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Gene expression programs have been found to be highly conserved between 

closely related species, especially when comparing the same tissue types between 

species. Such analysis is, however, much more challenging over larger evolutionary 

distances when complementary tissues cannot readily be defined. Here, we present 

the first cross-species mapping of tissue-specific and developmental gene 

expression patterns across a wide range of animals, including many non-model 

species. Importantly, our approach does not require the definition of homologous 

tissues. In our survey of 32 datasets across 23 species, we detected conserved 

expression programs on all taxonomic levels, both within animals and between the 

animals and their closest unicellular relatives, the choanoflagellates. We found that 

the rate of change in tissue expression patterns is a property of gene families. 

Subsequently, we used the conservation of expression programs as a means to 

identify neofunctionalization of gene duplication products. We found 1206 

duplication events where one of the two genes kept the expression program of the 

original gene, whereas the other copy adopted a novel expression program. We 

corroborated such potential neofunctionalizations using independent network 

information: the duplication product with the more conserved expression pattern 

shared more interaction partners with the non-duplicated reference gene than the 

more divergent duplication product. Our findings open new avenues of study for the 

comparison and transfer of knowledge between different species.  
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Introduction	
  

Gene functions have traditionally been determined using molecular and cellular 

approaches involving forward or reverse genetics. Functional annotations that were 

directly determined through these approaches are, however, not available at all for 

most species, and incomplete even for model species (Thomas et al. 2012). For 

non-model species, often only data transferred from other organisms is available. In 

this case, the degree of conservation of functions is uncertain, especially when a 

gene is duplicated in a non-model species, but not in the model species where its 

function has originally been studied. Previously, gene co-expression data has been 

used to find conserved co-expressed modules (Stuart 2003; Gerstein et al. 2014) 

and to uncover functional similarities between genes from different species (Chikina 

& Troyanskaya 2011). However, the latter approach requires that the two species 

are well-studied in both gene expression and functional annotation, and will suffer 

from incomplete and biased annotations (Thomas et al. 2012). Developmental gene 

expression profiles between closely related species can be compared to find 

functional links between genes and to detect differences between orthologs (Yanai 

et al. 2011; Levin et al. 2012; Silver et al. 2012). Existing approaches require that 

expression datasets have been obtained under comparable conditions for the 

respective species. For closely related species, homologous tissues can easily be 

identified (Niknejad et al. 2012), and cross-species correlations between 

homologous tissues of closely related species have previously been investigated 

(Piasecka, Kutalik, et al. 2012a; Liao & Zhang 2006). This is however a severe 

limitation for functional mapping between many species. Even between closely 

related species, the relative amounts of cell types that make up tissues may change. 

Across larger evolutionary distances, only few clearly homologous tissues are 

available. Nonetheless, it is possible to identify deep homologies among tissues 

(Shubin et al. 2009). For example, homologous structures have been identified in the 

nervous systems of vertebrates and annelids (Tomer et al. 2010; Strausfeld & Hirth 

2013). Other organs show functional convergence, for example mammalian liver and 

brown fat in flies, which both carry out xenobiotic clearance functions (Chung et al. 

2009).  

 

Many gene expression datasets have been generated under experimental 

conditions that represent non-physiological conditions, such as gene knockouts, 

which are not under evolutionary selection. Such data is therefore not necessarily 
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suitable for comparing gene expression across species (Seok et al. 2013). In 

contrast, the formation of tissues during development and the maintenance of tissue 

function throughout the life of an animal are crucial for survival and reproduction, 

and are therefore under direct evolutionary selection (Winter et al. 2004; Gu & Z. Su 

2007). Tissue expression data is available for many species, as tissues can be 

gathered even from non-model species where genetic tools such as transgenesis or 

RNAi are not available. Previous research has shown that it is possible to predict 

tissue-specific expression patterns from gene expression experiments within the 

same species (Chikina et al. 2009). However, it remains challenging to map tissue 

expression over larger phylogenetic distances. If such mapping was possible, we 

could substantially improve the annotation of non-model-species genomes, fill 

annotation gaps in model species, and in particular address the problem of gene 

duplications. 

 

We have developed a method to map tissue expression patterns of genes from one 

species to another, without defining equivalent tissues between the two species. For 

each gene of the source species, this approach predicts a virtual tissue expression 

pattern in the destination species. These virtual expression patterns can then be 

compared to the expression patterns of genes in the target species, enabling us to 

calculate correlations between the expression patterns of genes across species. We 

showed that high correlations in tissue expression across species are predictive for 

1:1 orthology, shared structure, and similar function. Subsequently we used our 

modeling approach for three applications: first, for determining the degree of 

conservation of tissue-specific gene expression patterns, second, for comparing the 

speed of functional divergence between independently evolving members of protein 

families, and third, for analyzing the fate of gene duplication products.  

Results	
  

Correlation	
  between	
  tissues	
  of	
  distant	
  species	
  

To analyze tissue expression across the entire metazoan kingdom, we gathered 

genome and tissue expression data from 32 datasets covering 23 different species 

(Table S1). Among these were eight chordate species: Ciona intestinales (Shoguchi 

et al. 2011), Danio rerio (Domazet-Loso & Tautz 2010), Gallus gallus (Chan et al. 

2009; Irie & Kuratani 2011), Homo sapiens (Lukk et al. 2010), Mus musculus (Irie & 

Kuratani 2011; A. I. Su et al. 2004), Sus scrofa (Freeman et al. 2012), Tetraodon 
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nigroviridis (Chan et al. 2009), and Xenopus tropicalis (Chan et al. 2009; Yanai et al. 

2011); two cnidarians: Hydra vulgaris (Hemmrich et al. 2012) and Nematostella 

vectensis (Tulin et al. 2013); two flatworms: Schistosoma japonicum (Gobert et al. 

2009) and Schistosoma mansoni (Nawaratna et al. 2011; Fitzpatrick et al. 2009); 

three insects: Anopheles gambiae (Baker et al. 2011; Dissanayake et al. 2006; 

Goltsev et al. 2009), Bombyx mori (Xia et al. 2007) and Drosophila melanogaster (St 

Pierre et al. 2014; Robinson et al. 2013); seven nematodes: Ascaris suum (Wang et 

al. 2013), Brugia malayi and five Caenorhabditis species (Levin et al. 2012; Spencer 

et al. 2011). Furthermore, we added the choanoflagellate Salpingoeca rosetta as an 

outgroup (Fairclough et al. 2013). Many datasets contain both tissues and 

developmental samples, e.g. different adult organs and embryonic stages. For the 

sake of brevity, we refer to the all of these samples as “tissues.” 

 

To determine orthology relations between genes, we assembled groups of orthologs 

(OGs) using the eggNOG pipeline (Powell et al. 2014) on the genomes of the 

choanoflagellate Salpingoeca rosetta and 67 animals. We then computed gene trees 

for all OGs using GIGA (Thomas 2010), which we then analyzed to extract 1:1 

orthologs and duplication events. First, we quantified the correlation of gene 

expression between tissues across species. For each pair of datasets, we built gene 

expression vectors for all tissues using the expression patterns of 1:1 orthologs. 

This yielded one vector of expression values for each tissue. We then calculated the 

correlation of these vectors across species and found that for 89.0% of all dataset 

pairs, more than half of the tissues in one dataset were significantly correlated with 

at least one tissue from the other dataset (using a p-value cutoff of 0.05 for each 

tissue pair). Importantly, this was true even across large phylogenetic distances. For 

example, between fly and C. elegans, the two largest correlations of 0.31 were 

between ovary and gonad, and between head and L2 glutamate receptor neurons. 

When we removed the three worst datasets from the analysis (Nematostella, Hydra 

and Bombyx), the fraction increased to 98.4% of all dataset pairs. Interestingly, for 

70.6% of all dataset pairs in the filtered set, all tissues of one dataset were 

significantly correlated with at least one tissue from the second dataset. These 

correlations suggested that it is feasible to map gene expression patterns between 

tissues of distantly related species, even if a homology relation between the tissues 

is not apparent.  
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Mapping	
  gene	
  expression	
  between	
  species	
  

To predict tissue expression patterns across species we chose a simple and 

transparent method, namely to train linear models for mapping expression values 

across species (Fig. 1). Given the tissue expression values for a source species, 

each linear model predicted the expression value for one tissue from the target 

species. Thus, for each combination of source and target species, we trained as 

many linear models as there are tissues in the target species. Importantly, this 

modeling approach did not require 1:1 relationships of tissues (i.e. the existence of 

homologous tissues). Rather, the expression in each tissue of the target species 

was modeled as a combination of the tissues in the source species (see Methods).  

 

  
Fig. 1: Mapping expression patterns across species. For each tissue in the target species, models 

were trained to predict the tissue-specific gene expression pattern from the expression patterns of 1:1 

orthologs in a source species. Mapping the expression patterns of all genes created virtual expression 

patterns, which could then be used to compute correlations between the mapped and actual 

expression patterns.  
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Fig. 2. Distribution of correlations between mapped and actual expression patterns. (a) When 

mapping expression patterns from fly to C. elegans, correlations between orthologs (green) and 1:1 

orthologs (blue) were much higher than for background gene pairs (pairs of genes that are not 

homologous to each other, shown in red). (b) Target genes were distributed in bins according to the 

number of genes with similar expression patterns within the target species. Pairs of background genes 

had a higher correlation when there were more genes with similar expression patterns, as is evident 

from the shift towards higher correlations. For this pair of datasets, bins contained between 297 and 

316 one-to-one orthologs, with an average of 305. 

 

Using the trained model, we mapped all expression values from the source to the 

target species. We then calculated the Pearson correlation between the mapped 

expression values and the actual expression values, for three sets of genes: (1) all 

genes having homologs between the two species, (2) orthologous groups and (3) 1:1 

orthologs. We restricted the background set (group 1) to genes with homologs to 

exclude lineage-specific genes that were found to have much lower correlations 

than genes with homologs. When analyzing a pair of genes that are 1:1 orthologs, 

we used expression values predicted by 10-fold cross-validation. From the 

distribution of correlations, we calculated p-values for all pairs of genes using the 

null hypothesis that the compared genes belong to the background and thus are not 

orthologous. During initial tests, we found a strong correlation between these 

p-values and the number of genes with similar expression patterns in the target 
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species (Fig. S1, dashed lines). We therefore split target genes into bins according 

to the number of target genes with similar expression patterns (Fig, 2b). For each 

bin, we obtain a mapping from correlation to p-values. For a given correlation 

between the mapped expression pattern of the source gene and the expression 

pattern of the target gene, we then calculate an expression distance out of the 

p-values obtained for the adjacent bins (see Methods). Thus, a low expression 

distance indicates that the expression of this gene in a given target species can be 

well predicted using the expression of homologous genes in the source species. 

 

The mapping success can be measured in different ways. For each pair of datasets, 

we first compared the distribution of correlations for background genes and 1:1 

orthologs using the Kolmogorov-Smirnov (K-S) test. Controlling for multiple testing 

with the Benjamini-Hochberg method (Benjamini & Hochberg 1995), 77% of all K-S 

p-values were significant (q < 0.05). As K-S p-values are strongly influenced by the 

number of gene pairs, we also computed the fraction of 1:1 orthologs that can be 

mapped at an expression distance threshold of 0.25 (Fig. 3). This fraction was highly 

correlated with the K-S statistic D (Pearson correlation 0.97), but more intuitive. 

Across all pairs of datasets, the median fraction of 1:1 orthologs with expression 

distances below 0.25 was 40%, indicating an enrichment of 1:1 orthologs with well-

conserved expression patterns. This analysis revealed both an expected enrichment 

for closely related species and unexpectedly high enrichments between very distant 

species, such as between chordates and insects. In general, developmental 

datasets mapped less well to other species than datasets of adult tissues. However, 

this difference could be attributed to the information content of the different 

datasets, which we did not quantify. 
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Fig. 3. Conservation of expression patterns throughout the metazoans and choanoflagellates. 

For all dataset pairs, the fraction of 1:1 orthologs with expression distances below 0.25 is shown. 

Within clades, this fraction becomes very high and approaches 1 in some cases. When there is no 

enrichment of 1:1 orthologs towards lower expression distances, the distributions of correlations are 

identical for pairs of background genes and orthologs. In this case, the distribution of expression 

distances is uniform, and the fraction of orthologs with expression distances below 0.25 is 0.25 (see 

Fig. 5). Note that there are some datasets with universally low values. Here, the kinds of measured 

tissues and the quality of the dataset apparently prevented better mapping performance. However, 

some otherwise distant species had a higher than expected fraction of 1:1 orthologs with well-

conserved expression patterns.  

Benchmarks	
  

In order to establish the biological relevance of our expression distance measure, 

we applied benchmarks at three levels, namely sequence, structure, and function. 

On the sequence level, we found that expression distances could be used to decide 

which of the top two BLAST hits for a query protein is the true 1:1 ortholog of the 

query protein in the target species (Fig. 4A and Fig. S3). On the structural level (Lees 

et al. 2014), expression distance and the number of proteins belonging to a 

structural fold were correlated (Fig. 4B and Fig. S4). That is, structural folds with 
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fewer members, and hence lower functional diversity, were more similar in their 

expression patterns across species. Lastly, on the functional level, we applied the 

phenolog concept (McGary et al. 2010) to find equivalent phenotypic annotations 

across species. We found that expression distances could be used to predict which 

member of a protein family has been annotated with a phenotype (Fig. 4C and Fig. 

S5).  

 

 
Fig. 4. Summary of benchmarking results. For each pair of datasets from different species, the 

performance in different benchmarks has been computed, along with a p-value. In all three 

benchmarks, there was a clear shift of the results relative to the random expectation (black line). For 

details, see Fig. S3, Fig. S4, Fig. S5 and supplementary text. Due to limited structural and functional 

annotations, there was a lower number of dataset pairs for the two lower panels. 
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Conservation	
  of	
  gene	
  expression	
  programs	
  

At all taxonomic levels, we determined the conservation of the expression patterns 

of 1:1 orthologs. This data then allowed us to estimate the degree of conservation of 

tissue-specific expression patterns, even between groups of species that do not 

have readily identifiable homologous organs. For all sets of 1:1 orthologs, we 

computed the median expression distances when mapping across a particular 

taxonomic split (e.g. for vertebrates, we mapped between fish and tetrapods). First, 

we compared the distributions of expression distances to the uniform distribution. 

With the exception of mappings with cnidaria (Nematostella and Hydra), all 

distributions were significantly shifted towards lower p-values (Fig. 5), confirming 

that our approach can predict expression patterns over large evolutionary distances. 

For some clades, the available data was very uneven on the two sides of the 

taxonomic split. For example, at the level of eumetazoa, only two species with few 

tissues were available for cnidarians, whereas most bilaterian species had many 

tissues measured. Thus, expression distances were higher when mapping from 

cnidarians to bilaterians than the other way round. Interestingly, the median 

divergence between animals and the outgroup choanoflagellates was comparable to 

the median divergence between major animal clades, e.g. bilateria.  

 

When we chose an expression distance cutoff of 0.25 to designate well-conserved 

genes, we found that 77% of all 1:1 orthologs could be mapped successfully 

between mouse and human (Fig. 6). For larger clades (like vertebrates), we 

computed for each OG the median of all pairwise expression distances between the 

subclades (in this example, tetrapods and fish). Between tetrapods and fish, we 

found that 55% of all OGs have an expression distance below 0.25. Between 

animals and the outgroup choanoflagellate, 32.7% of all 1:1 orthologs showed 

conserved expression, which is a significant increase over the 25% expected when 

1:1 orthologs behave like background genes (p-value of one-sided binomial test: 

3e-23). Thus, mapping tissue-specific gene expression revealed expression 

programs conserved for 1 billion years. As the median expression similarities were 

negatively influenced by datasets of low quality or small size, we also computed the 

distributions of expression distances and the number of well-conserved OGs for the 

best dataset pair across each taxonomic split (Fig. S6 and Fig. S7). 
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Fig. 5: Distribution of median conserved expression. For each clade, the distribution of expression 

distances of 1:1 orthologs is shown. Red and blue colors denote the direction of the mapping, either 

from the first subclade to the second or vice versa. The black bar corresponds to the expression 

distance cutoff of 0.25 (Fig. 6). When the mapping is successful, our mapping procedure yields virtual 

expression patterns of 1:1 orthologs that are very similar to the actual expression patterns, and the 

distribution of expression distances is skewed towards lower values. Our mapping procedure becomes 

less accurate over larger evolutionary distances, and the distribution of expression distances becomes 

less skewed. It becomes a uniform distribution when 1:1 orthologs cannot be mapped better than 

background gene pairs. Clades are numbered corresponding to the taxonomic tree in Fig. 6.  
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Fig. 6: Median conserved expression across animal clades. At each bifurcation, the pie chart 

denotes the median fraction of 1:1 orthologs with expression distances below 0.25. The area 

corresponds to the number of 1:1 orthologs across the taxonomic split. The numbers below the pie 

charts refer to the clade numbers in Fig. 5. 

The	
  conservation	
  of	
  conservation	
  

In the previous section, we showed that there is an enrichment in conserved 

expression programs across most taxonomic splits. Here, we analyzed to what 

extent the conservation of expression programs (i.e. the expression distance 

between family members) depends on the gene family. If the rate of expression 

divergence is a property of the gene family we expect a correlation between the 

expression similarities for each family in different clades. In other words, a gene that 

has a conserved expression pattern in one clade should also have a conserved 

expression pattern in another clade. For each taxonomic split with two or more 

species on either side of the split, we calculated the median expression distance per 

gene family within each of the two clades. Out of six taxonomic splits with more 

than one species on both sides, we found significant Spearman correlations (rs) of 

median expression similarities for three splits (Fig. 7A): between tetrapods and 

fishes (rs=0.18, #13 in Fig. 6), between protostomes and deuterostomes (rs=0.14, 

#4), and between nematodes and insects (rs=0.074, #7). Not significant were the 

splits involving cnidaria (#2), Schistosoma (#5) and spirurina (#10). Thus, expression 

distances were correlated across most taxonomic splits. 

 

The previous analysis was only possible for a subset of the taxonomic splits in our 

body of data, due to the requirement of having more than one species on either side 

of the split. We therefore also analyzed the fate of duplicated genes. In this case, we 

tested whether duplication products are more similar if the non-duplicated members 
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of the gene family have low expression distances across the species outside the 

duplication event. Indeed, we found significant negative correlations between the 

median expression distance among the non-duplicated genes and the intra-species 

correlation of the duplicated genes (Fig. 7B). For example, duplicated genes in fish 

were more similar (i.e. has a higher correlation) when the corresponding tetrapod 

genes had more similar expression patterns (i.e. had a low expression distance): 

rs=-0.11 for 1999 pairs of duplicated genes, corresponding to a p-value of 1e-7. 

Taken together, these two observations implied that for a significant fraction of 

genes, the rates of change in gene expression patterns were correlated between 

independently evolving clades. 

 

Fig. 7. Correlations between expression conservation rates. A For 1:1 orthologs, the expression 

distance across taxonomic splits was compared. In the dataset, there were only six splits with at least 

two species on both sides of the split. For example, when genes were similar within tetrapods, they 

also tended to be similar within fishes. B The rate at which gene duplication products diverge was 

negatively correlated with the expression distance among single-copy genes in related species. Only 

correlations with p-values below 0.1 are shown in this table. (# – Number of clade in Fig. 6, n – count of 

1:1 orthologs [A] or duplicated genes [B]) 

 

Evolution	
  of	
  the	
  beta	
  catenin	
  protein	
  family	
  

We have chosen the beta catenin protein family (Peifer et al. 1992) as an example to 

illustrate the implications of our work. Beta catenin proteins are involved in 

regulating cell adhesion and gene transcription through the Wnt signaling pathway. 

Ancestrally, there was a single beta catenin protein, which duplicated independently 

in the nematode and vertebrate lineages (Zhao et al. 2011). Hence, Drosophila, 

Anopheles and Schistosoma have only one beta-catenin, armadillo. This protein was 
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Species 1

Species 2

Species 3

Species 4 

Species 5

Expression distance 
between single genesSpecies 1

Species 2

Species 3

Species 4 

Species 4
Gene
duplication

Spearman correlation 
between median
expression distances

Pearson correlation 
between duplication
products within species 

Spearman 
correlation 

# clade rs p-value n
2 eumetazoa 0.04 0.03 2478
4 bilateria 0.14 0 4201
5 protostomia 0.05 0.24 629
7 ecdysozoa 0.07 1E-05 3467
10 rhabditida 0.04 0.13 1458
13 vertebrata 0.18 0 3391

#
clade with 

duplicated gene
clade with 

single genes rs p-value n
1 Salpingocea eumetazoa -0.14 0.08 164
4 deuterostomia protostomia -0.03 0.004 8618
5 Schistosoma ecdysozoa -0.11 0.02 440
5 ecdysozoa Schistosoma -0.10 0.02 560
7 endopterygota rhabditida -0.07 0.02 1120
12 Ciona vertebrata -0.39 0.03 29
13 actinopterygii tetrapoda -0.12 1E-07 1999

A

B
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similar in its expression patterns with both the vertebrate and nematode beta-

catenins (Fig. 8), which is indicative of their functional similarities (White et al. 1998). 

In vertebrates, two forms exist: beta-catenin and plakoglobin. These two proteins 

have largely overlapping functions (Swope et al. 2013) and consequently, their 

observed expression distance was very low. In nematodes, the outcome of the 

repeated gene duplications (Liu et al. 2008; Korswagen et al. 2000; Natarajan et al. 

2001) is very different: three of the duplication products (hmp-2, wrm-1, and sys-1) 

are very similar to each other in their expression patterns, which can be explained 

by their cooperation in in the non-canonical Wnt signaling pathway and the SYS 

pathway (Kidd et al. 2005). These three proteins showed a significant dissimilarity in 

their expression patterns compared to bar-1. In contrast to them, bar-1 is part of a 

canonical Wnt signaling pathway (Kidd et al. 2005). We also observed that bar-1 had 

a low expression distance to the two vertebrate beta catenins, while hmp-2, wrm-1, 

and sys-1 showed significant dissimilarity with plakoglobin. This example illustrates 

that our method is able to uncover patterns of expression similarity and divergence 

both between closely related species and across large evolutionary distances. 

 

 
Fig. 8. Expression similarity and divergence in the beta catenins. Based on the expression 

divergence scores of the individual proteins (Fig. S8), we computed p-values for the expression 

similarity and divergence of groups of proteins (see Methods): Blue cells indicate that the proteins have 

low expression divergence scores, and red cells that they have high expression divergence scores. 

Profiles are clustered based on their Pearson correlation. The unduplicated beta catenins from insects, 

flatworms and cnidarians a similar to all other protein groups, while functional and expression 

divergence has occurred among the nematodes. 
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Resolving	
  the	
  fate	
  of	
  gene	
  duplication	
  products	
  

The above results suggested that our expression distance measure could be used 

to compare functions of gene duplication products (i.e. in-paralogs) across species 

(i.e. with their respective orthologs). To this end, we created an additional 

expression distance metric that combines measures for expression similarity and 

dissimilarity, which we term “expression divergence score.” This allowed us to also 

test if two genes have significantly diverging expression patterns. As above, we 

used the p-value for the null hypothesis that the genes are not related to each other 

(pb) to quantify expression similarity. To measure expression dissimilarity, we used 

the p-value for the null hypothesis that considered genes are in fact 1:1 orthologs 

(po). We then combined the two p-values into an expression divergence score E: 

𝐸 = − log!" 𝑝! 𝑝! ≤ 𝑝!
log!" 𝑝! 𝑝! > 𝑝!

 

Thus, the expression divergence score E is negative for similar, and positive for 

dissimilar gene pairs. Considering gene duplications, we computed divergence 

scores for both duplication products (Fig. 9). Using log10(0.25) as a cutoff, we 

divided pairs of duplication products into three categories: (a) both genes had 

conserved expression patterns (2226 pairs of duplication products), (b) both genes 

had diverging expression patterns (911 pairs) and (c) only one of the duplication 

products had a diverging expression pattern, while the other one was conserved 

(1206 pairs). For each duplication event we also computed the expression 

conservation of the respective non-duplicated orthologs among each other (Fig. S9). 

It turned out that, when expression distances among the non-duplicated orthologs 

were small, the respective duplication products were more likely to be both 

conserved (Fig. 10), supporting again that purifying selection acts across large 

phylogenetic distances.  
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Fig. 9. Expression divergence scores of duplication products. For each duplication event, the 

expression divergence score of the duplication products to the non-duplicated genes was computed. 

For each pair of duplication products, the expression divergence scores were sorted. Thus, in the 

lower left quadrant, both duplication products had conserved expression patterns. In the upper right, 

both duplication products had diverging expression patterns and in the lower right, the outcome was 

mixed. Black lines denote an expression divergence score cutoff of 0.25.   
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Fig. 10. Counts of duplication outcomes. Duplication events were grouped into quartiles according 

to the expression distance among the non-duplicated genes (Fig. S9). For each quartile, counts and 

fractions of the different outcomes are shown as the p-value cutoff is varied. This maximum p-value 

corresponds to a minimum of the absolute value of the expression divergence score, e.g. |E| > 

log10(0.25) for the black lines. 

  

Functional	
  implications	
  of	
  diverging	
  expression	
  patterns	
  in	
  duplication	
  products	
  

In order to independently validate the functional implications of the observed 

conservation of expression programs between duplication products, we utilized 

protein–protein interaction (PPI) data from the STRING database (Franceschini et al. 

2013). In particular, we investigated whether duplication products with expression 

programs more closely resembling non-duplicated orthologs are also functionally 

more related to the non-duplicated genes. Thus, for each pair of duplicated genes 

we designated the gene with the lower expression distance to non-duplicated 

orthologs as “less divergent” and the gene with the greater expression distance as 

“more divergent.” 
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Fig. 11. Differences in the protein interaction network. (A) For all pairs of duplication products, we 

determined the number of interaction partners. Each dot corresponds to a pair of duplication products. 

Blue lines show linear fits for each dataset. (B) Here, each dot corresponds to the combination of a 

reference species (where the gene has not been duplicated) and a pair of duplication products. Blue 

lines correspond to linear fits for each combination of reference species and dataset. (C) The subset of 

duplication products is shown for which the outcome of the duplication could be determined. The 

difference between the two duplication products is largest for when only one of the duplication 

products diverges in its expression pattern. Here, the complete STRING network with confidence 

cutoff 0.5 is used. For an analysis of other networks and cutoffs, see Fig. S10, Fig. S11, and Fig. S12. 

 

First, we found that less divergent genes had significantly more interaction partners 

than more divergent genes in 15 out of 25 datasets with available STRING data 

(using a p-value cutoff of 0.05 for one-sided Wilcoxon signed-rank tests, Fig. 11A 

and Fig. S10). From this data, it remained unclear if the less divergent protein gained 

interaction partners, or if the more divergent protein lost interaction partners. 
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However, the latter hypothesis seemed more parsimonious to us: interaction 

partners are often tissue specific. Thus, if the diverged protein got expressed in 

different tissues it likely lost some of its former interaction partners. To further 

corroborate this notion, we compared the interaction partners of the duplication 

products with the interaction partners of the respective non-duplicated genes. 

 

We mapped PPI across species by counting how many OGs were shared between 

the interaction partners of the duplication product and the reference protein in a 

second species. We then calculated the Jaccard indices for the shared interaction 

partners between the reference protein and either of the duplication products (Fig. 

11B). We found that for 40.5% of 395 dataset–species pairs, less divergent genes 

had a significantly higher Jaccard index compared to the more divergent genes (Fig. 

S11), while there were no dataset–species pairs where the more divergent proteins 

had significantly higher Jaccard indices. Furthermore, when we distinguished the 

possible outcomes discussed above (both duplication products have conserved 

expression patterns, one diverges, or both diverge), major differences only occurred 

for the case of one gene diverging (Fig. 11C and Fig. S12): in this case, less 

divergent genes had higher Jaccard indices in 40.0% of 175 dataset–species pairs, 

and all other outcomes were much less prevalent (<7%). (To be able to compare the 

p-values between the different outcomes, the same number of duplication products 

were used for the significance tests by sub-sampling 100 times.) This observation is 

consistent with earlier findings about the tissue specificity of protein complexes 

(Börnigen et al. 2013) and strengthens the notion that the duplication product with 

the more divergent expression pattern lost previous interactions and acquired novel 

interaction partners.   

Expression	
  divergence	
  depends	
  on	
  protein	
  function	
  

In order to evaluate the extent to which the conservation of expression patterns after 

gene duplications depends on the function of gene products, we assigned protein 

classes according to the PANTHER database (Mi et al. 2013) to all OGs. We then 

determined the significance of the enrichment of gene duplication events where 

both genes were conserved (bottom left corner of Fig. 9) versus cases where one 

gene diverged (bottom right corner of Fig. 9, see Methods for more details). 

Extracellular matrix proteins, transcription factors, and receptors were significantly 

enriched for duplication events with conserved expression patterns (Fig. 12, top). 

Conversely, chaperones, calcium-binding proteins and transfer/carrier proteins are 
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enriched for duplication events with diverging expression patterns (Fig. 12, bottom), 

suggesting that regulatory proteins tend to be more conserved, whereas proteins 

executing tissue-specific functions are more likely to diverge.  

Fig. 12. Gene duplication outcomes differ between protein classes. For each species and protein 

class, we analyzed duplications where one or both of the duplication products were conserved. Left: 

fraction of duplications where both duplication products had conserved expression patterns. Right: 

fractions normalized according to the species-wise average. Black bars correspond to the weighted 

average across all species. One-sided p-values have been calculated using a Poisson binomial 

distribution for each protein class, comparing the actual number of events to the expected number 

based on the species-wise averages. “Not assigned” marks OGs that could be mapped to PANTHER, 

but for which no protein class had been assigned in the PANTHER database. “Not mapped” stands for 

OGs for which no member could be mapped to the PANTHER database. Using an iterative method 

(see Methods) to remove multiple annotations per OG, we find a slightly different set of significant 

protein classes (Fig. S13). For example, nucleic acid binding proteins encompass transcription factors 

and are therefore enriched. 
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Discussion	
  

The presented analysis established and benchmarked a new method, and provided 

four biological conclusions: there is widespread conservation of expression 

regulation across very large evolutionary distances; independently evolving 

members of the same gene family have significant correlations in their speed of 

divergences; expression divergence can be used to grade the functional 

conservation of gene duplication products; and neofunctionalization of gene 

duplication products is dependent on gene function.  

 

In particular, we have shown that tissue-specific gene expression can be predicted 

across large evolutionary distances, even in the absence of apparent similarities 

between the species’ tissues. Our approach can be rationalized as follows: we 

assume that evolution conserves the co-expression of functionally related genes, 

both on the level of homologous cell types and on the level of functional modules 

that occur in unrelated tissues. Our analysis demonstrated that the expression 

patterns of such conserved gene modules can be predicted across species using 

1:1 orthologs as “anchors.” This approach worked despite the fact that the tissues 

themselves are only conserved within smaller clades. Control of gene expression by 

transcription factors, miRNAs and other factors is known to turn over rather quickly 

(Odom et al. 2007; Bradley et al. 2010; Berezikov 2011). Most probably, functional 

dependencies between genes lead to shared expression patterns over large 

evolutionary distances. Further research will be needed to reveal which expression 

similarities between tissues are caused by homology and which are caused by 

convergent evolution.  

 

When we applied the concept of looking for correlations between orthologs across 

species to an existing dataset (Brawand et al. 2011), we found that many of the 

reported lineage-specific expression shifts only changed the absolute expression 

levels, while the relative expression patterns remained conserved (Fig. S14). This 

suggests that further studies could combine approaches that test absolute and 

relative expression patterns to identify truly novel expression patterns. We 

investigated products of gene duplication events and found that they seem to have 

the ability to “opt out” of such gene expression modules to acquire new functions. 

Such events suggest unidirectional dependences: whereas the duplicated gene 

does not need (all of) its ancient interaction partners, the partners seem to need the 
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duplicated gene and, thus, one of the two remained in the respective expression 

module. A more detailed analysis, including the divergence on the level of the 

protein sequence and the mode of natural selection (such as positive or neutral 

selection) may lead to more connections between expression divergence, protein 

function and sequence evolution. 

Methods	
  

Import	
  of	
  expression	
  data	
  

Datasets were obtained either from repositories like ArrayExpress and GEO, from 

supplementary materials or the respective websites of the resources. Expression 

profiles were then mapped to our set of genes by one of the following methods (see 

Table S1): If possible, genes were mapped by given identifiers, such as Affymetrix, 

Ensembl or WormBase identifiers. If identifiers could not be used for microarrays, 

we mapped probe sequences to transcripts using exonerate (Slater & Birney 2005), 

allowing for up to three mismatches and discarding probes that mapped to multiple 

genes. In the case of RNA-seq data without matching identifiers, we mapped reads 

to annotated transcripts using tophat2 and cufflinks 2.1.1 (Kim et al. 2013; Trapnell 

et al. 2010) and used the resulting FPKM counts. 

Normalization	
  of	
  expression	
  data	
  

In initial small-scale tests, we tested several normalization methods (Liao & Zhang 

2006; Piasecka, Robinson-Rechavi, et al. 2012b), and settled on a z-like 

normalization of expression vectors x, which corresponds to the Euclidean 

normalization of x minus its median value. Therefore, we did not look for conserved 

expression abundance, but rather for conserved relative expression across tissues. 

Normalizing each gene’s expression individually also avoided technical concerns 

regarding the comparability of absolute expression values between genes. RNA-seq 

data, e.g. the Drosophila modENCODE dataset, contained zeros, which were of 

course not suitable for logarithmic analysis. For these datasets, we determined the 

expression value of the 1/1000th quantile of all genes with non-zero expression. All 

expression values were incremented by this value.  

Tissue	
  correlations	
  between	
  species	
  

P-values for tissue correlations were calculated analytically. We performed tests 

with shuffling of genes to confirm that the analytical p-values correspond to 

empirical p-values. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 2, 2014. ; https://doi.org/10.1101/007252doi: bioRxiv preprint 

https://doi.org/10.1101/007252
http://creativecommons.org/licenses/by-nd/4.0/


 23 

Mapping	
  of	
  tissue	
  expression	
  patterns	
  

For each pair of datasets, individual linear models were trained for each tissue of the 

target species, using the tissues of the source species as input. (Note that due to 

the normalization, one tissue is redundant and therefore left out. This also implies 

that the coefficients of the linear model are not directly interpretable.) The set of 1:1 

orthologs between the two species was used as a training set. When there were 

multiple probes per gene, all combinations of probes were used for training. When 

there are many tissues in the source species, but few 1:1 orthologs, there is the 

danger of over-fitting. We therefore allowed only one predictor (i.e. one tissue from 

the source species) per 15 samples (1:1 orthologs) (Babyak 2004). For each pair of 

species, the safe number of predictors was calculated. If there were too many 

tissues, we combined tissues using k-means clustering and used the centers of the 

clusters as predictors. This situation only occurred for six out of 992 dataset pairs. 

The trained models are then applied to all genes of the source species, yielding 

corresponding predicted expression patterns in the target species. Since 1:1 

orthologs are used for training, we used predictions from a 10-fold cross-validation 

for these genes. 

Computation	
  of	
  expression	
  distances	
  

For each pair of datasets, we computed a matrix of predicted expression patterns of 

all genes from the source species. We then calculated the weighted Pearson 

correlations between the mapped expression patterns and the actual expression 

patterns of the target species’ genes. Weights on the tissues were calculated using 

the Gerstein-Sonnhammer-Chothia (GSC) weighting scheme to reduce the effect of 

uneven coverage of different anatomical regions (Gerstein et al. 1994). For example, 

in the mouse tissue datasets, there are many different brain tissues. Given the 

matrix of all weighted Pearson correlations, we then calculated expression distances 

like p-values, i.e. by determining the fraction of unrelated genes that have the same 

or higher correlation. For technical reasons, we sampled one million pairs of 

background genes, such that the lowest possible expression distance is 1e-6.  

 

As mentioned in the Results section, there is a strong correlation between the raw 

expression distances and the number of genes in the target species. This strong 

correlation indicated that predictions were biased towards the average target gene 

(i.e. the average expression profile of all genes considered in the target species), 

which in turn was similar to many target genes. As a consequence, these “close-to-
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average” target genes had higher correlations with mapped source genes, and thus 

seemed more conserved. To counter this effect, target genes are split into ten bins 

according to the number of co-expressed genes in the target species. Thus, there 

exist ten conversion functions from weighted Pearson correlation to an uncorrected 

expression distance. For a given pair of genes, the final expression distance is 

interpolated from the two adjacent bins. We determined the number of co-

expressed genes for each target gene as follows: we first computed all pairwise 

correlations among the target genes of the training set. Then, we determined the 

correlation cutoff corresponding to the top 10%, and counted for each gene how 

many other target genes were among the global top 10% correlations.  

Quantifying	
  expression	
  similarity	
  and	
  divergence	
  for	
  groups	
  of	
  genes	
  

Similarly to the definition of the expression divergence score E, we take two 

p-values into account for each pair of datasets: the p-value for the null hypothesis 

that the genes are not related to each other (pb) and the p-value for the null 

hypothesis that considered genes are in fact 1:1 orthologs (po). Given two groups of 

proteins, we then consider all interspecies combinations of datasets and compute 

paired Wilcoxon signed-rank tests to determine if the expression patterns are 

significantly similar (pb < po) or divergent (pb > po). For two groups of genes, we then 

report the lower p-value (Fig. 8). 

Analysis	
  of	
  protein	
  classes	
  

Protein classes were obtained from the PANTHER 9.0 database (Mi et al. 2013) and 

mapped to OGs. For each combination of species and protein class, we then 

determined the fraction of duplication products where both products have 

conserved expression patterns, relative to the number of duplication products 

where at least one of the duplication products keeps a conserved expression 

pattern. For each species, there is thus a background frequency of duplication 

products that are both conserved. For each class, we then determined p-values for 

both over- and under-representation using a Poisson binomial distribution. This 

distribution is computed from the background frequencies and the number of 

duplications of the relevant class per species. As the protein classes overlap (e.g. 

kinases are also transferases), we also used an iterative method to determine p-

values: after each iteration, all OGs that were annotated with the protein class with 

the most significant p-value were removed from the analysis (while keeping the 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 2, 2014. ; https://doi.org/10.1101/007252doi: bioRxiv preprint 

https://doi.org/10.1101/007252
http://creativecommons.org/licenses/by-nd/4.0/


 25 

background frequencies constant). Thus, the new p-value for nucleic acids binding 

proteins excludes transcription factors, as these had a lower p-value (Fig. S13). 
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