when the desired
expression level varies more than the width of the selection window, noise is increased so as to ensure the
distribution overlaps the desired levels across all conditions. This result is equivalent to previous results
on the evolution of phenotypic diversity in fluctuating environments [10].

To increase fitness, a promoter can evolve to become regulated by one of the regulators existing in the
genome. Instead of having a constant mean expression p, the promoter’s mean expression will then become
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a function of the environment e: u(e) = u + cre, where r. is the mean expression (or more generally
regulatory activity) of the regulator in environment e, and ¢ is the coupling strength. Since any gene will
have some variability in its expression, we assumed that the actual expression/activity of the regulator in
environment e is Gaussian distributed with a variance 2. Consequently, when coupled to the regulator,

the promoter’s total expression variance will become o2, = 02 + c?02, and the log-fitness of the promoter

becomes:
<(N+CT6 _,Ue)2> 1 { 2 :|

log | — T
2(12 + 02 + 202) + 2 o8 72 4 02 + 2o?

1Og [f(,u70'7 C)] = -

Assuming that the basal expression u is optimized to maximize log-fitness, i.e. p = (u.) — ¢{(re), this
log-fitness can be rewritten as:
1Y2(1-X%)+(SX—-RY)? 1

1 XY, = == ~ log[1 + X2].
0g[/(X.Y, S, R)] = cons. — 5 3 5 log[1 + X7

2 _2
c o,

where X measures the coupling strength (X2 = P

), Y is the expression mismatch that measures how

much the desired expression level varies across environments (Y2 = %), S is the signal-to-noise of the
regulator (S? = Vd;i(?)% and R is the Pearson correlation between the desired expression levels p. and

the activity levels r; of the regulator. Additional details on this derivation and analysis of the behavior of
the fitness function as a function of its parameters are given in the Supplementary Text.

Analysis of excess noise against gene expression variation and regulatory in-
puts

We re-annotated the promoter fragments of [16] by mapping the published primer pairs to the E. coli K12
MG1655 genome. Of the 1816 promoter fragments, 1718 could be unambiguously associated with a gene
that was immediately downstream, and the 1718 promoter fragments were associated with 1137 different
downstream genes (for some genes, there were multiple or repeated upstream promoter fragments). We
used the operon annotations of RegulonDB [20] to extract, for each promoter, the set of additional
downstream genes that are part of the same operon as the first downstream gene. We obtained known
regulatory interactions between transcription factors and genes from RegulonDB and counted, for each
E. coli gene, the number of transcription factors known to regulate the gene. We defined the number
of regulatory inputs of a promoter to equal the average of the number of inputs for all genes in the
operon downstream of the promoter. We sorted promoters by their excess noise and, as a function of a
cut-off on excess noise level, calculated the mean and standard-error of the number of regulatory inputs
for all promoters with excess noise level above the cut-off. We obtained genome-wide gene expression
measurements from the Gene Expression Database (http://genexpdb.ou.edu/). For each E. coli gene, we
obtained 240 log fold-change values = corresponding to the logarithm of the expression ratio of the gene
in a perturbed and a reference condition. We defined the variance in expression of a gene as the average
of 2% across the 240 experiments. We again sorted promoters by their excess noise and, as a function of a
cut-off on excess noise level, calculated the mean and standard error of gene expression variances for all
promoters with excess noise above the cut-off.
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Supplementary Figures
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Figure S1. Genetic diversity of 378 sequenced promoters, which were extracted from randomly selected
clones from the populations that were obtained after 3 and 5 rounds of selection. Sequences were
clustered using single-linkage based on 100, 95, or 90 percent sequence identity (left, middle, and right
panel) and the bar plots show the corresponding histograms of cluster sizes. The results indicate that the
promoters in the populations at the third and fifth rounds are highly diverse, deriving from many
different initial random sequences in the initial library.
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Facs Intensity vs. GFP molecules per cell

KR

Log GFPs per cell

5 6 7 8 9 10
Log Facs Intensity

Figure S2. Mean log-fluoresence intensities as measured by FACS (horizontal axis) against estimated
log GFP molecules per cell (vertical axis) as estimated from quantitative Westerns (see Supplementary
Text) for 8 selected promoters. Error-bars were estimated from 3 replicates for the FACS measurements
and 6 replicates for the GFP levels. The straight line shows the fit y = x + 1.06, which is equivalent to:
GFP molecules per cell = 2.88 * mean FACS intensity.
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Figure S3. Relationship between log protein levels as measured by GFP intensity in FACS (vertical
axis) and log mRNA levels (horizontal axis). The mRNA levels are estimated relative to the mRNA level
of reference gene IhfB. Error bars show plus and minus one standard-deviation of the posterior
probability distribution on mRNA levels (Supplementary Text). Black data points correspond to
native promoters and red data points to synthetic promoter. The straight line shows a linear fit with
slope 1, i.e. the best fit to a model where the protein level p is directly propotironal mRNA level m,
log(p) = ¢+ log(m), with ¢ = 7.06 (Supplementary Text).
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Figure S4. Comparison of three biologial replicate FACS measurements of means and variances of
log-fluoresence for evolved E. coli promoters. The top 3 panels compare mean log-fluorescences across 3
replicates and the bottom 3 panels compare variances in log-fluorescences across 3 replicates. The
Pearson squared-correlation coefficients between pairs of replicate measurements are indicated at the top
of each panel.
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Comparison FACS and Microscope Noise Measurements

Noise ratio microscope

1 2 3 4 5
Noise ratio FACS

Figure S5. Relative noise levels (variance of the log-expression distribution) of 5 pairs of native
promoters that have very similar mean expression levels. Each dot correspond to one of the pairs of
promoters and shows the ratio of the noise level of the highest noise promoter to that of the lower noise
promoter as measured by FACS (horizontal axis) and by microscope (vertical axis). The blue line shows
the line y = x.
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Figure S6. Mean log-fluorescence (horizontal axis) and excess noise levels (vertical axis), i.e. the
different between variance of log-fluorescence levels and the minimal variance at the corresponding mean,
for all native (blue dots) and synthetic (red dots) promoters. Both axes are in units of number of GFP
molecules. Note that, in contrast to raw variances in log-fluorescence, that show a clear dependence on
mean log-fluorescence, the excess noise levels show no dependence on mean.
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Figure S7. Cumulative distributions of excess noise levels for the native (blue) and synthetic promoters
(red). The left panel shows the cumulative distribution of excess noise for promoters whose mean
log-expression was less than log(18000) (corresponding to the medium expressing synthetic promoters),
and the right panel for promoters with mean log-expression more than log(18000) (corresponding to the
high expressing synthetic promoters). High noise promoters are clearly enriched among native promoters
for both medium and high expressing promoters.
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Total noise at optimal coupling and requlators signal-to-noise
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Figure S8. Phase diagram of the total noise oot of a promoter with expression mismatch Y (horizontal
axis) that is coupled (at optimal coupling strength) to a regulator whose regulatory activities have
correlation R with the desired expression levels (vertical axis) and whose signal-to-noise ratio S has also
been optimized. The colors indicate the value of oy, running from oy, equal to the noise o of the
unregulated promoter (red) to oot = 60. A phase boundary (thick black curve) separates solutions in a
‘basal noise regime’ at the top left, where the total noise equals the minimal noise o2, and solutions in an
‘environment-driven noise regime’ at the bottom right, where the total noise matches the variance in
desired levels that is not tracked by the regulation, i.e. 02, = (1 — R?)var(u.) — 72. The contours show
optimal signal-to-noise ratios S, as a function of Y and R. Note that S, diverges at the phase boundary.
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Supplementary Text

Estimating the mean and variance of log-fluorescence levels from FACS data

Visual inspection of the distributions of fluorescence intensities for individual cells containing the same
promoter construct shows that almost all of these distributions can be well approximated by a log-normal
distribution. We thus chose to characterize the distribution of expression levels of each promoter by the
mean and variance of log-fluorescence intensities across cells. Visual inspection of the distributions also
indicated that, for almost all promoters, there is a small number of measurements with aberrantly high or
low values that are likely due to some measurement artefact, and we designed a Bayesian procedure for
automatically discounting these aberrant measurements.

For each clone we typically have around N = 5000 independent FACS intensities measured. We denote
by x the log-intensity (using natural logs) of an individual cell. We first calculate the mean and variance
without taking outliers into account, i.e.

| X
(@) =+ D, )
i=1
and
1 X
var(z) = Z(m — (z))?, 3)

where z; is the log-intensity of cell . We call these the ‘original’ mean and variance.

Next we take outliers into account. We assume that, of all N measurements, only a fraction p are
correct’ measurements, and the other (1— p) are ‘outliers’, meaning that these are erroneous measurements.
We assume that these ‘outliers’ derive from a uniform distribution that spans the range of measurements
R = (Tmax — Tmin). Finally, we assume that the distribution of ‘correct’ measurements is approximately
Gaussian with (unknown) mean g and variance 0. Under these assumptions, the probability of a
measurement of log-intensity z is given by

‘

x—p)? -
P(z|p, 0%, p) = \/2%0 exp [—( 205) } + IRP. (4)

The probability of the entire data-set for a clone is then simply given by

N
P(Dlu,0% p) = [ ] Plailn, o p). (5)
=1

We then maximize this probability with respect to p, o2, and p. This can be easily done using Expectation-
Maximization. The resulting mean p, and variance o2 are corrected for outliers.

Inferring the relation between FACS intensity and GFP molecules per cell

To infer the relationship between FACS intensity per cell and GFP molecules per cell we used quantitative
Westerns. For each of 8 strains of known FACS intensities, we extracted the protein contents from a
fixed number of cells and quantified total GFP intensity. In the same experiment the GFP intensities
were measured for known amounts of GFP ranging from 10 to 100 nanograms. We performed 3 replicate
experiments. In each replicate we measured the GFP intensity of the 8 strains, as well as ‘reference’
intensities of bands loaded with 10, 25, 50, 75, and 100 nanograms of GFP. We measured intensities from
these gels using both 10 second and 20 second exposure times, giving a total of 6 replicate measurements
of the reference amounts and the 8 strains.
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Figure [S9| shows the measured GFP intensities I as a function of the amount of GFP w (weight
in grams) for the reference bands, in each of the 6 replicate experiments. Note that there are 5 points,
corresponding to weights of 10, 25, 50, 75, and 100 nanograms in each curve.

15000 -

Intensity Western band

10000 -

. | . . . | . . . | . . . | . . . |
2.x10°8 4.x10°8 6.x10°8 8.x10°8 1.x1077
grams GFP

Figure S9. Measured intensities of the GFP reference bands as a function of the amount of GFP (in
grams) loaded on each band. Each curve corresponds to one replicate (shown in a separate color), and
each curve has 5 data-points.

The curves show that the measured intensities are saturating as the amount of GFP increases. Second,
the intensity scale varies significantly from replicate to replicate. The simplest linear relationship between
I and w that includes saturation is of the form

w

I = Lhax (6)

w4 wy’
and inspection of the curves shows that each of them can be reasonably well fitted to this functional form.
To infer the amount of GFP corresponding for a particular strain in a particular replicate, we need to
infer w as a function of the measured value I. We thus invert the relationship and find the general form

1

In other words, our functional form assumes that for a suitably chosen value I;,.x, the weight w becomes
directly proportional to the transformed variable I/(Inax — I). As an example, Figure shows that
for the first replicate, when plotting w as a function of /(15631 — I), i.e. with a value of I ,.x = 15’631,
we obtain an approximately linear relationship. Similar approximately linear relationships are observed
for the other replicates as well.

To fit w as a function of I for each replicate, we assume that the difference between w and I/(Iynax — 1)
is Gaussian distributed with unknown variance o2. That is, for each data-point 4 in a replicate, the weight
w; and its intensity I; are related through

wizei—i-wo#, (8)
I;

Imax -

with €; the noise, which is Gaussian distributed with unknown variance o2, i.e.

Plelo) = ——exp [—20} | )
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Figure S10. For the first replicate, we inferred a saturation value I, = 15'631. Plotting w as a
function of I/(Imax — I) we obtain an approximately linear relationship that also approximately goes
through the origin (0,0) (as it should).

Using this, the probability of the observed data in a titration curve, given parameters Iy, wg, and o is:

1 1 & I; 2
P({w}{I}, Imax, wo, o) o ajeXP lw 2 (w,; - wo[max_li> ] ) (10)

where n = 5 is the number of points in a titration curve, and we have ignoted factors of /27 for
convenience.

Imagine that we augment our data-set ({w}, {I}) with a single data-point (ws, I5), where I is the
measured intensity of strain s and wy is a hypothesized amount of GFP for this strain. The probability of
this entire data-set is given by

1
P({’UJ},’UJSHI},IS,ImaX,’LU(),O') = Wexp

1 n Iz 2 Is 2
_W;<wi_w01max—li> + (ws_wo_[max—ls> ‘| )
(11)

Formally, we now need to specify a prior P(Iyax, wo, o) and integrate over these unknown parameters.
We will use a uniform prior over Ip,.x and wg, and a scale prior 1/0 for o. That is, formally we want to
calculate

d
P({’w},’ngI},Ig) = /dlmaxdwoip({w}aws'{l}ylsvImaxaw07g)' (12)
o
Note, if we additionally integrate over ws we obtain
P{w}l{l}, 1) = /dwsP({w},wsl{f},Is) (13)

and dividing by this we obtain the posterior distribution of wj:

P({w}, ws[{1}, 1)
Pwi{I}, L)

To perform the integrals in 7 we first simplify the notation by denoting the new data-point (ws, I5)

P(wus}v{I}aIs) = (14)
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as (Wp41, Int1), i-e. as if it was the (n + 1)st data-point. The integrand now takes the form

1 1 & Lo\

K3
To further simplify notation, we write y; = I;/(Imax — I;), keeping in mind that the values of y depend on
Ihax. Further, for any quantity x that takes on values x; over the 5 titration points and the added point,
we write averages like

1 n+1
2y _ )2 16
@ = o 2l (16)
and so on. The integrand can then be rewritten as
1 n+1
P{w}{I}, max, w0, 0) = — = exp (— 557 (W) = 2wolwy) + w8<y2>}) : (17)

Performing the integral over wy we obtain

P{w}{I}, Imax,0) =

where we have again ignored prefactors that cancel in the final posterior for wg, i.e. equation (14). We
next integrate over o. Performing this integral we obtain

—n/2
(wy)? ) 2\—1/2
PHwM{TY, To) = (1= 2291 y . 19
(T I = (1 252 )  02) (19)
Notice that the key expression in parentheses is simply one minus the squared correlation coefficient
between the variables w and y, i.e.

(wy)?

r?(y,w) = W (20)

In other words, the values of ws and I,.x that maximize the probability are those such that the linear
correlation between the resulting values of y and the w values is maximal.

We next need to perform the integral over I,,x. Since this integral cannot be performed analytically,
we performed the integrals over I, numerically, separately for each strain s and each of the 6 replicates.
Finally, for each replicate r and strain s, we determined the values w,s; that has maximal posterior
probability. These are our estimated GFP amounts (in grams) for each strain and replicate (Fig. [S11)).

Although the inference clearly separates the high expressed from the low expressed clones, curves from
the different replicates seem to be separated by constant shifts from each other. Since the vertical axis is
shown on a logarithmic scale, this means that the curves differ by common multiplicative factors. This
difference in scale is almost certainly due to an experimental artefact and we will thus normalize for it.

Let wg(7) be the inferred amount of strain s in replicate i. To account for the variability in overall
scale, we normalize the inferred log-weights in each replicate by calculating the average log-weight in the
replicate, i.e.

1 8
pi =5 D _log[ws(0)], (21)

and a total average scale of the replicates

6
1
=D i (22)
=1
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Figure S11. Inferred GFP amounts (in grams, vertical axis) for the 8 strains (strain numbers shown
along the horizontal axis) using the reference data from each replicate. Each color corresponds to a
replicate. The vertical axis is shown on a logarithmic scale.

and then transforming the estimated shifts as follows:
w (1) — Ws (1) = wg(2)e! Hi. (23)

In addition, dividing the weight (i) by the known weight of a single GFP molecule (4.48210720 grams),
we get an estimate of the number of GFP molecules in the bands for each strain. Finally, we used OD
measurements to estimate the number of cells loaded on each band, and divided by these to obtain an
estimate of the number of GFP molecules per cell for each of the strains across each of the replicates.
Figure shows the inferred GFP molecules per cell for each strain after normalization, which indeed
show much less variation across the replicates.

1x10° |\

5x 104 -

1x10* -

GFP (molecules) per cell
1<y
8
T

1000 -

500

T S S S
1 2 3 4 5 6 7 8

Strain number

Figure S12. Normalized inferred GFP amounts (molecules per cell, vertical axis) for the 8 strains
(strain numbers shown along the horizontal axis) using the reference data from each replicate. Each color
corresponds to a replicate. The vertical axis is shown on a logarithmic scale.

Finally, we compare the inferred GFP amounts for each strain, with the FACS intensities measured
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for that strain. Observing that the variation in both estimated FACS intensities and GFP molecules per
cell increases with the mean, it is most natural to compare GFP and FACS levels on a logarithmic scale.
Let fs denote the true log-FACS intensity and gs; denote the true log-GFP molecules per cell. Assuming
that GFP molecules per cell and (background corrected) FACS intensity are directly proportional to each
other, the log-levels are related through

gs = fs +c (24)

with ¢ a constant. For each strain s, we calculated the mean log-FACS intensity (fs) and its variance
var(fs) across replicate FACS | as well as the mean log-GFP molecules per cell {g) and its variance
var(gs) across the quantitative Westerns as described above. Assuming Gaussian deviations between the
true and observed levels, the probability of the data given ¢ is given by

<gs> - <fs> - C)Z
var(f2) + var(gs»] | (25)

P(D|e) x Hexp {2((

We thus find for the optimal value of c:

-1
— (gs) — (fs) 1
Cyx = Z var(fs) + var(gs) [XS: var(fs) + Var(gs)] - (26)

S

Suppl. Figure 2 shows the estimated log-FACS and log-GFP levels including their error bars, together
with the optimal fit ¢, = 1.06.

Consequently, if F' is the FACS intensity of a strain (non-log), then the estimated number of GFP
molecules per cell G is equal to G = e!'%°F = 2.88F. Note that, with these estimates, the highest expressed
strain, with an average FACS intensity of 37'500, would have about 108’000 molecules of GFP per cell.
The lowest expressed strain (with FACS intensity 143) would have 415 molecules per cell. From now on,
we will multiply all FACS intensities by 2.88 so that a FACS intensity of I automatically corresponds
to the fluorescence of I GFP molecules, i.e. we express FACS fluorescence intensities in units of GFP
molecules per cell.

Comparing mRNA and protein levels

For 94 clones, we quantified mRNA levels using qPCR. The qPCR procedure uses a standard reference
curve which allows it to infer the absolute number of molecules of the mRNA of interest in the input
sample. Each input sample is created by extracting RNA from a certain number of cells (which we can
estimate approximately), and reverse transcribing this RNA into ¢cDNA. Unfortunately, both the total
amount of cells used, as well as the efficiency of the reverse transcription can fluctuate significantly outside
of our control, and this will make the total number of molecules detected fluctuate as well. To control for
this, we always quantify the absolute number of molecules of two types of mRNAs in parallel for each
sample; the mRNAs of the gene of interest, and the mRNAs of a reference gene which we are confident is
constantly expressed. The reference gene we used was ihfB.

For each promoter of interest p, we obtained measured mRNA molecule numbers together with mRNA
molecule numbers for the reference gene, in 3 separate biological replicates, and in 3 technical replicates
for each biological replicate, i.e. 9 pairs of measurements in total. We denote the log-quantity of the
mRNA of promoter p in biological replicate r and technical replicate i as x,,;, and the log-quantity of
the reference gene in the same replicate as y,,; (note that this depends on the promoter p because these
quantities come from a common sample). To estimate a single log-ratio x,, — y, between the expression of
the gene of interest and the reference gene, we will proceed as follows. First, we will integrate the data
from the technical replicates to obtain biological replicate expression xp, and y,,.. We then combine the
differences d,, = xpr — ypr across the biological replicates, to obtain the final d, = z, — y,.
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The statistical model that we use assumes that the difference between the value x,,; measured in
technical replicate 4, and the true expression x,, is Gaussian distributed with mean zero and an unknown
variance o2. Note that we assume that this ‘noise’ is the same for all promoters p, but may fluctuate
between biological replicates. We similarly assume the difference between y,.; and y,, is Gaussian
distributed with variance 62. We noted that there is a small fraction of measurements that deviate by
large amounts from the measurements in other replicates. We assume that there is a small fraction of
measurements that failed in some way, giving erroneous measurement values. To take this into account
we will use a mixture model that asssumes a small fraction of the measurements come from a uniform
distribution that spans the observed range of the data.

Let R, = max, ;(Zpr;) — min, ;(x,r;) denote the range of observed values in biological replicate r, and
let p, denote the fraction of measurements in replicate r that are meaningful, i.e. not erroneous. The
probability of a single measurement x,,; given x,,, the variance o2 and fraction p, is given by

2 . Pr L (zpri — xpr)Q 1—p,
P(mpri|xprvor7p'f) - \/%UT exp |:_2 20_7% + Rr . (27)

The probability of all technical replicates for all promoters is then simply given by the product over all
promoters p and technical replicates i:

P({mpri}l{mpr}7azapr) = HP(«Tpm‘Wpr,U,%,Pr). (28)
P,

We next maximize this likelihood with respect to the fraction p,, the variance o2, and the expression levels
2,y for all promoters p. This optimization can be done using a straight-forward Expectation Maximization
scheme.

Expectation Maximization

Given a current estimate of @, of the variance o2 and the fraction p,, the posterior probability that the
technical replicate with value z,,; was a meaningful measurement is given by

Pr
ex —
V2o, p |: 202

(@pri *mpr)2 ]

. ] 2 o
p(l|xp7'l’ 37;07-7 0-7‘7 p”) - o ox |:_ (xpri_xpv‘)2:| + 1—p, B (29)
Vano, XP 202 R,

Using these posteriors, the updated value x;T is given by the mean of the technical replicate measurements,
weighted by their posteriors

;o Zl xpTip(ﬂ:CpT‘ia Tpr, 072“7 IOT‘) (30)
Ty, = : : 5 .

Zi p(l|xp7'u Lpr; O, pr)
Given current values of p, and o2 we use these equations to iteratively update all x,, until they converge.
We then update the values of p, and o2 using the following equations

’ Zp7ip(i‘mpri7xprao'72~7pr)
pr = S 1 : (31)
i

i.e. the updated p.. is the average of the current posteriors over all promoters and technical replicates.
The update equation for the variance is given by

2 Zpﬂ'(xpri - xpv")2p(i|$pri7 Tpr, 0'7%7 pr)

2= : (32)
Zp,i p(dxpm’; xpra O—%a pr)
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After each update of o2 and p, all z,, are updated until convergence again, and this is iterated until
the 02 and p, converge. Exactly analogous expectation-maximization equations are used to optimize the
values &, pr, and all y,, of the reference gene measurements.

Table shows the fitted fractions and variances for each of the replicates. We see that for the

replicate o? P 5?2 0
1 0.0252 | 1.0 | 0.0116 | 0.934
2 0.0113 | 0.981 | 0.0118 | 0.988
3 0.0329 | 0.956 | 0.0072 | 0.955

Table S1. Fitted variances and fractions of meaningful measurements for the genes of interest (o2, p) as
well as for the reference gene measurements (62, ) for each of the three biological replicates.

majority of replicates the noise level lies around 0.01 (meaning a measurement error-bar of about 0.1
on log-expression), but it is two and three-fold higher for measurements of the genes of interest in two
replicates. The fraction of correct measurements ranges from about 93% to almost 100% across the
replicates.

When the variances and fractions have been optimized, we obtain the final technical replicate-averaged
quantities 2,, and y,, and we determine final variances o3, and &7, for each of these averages. These
final variances are calculated as follows. For each promoter p and each biological replicate r, we determine
the effective number of correct measurements as

Npr = E p(i‘xpriv Tpr, 0—37 pr)7 (33)
i
and the final variance is then given by
2
2 Or
= . 34
Opr Mo (34)

Analogously, for the reference gene measurements we have

rﬁp?" == Zp(ﬂypTiyypTv&?aﬁT‘)? (35)
i
and the final variance ~2
~2 0,
= . 36
UP’" ﬁpr ( )

Combining the biological replicates

For each promoter p, we want to estimate the log-expression ratio x, — y, by combining the estimated
values xp, and y,, from each of the replicates, taking into account that these values have different variances
for different replicates. For a protein p and replicate r, the estimated log-expression difference d,, is

dp,,. = Tpr — Ypr- (37)
The variance Tgr associated with that estimated difference is
2 2 | =2
Tor = Opp + 0y (38)

Inspection of the variation in dp, across biological replicates, relative to their uncertainties 7,,, makes
it clear that, in addition to the uncertainty in each of the estimates dp,, there is substantial variation
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in dp, across the biological replicates which is quite different for different promoters. That is, for some
promoters the biological replicates give very consistent d,,, lying within the error-bars 7,,, whereas for
other promoters the variation in d,, is much larger than the error-bars 7,,, indicating that there must be
additional variance across replicates.
We will assume that the true value d;r is given by the mean d, for the promoter plus a biological
replicate variation dp,
d;w =dp + 6pr, (39)

and we will assume that the deviation J,, is Gaussian distributed with mean zero and unknown variance
7'3. The probability of the estimate d,, given its variance 72., the true value d,, and the biological replicate

pr
. 2 . .
variance 7, is given by

1 (dyy — dy)?
P(dyr|dy, 7, 7)) = — == exp [H} ' (40)
e 2n (72 +12) 2(rp +73)

The probability of the data combining all biological replicates for the promoter is simply

3
P(dp17dp2a dp3|dpa T;, 7-5177—5277—;33) = H P(dpr|dp77—3r77—§) (41)

r=1

For each promoter p, we now maximize this probability with respect to both 7'3 and d,. Given a fixed
value of Tg, the optimal value of d,, is given by the weighted sum

dpr
§ : 2 2
T
T +TP7,

= 1 -
Z’r‘ 'rg +7‘Z2)T

Substituting this optimal d,, into the probability , the expression becomes a function of the variance

T]f only, and we numerically determine the optimal value of Tg for each p. In this way we obtain a final

estimate d, for each promoter. The variance O’Z associated with this final estimate is given by

d, = (42)

-1
1
2
_ 43
Up [2 7_;3 +7_p2T ( )
Suppl. Fig. S3 shows the relationship between protein levels (estimated by FACS) and estimated
mRNA levels for the 94 strains for which we measured mRNA levels using qPCR. We see there is a very
good correlation between protein and mRNA levels (Pearson correlation 72 2~ 0.82). Note that, for a given

promoter, the average protein level p is related to average mRNA level m by the ratio of the translation
rate A and protein decay rate p. That is,

A
= —m. 44

p=m (44)
Since GFP is very stable compared to the duplication rate of our cells, for our system the protein decay
rate p is approximately equal to the growth rate of the cells, and thus constant across the promoters.
Consequently, the fact that 82% of the variation in protein levels is explained by variations in mRNA
levels, suggest that the translation rate A shows relatively small variations across the strains. Below, we
use this data to more rigorously estimate variation in translation rates across the strains.
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Estimating relative translation rates

As before, we denote by d, the relative (to thfB) log-mRNA level of promoter p, and we will denote by
yp the log protein number per cell (as measured by FACS) for promoter p. Denoting by m the absolute
number of mRNAs per cell for the reference gene ihfB, by A the average translation rate, and by p the
protein decay rate (as a consequence of cell growth), y, and d, are related through

Aedr d

e¥r = e“?m, 45
m (45)

where we have written the translation rate A\, of promoter p in terms of the average translation rate A,
and a promoter specific deviation dy,, i.e. A\p = Aedr. Defining e¢ = Am/u we have

Yp = dp + ¢+ 0p. (46)

Using that our estimate of d,, is Gaussian distributed with standard-deviation o, and assuming that
0p is Gaussian distributed with mean 0 and standard-deviation 7, the probability of our data given the
Op, C, and T is

Py 8,Hes (k1) = [T 5, Wpyé(%—%;c—%) 5?} (a7)

2mo,T o 272

To estimate the variance 72 we integrate over all §, and ¢ (using a uniform prior). To simplify the notation

of the result we write w, = 1/(o7 + 7°), and A, =y, — d,,. We then have

w wpA,)?
P({dp,yp}{op} 7) MQXP [_; <Z pr;% - M) (48)

/3, wp 2 p Wp

We numerically determine the value of 7 that maximizes this likelihood and find 7, = 0.47. Using this
maximum likelihood value of 7, the maximum likelihood value of ¢ is given by

Zp wpAp
Zp Wp

The fit y = ¢ + d is shown as the black line in Suppl. Fig. S3.
Finally, using 7, and c,, we determine the most likely values of the J,. We find

= 7.06. (49)

Ci =

A, —c
6, = _—P _* 50
P14 o2/r (50)
with a standard-deviation of "
1 1\
o) =|—=+—= . 51
o) = (5+53) 61

Figure shows the estimated values of §,, together with their error bars o(d,), as a function of
the log protein level y,. We see that, for the large majority of promoters, the estimated translation rate
is within 2 — 3 fold of the average translation rate (i.e. |d,| < 1), confirming that there is relatively
little variation in translation rates. For the most extreme example, the translation rate is approximate
e!? = 6.6 fold lower than the average translation rate.

The figure also shows that there is no correlation between the relative translation rate d, and the log
mRNA level d,. We also find no correlation of ,, with either log protein level 4, or the variance of the
log protein level (data not shown).
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Figure S13. Estimated relative log-translation rates §, and their error bars o(d,) (vertical axis) as a
function of the log-mRNA level relative to ihfB, dp, for each promoter p.

Minimal expression noise as a function of mean expression

To model the noise distribution of our promoters we start with the simple case in which there are constant
rates of transcription, translation, mRNA decay, and protein decay. Let A,, be the rate of transcription
per unit time, p,, the rate of mRNA decay (per mRNA per unit time), A, the rate of translation (per
mRNA per unit time), and u, the rate of protein decay (per protein per unit time). Note that in our case
all proteins decay at the same rate and, because the decay rate of GFP is relatively small compared to
the dilution rate as a consequence of cell growth, the rate u, is effectively given by the growth rate of the
cells.

In [25] an analytical expression was derived for the distribution P (1|, fim, Ap, ftp) under the assump-
tion that the rate of protein decay is small compared the rate of mRNA decay. In E. coli the typical
mRNA decay rate is on the order of 5 minutes [26]. In the minimal media with glucose in which our
cells are grown, the doubling time is more than half an hour, so that the protein decay is indeed smaller
than the mRNA decay rate by a factor of approximately 6. Since this is not a very large factor, one may
worry that for stable mRNAs the approximation breaks down. Fortunately, in [25] it was also shown (by
simulation) that as long as the mRNA decay rate is at least as large as the protein decay rate, then the
approximation still is quite accurate. We will thus assume that we can use this approximation.

Under this approximation the stationary distribution of the number of proteins per cell depends only
on the following two ratios:

a=2m (52)
Hp
and N
b= L. (53)
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The ratio a gives the expected number of transcripts that are produced during the life-time of a single
protein, which in our case effectively means the doubling time of the cells, i.e. a is the expected number
of transcription events per cell cycle. The ratio b gives the expected number of proteins that are produced
from a single mRNA during its life-time. This is sometimes referred to as the ‘burst size’. That is, typically
one assumes b > 1 and given that mRNA decay is faster than protein decay, the proteins are produced
‘fast’ from a single mRNA in comparison to the life-time of a typical protein, i.e. in a burst.

The limit distribution P(nla,b) is given by a negative binomial

Pinfa,b) = r(I;(iJf)?za) (bi 1>" (1 N bj:1> (54)

This distribution has a mean

(n) = ab, (55)

and variance

var(n) = ab(1 +b) = (n)(1 +0). (56)

We extend this simple model by assuming the ratios a and b fluctuate themselves (most likely on a
somewhat slower time scale). Although we will not attempt to specify the molecular origins of these
fluctuations in a and b, they likely include fluctuations in the concentrations of polymerases, ribosomes,
and transcription factors that regulate the promoter in question. Such fluctuations would contribute to
the extrinsic noise of the promoters, since they would equally effect two copies of the same promoter in
the same cell. However, they may also include fluctuations in the state of the promoter itself and such
fluctuations would contribute to the intrinsic noise.

We will assume that the fluctuations in these ratios of rates are multiplicative, i.e. proportional to the
means (a) and (b):

var(a) = (a)’0g, (57)
and
var(b) = (b)?0f. (58)
We then find for the total variance of n
var(n) = (n)?(o; + o, + o503) + (n) [L+ (0)(1 + 07)] - (59)

To simplify notation, we introduce the variable

agb = crg + ag + agag, (60)
and the renormalized burst-size
B =1+ (b)(1+a}). (61)
With these definitions we have
var(n) = (n)?og, + B(n), (62)

which brings out most clearly that there is a term proportional to (n)? that results from fluctuations in
a and b, and a term proportional to (n) that results from Poisson fluctuations in mRNA and protein
production, and is proportional to the burst-size.

We now want to relate this expression to variations in log-fluorescence intensities as measured using
FACS. Here it is important to note that the log-fluorescence intensity per cell is the result of a combination
of fluorescence coming from GFP proteins and background fluorescence of the cell.
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Figure S14. Reverse cumulative distributions of the FACS intensities per cell (multiplied by 2.88 so as
to correspond to the equivalent of GFP proteins per cell) for MG1655 cells without a plasmid (red, blue
and green curves) and MG1655 cells with an empty plasmid (orange, pink and cyan curves). The black
line shows a Gaussian distribution with matching mean and variance.

Background fluorescence

To estimate background fluorescence, we performed 3 replicate measurements of populations of cells
without any plasmid, and 3 replicate measurements of populations of cells containing an empty plasmid (not
containing a GFP gene). Figure shows the reverse cumulative distributions of observed intensities
in these control populations (colored lines).

The curves show that each replicate shows a highly similar distribution of fluorescence levels, and
pooling the data from all replicates we find a mean background fluorescence of nys = 582.3 with a standard-
deviation of on,s = 302.9. As shown by the black curve in figure the distribution of background
fluorescences is reasonably approximated by a Gaussian with the same mean and standard-deviation.

Relating measured variations to the theoretical expression

Let npyeas denote the measured FACS intensity of a cell. We will write this measured intensity as the sum
of an average background fluorescence ng, the average number of proteins (n), and a fluctuation of size
ey/var(n):
Nmeas = Nbg + (1) + €1/ var(n), (63)

Here € is a quantity that fluctuates from cell to cell, which has mean zero (¢) = 0, and variance one, i.e.
(€2) = 1.

We will assume that the fluctuations ey/var(n) are small relative to the mean (nmeas) = nbg + (n).
We can then write for the logarithm of the measured FACS intensity

var(n
Log mens] ~ 108 (rmens)] + € Y2 (64)
<nmeas>
We then find for the variance in log-scale of the measured FACS intensities
var(n) (65)

var (log[nmeas]) = (Menc)?
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If we substitute the expression for the numerator, we obtain

2
2 Nhg B Npg
var (10g[nmeas]) = 03 (1 <nmeas>) + (mens) (1 <nmeas>>. (66)
The left panel of figure shows the mean and variances of the log-FACS intensities of all native
promoters. This scatter shows that, as a function of the mean FACS intensity, there is a sharp lower
bound on the observed variances. The red curve shows that this lower bound can be well-fitted by a
function of the form , where we used parameters 02, = 0.025 and 3 = 450. Note that the value of o2,
determines the variance in the limit of large means, whereas /3 controls the curvature at lower means. We
fitted these two parameters by hand. Their interpretation is that, O'gb corresponds to the minimal amount
of cell-to-cell variation in the product ab that is possible for any promoter architecture. The variable
B = 450 roughly corresponds to the burst-size.

0.8

0.8-

0.6-
0.6+

0.4

Excess noise

0.2f

Variance Log|proteins per cell]

7 8 9 10 11 12 13
Mean Log|[proteins per cell] Mean Log| proteins per cells]

Figure S15. Dependence between mean and variance of log FACS intensities. Left panel: Means and
variances of log-FACS intensities of all native promoters (blue dots) together with a fitted lower bound on
the variance as given by equation using agb = 0.025 and B = 450 (red curve). Right panel: Excess
noise (obtained by subtracting the fitted lower bound from the variance) as a function of mean log-FACS
intensity for all native promoters (blue dots). The red line shows the z-axis.

Note that the log-fluorescence on the horizontal axis corresponds to the sum of fluorescence resulting
from GFP molecules and the background fluorescence. The estimated background level ny, = 582.3
corresponds to a log-fluorescence of 6.37. The region on the horizontal axis between 6.37 and 7 =
log(2 * 582.3), thus corresponds to cells where the fluorescence due to GFP molecules is less than the
background fluorescence. In this regime the noise distribution results from a combination of fluctuations
in background fluorescence and in protein numbers (which may be correlated because part of these
fluctuations may result from fluctuations in cell size) and our noise model breaks down. In the
following we will focus on those promoters with fluorescence due to GFP at least as large as the background
fluorescence, i.e. with mean log-fluorescence larger than 7.

To obtain a deviation of each promoter’s variance from the minimal variance that is possible at its
expression level, we define the excess noise n as the difference between a promoter’s variance and its the
fitted minimal variance o2, (1) as given by equation with 8 =450 and o2, = 0.025:

2 2
n=o — o—min(:u)' (67)
The right panel of figure shows the excess noise levels of all native promoters as a function of their
means. The figure shows that, with this correction, there is no longer any systematic dependence between
mean expression levels and noise. Therefore, we can use excess noise as a measure of transcriptional noise
that allows us to compare noise levels of promoters with different mean expression levels.
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FACS Selection

As explained in the Methods, for both the medium and high expression evolutionary runs, the desired
expression level pu, is taken from the expression level of a reference promoter from the library of E. coli
promoters. At each selection round we measure the expression u, of the reference promoter, and set the
center of the FACS’s selection window to .. We then set the width of the selection window such that 5%
of the cells have expression levels within the selection window.

Although, in principle, the FACS’s selection should work such that a cell with expression level anywhere
within the selection window has 100% probability to be selected, and 0% probability to be selected if
the cell’s expression is anywhere outside the selection window, it is unrealistic to assume that the
boundaries of the selection window are so precisely defined in practice. As illustrated below, comparison
of the population’s expression levels before and after selection shows that the probability for a cell with
log-fluorescence = to be selected can be well-approximated as

272

Flelpe,7) = exp [ -2 (65)

where p, is the desired expression level and 7 corresponds to the width of the selection window.
Note that, for a promoter with mean expression p and variance o2, the fraction P(x|u, o) of its cells
that have expression level x is given by

P(alu, o) = !

1 (z — p)? ]
exp |———]| . 69
| | (69)
Consequently, the ‘fitness’ of this promoter, i.e. the fraction of its cells that are selected in the FACS, is
given by
Fn e 7) = [ de sl 7Pl o) =\ 5y o [ L) (70)
72 4 o2 2(12 4 02)
To infer the values of u, and 7 that apply to our evolutionary runs, we performed a number of
experiments in which we:

1. Took a population from one of the rounds of our evolutionary runs.
2. Measured its distribution of log-fluorescence levels.

3. Set the selection window [u, —§, 11+ ] such that a percentage p of the population has log-fluorescence
levels within this selection window.

4. Performed selection and re-measured the log-fluorescence levels of the selected population.

As shown in Fig. 1b of the main paper, in the evolutionary runs which are selecting for high expression,
the selection window is changing at every round of the evolutionary run. In contrast, in the evolutionary
runs selecting for medium expression, the selection window is essentially constant from round 3 through
round 5 of the run. We thus decided to focus on inferring the precise fitness function that acted during
these 3 rounds of selection.

We took the evolved populations from the third and fifth round of the evolutionary runs selecting for
medium expression, and performed another round of selection on them, selecting 5% of the population
closest to the desired log-fluorescence .. In addition, we also performed a round of less stringent selection
on these populations, selecting 25% closest to the desired level, and a round of more stringent selection,
selecting only the 1% of the population closest to the desired level. Besides measuring the log-fluorescence
levels of the population both before and after the round of selection, we also selected dozens of clones from
the populations before and after the selection, and measured the entire distribution of log-fluorescence
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Figure S16. Means and variances of the log-fluorescence levels of clones from the third and fifth rounds
of the evolutionary runs in which we selected for medium expression (black dots), and clones obtained
after performing another round of selection on these populations, selecting either 1% (red), 5% (yellow),
or 25% of the population closest to the desired log-fluorescence pi,. The blue curve shows an approximate
fit of the typical variance o2 as a function of the mean u: 02(u) = 0.02 + 384e~* — 156'915e 2+,

levels for these clones. Figure shows the means and variances of the log-fluorescence distributions of
these clones.

Intuitively, one might think that the relative fitness f(z) of each log-fluorescence level = could be easily
estimated by simply measuring the ratio of the fraction of the population p’(z) with log-fluorescence level
x after selection and the fraction p(x) with log-fluorescence = before selection. However, the single cells
that were selected in the FACS each grow into an entire population of cells before the ‘after selection’
population is measured again. Thus, a selected cell containing a promoter with a given mean p and
variance o2 will contribute an entire population of cells with this distribution, even though the individual
cell may itself have had a log-fluorescence that was in one of the tails of this distribution. Thus, in general
the distribution of log-fluorescence levels in the population after selection may be much wider than the
actual selection window itself.

Before selection, the population consisted of a mixture containing (unknown) fractions p(p, o) of cells
containing promoters with mean p and variance 0. This gives rise to an overall distribution p(z) of

expression levels given by
p(p, o) (z — M)Q}
x) = [ dudo exp | ——————| - 71

p()/u o P{ 252 (71)
Unfortunately we cannot uniquely infer p(u, o) from knowing only the distribution p(z). However, as
shown in Fig. [S16] for the clones in these populations, the large majority of promoters have variances o2
lying in a narrow band as a function of y. We thus chose to make the approximation that all promoters
in the population have variances o2 that are uniquely determined by their mean expression p, and we
used the fit o?(u) shown as the blue curve in Fig. This simplifies the problem from inferring a
two-dimensional distribution p(u, o) to inferring a one-dimensional distribution p(u), i.e.

o) = [ an L o[£ LE]. (72)

Applying selection with target log-fluorescence p, and width 7 to this distribution, we obtain a new
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distribution
2 _ 2

/
p'() = Cp(p)\ | 557~ exp [—
T2 4 0% (1) 2(m? + o(p)?)
where C' is a normalization constant that ensures [ dup’(1) = 1. The population distribution of log-
fluorescence levels after selection is then

V@ = [anl o [—(;;(’;))] | (74)

To infer the parameters of the fitness-function for each selection that we performed, we fit the
distribution p(u), and parameters p, and 7 that lead to an optimal fit to the observed distributions p(z)
and p'(x). Figure shows the inferred and observed distributions, as well as the inferred fitness
function, for each of the 6 selection experiments that we performed.

Round 3, 25% selected Round 3, 5% selected Round 3, 1% selected
0.04 0.04 0.04
u.=8.15 u. =793

003 003 7=0.029 003 7=0.006
z ) ) > \
20.02 20.02 20.02
5 g 5
o o [=]

0.01 0.01 A k 0.01 )M/v

0% 6 7 8 0.008 6 7 8 o 10 0005 6 7 8 9 10

Log expression Log expression Log expression
Round 5, 25% selected Round 5, 5% selected Round 5, 1% selected
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Figure S17. Inference of the fitness function from the observed log-fluorescence distribution before and
after a round of selection. Each panel corresponds to one selection experiment with the title indicating on
which population an extra round of selection was performed, i.e. a population either from the third or
fifth round of the evolutionary run for medium expression. The thin blue line indicates the observed
log-fluorescence distribution p(z) before selection, and the thin orange line the observed distribution p’(x)
after selection. The thick lines show the corresponding fitted distributions. The inferred selection window
f(x|px, T), i.e. equation , is indicated in black, and its parameters p. and 7 are indicated in each
panel as well.

The figure shows that the distributions p(z) and p’(z) can be well fit by this model, illustrating that
the form of the selection window, equation , can well describe the effects of selection in the FACS
machine. Moreover, we see that the distributions p(x) and p'(z) are typically significantly wider than
the selection window f(z|u«, 7). Moreover, the fitted values of 7 are almost perfectly proportional to
the fraction of the population that was selected, with a value of 7 = 0.03 corresponding to the selection
of 5% of the population that was used during the evolutionary runs. The fits also show that, although
we in each experiment determine pu. from the expression of the same reference promoter, there is some
variability in u. from one experiment to the next. From these 6 experiments, we find that on average
() = 8.115 and o(u.) = 0.133.

Thus, in each selection round the fitness of a promoter with mean p and variance o° is given by
expression , where 7 = 0.03 and p. fluctuates around (u,) = 8.115. The effective fitness experienced

2
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by this promoter is thus given by the geometric average of equation with fluctuating values of u, and
this is given by
72 (1 — (pa))? + 0 (ps)*
T2+ 02 2(12 + 02?)
Figure shows a contour plot of this fitness function with the inferred parameters of (p.), o(p.)
and 7 as a function of the mean fitness p, and the excess noise level n = 0 — o2 (1), where 02, (1)
is the minimal variance as a function of mean expression level u, equation . Note that for these
measurements the plasmids were transformed into a different strain than those used to compare with the
native E. coli promoters. We noticed that the minimal noise level o2 (1) as a function of mean p is
slightly different. Although the background fluorescence and burst-size parameter 5 = 450 are the same,
the parameter o2, is smaller, i.e. 02, = 0.006 instead of o2, = 0.025.

Tl (1s), o (), 7) = exp [ (75)
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Figure S18. Contour plot of the inferred fitness function as a function of mean expression p
(horizontal axis) and excess noise (vertical axis), that acts on the population from rounds 3 through 5 of
the evolutionary runs for medium expression. The contours correspond to fitness values (fraction of cells
selected) of 0.01, 0.02, 0.03, through 0.08. Left panel: In addition to the fitness function (contours) the
panel shows the means and excess noise levels of a selection of clones from the third round of the
evolutionary run (blue dots), and clones that resulted from subjecting this population to another round of
selection, selecting either for the 1% (red dots), 5% (yellow dots), or 25% (green dots) of cells with
expression closest to the desired expression level. Right panel: As in the left panel, but with the dots
corresponding to clones from the 5th round of the evolutionary run, and clones resulting from additional
rounds of selection on this population (colors as in the left panel).

Figure clearly shows that fitness drops far more dramatically as a function of mean p than as
a function of excess variance 7, i.e. except for right at the optimal mean pu., the contours are running
almost vertically in the plot. We do not observe promoters with high excess noise, even though their
fitness would easily allow it. For example, a promoter with mean expression near the optimum 8.11 but
excess noise as high as 0.25 (i.e. significantly higher than observed for any of the clones) would have
higher fitness than any promoter with mean less than p = 7.76 or larger than p = 8.47 (independent of
their noise), even though we observe many promoters with means that deviate this far from the optimum.
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The fact that we do not observe high excess noise promoters, even though they would not be selected
against, strongly suggests that such high noise promoters are uncommon a priori, i.e. among all random
sequences that drive expression at a medium level, the large majority have low excess noise levels and
high noise promoters are rare. Moreover, note also that for promoters that are not near the optimum, the
optimal excess noise level is typically larger than those of the observed clones, e.g. the optimal excess
noise for a promoter with mean u = 7.5 is = 0.22. These observations all suggest that promoters have
not experienced significant selection on their noise levels.

To further support this conclusion, Fig. shows the inferred fitness values for the observed clones
both as a function of their mean expression (left panel) and as a function of their excess noise (right)
panel. The figure shows that, whereas the fitness of a clone can be accurately predicted from its mean p,
fitness is almost entirely uncorrelated to a promoter’s excess noise 7.

Fitness vs mean expression __ Fitness vs excess noise
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Figure S19. Fitness of the observed clones, as given by equation , as a function of their mean
expression 1 (left panel) and their excess noise 7 (right panel). As in figure the blue dots correspond
to clones from the third and fifth round of the evolutionary run, the red dots result from another round of
stringent selection (top 1%), the yellow dots from another round of standard selection (top 5%), and the
green dots from a round of weaker selection (top 25%).

Finally, if there was significant selection on noise levels, then we expect noise levels to systematically
shift under selection. Figure shows cumulative distributions of excess noise levels for clones obtained
from different populations of cells.
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Figure S20. Cumulative distribution functions of excess noise levels for the promoters extracted from
different populations. Left panel: Excess noise levels of promoters from the 3rd (black) and 5th (brown)
round of the evolutionary run. Middle panel: Excess noise levels of promoters from the 3rd round of
the evolutionary run (blue), and from clones that resulted from another round of either stringent (red),
normal (yellow), or weak (green) selection. Right panel: As in the middle panel but now for clones from
the 5th round and clones resulting from another round of selection on this population.
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The figure shows that, surprisingly, the excess noise levels seem to increase from the third to the fifth
round in the evolutionary run. However, given the limited number of clones involved, the change in excess
noise levels is only marginally significant (p = 0.004 in a t-test). Similarly, the effect of selection on excess
noise levels seems to be opposite on the populations of round 3 and round 5 (center and right panels in
Fig. [S20)). We suspect that there are some systematic experimental fluctuations that make measured
excess noise levels vary across days, and that the observed distributions of excess noise levels are more
a reflection of experimental variability than of true shifts in the distribution. Importantly, excess noise
levels larger than 0.1, which are observed for a substantial fraction of native promoters, are very rare for
all these populations.

In summary, our in depth analysis of the FACS fitness function and the effects of selection show
that the noise properties of the synthetic promoters have not been significantly shaped by selection.
Already the synthetic promoters at the third round of selection are tightly concentrated in a low noise
band, even though selection does not select against low noise, and promoters with mean away from the
optimum would benefit from having higher noise. Two additional rounds of mutation and selection on the
promoters from the third round do not substantially change the distribution of noise levels confirming that
there are no substantial fitness differences among promoters with different noise. Similarly, performing
additional rounds of selection (be it very stringent, normal, or lenient) also do not substantially change
the observed noise levels of the selected promoters. Thus, our results show that promoters selected from a
large collection of random sequences naturally display low noise levels. Importantly, this implies that the
native promoters with substantially higher noise levels must have experienced some selective pressures
that caused them to increase their noise.

A simple model for the evolution of gene regulation and expression noise

Given a particular environment, the fitness, e.g. growth-rate or survival probability of a cell, depends on
the expression level of its genes. Note that the fact that gene regulatory mechanisms have evolved already
demonstrates that different environments require different gene expression patterns, i.e. expressing a gene
at the ‘wrong’ level for a given environment has negative effects on fitness/growth-rate. For simplicity, we
will focus on a single gene. We assume that, in a given environment, there is an optimal expression pi,
level. Given that, as we have seen, expression levels are roughly log-normally distributed, we will express
expression levels in log-space, i.e. the logarithm of the number of proteins per cell. We define that fitness
at the optimal expression level p, as f,. Fitness will fall as the expression level z moves away from this
optimum. In this simple conceptual model, we will assume that, like in our FACS selection, the fitness
f(z) falls approximately Gaussian away from the optimum, i.e.

(el ) = Joexp [—; (= ")] , (76)

T

where 7 is again a parameter that determines how fast the fitness falls when the expression  moves away
from the optimum p,.

To justify the Gaussian form of the fitness function, assume that the fitness is determined by the
growth of the population over some characteristic time ¢. That is, if cells grow at rate p, then the fitness
is f = e”!. The growth rate p is optimal at = u., and to second order in the difference between z and

L, We can write
1 d?p
p=po— 5@ —p.)

dz?

(77)

T=
2
375 , we obtain the fitness function defined above.

T=[by

In complete analogy with the FACS selection case, the fitness f(u, o|us, 7) of a promoter with mean p
and variance ¢? in an environment with optimal expression level u, and width 7 is given by the integral

Defining f, = e* and 1/7%2 =t ’
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of the product of the fitness function and the Gaussian distribution of expression levels, giving
T2 1(p— )’
[, olpe, ) = mexp {27’2—&-02 . (78)

Note that this functional form is a reasonable approximation to the fitness function as long as expression
levels are roughly log-normally distributed, and as long as the integral of expression levels and fitness
function can be approximated using the standard Laplace approximation, i.e. expanding the logarithm of
fitness to second order around its maximum.

We now extent this simple situation in two respects. First, instead of assuming that the optimal level
1y is fixed, we imagine that the population of cells has gone through several different ‘environments’,
where in each environment e there was an optimal expression level u.. For simplicity we assume 7 is the
same in each environment.

Let’s first consider what this situation implies for the fitness of a promoter expressing at mean level u
with variance o2. The number of offspring that a strain with mean p and variance o produces (or leaves
behind) after experiencing environment e is proportional to f(u, o|ue, 7). Consequently, the final number
of offspring produced after experiencing all environments is given by the product [], f(u, o|pe, 7). We
define the overall log-fitness log[f (i, )] as the average of the log-fitness across all environments:

log[f(n,0)] = (og[f (k, olpie, T))e, (79)

where the subscript e indicates that we are averaging over all environments e (which we drop for convenience
from here on). Using the expression ([78]) we obtain

gl (s0)] = ~ g LI Shog | T (50)

where (i) is the average ‘desired’ expression level, and var(u.) is the variance in desired expression levels
across the environments. It is immediately clear from equation that, as a function of the mean
expression pu, optimal fitness is obtained when p = (u.). Substituting this optimal mean level, we find
that optimal variance is given by

o? = var(p.) — 12, (81)
when var(u.) > 72, and o = 0 otherwise. That is, when the variance in desired expression levels is larger
than the width of the selection window 7, then a strain can increase its fitness by raising the noise-level
o of the promoter. This result is equivalent to results on selection for phenotypic variance obtained
previously, e.g. [10,)23]. However, in these previous models that more abstractly considered ‘phenotypic
traits’, it was assumed that both the mean and variance of the phenotypic trait were not only directly
encoded by the genotype, but could also be independently altered through mutations, without explicitly
considering how mean and variance would be encoded in the genotype. In our case, where the ‘trait’ under
study is the transcription rate of a promoter, it is a priori quite clear how mutations may alter mean
levels, e.g. through changes in the affinity of the sigma-factor binding site, but much less clear how the
variance is encoded in the genotype. Moreover, rather than simply increasing its noise, we would naturally
expect that promoters would evolve gene requlation in order to deal with different required expression
levels across different environments.

Including gene regulation

We now further extend the model by considering that there are various transcriptional regulators in
the cell whose activities may vary across the different environments e. By evolving binding sites for a
transcription factor, the promoter becomes regulated by it and, consequently, the mean expression pu
becomes a function p(e) of the environment e.
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For simplicity we consider the case of a single regulator whose mean activity (i.e. concentration of the
DNA-binding version of the regulator) r. is a function of the environment e. Since the transcriptional
regulator’s expression will itself also be subject to gene expression noise, the activity of the regulator
varies from cell to cell. We will assume that, in each environment, the activity of the regulator varies
from cell-to-cell in a roughly Gaussian manner, with variance o2, i.e. the probability to find a cell in
environment e with regulator level r is

2 1 (r— Te)Q
P(rjre,0%) = o exp [ 207 ] . (82)
We characterize the regulation of the promoter by the regulator through a single coupling constant ¢ such
that, in cells with regulator level r, the distribution of expression levels is a Gaussian with mean p + cr
and variance o
(x —p— cr)Q]

1
———exp |—
V2no P [ 202
Integrating over the distribution of regulator levels P(r|re,c?), the final distribution of expression levels
is given by a Gaussian with mean p(e) = u + cr. and variance o2 + c?o?

=, l.e.
1 (x — p—cre)?
21(0? + c?02) 2(0? +c?0?) |

, 1.e.

P(x|y, 0% r) = (83)

P(z|p, 0% ¢c) = (84)

In environment e, with desired level p., the fitness of a promoter with coupling c is then given by

72 (1 +cre — pe)?
7)) =4 —————— - . 85
o, clpe, 7) me}{p [ 2(02 + 202 + 72) (85)

The log-fitness, averaged over all environments e, is given by

L {(ptere — pe)?)
2 724 02 + 20?2

1 72
lo ,o,¢)] = —log | ——+——+—=1. 86
glf (n;0,0)] +2 g[72+02+020£] (86)
It is again easy to see that, with respect to the mean expression u, fitness is optimized when
= {ue) — c{re). In the following we will assume that the mean expression p matches this optimal value.
We can rewrite the expression for the average log-fitness in a simpler form by introducing the following

set of effective parameters. First, the variable

__var(pe)
Ve = e (87)

measures the variance in desired expression levels p, relative to the sum of the variances associated with
the width of selection 72 and the noise of the unregulated promoter 2. The variable Y quantifies the
‘expression mismatch’ between the promoters average expression u and the (varying) desired expression
levels p.. The second effective parameter
2 2
2 co,
= —7T—= 88
(7—2 + 0-2) ( )
measures the strength of the regulator coupling constant c. More precisely, it quantifies the contribution
c?0? to the promoter’s variance in gene expression, again relative to (o2 + 72). We will refer to X as the

coupling constant. Third, the parameter
var(r.)

2
Oy

5% =

(89)
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measures the ‘signal-to-noise’ ratio of the regulator, i.e. the variance var(r.) of its mean level across
conditions, relative to its variance o2 within each condition. A regulator with large S varies a lot in
activity across environments and has relatively little noise in each, whereas a regulator with small S varies
little across environments relative to its noise level. Finally, we have the correlation R between the desired
expression levels p. and the regulator’s activities 7., i.e.

<.ue7’e> - <:ue> <7'6>

R= .
var(re)var(pe)

(90)

In terms of these parameters we have for the average log-fitness

1Y?(1-R?)+(SX —RY)? 1 9y 1 2
—= — ~log[l+ X%+ =1
2 1+ X2 3 logll+ X7+ 5 log

log[f(X,Y,S,R)] = 5

I 1Y
The last term is a constant that does not depend on our effective parameters and we will ignore it from
now on.

We intuitively expect that the promoter’s fitness would benefit most from coupling to a regulator
that is perfectly correlated with the environment’s requirements, i.e. at R = 1. Indeed we find that the
derivative log[f(X)] with respect to R is given by

dlog[f(X,Y,S,R)]  SXY
dR 14+ X2

(92)

which is positive as long as the desired levels vary (Y > 0), the regulator has some variation across
environments (S > 0) and there is positive coupling (X > 0). Thus, in general, if we keep all other
variables fixed, an increase in the regulator’s correlation R is always beneficial.

We now consider the case in which a regulator with a given correlation R and signal-to-noise rate S is
given, and we want to determine the optimal coupling X, that maximizes log[f(X,Y, S, R)] as a function
of the expression mismatch Y. The derivative of log[f(X,Y, .S, R)] with respect to X is given by

dlog[f(X,Y,S,R)]  XY?—-X(1+ X%+ 5%+ SR(1-X?)
X B (1+ X2)2 '

(93)

At X =0, this derivative equals SR. Thus, whenever R > 0, the derivative is positive at X = 0. Because,
as can be easily seen from equation , the derivative is guaranteed to be negative for large X, this
implies that, whenever R > 0, there is an optimal coupling X, that is positive, i.e. X, > 0. Thus,
whenever R > 0, the promoter is guaranteed to increase its fitness by evolving a nonzero coupling to the
regulator.

The optimal coupling X, is given by the positive solution of the third order polynomial in the numerator
of . In general we find that, when Y is small, the optimal coupling is given by

SR
X, =agY = Y, 4
o T3 (94)
and that when Y is very large X, obeys
2
Xi=aY = <52R> +1- STR Y. (95)

That is, both for very small and very large Y, the optimal coupling X, is directly proportional to Y, with
proportionality constants g and o, respectively. Moreover, . > . The behavior of X, as a function
of Y, for different values of R and S is illustrated in Fig.
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Coupling to regulator with s=2

1.0 1.0

0.8 1 0.8 1
2 0.6 2 0.6
2 ]
= 04 1 = 0.4 1
04 o

0.2 1 0.2 1

00 L L L L 00 L L L L

0 10 20 30 40 50 2 4 6 8 10
Expression mismatch y Expression mismatch y
Coupling to regulator with s=0.5 Coupling to regulator with s=0.1

1.0 . 1.0 .

0.8 0.8 g
206 B
g . % 0.6 1
2 9
= 0.4 = 04 f
o4 24

0.2 0.2 1

00 L L L L L L L L L L

1 2 3 4 5
Expression mismatch y

0.0
0

1 2 3 4 5
Expression mismatch y

Figure S21. The ratio X,/Y between optimal coupling X, and expression mismatch Y as a function of
Y for different values of the regulator’s signal to noise ratio S and the correlation between regulator and
environment R. Each panel corresponds to a different signal to noise ratio S, from a high signal regulator
in the top left, to a noisy regulator at the bottom right. In each panel, the different colored lines
correspond to different correlations R, i.e. R =0.01 (blue), R = 0.1 (green), R = 0.5 (orange), and

R =10.99 (red).
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The figure shows that, as Y increases the ratio X, /Y switches from the lower ag to the higher aoo.
Whenever both the correlation R and the signal-to-noise S are high (the orange and red curves in the top
two panels), there is only a small difference between a and .. That is, X, increases roughly linearly
with Y when there is a well-correlated regulator with high signal-to-noise.

In contrast, when the correlation R is low or the regulator is noisy, there is a large difference between
Qoo and ag. Moreover, the optimal coupling shows a sharp transition from low values to much higher
values at a ‘critical” value of Y. This critical value of Y occurs at Y = v/1 4+ 52 when R is low (the blue
and green curves), and slightly earlier when R increases (orange and red curves). When the regulator
is very noisy (bottom right panel of Fig. the behavior of X, becomes almost independent of the
correlation R, showing a sharp transition from almost no coupling to strong coupling when Y ~ 1. This
behavior even extends to the case where there is no correlation whatsoever between the regulator and the
environment, i.e. R = 0.

Coupling to an uncorrelated regulator

When R = 0 the optimal coupling is given by
X? =max [0,Y*-1-5%]. (96)

That is, at the critical value Y = v/1 + S? the coupling goes from zero to a positive value. For large Y
the optimal coupling is simply Y. The behavior of optimal coupling X, as a function of Y is shown in

figure

Optimal Coupling to an uncorrelated regulator (R=0)

Ratio (X+/Y)
o
L

o
N

0.0

0 2 4 6 8 10
Expression mismatch Y

Figure S22. Optimal coupling X, as a function of the expression mismatch Y for different values of the
signal-to-noise ratio S, i.e. S =0 (black), S =1 (green), S =2 (blue), and S = 3 (red).

Log-fitness at optimal coupling X,

We next consider the case in which the promoter has a certain expression mismatch Y, and we calculate
the log-fitness that it can obtain by optimally coupling to a regulator that has a certain signal-to-noise
S and correlation R. Figure shows the resulting log-fitness values as a function of S and R for 4
different values of the expression mismatch Y: Y =1 in the top-left panel, Y = 2 in the top-right panel,
Y = 4 in the bottom left panel, and Y = 8 in the bottom right panel.
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Log—fitness at optimal coupling, Y=1.01

Log—fitness at optimal coupling, Y=2
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Figure S23. Log-fitness as a function of the signal-to-noise ratio S (horizontal axis) and correlation R of
the regulator (vertical axis), for a promoter that is optimally coupled (X = X,) to the regulator. The
different panels correspond to log-fitnesses that are obtained for different values of the expression
mismatch Y (indicated in the title of each panel). The contours run from —0.04 to —0.5 in the top-left
panel, from —0.3 to —1.9 in the top-right panel, from —1 to —12 in the bottom-left panel, and from —2 to
—30 in the bottom-right panel. The red curves show optimal signal-to-noise S as a function of the
correlation R.


https://doi.org/10.1101/007237
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/007237; this version posted July 18, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

45

When the expression mismatch is small, i.e. Y = 1 corresponding to a variance in p. that matches
02 + 72, then fitness generally increases with increasing R and S. However, the absolute value of the
fitness increase is small. That is, for small Y promoters already have reasonably high fitness without
regulation. As the value of Y increases, the log-fitness values start varying more dramatically as a function
of R and S. Independent of the value of Y, the optimal fitness is always obtained for very high R and
high S. However, when Y is large, an almost equally high fitness can be obtained by coupling to a ‘noisy’
regulator with low S and R = 0. In particular, when Y is large only regulators with very high correlation
R and large signal-to-noise S can outcompete coupling to an entirely noisy regulator with R = 0 and
small S. That is, in any situation where the desired expression levels vary significantly more than the
width o of the expression distribution, i.e. when Y > 1, promoters can substantially increase their fitness
by coupling to a regulator that only acts to increase their noise. Moreover, to improve on this coupling to
a ‘random’ regulator, a regulator has to be available with very high correlation R and large signal-to-noise.
In other words, unless a regulator is available that very precisely regulates the promoter to attain its
desired expression levels, best fitness can often be obtained by increasing the noise in the promoter’s
expression.

Note also that, whenever Y is larger than 1 and the correlation R is not very high, fitness generally
decreases rapidly with the signal-to-noise of the regulator. That is, when a regulator has only moderate
correlation with the desired expression levels of its target, low signal-to-noise is preferred. This suggests
that regulators that are regulating targets whose desired expression levels correlate only moderately with
the regulator’s activity may be under selection for lowering their signal to noise ratios.

These considerations suggest different possible scenarios for the joint evolution of promoters and their
regulators. On the one hand, when a regulator is coupled to a single promoter, or a set of promoters
whose desired expression levels are perfectly correlated across environments, then a regulator can increase
overall fitness by increasing the correlation R between the regulator’s activities and the desired expression
levels of its targets. In this way, regulation may evolve to become more precise over time. On the other
hand, promoters often have an incentive to couple to regulators who only moderately correlate with their
desired levels. Once a regulator is coupled to multiple promoters that have different desired expression
levels, there is no way that the regulator can adapt its activities to correlate highly with the desired levels
of all its targets, and such regulators will experience selection to become more noisy.

Final noise levels under optimal coupling and signal-to-noise

We next consider what final noise levels 02, = 02 4+ c202 result when a promoter, with a certain expression
mismatch Y, couples optimally to a regulator which has a certain correlation R, and whose signal-to-noise
level has been optimized as well.

To this end we need to determine the jointly optimal coupling X, and signal-to-noise S, given a certain
expression mismatch Y and correlation R. From equation it is easy to see that fitness is maximized
with respect to the signal-to-noise level S when

RY
S = —. 97

N (97)
If we substitute this value back into the equation , we find that the optimal coupling X, is now given
by

X2 =max [0, (1 - R*)Y?—1]. (98)
Note that, Y2 is the variation in desired expression levels, and R?Y?2 is the amount of this variation that
the promoter manages to ‘track’ when it is regulated by the regulator. Thus, (1 — R?)Y? is precisely the

remaining variance in desired expression levels that the promoter is unable to track. To bring this out
more clearly, we substitute back our original parameters. We then find that when (1 — R?)Y? < 1:

O—tzot = 023 (99)
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and when (1 — R%)Y? > 1
o2, = (1 — R*)var(u.) — 7°. (100)

This brings out most clearly that, when the regulation is imprecise ((1 — R?)Y2 > 1), the final noise
level that is evolved matches the fraction of the variance in desired expression levels var(u.) that is not
tracked by the regulation. In other words, the evolved transcriptional noise level of a promoter precisely
reflects to what extent the promoter’s regulation is not able to track the expression levels desired by the
environment.

Suppl. Fig. S8 shows the total noise level ooy as a function of Y and R when the promoter
is optimally coupled to a regulator with optimal signal-to-noise. The figure illustrates that there are
two regimes of solutions (‘phases’) separated by a phase boundary (thick black curve) that occurs at
(1 — R?)Y? = 1. On one side of this boundary, in the top-left of the figure, the final noise level oy is
essentially not different from the original noise level ¢. This occurs either when ¥ < 1, i.e. when no
regulation is necessary, or when very accurate regulation is available. Note that, similarly to what we saw
in the last section, very high correlations R are necessary to realize this regime at larger values of Y. We
call this the ‘basal noise regime’.

The largest part of the parameter space occurs on the other side of the phase boundary, which we call
the ‘environment-driven noise regime’. Here the final noise level oot becomes independent of the original
noise o, but is instead determined by the fraction of variation in desired expression levels var(u,.) that is
not tracked by the regulation, i.e. by (1 — R?)var(u.). The figure also indicates the optimal values of S,
as a function of Y and R. The optimal signal-to-noise S, diverges at the phase boundary. That is, in the
‘basal noise regime’ regulators are preferred with signal-to-noise that is as high as possible. In contrast,
for the majority of the parameter space in the environment driven noise regime signal-to-noise levels of 1
or less are preferred. That is, unless regulation is very precise, noisy regulators are typically preferred
over precise regulators.

The figure also demonstrates that, unless R is close to one, the final noise increases with the variance
in desired expression levels var(u.) . Thus, unless there is a systematic correlation between the expression
mismatch Y of a promoter, and the correlation of the regulator with highest available correlation, noise
levels are expected to increase with the ‘plasticity’ var(u,) that the environment requires of the promoters.

Similarly, the larger Y, the larger the remaining variance Y’ = (1 — R?)Y2 tends to be after coupling
to the regulator with the highest available correlation R. Whenever this remaining expression mismatch
is Y’/ large, the promoter will have an incentive to couple to further regulators. That is, the theory also
generally predicts that promoters with high var(u.) tend to couple to more regulators.

Finally, we note that this theoretical model can easily be extended to the case of multiple promoters
and regulators. In particular, because in our model the promoter’s expression is a linear function of the
regulatory inputs, the theory extends easily to promoters coupling to multiple regulators with different
coupling constants. However, the regulatory network structure that will evolve in this general case will
depend crucially on the correlation structure of the desired expression levels across all the promoters.
Moreover, there might be many environmental changes that affect the optimal expression levels, but that
cannot be sensed by any of the regulators, and this will constrain the extent to which regulators can
optimize their activities to match the desired levels of their targets.
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